Как найти координату точки алгебра

Похоже, вы используете блокировщик рекламы. Наш сайт существует и развивается
только за счет дохода от рекламы.

Пожалуйста, добавьте нас в исключения блокировщика.

На главную страницу
На главную страницу

на главную

Как найти координаты точки

Поддержать сайтспасибо

Каждой точке координатной плоскости соответствуют две координаты.

Координаты точки на плоскости — это пара чисел, в которой на
первом месте стоит
абсцисса, а на
втором
ордината точки.

Найти координаты точки

Рассмотрим как в системе координат (на координатной плоскости):

  • находить координаты точки;
  • найти положение точки.

Чтобы найти координаты точки на плоскости, нужно опустить из этой точки
перпендикуляры на оси координат.

Точка пересечения с осью «x» называется абсциссой точки «А»,
а с осью y называется ординатой точки «А».

Координаты точки плоскости

Обозначают координаты точки, как указано выше (·) A (2; 3).

Пример (·) A (2; 3) и (·) B (3; 2).

Точки с разными координатами

Запомните!
!

На первом месте записывают абсциссу (координату по оси «x»), а на втором —
ординату (координату по оси «y») точки.

Особые случаи расположения точек

  1. Если точка лежит на оси «Oy»,
    то её абсцисса равна 0. Например,
    точка С (0, 2).
  2. Если точка лежит на оси «Ox», то её ордината равна 0.
    Например,
    точка F (3, 0).
  3. Начало координат — точка O имеет координаты, равные нулю O (0,0).
    Точки на координатный осях
  4. Точки любой прямой перпендикулярной оси абсцисс, имеют одинаковые абсциссы.
    Точки на прямой перпендикулярной оси абсцисс
  5. Точки любой прямой перпендикулярной оси ординат, имеют одинаковые ординаты.
    Точка на оси абсцисс
  6. Координаты любой точки, лежащей на оси абсцисс имеют вид (x, 0).
    Точка на оси абсцисс
  7. Координаты любой точки, лежащей на оси ординат имеют вид (0, y).
    Точка на оси ординат

Как найти положение точки по её координатам

Найти точку в системе координат можно двумя способами.

Первый способ

Чтобы определить положение точки по её координатам,
например, точки D (−4 , 2), надо:

  1. Отметить на оси «Ox», точку с координатой
    «−4», и провести через неё прямую перпендикулярную оси «Ox».
  2. Отметить на оси «Oy»,
    точку с координатой 2, и провести через неё прямую перпендикулярную
    оси «Oy».
  3. Точка пересечения перпендикуляров (·) D — искомая точка.
    У неё абсцисса равна «−4», а ордината равна 2.

    Как найти точку в системе координат

Второй способ

Чтобы найти точку D (−4 , 2) надо:

  1. Сместиться по оси «x» влево на
    4 единицы, так как у нас
    перед 4
    стоит «».
  2. Подняться из этой точки параллельно оси y вверх на 2 единицы, так
    как у нас перед 2 стоит «+».
    Как найти точку на координатной плоскости

Чтобы быстрее и удобнее было находить координаты точек или строить точки по координатам на
листе формата A4 в клеточку, можно скачать и использовать
готовую систему координат на нашем сайте.


Ваши комментарии

Важно!
Галка

Чтобы оставить комментарий, вам нужно войти на наш сайт при помощи

«ВКонтакте».

Пришелец пожимает плечами

Оставить комментарий:


Ранее мы научились находить координату точки на прямой линии (или числовой оси). 

Как же найти месторасположение точки не на прямой, а на плоскости? 

В предыдущем уроке вы узнали, что проще находить координаты объекта на плоскости с помощью двух чисел в прямоугольной системе координат.

Представим, например, стол и какую-то точку $А$ на нем. 

В прямоугольной системе координат длину стола можно отмерить по оси $Ox$, а ширину по перпендикулярной ей оси $Оу$, место их пересечения будет точкой отсчета $О$. 

Тогда местоположение нашей точки $А$ можно найти, проведя от нее перпендикулярные прямые к каждой из осей. Эти линии обычно изображаются пунктиром. 

Так на рисунке выше у точки $A$ относительно точки отсчета $О$ координаты будут такими:

  • по оси $color{#3D68EB}x$ — $color{#3D68EB}3$
  • по оси $color{#eb3d3d}y$ — $color{#eb3d3d}5$

Координата точки $A$ по оси $Ох$, называется абсциссой точки $А$, координата по оси $у$, называется ординатой точки $А$

Принято записывать на первом месте абсциссу, и ординату – на втором месте.

Координата точки $А$ в нашем случае запишется следующим образом: $A(3;5)$

Начало отсчета точка $О$ имеет координаты $(0,0)$

Таким образом, координаты – это числовые значения, с помощью которых выясняется местоположение точки на плоскости.

В прямоугольной системе координат значения координат любой точки можно найти, проведя от нее перпендикулярные пунктирные линии к каждой из осей.

И, наоборот, чтобы найти точку на плоскости с определенными координатами, от каждой из осей $Ох$ и $Оу$ необходимо провести перпендикуляры по заданным координатам. Искомая точка будет находиться в месте пересечения этих перпендикулярных линий.

Особые случаи

  1. Если абсцисса (координата $х$) точки равна $0$, то она лежит на оси $Оу$. И, наоборот, если точка лежит на оси $Оу$, то величина ее абсциссы равна $0$. Все точки, лежащие на оси $Оу$, имеют абсциссу $0$
  1. Аналогично, если ордината точки равна $0$, то она лежит на оси $Ох$. Все точки, лежащие на оси $Ох$, имеют ординату $0$
  1. Если провести прямую линию, перпендикулярную оси абсцисс (или параллельную оси ординат), то все точки этой прямой будут иметь одинаковую абсциссу.
  1. Также и с прямой линией, перпендикулярной оси ординат (или параллельной оси $Ох$): все точки на ней будут иметь одинаковые ординаты, то есть координаты по оси $Оу$.
Автор статьи

Марина Николаевна Ковальчук

Эксперт по предмету «Геометрия»

Задать вопрос автору статьи

Прямоугольная система координат

Чтобы определить понятие координат точек, нам необходимо ввести систему координат, в которой мы и будем определять ее координаты. Одна и та же точка в разных системах координат может иметь различные координаты. Здесь мы будем рассматривать прямоугольную систему координат в пространстве.

Возьмем в пространстве точку $O$ и введем для нее координаты $(0,0,0)$. Назовем ее началом системы координат. Проведем через нее три взаимно перпендикулярные оси $Ox$, $Oy$ и $Oz$, как на рисунке 1. Эти оси будут называться осями абсцисс, ординат и аппликат, соответственно. Осталось только ввести масштаб на осях (единичный отрезок) – прямоугольная система координат в пространстве готова (рис. 1)

Прямоугольная система координат в пространстве. Автор24 — интернет-биржа студенческих работ

Рисунок 1. Прямоугольная система координат в пространстве. Автор24 — интернет-биржа студенческих работ

Логотип iqutor

Сделаем домашку
с вашим ребенком за 380 ₽

Уделите время себе, а мы сделаем всю домашку с вашим ребенком в режиме online

Бесплатное пробное занятие

*количество мест ограничено

Координаты точки

Теперь разберем, как определяют в такой системе координаты любой точки. Возьмем произвольную точку $M$ (рис. 2).

Произвольная точка. Автор24 — интернет-биржа студенческих работ

Рисунок 2. Произвольная точка. Автор24 — интернет-биржа студенческих работ

Построим на координатных осях прямоугольный параллелепипед, так, что точки $O$ и $M$ противоположные его вершины (рис. 3).

Построение прямоугольного параллелепипеда. Автор24 — интернет-биржа студенческих работ

Рисунок 3. Построение прямоугольного параллелепипеда. Автор24 — интернет-биржа студенческих работ

«Координаты точки и координаты вектора. Как найти координаты вектора» 👇

Тогда точка $M$ будет иметь координаты $(X,Y,Z)$, где $X$ – значение на числовой оси $Ox$, $Y$ – значение на числовой оси $Oy$, а $Z$ – значение на числовой оси $Oz$.

Пример 1

Необходимо найти решение следующей задачи: написать координаты вершин параллелепипеда, изображенного на рисунке 4.

Параллелепипед. Автор24 — интернет-биржа студенческих работ

Рисунок 4. Параллелепипед. Автор24 — интернет-биржа студенческих работ

Решение.

Точка $O$ начало координат, следовательно, $O=(0,0,0)$.

Точки $Q$, $N$ и $R$ лежат на осях $Ox$, $Oz$ и $Oy$, соответственно, значит

$Q=(2,0,0)$, $N=(0,0,1.5)$, $R=(0,2.5,0)$

Точки $S$, $L$ и $M$ лежат в плоскостях $Oxz$, $Oxy$ и $Oyz$, соответственно, значит

$S=(2,0,1.5)$, $L=(2,2.5,0)$, $R=(0,2.5,1.5)$

Точка $P$ имеет координаты $P=(2,2.5,1.5)$

Координаты вектора по двум точкам и формула нахождения

Чтобы узнать, как найти вектор по координатам двух точек, необходимо рассмотреть введенную нами ранее систему координат. В ней от точки $O$ по направлению оси $Ox$ отложим единичный вектор $overline{i}$, по направлению оси $Oy$ – единичный вектор $overline{j}$, а единичный вектор $overline{k}$ нужно направлять по оси $Oz$.

Для того чтобы ввести понятие координат вектора, введем следующую теорему (здесь ее доказательство мы рассматривать не будем).

Теорема 1

Произвольный вектор в пространстве может быть разложен по трем любым векторам, которые не лежат в одной плоскости, причем коэффициенты в таком разложении будут единственным образом определены.

Математически это выглядит следующим образом:

$overline{δ}=moverline{α}+noverline{β}+loverline{γ}$

Так как векторы $overline{i}$, $overline{j}$ и $overline{k}$ построены на координатных осях прямоугольной системы координат, то они, очевидно, не будут принадлежать одной плоскости. Значит любой вектор $overline{δ}$ в этой системе координат, по теореме 1, может принимать следующий вид

$overline{δ}=moverline{i}+noverline{j}+loverline{k}$ (1)

где $n,m,l∈R$.

Определение 1

Три вектора $overline{i}$, $overline{j}$ и $overline{k}$ будут называться координатными векторами.

Определение 2

Коэффициенты перед векторами $overline{i}$, $overline{j}$ и $overline{k}$ в разложении (1) будут называться координатами этого вектора в заданной нами системе координат, то есть

$overline{δ}=(m,n,l)$

Линейные операции над векторами

Теорема 2

Теорема о сумме: Координаты суммы любого числа векторов определяются суммой их соответствующих координат.

Доказательство.

Будем доказывать эту теорему для 2-х векторов. Для 3-х и более векторов доказательство строится аналогичным образом. Пусть $overline{α}=(α_1,α_2,α_3)$, $overline{β}=(β_1,β_2 ,β_3)$.

Эти вектора можно записать следующим образом

$overline{α}=α_1overline{i}+ α_2overline{j}+α_3overline{k}$, $overline{β}=β_1overline{i}+ β_2overline{j}+β_3overline{k}$

$overline{α}+overline{β}=α_1overline{i}+α_2overline{j}+α_3overline{k}+β_1overline{i}+ β_2overline{j}+β_3overline{k}=(α_1+β_1 )overline{i}+(α_2+β_2 )overline{j}+(α_3+β_3)overline{k}$

Следовательно

$overline{α}+overline{β}=(α_1+β_1,α_2+β_2,α_3+β_3)$

Теорема доказана.

Замечание 1

Замечание: Аналогично, находится решение разности нескольких векторов.

Теорема 3

Теорема о произведении на число: Координаты произведения произвольного вектора на действительное число определяется произведением координат на это число.

Доказательство.

Возьмем $overline{α}=(α_1,α_2,α_3)$, тогда $overline{α}=α_1overline{i}+α_2overline{j}+α_3overline{k}$, а

$loverline{α}=l(α_1overline{i}+ α_2overline{j}+α_3overline{k})=lα_1overline{i}+ lα_2overline{j}+lα_3overline{k}$

Значит

$koverline{α}=(lα_1,lα_2,lα_3)$

Теорема доказана.

Пример 2

Пусть $overline{α}=(3,0,4)$, $overline{β}=(2,-1,1)$. Найти $overline{α}+overline{β}$, $overline{α}-overline{β}$ и $3overline{α}$.

Решение.

$overline{α}+overline{β}=(3+2,0+(-1),4+1)=(5,-1,5)$

$overline{α}-overline{β}=(3-2,0-(-1),4-1)=(1,1,3)$

$3overline{α}=(3cdot 3,3cdot 0,3cdot 4)=(9,0,12)$

Находи статьи и создавай свой список литературы по ГОСТу

Поиск по теме

Для обозначения числами точного положения точки на плоскости 
проведём две перпендикулярные координатные прямые (x) и (y), 
которые пересекаются в начале отсчёта — точке (O).

Так мы задали на плоскости прямоугольную систему координат,

а плоскость стала координатной плоскостью.

Начало координат — точка (O) (точка пересечения прямых (x) и (y)),

оси координат — координатные прямые (x) и (y),

координатные углы — прямые углы, образованные при пересечении осей координат

Координатные углы нумеруют против часовой стрелки:

koordinati.2.png

Отметим в прямоугольной системе координат точку (M).

koordinati.3.png

Проведём через точку (M) прямую, параллельную оси (y).

Прямая пересечёт ось (x) в некоторой точке, координата которой равна (-2).

Эту координату называют абсциссой точки (M).

Далее проведём через точку (M) прямую, параллельную оси (x). Прямая пересечёт ось (y) в некоторой точке, координата которой равна (3).

Эту координату называют ординатой точки (M).

Коротко пишем так: (M(x; y)).

Эту пару чисел называют координатами точки (M). 
Абсциссу записываем на первое место, ординату — на второе место.

Имеем (M(-2; 3)).

Число (-2) называют абсциссой точки (M), а число (3) — ординатой точки (M).

Горизонтальную координатную прямую (x) называют осью абсцисс, или осью (x), а

вертикальную координатную прямую (y) — осью ординат, или осью (y).

Координатные углы ещё называют координатными четвертями. Рассмотрим координаты точки (M(x; y)) в разных четвертях и на осях:

в (1) четверти: (x>0; y>0);

во (2) четверти: (x<0; y>0);

в (3) четверти: (x<0; y<0);

в (4) четверти: (x>0; y<0);

на оси (x): координата (y=0), то есть (M(x; 0));

на оси (y): координата (x=0), то есть (M(0; y)).

Каждой точке на координатной плоскости соответствует пара чисел: её абсцисса и ордината — и наоборот, каждой паре чисел соответствует одна точка плоскости, для которой эти числа являются координатами.

Для построения этой точки, требуется найти точку пересечения прямых (x=a) и (y=b).

Это будет точка (M(a; b)).

Система координат — комплекс определений, реализующий метод координат, то есть способ определять положение и перемещение точки или тела с помощью чисел или других символов. Совокупность чисел, определяющих положение конкретной точки, называется координатами этой точки. В математике координаты — совокупность чисел, сопоставленных точкам многообразия в некоторой карте определённого атласа.

Координаты на прямой

Если на прямой задано направление, то такую прямую называют направленной, а выбранное направление — положительным. Например, на горизонтальной прямой можно отметить направление вправо, тогда будем говорить, что направленная прямая имеет положительное направление вправо. Можно с таким же правом считать положительным и направление влево. Направление прямой будем указывать стрелкой (рис. 1).

Координаты

Выберем на направленной прямой точку, которую назовем началом отсчета или началом координат, и будем обозначать ее буквой О.

Кроме того, выберем отрезок, длину которого будем считать единицей длины. Этот отрезок назовем единицей масштаба.

Определение:

Прямая линия, на которой указаны: начало отсчета, единица масштаба и направление отсчета, называется осью координат.

Рассмотрим отрезок, расположенный на оси координат. Если одну из точек, ограничивающих отрезок, назовем началом отрезка, а другую—его концом, то отрезок будем называть направленным отрезком. Направленный отрезок обозначают двумя буквами, например: АВ, СМ, КР, причем на первом месте ставят букву, обозначающую начало, на втором—букву, обозначающую конец. Таким образом, запись АВ показывает, что начало отрезка есть точка А, а конец — точка В. Направление отрезка считается от начала к концу.

Если направление отрезка совпадает с направлением оси, то отрезок называют положительно направленным; если же его направление противоположно направлению оси, то — отрицательно направленным. Таким образом, отрезки АВ и ВА имеют противоположные направления. Это записывают так:

Координаты

Отметим, что положительный отрезок может находиться в любом месте координатной оси, только его направление должно совпадать с направлением оси.

Сложение направленных отрезков производится по следующему правилу:

Для того чтобы сложить два направленных отрезка, нужно к концу первого приложить начало второго; тогда отрезок, имеющий началом начало первого отрезка и концом конец второго, называют суммой двух направленных отрезков.

Из этого определения вытекает, что сумма отрезков АВ и ВС равна отрезку АС при любом расположении точек А, В, С, т. е. всегда:

Координаты

(рис. 2 и 3).

Координаты

Координатным отрезком точки А называется направленный отрезок, имеющий начало в точке О (т. е. в начале координат), а концом — рассматриваемую точку А.

Всякий направленный отрезок, лежащий на оси, можно выразить через координатные отрезки его начала и конца. В самом деле, рассмотрим направленный отрезок АВ. На основании равенства (2) можно написать

Координаты

(здесь вместо точки В поставлена точка О, а вместо точки С точка В) или

Координаты

Отрезок ОВ есть координатный отрезок (его начало есть точка О), но отрезок АО не является координатным, поскольку его начало не является началом координат. Но в силу равенства (1)

Координаты

поэтому можно написать

Координаты

Получен следующий результат:

Направленный отрезок равен разности координатного отрезка его конца и координатного отрезка его начала.

Это верно для любого отрезка, лежащего на координатной оси.

Теперь дадим одно из самых важных определений: Координатой точки на координатной оси называется число, равное по абсолютной величине длине координатного отрезка этой точки и по знаку совпадающее со знаком координатного отрезка.

Точку А, имеющую координатной число х, будем обозначать А (х).

Координаты

Указанные на рис. 4 точки имеют следующие координаты:

Координаты

Будем также писать

Координаты

Если даны точки А(х1) и В(х2), то на основании формул (3) и (4) получим

Координаты

т. е. направленный отрезок равен разности координат его конца и начала.

Отсюда сразу получаем, что длина отрезка равна абсолютной величине разности координат его конца и начала.

Длину отрезка будем обозначать, пользуясь знаком | |, т. е. знаком абсолютной величины. Таким образом, длина отрезка АВ будет записываться так:

Координаты

Пример:

Если даны точки А (+4), В (+8), то отрезок АВ = (+8) — (+4), а его длина |АВ|= |+ 4 | = 4.

Если даны точки М (+5) и Р (+3), то отрезок МР = (+3)—(+5) = —2, а его длина |МР| = | —2| = 2. Даны две точки: Q (+ 3) и S (—4). Длина отрезка

Координаты

Даны две точки R (— 6) и Т (—2); отрезок = ( — 2) — (—6) = +4, а его длина | | = 4.

Пример:

Начало отрезка АВ находится в точке А (—950), а конец—в точке В ( —1200); найти его направление и длину.

Отрезок АВ = ( — 1200)—( — 950) = —250. Так как он

получился отрицательным, то его направление противоположно направлению оси. Его длина равна | АВ | = | —250 | = 250.

Задача:

На координатной оси даны две точки: A (x1) и В (x2) Найти точку С, лежащую между ними и делящую отрезок АВ в отношении т : п.

Чтобы найти точку, надо найти ее координату. По условию задачи должно быть

Координаты

Обозначая координату искомой точки С через х и выражая отрезки через координаты, т. е. применяя формулу (5), получим, что АС = х—х1, СВ = х2 — х. Подставляя эти выражения в равенство (6), будем иметь

Координаты

Решая последнее уравнение относительно х, найдем:

Координаты

Это и есть координата искомой точки.

Пример:

Найти точку С, делящую отрезок АВ в отношении 1:2, если даны начало отрезка А (+ 3) и конец В ( + 5) (рис. 5).

Координаты

Здесь т = 1, п = 2, х1=-3, х2 = 5. Применяя формулу (7), получим

Координаты

Пример:

Найти точку М, делящую расстояние между точками Р ( — 2) и Q (—9) в отношении 3:4 (рис. 5). Здесь т = 3, п = 4, х1 = —2, х2 = —9. По формуле (7) находим

Координаты

Если т = n т. е. точка С делит отрезок АВ пополам, тогда формула (7) перепишется так:

Координаты

Таким образом, координата точки, делящей отрезок пополам, равна средней арифметической координат его начала и конца.

Координаты

Пример:

Найдем середину отрезка, заключенного между точками А (—6) и B (4) (рис. 6).

Применяя формулу (8), получим, что

Координаты

Координаты на плоскости

Возьмем на плоскости две взаимно перпендикулярные прямые, пересекающиеся в точке О. На каждой из этих прямых зададим направление, указав его стрелкой (рис. 7).

Координаты

Установим масштаб, общий для обеих прямых, а за начало отсчета выберем точку О.

Определение:

Координатными осями на плоскости называются две взаимно перпендикулярные прямые, на которых установлены: 1) на-правления, 2) масштаб и 3) общая точка отсчета.

Назовем одну из осей осью Ох или осью абсцисс, другую — осью Оу или осью ординат. Точку их пересечения назовем началом координат.

Возьмем произвольную точку M, лежащую на плоскости, и опустим из нее перпендикуляры на оси координат, т. е. найдем ее проекции на оси. Обозначим проекцию на ось Ох через А, а проекцию на ось Оу через В. Обозначим координату точки А (по оси Ох) через х, а координату точки В (по оси Оу) через у. Введем определение:

Определение:

Абсциссой точки называется координата ее проекции на ось Ох. Ординатой точки называется координата ее проекции на ось Оу.

Абсциссу точки обычно обозначают буквой х, ординату— буквой у. Точку М, имеющую абсциссу х и ординату у, обозначают следующим образом: пишут скобку и в ней на первом месте ставят абсциссу, на втором ординату и разделяют эти два числа запятой или точкой с запятой. Таким образом, запись точки выглядит так: М(х, у).

Координатные оси разделяют плоскость на четыре части, которые называют четвертями.

Первой четвертью называется та часть плоскости, в которой абсцисса и ордината положительны.

Второй четвертью — та часть, в которой абсцисса отрицательна, а ордината положительна.

Третьей четвертью — та часть, в которой абсцисса и ордината отрицательны, и, наконец, четвертой, — та часть, в которой абсцисса положительна, а ордината отрицательна (рис. 7), На рис. 8 указаны точки M1 (5, 2), М2 ( — 1, 1), М3 (-1, -3), М4 (2, -3). Заметим, что абсцисса х = ОА по абсолютной величине равна расстоянию точки от оси ординат, так как ОА = ВМ (см. рис. 7), а ордината — расстоянию точки М от оси абсцисс, так как ОВ = АМ.

Координаты

Пример:

Найти точку Р( — 4, 2) (рис. 9), Возьмем на оси Ох точку А с координатой —4, ее координатный отрезок ОА = —4. На оси Оу возьмем точку В с координатным отрезком ОВ= 2. Восставим перпендикуляры к осям из точек А и В, точка их пересечения и даст искомую точку Р.

Координаты

Задача:

Найти расстояние между точками Р (х1, у1) и Q( х1, у1 ). Иначе говоря, нужно найти длину отрезка РQ(рис. 10).

Обозначим проекцию точки Р на ось Ох через А1, а ее проекцию на ось Оу — через В1. Проекцию точки Q на ось Ох обозначим через А2 и через В2— ее проекцию на ось Oy. Тогда ОА1 = х1, ОВ1 = y1, ОА2 = х2, ОВ2 = у2. Из точки Р проведем прямую, параллельную оси Ох, до пересечения с прямой A2Q в точке К. Рассмотрим треугольник PKQ. По теореме Пифагора имеем

Координаты

Но РК = А1А2, KQ = B1B2, как противоположные стороны прямоугольников; кроме того, на основании формулы (3 из § 1) направленные отрезки А1А2 и В1В2 будут равны

Координаты

Подставляя полученные выражения в (*), получим

Координаты

откуда

Координаты

т. е. расстояние между двумя точками равно корню квадратному из суммы квадратов разностей координат.

Примечание:

Расстояние между двумя точками, так же как длина отрезка, всегда положительно, поэтому в формуле (1) перед квадратным корнем берут только знак плюс.

Пример:

Найти расстояние между точками Р (— 2, — 1) и Q (2, 2). Применяя формулу (1), получим

Координаты

Пример:

Найти длину отрезка MN, если даны М (8, 2) и N(2, 10). Применяя формулу (1), получим

Координаты

Задача:

Найти точку С, делящую отрезок PQ в отношении т : п, если известны координаты точек Р (х1, у1) и Q (х2, у2). По условию задачи надо найти такую точку С, чтобы было выполнено равенство

Координаты

Решение:

Обозначим, как и выше, проекции точки Р на оси через А1 и В1, а проекции точки Q—через А2 и В2; тогда ОА1 = х1 , OB1 = y1, ОА2 =х2, ОВ2=у2 (рис. 11). Кроме того, обозначим координаты искомой точки С через х и у, а ее проекции на оси — через А и В, т. е. ОА = х, ОВ = у.

Так как прямые А1Р, АС и А2Q параллельны между собой, то на основании теоремы о пропорциональных отрезках можно записать, что

Координаты

Но А1А = ОА — ОА1 = х—х1, АА2 = ОА2 — ОА = х2—х; поэтому, подставляя в равенство (*), будем иметь уравнение

Координаты

решая которое найдем абсциссу точки С:

Координаты

Рассуждая аналогично о проекциях на ось Оу, т. е. о точках В1, В и В2, получим ординату точки С, делящей отрезок в отношении т : п,

Координаты

Итак, искомая точка С имеет координаты, определяемые равенствами (2) и (3).

Пример:

Найти точку, делящую в отношении 1:2 отрезок PQ, где Р (4, —3) и Q (8, 0). Здесь х1 = 4, у1 = — 3, х2 = 8, у2 = 0, т = 1, п = 2. Применяя формулы (2) и (3), получим:

Координаты

Пример:

Найти точку, делящую расстояние между точками А (4, 2) и B (8, 10) в отношении 3 : 1. Здесь х1=-4, у1 = 2, х2 = 8, у2= 10, т = 3, п = 1. По формулам (2) и (3) находим:

Координаты

Следствие (из формул (2) и (3)). Если точка С делит отрезок РQ пополам, то т = n, поэтому

Координаты

т. е. абсцисса середины отрезка равна средней арифметической абсцисс его начала и конца; ордината середины отрезка равна средней арифметической ординат его начала и конца.

Задача:

Даны три вершины треугольника: А (7, 0), В (4, 4) и С (7, 10). Найти длину биссектрисы угла A (рис. 12).

Координаты

Найдем длины сторон АВ и АС. Для этого применим формулу (1):

Координаты

Обозначим точку пересечения биссектрисы угла А с противоположной стороной ВС через М, а ее координаты—через х и у. Помня, что биссектриса внутреннего угла треугольника делит противоположную сторону на отрезки, пропорциональные прилежащим сторонам, можно утверждать, что точка М делит отрезок ВС в отношении 5 : 10 = Координаты; поэтому, применяя формулы (2) и (3), получим:

Координаты

т. е. М (5, 6).

Теперь вычисляем длину биссектрисы между точками А(7, 0) и М(5, 6):

Координаты

Задача:

Найти точку пересечения медиан треугольника, вершинами которого являются точки А(4, 6), В(—8, 10), С( —2, —6) (рис. 13).

Координаты

Точка пересечения медиан делит каждую из медиан в отношении 2:1, считая от вершины треугольника. Обозначим через М середину стороны АС; по формулам (4) и (5) можно найти ее координаты:

Координаты

т. е. М(19 0). Точка Р пересечения медиан делит отрезок ВМ в отношении 2:1, поэтому ее координаты найдутся по формулам (2)

и (3):

Координаты

Итак, искомая точка

Координаты

Задача:

Записать условие того, что точка М (х, у) находится на расстоянии По формуле (1) имеем

Координаты

или, возводя обе части равенства в квадрат, получим

Координаты

Это равенство есть уравнение с двумя неизвестными х и у. Этому уравнению удовлетворяют координаты любой точки, лежащей на расстоянии 5 от точки С. Иначе говоря, ему удовлетворяют координаты любой точки, принадлежащей геометрическому месту точек, расстояние которых от точки С равно 5. Это геометрическое место есть окружность.

Следовательно, можно сказать, что уравнение (*) есть уравнение окружности с центром в точке С и радиуса 5.

В следующих главах будут рассмотрены уравнения с двумя неизвестными х и у и те линии (геометрические места), точки которых имеют координаты, удовлетворяющие этим уравнениям.

Числовая ось

Числовой осью называют направленную прямую, на которой указывается начальная точка О и задается некоторый «эталон» длины Е. Каждой точке Системы координат этой прямой отвечает вещественное число, равное длине отрезка Системы координат если Системы координат расположено правее точки О, и равное этой

Системы координат

длине со знаком минус — в противном случае (см. рис. 1 а). Числовую ось будем обозначать Системы координат (смысл этого обозначения прояснится ниже).

Указанное соответствие между точками числовой оси Системы координат и множеством вещественных чисел Системы координат является взаимно однозначным, т. е. каждой точке Системы координатсоответствует единственное число Системы координат, обратно, каждому числу Системы координат соответствует единственная точка Системы координат Таким образом, множество Системы координат. вещественных чисел можно отождествлять с числовой осью Системы координат, чем мы будем впредь постоянно пользоваться.

Декартова система координат

Декартовой (прямоугольной) системой координат на плоскости называют две взаимно перпендикулярные числовые оси Системы координати Системы координат, имеющие общее начало О и одинаковые единицы масштаба (см. рис. 1 б). Ось Системы координат называют осью абсцисс, а ось Системы координатосью ординат. Плоскость Системы координат называют координатной плоскостью и обозначают Системы координат

Пусть М — произвольная точка координатной плоскости. Опустим из нее перпендикуляры МА и МВ на оси Системы координат и Системы координат соответственно. Декартовыми координатами точки М называют числа, которым соответствуют точки А к В. Например, точка Системы координат имеет декартовы координаты Системы координат что записывается в виде Системы координатТочка О имеет координаты (0,0).

Полярная система координат

В плоскости зададим луч Системы координат — полярную ось, выходящий из точки О — полюса полярной системы координат (см. рис. 2 а). Произвольная точка М плоскости определяется парой чисел Системы координат называемой ее полярными координатами, где р — длина отрезка ОМ, а Системы координат — выраженный в радианах угол между ОМ и осью Системы координат. Угол в считается положительным, если откладывается против часовой стрелки, и отрицательным в противоположном случае. Точка О имеет полярные координаты Системы координат где Системы координат — любой угол.

Системы координат

Полярные и декартовы координаты, заданные на одной плоскости (см. рис. 2 6), связаны очевидными равенствами:

Системы координат
Системы координат

Полярные координаты удобны для задания многих кривых. Например, уравнение р=2 описывает окружность, изображенную на рис. За. Уравнение Системы координатописывает спираль Архимеда (рис . Уравнение Системы координат описывает окружность с диаметром 1 и с центром в точке Системы координат(рис. Зв).

Системы координат в пространстве

Декартова система координат в пространстве определяется тремя взаимно перпендикулярными осями Системы координат, Системы координат и Системы координат , называемыми соответственно осями абсцисс, ординат и аппликат (см. рис. 4 а). Проcтранство Системы координат обозначают Системы координат. Положение точки М в Системы координатопределяется тройкой чисел Системы координат

Системы координат

Аналогами полярной системы координат в пространстве служат цилиндрическая и сферическая системы координат.

Цилиндрическая система координат (рис. 4 б) представляет собой объединение полярной системы координат в плоскости Системы координат с аппликатой z:

Системы координат

где Системы координат

Сферическая система координат (рис. 4 в) связана с декартовой системой равенствами

Системы координат

где Системы координат

Пространство

Пространство Системы координат

На плоскости и в пространстве положение точки в декартовых координатах полностью определяется соответственно, парой и тройкой чисел вида [Системы координат) и (x,y,z). Желая обобщить эти геометрические подходы, в анализе вводят понятие пространства Системы координат

Упорядоченную систему из Системы координат вещественных чисел Системы координат называют Системы координат-мерной точкой, а множество всех Системы координат-мерных точек называют Системы координатмерным пространством Системы координат или короче — пространством Системы координат.

Понятие пространства Системы координат естественно дополнить понятиями основных операций над его элементами. По определению полагают

Системы координат

Наконец, обобщая известную из аналитической геометрии формулу, определяют расстояние между двумя точками Системы координат и Системы координат

Системы координат

Прямую, плоскость и пространство можно рассматривать как пространства Системы координат, Системы координати Системы координат соответственно. Ниже это будет практиковаться постоянно.

Решение заданий и задач по предметам:

  • Математика
  • Высшая математика
  • Математический анализ
  • Линейная алгебра

Дополнительные лекции по высшей математике:

  1. Тождественные преобразования алгебраических выражений
  2. Функции и графики
  3. Преобразования графиков функций
  4. Квадратная функция и её графики
  5. Алгебраические неравенства
  6. Неравенства
  7. Неравенства с переменными
  8. Прогрессии в математике
  9. Арифметическая прогрессия
  10. Геометрическая прогрессия
  11. Показатели в математике
  12. Логарифмы в математике
  13. Исследование уравнений
  14. Уравнения высших степеней
  15. Уравнения высших степеней с одним неизвестным
  16. Комплексные числа
  17. Непрерывная дробь (цепная дробь)
  18. Алгебраические уравнения
  19. Неопределенные уравнения
  20. Соединения
  21. Бином Ньютона
  22. Число е
  23. Непрерывные дроби
  24. Функция
  25. Исследование функций
  26. Предел
  27. Интеграл
  28. Двойной интеграл
  29. Тройной интеграл
  30. Интегрирование
  31. Неопределённый интеграл
  32. Определенный интеграл
  33. Криволинейные интегралы
  34. Поверхностные интегралы
  35. Несобственные интегралы
  36. Кратные интегралы
  37. Интегралы, зависящие от параметра
  38. Квадратный трехчлен
  39. Производная
  40. Применение производной к исследованию функций
  41. Приложения производной
  42. Дифференциал функции
  43. Дифференцирование в математике
  44. Формулы и правила дифференцирования
  45. Дифференциальное исчисление
  46. Дифференциальные уравнения
  47. Дифференциальные уравнения первого порядка
  48. Дифференциальные уравнения высших порядков
  49. Дифференциальные уравнения в частных производных
  50. Тригонометрические функции
  51. Тригонометрические уравнения и неравенства
  52. Показательная функция
  53. Показательные уравнения
  54. Обобщенная степень
  55. Взаимно обратные функции
  56. Логарифмическая функция
  57. Уравнения и неравенства
  58. Положительные и отрицательные числа
  59. Алгебраические выражения
  60. Иррациональные алгебраические выражения
  61. Преобразование алгебраических выражений
  62. Преобразование дробных алгебраических выражений
  63. Разложение многочленов на множители
  64. Многочлены от одного переменного
  65. Алгебраические дроби
  66. Пропорции
  67. Уравнения
  68. Системы уравнений
  69. Системы уравнений высших степеней
  70. Системы алгебраических уравнений
  71. Системы линейных уравнений
  72. Системы дифференциальных уравнений
  73. Арифметический квадратный корень
  74. Квадратные и кубические корни
  75. Извлечение квадратного корня
  76. Рациональные числа
  77. Иррациональные числа
  78. Арифметический корень
  79. Квадратные уравнения
  80. Иррациональные уравнения
  81. Последовательность
  82. Ряды сходящиеся и расходящиеся
  83. Тригонометрические функции произвольного угла
  84. Тригонометрические формулы
  85. Обратные тригонометрические функции
  86. Теорема Безу
  87. Математическая индукция
  88. Показатель степени
  89. Показательные функции и логарифмы
  90. Множество
  91. Множество действительных чисел
  92. Числовые множества
  93. Преобразование рациональных выражений
  94. Преобразование иррациональных выражений
  95. Геометрия
  96. Действительные числа
  97. Степени и корни
  98. Степень с рациональным показателем
  99. Тригонометрические функции угла
  100. Тригонометрические функции числового аргумента
  101. Тригонометрические выражения и их преобразования
  102. Преобразование тригонометрических выражений
  103. Комбинаторика
  104. Вычислительная математика
  105. Прямая линия на плоскости и ее уравнения
  106. Прямая и плоскость
  107. Линии и уравнения
  108. Прямая линия
  109. Уравнения прямой и плоскости в пространстве
  110. Кривые второго порядка
  111. Кривые и поверхности второго порядка
  112. Числовые ряды
  113. Степенные ряды
  114. Ряды Фурье
  115. Преобразование Фурье
  116. Функциональные ряды
  117. Функции многих переменных
  118. Метод координат
  119. Гармонический анализ
  120. Вещественные числа
  121. Предел последовательности
  122. Аналитическая геометрия
  123. Аналитическая геометрия на плоскости
  124. Аналитическая геометрия в пространстве
  125. Функции одной переменной
  126. Высшая алгебра
  127. Векторная алгебра
  128. Векторный анализ
  129. Векторы
  130. Скалярное произведение векторов
  131. Векторное произведение векторов
  132. Смешанное произведение векторов
  133. Операции над векторами
  134. Непрерывность функций
  135. Предел и непрерывность функций нескольких переменных
  136. Предел и непрерывность функции одной переменной
  137. Производные и дифференциалы функции одной переменной
  138. Частные производные и дифференцируемость функций нескольких переменных
  139. Дифференциальное исчисление функции одной переменной
  140. Матрицы
  141. Линейные и евклидовы пространства
  142. Линейные отображения
  143. Дифференциальные теоремы о среднем
  144. Теория устойчивости дифференциальных уравнений
  145. Функции комплексного переменного
  146. Преобразование Лапласа
  147. Теории поля
  148. Операционное исчисление
  149. Системы координат
  150. Рациональная функция
  151. Интегральное исчисление
  152. Интегральное исчисление функций одной переменной
  153. Дифференциальное исчисление функций нескольких переменных
  154. Отношение в математике
  155. Математическая логика
  156. Графы в математике
  157. Линейные пространства
  158. Первообразная и неопределенный интеграл
  159. Линейная функция
  160. Выпуклые множества точек

Добавить комментарий