Формула как найти все значения корня

Содержание:

Квадратные корни

Уравнение х2 = 9 имеет два решения: 3 и -3. Говорят, что 3 и -3 — квадратные корни из числа 9.

Квадратным корнем из числа а называют число, I квадрат которого равен а.

Примеры:

Квадратными корнями из числа:

  • а) 1600 являются 40 и – 40, поскольку 402 = 1600 и (-40)2 = 1600;
  • б) 0,49 являются 0,7 и 0,7, поскольку 0,72 = 0,49 и (-0,7)2 = 0,49.

Среди известных вам чисел нет такого, квадрат которого был бы равен отрицательному числу, поэтому квадратного корня из отрицательного числа не существует.

Квадратный корень из числа 0 равен нулю. Квадратный корень из положительного числа имеет два значения: одно из них положительное, другое — противоположное ему отрицательное число.

Неотрицательное значение квадратного корня называют арифметическим значением этого корня.

Арифметическое значение квадратного корня из числа a обозначают символом Квадратные корни - определение и вычисление с примерами решения

Квадратные корни - определение и вычисление с примерами решения

Примечание. Символом Квадратные корни - определение и вычисление с примерами решения обозначают только арифметическое значение квадратного корня из числа а, хотя читается оно короче: «квадратный корень из числа а».

Вычисление арифметического значения квадратного корня называют извлечением квадратного корня.

Из небольших чисел, являющихся точными квадратами чисел, извлекать квадратные корни желательно устно.

а 1 4 9 16 25 36 49 64 81 100 121 144
Квадратные корни - определение и вычисление с примерами решения 1 2 3 4 5 6 7 8 9 10 11 12

Квадратные корни из больших натуральных чисел можно находить, пользуясь таблицей квадратов.

Например, Квадратные корни - определение и вычисление с примерами решения, Квадратные корни - определение и вычисление с примерами решения.

С помощью калькулятора можно извлекать квадратные корни с большей точностью. Например, чтобы извлечь квадратный корень из 1000, набираем это число, затем нажимаем клавишу Квадратные корни - определение и вычисление с примерами решения. На экране высвечивается число 31,622776.

Следовательно, Квадратные корни - определение и вычисление с примерами решения.

Если таким способом найти значение Квадратные корни - определение и вычисление с примерами решения , то на некоторых калькуляторах высвечиваются два числа: 5,9160797 и -2. Число -2 здесь показывает порядок искомого значения, записанного в стандартном виде. Следовательно,

Квадратные корни - определение и вычисление с примерами решения.

Хотите знать ещё больше?

Извлекать квадратные корни из натуральных чисел вавилонские учёные умели ещё 4 тыс. лет тому назад Они составили таблицу квадратов многих натуральных чисел и, пользуясь ею, находили квадратные корни. Если число m не было точным квадратом натурального числа, то они искали ближайшее приближённое значение а квадратного корня из m, представляли число m в виде m = а2 + b и применяли правило, которое сейчас можно записать в виде формулы Квадратные корни - определение и вычисление с примерами решения Например, если m = 108, то Квадратные корни - определение и вычисление с примерами решения.

Проверка. 10,42 = 108,16.

Это правило извлечения квадратных корней было известно и учёным Древней Греции.

Известны и другие алгоритмы извлечения квадратных корней, но теперь это удобнее делать с помощью калькулятора.

Квадратный корень из произведения, дроби, степени

Арифметический корень из а — неотрицательное значение квадратного корня из неотрицательного числа а. Поэтому для любого неотрицательного числа а выполняется тождество Квадратные корни - определение и вычисление с примерами решения .

Примеры:

Квадратные корни - определение и вычисление с примерами решения

Верны и такие тождества:

  1. Квадратные корни - определение и вычисление с примерами решения — для неотрицательных значений а и b;
  2. Квадратные корни - определение и вычисление с примерами решения — для неотрицательного а и положительного b;
  3. Квадратные корни - определение и вычисление с примерами решения– для неотрицательного а и натурального к.

Докажем эти тождества:

1. Если а и b — произвольные неотрицательные числа, то числа Квадратные корни - определение и вычисление с примерами решениятакже неотрицательные. Кроме того, Квадратные корни - определение и вычисление с примерами решения

Следовательно, Квадратные корни - определение и вычисление с примерами решения — неотрицательное число, квадрат которого равен ab, то есть Квадратные корни - определение и вычисление с примерами решения

2. Если Квадратные корни - определение и вычисление с примерами решения, то числа Квадратные корни - определение и вычисление с примерами решения неотрицательные, a Квадратные корни - определение и вычисление с примерами решения — положительное. Кроме того,

Квадратные корни - определение и вычисление с примерами решения

Следовательно, Квадратные корни - определение и вычисление с примерами решения неотрицательное число, квадрат которого равен Квадратные корни - определение и вычисление с примерами решения , то есть Квадратные корни - определение и вычисление с примерами решения

3. Если число а — неотрицательное, a k — натуральное, то числа Квадратные корни - определение и вычисление с примерами решения — неотрицательные. Кроме того,Квадратные корни - определение и вычисление с примерами решения. Следовательно, Квадратные корни - определение и вычисление с примерами решения— неотрицательный квадратный корень из Квадратные корни - определение и вычисление с примерами решения, то есть

Квадратные корни - определение и вычисление с примерами решения

Доказанные три теоремы кратко можно сформулировать так.

  1. Корень из произведения двух неотрицательных чисел равен произведению корней из этих чисел (теорема о корне из произведения).
  2. Корень из дроби, числитель которой неотрицательный, а знаменатель положительный, равен корню из числителя, делённому на корень из знаменателя (теорема о корне из дроби).
  3. Корень из степени a , в котором числа а — неотрицательное и k — натуральное, равен ст (теорема о корне из степени)

Примечание. Здесь под «корнем» понимают только квадратный арифметический корень.

Теорему о корне из произведения можно распространить на три множителя и более. Действительно, если числа а, b и с — неотрицательные, то Квадратные корни - определение и вычисление с примерами решения Если в доказанных тождествах поменять местами их левые и правые части, то получим:

Квадратные корни - определение и вычисление с примерами решения Эти тождества показывают, как можно умножать и делить корни. Например,

Квадратные корни - определение и вычисление с примерами решения

Из теоремы о корне из степени следует, что Квадратные корни - определение и вычисление с примерами решения, если Квадратные корни - определение и вычисление с примерами решения. Если а < 0, то равенство Квадратные корни - определение и вычисление с примерами решения – а неверное, поскольку число Квадратные корни - определение и вычисление с примерами решения неотрицательное и не может быть равным отрицательному числу а.

Равенство Квадратные корни - определение и вычисление с примерами решения верное при каждом значении а, поскольку число Квадратные корни - определение и вычисление с примерами решения — неотрицательное и его квадрат равен а2.

Примеры: Квадратные корни - определение и вычисление с примерами решения

Хотите знать ещё больше?

В сформулированных выше теоремах представлены только простейшие случаи преобразования арифметических значений квадратных корней: если все числа под корнями положительные или неотрицательные Но бывают и такие выражения, в которых под знаком корня — произведение либо частное двух отрицательных чисел. В этом случае можно использовать определения квадратного корня, арифметического значения квадратного корня и т. д.

Например, Квадратные корни - определение и вычисление с примерами решения Квадратные корни - определение и вычисление с примерами решения.

Квадратные корни - определение и вычисление с примерами решения

Из теоремы 3 несложно получить такое следствие.

Если натуральное число Квадратные корни - определение и вычисление с примерами решения — чётное, то для любых значений а выполняется тождество Квадратные корни - определение и вычисление с примерами решения

Ведь обе части этого равенства — числа неотрицательные, их квадраты – равны.

Выполним вместе!

Пример:

Найдите значение выражения: а) Квадратные корни - определение и вычисление с примерами решения ; б) Квадратные корни - определение и вычисление с примерами решения; в) Квадратные корни - определение и вычисление с примерами решения ; г) Квадратные корни - определение и вычисление с примерами решения.

Решение:

Квадратные корни - определение и вычисление с примерами решения

Квадратные корни - определение и вычисление с примерами решения

Квадратные корни - определение и вычисление с примерами решения

Квадратные корни - определение и вычисление с примерами решения

О т в е т. а) 35; б) 1,2; в) 6; г) Квадратные корни - определение и вычисление с примерами решения

Преобразование выражений с корнями

Выражения с квадратными корнями можно складывать, вычитать, умножать, возводить в степень и делить (на делитель, отличный от нуля).

Примеры:

Квадратные корни - определение и вычисление с примерами решения

Рассмотрим и другие преобразования выражений с корнями.

Квадратные корни - определение и вычисление с примерами решения

Подобное преобразование называют вынесением множителя за знак корня. В последнем примере за знак корня вынесен множитель 10.

Преобразование, обратное вынесению множителя за знак корня, называют внесением множителя под знак корня. Квадратные корни - определение и вычисление с примерами решения

В атом примере под знак корня вносим множитель 0,3. Рассмотренные преобразования осуществляются на основании теоремы о корне из произведения.

Если знак корня находится в знаменателе дроби, то такую дробь можно заменить тождественной, знаменатель которой не имеет корней. Достаточно умножить члены дроби на соответствующее выражение. Например, Квадратные корни - определение и вычисление с примерами решения

Квадратные корни - определение и вычисление с примерами решения

Такие преобразования называют освобождением дроби от иррациональности в знаменателе.

Эти преобразования можно выполнять также с выражениями, содержащими переменные. Например,

Квадратные корни - определение и вычисление с примерами решения

Квадратные корни - определение и вычисление с примерами решения

Квадратные корни - определение и вычисление с примерами решения

Квадратные корни - определение и вычисление с примерами решения

Примечание. При вынесении переменной за знак корня необходимо помнить, что равенство Квадратные корни - определение и вычисление с примерами решения верно только при неотрицательных значениях а и с. Если Квадратные корни - определение и вычисление с примерами решения, то Квадратные корни - определение и вычисление с примерами решения. При любых действительных значениях а и неотрицательных с верно тождество: Квадратные корни - определение и вычисление с примерами решения.

Пример:

Вынесите множитель за знак корня: a) Квадратные корни - определение и вычисление с примерами решения

Решение:

а) Квадратные корни - определение и вычисление с примерами решения б) Квадратные корни - определение и вычисление с примерами решения Ответ. a) Квадратные корни - определение и вычисление с примерами решения; б) Квадратные корни - определение и вычисление с примерами решения.

При внесении переменной под знак корня следует помнить, что под корень можно вносить лишь положительные числа.

Пример:

Внесите множитель под знак корня: а) Квадратные корни - определение и вычисление с примерами решения; б) Квадратные корни - определение и вычисление с примерами решения

Решение:

а) Квадратные корни - определение и вычисление с примерами решения ; б) Квадратные корни - определение и вычисление с примерами решения Квадратные корни - определение и вычисление с примерами решения О т в е т. a) Квадратные корни - определение и вычисление с примерами решения ; б) Квадратные корни - определение и вычисление с примерами решения

Используя словосочетание «выражения с корнями», в этой главе мы будем говорить только о «выражениях с арифметическими квадратными корнями». Но в математике выражения с корнями имеют более широкий смысл поскольку корни бывают не только квадратные, но и кубические четвёртой, пятой …. n-й степеней. Корни из числа а таких степеней обозначают символами:

Квадратные корни - определение и вычисление с примерами решения

Выражения, содержащие любые из таких корней, называют выражениями с корнями, или иррациональными выражениями. Выражения с арифметическими квадратными корнями – это только часть иррациональных выражений (рис 45) .

Квадратные корни - определение и вычисление с примерами решения

Рис. 45 Раньше знаки корней Квадратные корни - определение и вычисление с примерами решения…, Квадратные корни - определение и вычисление с примерами решения называли радикалами, поэтому в некоторых публикациях иррациональные выражения до сих пор называют выражениями с радикалами.

Выполним вместе!

Пример:

Упростите выражение: а) Квадратные корни - определение и вычисление с примерами решения; б) Квадратные корни - определение и вычисление с примерами решения; в)Квадратные корни - определение и вычисление с примерами решения.

Решение:

a) Квадратные корни - определение и вычисление с примерами решения . б) Квадратные корни - определение и вычисление с примерами решения;

в) Квадратные корни - определение и вычисление с примерами решения. О т в е т. a) Квадратные корни - определение и вычисление с примерами решения ; б)16; в) 9.

Пример:

Разложите на множители выражение: a) Квадратные корни - определение и вычисление с примерами решения ; б) Квадратные корни - определение и вычисление с примерами решения ; в) Квадратные корни - определение и вычисление с примерами решения.

Решение:

а) Квадратные корни - определение и вычисление с примерами решения; б) Квадратные корни - определение и вычисление с примерами решения; в) если а — число положительное, то Квадратные корни - определение и вычисление с примерами решения . Поэтому

Квадратные корни - определение и вычисление с примерами решения

Ответ, a) Квадратные корни - определение и вычисление с примерами решения; б) Квадратные корни - определение и вычисление с примерами решения; в) Квадратные корни - определение и вычисление с примерами решения.

Пример:

Освободитесь от иррациональности в знаменателе дроби:

а) Квадратные корни - определение и вычисление с примерами решения; б) Квадратные корни - определение и вычисление с примерами решения;

Решение:

а) Квадратные корни - определение и вычисление с примерами решения ; б) Квадратные корни - определение и вычисление с примерами решения

Ответ. а)Квадратные корни - определение и вычисление с примерами решения ; б) Квадратные корни - определение и вычисление с примерами решения.

ИСТОРИЧЕСКИЕ СВЕДЕНИЯ

Квадратные корни из чисел вавилонские математики умели вычислять ещё 4 тыс. лет тому назад. Находили даже приближённые значения квадратных корней, пользуясь правилом, которое теперь можно записать (при небольших значениях с) в виде приближённого равенства:

Квадратные корни - определение и вычисление с примерами решения В XIII в. европейские математики предложили сокращённое обозначение корня. Вместо нынешнего Квадратные корни - определение и вычисление с примерами решения писали R12 (от латинского Radix — корень). Позднее вместо R стали писать знак V, например V7, V(a + b). Затем над многочленом за корнем добавили черту: Квадратные корни - определение и вычисление с примерами решения. Р. Декарт (1596 -1650) соединил знак корня с чертой, после чего запись приобрела современный вид: Квадратные корни - определение и вычисление с примерами решения . Действительные числа входили в математику непросто. Учёные античного мира не предполагали, что кроме целых и дробных могут быть и другие числа. Хотя Пифагор (VI в. до и. э.) и его ученики доказали: если длина стороны квадрата равна 1, то длину его диагонали нельзя выразить ни одним рациональным числом. Таким образом, они выяснили, что существуют отрезки, длины которых не выражаются рациональными числами, но при этом иррациональных чисел не ввели. Математики Индии и Среднего Востока пользовались иррациональными числами, но считали их ненастоящими, неправильными, «глухими». И только когда Р. Декарт предложил каждой точке координатной прямой поставить в соответствие число, иррациональные числа объединили с рациональными во множество действительных чисел. Строгая теория действительных чисел появилась лишь в XIX в. В 8 классе изучают не все действительные числа. Кроме квадратных существуют корни третьей, четвёртой и высших степеней, например Квадратные корни - определение и вычисление с примерами решения, Квадратные корни - определение и вычисление с примерами решения, Квадратные корни - определение и вычисление с примерами решения . С такими действительными числами вы ознакомитесь в старших классах.

ОСНОВНОЕ В ГЛАВЕ

Квадратным корнем из числа а называют число, квадрат которого равен а. Например, число 16 имеет два квадратных корня: 4 и -4. Неотрицательное значение квадратного корня из числа а называют арифметическим значением корня я обозначают символом Квадратные корни - определение и вычисление с примерами решения . Свойства квадратных корней. Если а > 0 и b > 0, то

Квадратные корни - определение и вычисление с примерами решения

Для любого действительного Квадратные корни - определение и вычисление с примерами решения. Значения многих квадратных корней — числа не рациональные, а иррациональные. Числа целые и дробные, положительные, отрицательные и нуль вместе составляют множество рациональных чисел. Каждое рациональное число можно записать в виде дроби Квадратные корни - определение и вычисление с примерами решения , где Квадратные корни - определение и вычисление с примерами решения — число целое, а n— натуральное. Любое рациональное число можно представить в виде бесконечной периодической десятичной дроби. А любая бесконечная периодическая десятичная дробь изображает некоторое рациональное число. Примеры: Квадратные корни - определение и вычисление с примерами решения = 0,6666…, Квадратные корни - определение и вычисление с примерами решения=1,181818…. Числа, которые можно представить в виде бесконечных непериодических десятичных дробей, называют иррациональными. Примеры иррациональных чисел: Квадратные корни - определение и вычисление с примерами решения = 1,4142136…, Квадратные корни - определение и вычисление с примерами решения = 3,1415927… . Иррациональные числа вместе с рациональными образуют множество действительных чисел. Множества натуральных, целых, рациональных и действительных чисел обозначают соответственно буквами N, Z, Q, R (см. рис. 41). Действительные числа можно складывать, вычитать, умножать, возводить в степень и делить (на числа, отличные от нуля). Для сложения и умножения произвольных действительных чисел верны переместительный, сочетательный и распределительный законы: а + b = b + а, ab=ba, a + (b + c) = (a + b) + c, a . (bc) = (ab) . c, (a + b) с = ас +bс.

Квадратные корни. Арифметический квадратный корень

Рассмотрим квадрат, площадь которого равна 49 квадратным единицам. Пусть длина его стороны составляет Квадратные корни - определение и вычисление с примерами решения единиц. Тогда уравнение Квадратные корни - определение и вычисление с примерами решения можно рассматривать как математическую модель задачи о нахождении стороны квадрата, площадь которого равна 49 квадратным единицам.

Корнями этого уравнения являются числа 7 и —7. Говорят, что числа 7 и —7 являются квадратными корнями из числа 49.

Определение: Квадратным корнем из числа Квадратные корни - определение и вычисление с примерами решения называют число, квадрат которого равен Квадратные корни - определение и вычисление с примерами решения

Приведем несколько примеров.

Квадратными корнями из числа 9 являются числа 3 и —3. Действительно, Квадратные корни - определение и вычисление с примерами решения

Квадратными корнями из числа Квадратные корни - определение и вычисление с примерами решения являются числа Квадратные корни - определение и вычисление с примерами решения и Квадратные корни - определение и вычисление с примерами решения

Действительно, Квадратные корни - определение и вычисление с примерами решения

Квадратным корнем из числа 0 является только число 0. Действительно, существует лишь одно число, квадрат которого равен нулю, — это число 0.

Поскольку не существует числа, квадрат которого равен отрицательному числу, то квадратного корня из отрицательного числа не существует.

Положительный корень уравнения Квадратные корни - определение и вычисление с примерами решения число 7, является ответом в задаче о нахождении стороны квадрата, площадь которого равна 49 квадратным единицам. Это число называют арифметическим квадратным корнем из числа 49.

Определение: Арифметическим квадратным корнем из числа Квадратные корни - определение и вычисление с примерами решения называют неотрицательное число, квадрат которого равен Квадратные корни - определение и вычисление с примерами решения.

Арифметический квадратный корень из числа Квадратные корни - определение и вычисление с примерами решения обозначают Квадратные корни - определение и вычисление с примерами решения Знак Квадратные корни - определение и вычисление с примерами решенияназывают знаком квадратного корня или радикалом (от лат. radix — корень).

Запись Квадратные корни - определение и вычисление с примерами решения читают: «квадратный корень из Квадратные корни - определение и вычисление с примерами решения», опуская при чтении слово «арифметический».

Выражение, стоящее под радикалом, называют подкоренным выражением. Например, в записи Квадратные корни - определение и вычисление с примерами решения двучлен Квадратные корни - определение и вычисление с примерами решения является подкоренным выражением. Из определения арифметического квадратного корня следует, что подкоренное выражение может принимать только неотрицательные значения.

Действие нахождения арифметического квадратного корня из числа называют извлечением квадратного корня.

Рассмотрим несколько примеров:

Квадратные корни - определение и вычисление с примерами решения так как Квадратные корни - определение и вычисление с примерами решения и Квадратные корни - определение и вычисление с примерами решения

Квадратные корни - определение и вычисление с примерами решения так как Квадратные корни - определение и вычисление с примерами решения и Квадратные корни - определение и вычисление с примерами решения

Квадратные корни - определение и вычисление с примерами решения так как Квадратные корни - определение и вычисление с примерами решения и Квадратные корни - определение и вычисление с примерами решения

Вообще, равенство Квадратные корни - определение и вычисление с примерами решения выполняется при условии, что Квадратные корни - определение и вычисление с примерами решения и Квадратные корни - определение и вычисление с примерами решения

Этот вывод можно представить в другой форме: для любого неотрицательного числа Квадратные корни - определение и вычисление с примерами решения справедливо, что Квадратные корни - определение и вычисление с примерами решения а Квадратные корни - определение и вычисление с примерами решения

Например, Квадратные корни - определение и вычисление с примерами решения и Квадратные корни - определение и вычисление с примерами решения Квадратные корни - определение и вычисление с примерами решения и Квадратные корни - определение и вычисление с примерами решения и Квадратные корни - определение и вычисление с примерами решения

Подчеркнем, что к понятию квадратного корня мы пришли, решая уравнение вида Квадратные корни - определение и вычисление с примерами решения где Квадратные корни - определение и вычисление с примерами решения Корни этого уравнения — числа, каждое из которых является квадратным корнем из числа Квадратные корни - определение и вычисление с примерами решения

Поиск корней уравнения Квадратные корни - определение и вычисление с примерами решения проиллюстрируем, решив графически уравнение Квадратные корни - определение и вычисление с примерами решения

В одной системе координат построим графики функций Квадратные корни - определение и вычисление с примерами решения и Квадратные корни - определение и вычисление с примерами решения (рис. 17). Точки пересечения этих графиков имеют абсциссы 2 и —2, которые и являются корнями данного уравнения.

Квадратные корни - определение и вычисление с примерами решения

Уравнение Квадратные корни - определение и вычисление с примерами решения при Квадратные корни - определение и вычисление с примерами решения не имеет корней, что подтверждается графически: графики функций Квадратные корни - определение и вычисление с примерами решения и Квадратные корни - определение и вычисление с примерами решения при Квадратные корни - определение и вычисление с примерами решения общих точек не имеют (рис. 18).

При Квадратные корни - определение и вычисление с примерами решения уравнение Квадратные корни - определение и вычисление с примерами решения имеет единственный корень Квадратные корни - определение и вычисление с примерами решения что также подтверждается графически: графики функций Квадратные корни - определение и вычисление с примерами решения и Квадратные корни - определение и вычисление с примерами решения имеют только одну общую точку (рис. 18).

Графический метод также позволяет сделать следующий вывод: если Квадратные корни - определение и вычисление с примерами решения то уравнение Квадратные корни - определение и вычисление с примерами решения имеет два корня. Действительно, парабола Квадратные корни - определение и вычисление с примерами решения и прямая Квадратные корни - определение и вычисление с примерами решения где Квадратные корни - определение и вычисление с примерами решения имеют две общие точки (рис. 18). При этом корнями уравнения Квадратные корни - определение и вычисление с примерами решения являются числа Квадратные корни - определение и вычисление с примерами решения и Квадратные корни - определение и вычисление с примерами решения Действительно, Квадратные корни - определение и вычисление с примерами решения

Например, уравнение Квадратные корни - определение и вычисление с примерами решения имеет два корня: Квадратные корни - определение и вычисление с примерами решения и Квадратные корни - определение и вычисление с примерами решения

Пример:

Найдите значение выражения Квадратные корни - определение и вычисление с примерами решения

Решение:

Применив правило возведения произведения в степень и тождество Квадратные корни - определение и вычисление с примерами решения получим:

Квадратные корни - определение и вычисление с примерами решения

Пример:

Решите уравнение: Квадратные корни - определение и вычисление с примерами решения

Решение:

1) Имеем: Квадратные корни - определение и вычисление с примерами решения Тогда Квадратные корни - определение и вычисление с примерами решения

Ответ: 36.

2) Квадратные корни - определение и вычисление с примерами решения

Ответ: 7.

Пример:

Решите уравнение Квадратные корни - определение и вычисление с примерами решения

Решение:

Квадратные корни - определение и вычисление с примерами решения

Квадратные корни - определение и вычисление с примерами решения или Квадратные корни - определение и вычисление с примерами решения Квадратные корни - определение и вычисление с примерами решения или Квадратные корни - определение и вычисление с примерами решения

Ответ: 1; 9. ▲

Пример:

Решите уравнение Квадратные корни - определение и вычисление с примерами решения

Решение:

Квадратные корни - определение и вычисление с примерами решения

Квадратные корни - определение и вычисление с примерами решения или Квадратные корни - определение и вычисление с примерами решения

Квадратные корни - определение и вычисление с примерами решения или Квадратные корни - определение и вычисление с примерами решения

Квадратные корни - определение и вычисление с примерами решения или Квадратные корни - определение и вычисление с примерами решения

Ответ: Квадратные корни - определение и вычисление с примерами решения

Пример:

При каких значениях Квадратные корни - определение и вычисление с примерами решения имеет смысл выражение: Квадратные корни - определение и вычисление с примерами решения

Решение:

1) Выражение Квадратные корни - определение и вычисление с примерами решения имеет смысл, если подкоренное выражение Квадратные корни - определение и вычисление с примерами решения принимает неотрицательные значения. Подкоренное выражение является произведением двух множителей, один из которых — отрицательное число. Следовательно, это произведение будет принимать неотрицательные значения, если другой множитель Квадратные корни - определение и вычисление с примерами решения будет принимать неположительные значения.

Ответ: при Квадратные корни - определение и вычисление с примерами решения

2) Данное выражение имеет смысл, если выполняются два условия: имеет смысл выражение Квадратные корни - определение и вычисление с примерами решения и знаменатель Квадратные корни - определение и вычисление с примерами решения отличен от нуля. Следовательно, должны одновременно выполняться два условия: Квадратные корни - определение и вычисление с примерами решения и Квадратные корни - определение и вычисление с примерами решения Отсюда Квадратные корни - определение и вычисление с примерами решения и Квадратные корни - определение и вычисление с примерами решения

Ответ: при Квадратные корни - определение и вычисление с примерами решения и Квадратные корни - определение и вычисление с примерами решения

Пример:

Решите уравнение: Квадратные корни - определение и вычисление с примерами решения

Квадратные корни - определение и вычисление с примерами решения

Решение:

1) Левая часть данного уравнения имеет смысл, если подкоренные выражения Квадратные корни - определение и вычисление с примерами решения и Квадратные корни - определение и вычисление с примерами решения одновременно принимают неотрицательные значения. Из того, что первое подкоренное выражение должно быть неотрицательным, получаем: Квадратные корни - определение и вычисление с примерами решения тогда Квадратные корни - определение и вычисление с примерами решения Однако если Квадратные корни - определение и вычисление с примерами решения то второе подкоренное выражение, Квадратные корни - определение и вычисление с примерами решения принимает только отрицательные значения. Следовательно, левая часть данного уравнения не имеет смысла.

Ответ: корней нет.

2) Левая часть данного уравнения является суммой двух слагаемых, каждое из которых может принимать только неотрицательные значения. Тогда их сумма будет равна нулю, если каждое из слагаемых равно нулю. Следовательно, одновременно должны выполняться два условия: Квадратные корни - определение и вычисление с примерами решения и Квадратные корни - определение и вычисление с примерами решения Это означает, что надо найти общие корни полученных уравнений, то есть решить систему уравнений

Имеем, Квадратные корни - определение и вычисление с примерами решения

Решением последней системы, а значит, и исходного уравнения, является число 2.

Ответ: 2.

3) Используя условие равенства произведения нулю, получаем:

Квадратные корни - определение и вычисление с примерами решения или Квадратные корни - определение и вычисление с примерами решения Квадратные корни - определение и вычисление с примерами решения или Квадратные корни - определение и вычисление с примерами решения

Однако при Квадратные корни - определение и вычисление с примерами решения выражение Квадратные корни - определение и вычисление с примерами решения не имеет смысла. Следовательно, данное уравнение имеет единственный корень — число 2.

Ответ: 2.

Свойства арифметического квадратного корня

Легко проверить, что Квадратные корни - определение и вычисление с примерами решения Может показаться, что при любом значении а выполняется равенство Квадратные корни - определение и вычисление с примерами решения Однако это не так. Например, равенство Квадратные корни - определение и вычисление с примерами решения является ошибочным, поскольку Квадратные корни - определение и вычисление с примерами решения На самом деле Квадратные корни - определение и вычисление с примерами решения Также можно убедиться, что, например,

Квадратные корни - определение и вычисление с примерами решения

Вообще, справедлива следующая теорема.

Теорема: Для любого действительного числа а выполняется равенство

Квадратные корни - определение и вычисление с примерами решения

Доказательство: Для того чтобы доказать равенство Квадратные корни - определение и вычисление с примерами решения надо показать, что Квадратные корни - определение и вычисление с примерами решения и Квадратные корни - определение и вычисление с примерами решения

Имеем: Квадратные корни - определение и вычисление с примерами решения при любом Квадратные корни - определение и вычисление с примерами решения

Также из определения модуля следует, что Квадратные корни - определение и вычисление с примерами решения

Следующая теорема обобщает доказанный факт.

Теорема: (арифметический квадратный корень из степени). Для любого действительного числа Квадратные корни - определение и вычисление с примерами решения и любого натурального числа Квадратные корни - определение и вычисление с примерами решения выполняется равенство

Квадратные корни - определение и вычисление с примерами решения

Доказательство этой теоремы аналогично доказательству теоремы 15.1. Проведите это доказательство самостоятельно.

Теорема: (арифметический квадратный корень из произведения). Для любых действительных чисел Квадратные корни - определение и вычисление с примерами решения и Квадратные корни - определение и вычисление с примерами решения таких, что Квадратные корни - определение и вычисление с примерами решения и Квадратные корни - определение и вычисление с примерами решения выполняется равенство

Квадратные корни - определение и вычисление с примерами решения

Доказательство: Имеем: Квадратные корни - определение и вычисление с примерами решения и Квадратные корни - определение и вычисление с примерами решения Тогда Квадратные корни - определение и вычисление с примерами решения Кроме того, Квадратные корни - определение и вычисление с примерами решения

Следовательно, выражение Квадратные корни - определение и вычисление с примерами решения принимает только неотрицательные значения, и его квадрат равен Квадратные корни - определение и вычисление с примерами решения

Эту теорему можно обобщить для произведения трех и более множителей. Например, если Квадратные корни - определение и вычисление с примерами решения и Квадратные корни - определение и вычисление с примерами решения то

Квадратные корни - определение и вычисление с примерами решения

Теорема: (арифметический квадратный корень из дроби). Для любых действительных чисел Квадратные корни - определение и вычисление с примерами решения и Квадратные корни - определение и вычисление с примерами решения таких, что Квадратные корни - определение и вычисление с примерами решения и Квадратные корни - определение и вычисление с примерами решения выполняется равенство

Квадратные корни - определение и вычисление с примерами решения

Доказательство этой теоремы аналогично доказательству теоремы 15.3. Проведите это доказательство самостоятельно.

Понятно, что из двух квадратов с площадями Квадратные корни - определение и вычисление с примерами решения и Квадратные корни - определение и вычисление с примерами решения (рис. 27) большую сторону имеет тот, у которого площадь больше, то есть если Квадратные корни - определение и вычисление с примерами решения то Квадратные корни - определение и вычисление с примерами решения Это очевидное соображение иллюстрирует такое свойство арифметического квадратного корня: для любых неотрицательных чисел Квадратные корни - определение и вычисление с примерами решения и Квадратные корни - определение и вычисление с примерами решения таких, что Квадратные корни - определение и вычисление с примерами решения выполняется неравенство Квадратные корни - определение и вычисление с примерами решения

Квадратные корни - определение и вычисление с примерами решения

Пример:

Найдите значение выражения: Квадратные корни - определение и вычисление с примерами решения

Квадратные корни - определение и вычисление с примерами решения

Решение:

Квадратные корни - определение и вычисление с примерами решения

Квадратные корни - определение и вычисление с примерами решения

Пример:

Найдите значение выражения: Квадратные корни - определение и вычисление с примерами решения

Решение:

1) Заменив произведение корней корнем из произведения, получим:

Квадратные корни - определение и вычисление с примерами решения

2) Заменив частное корней корнем из частного (дроби), получим:

Квадратные корни - определение и вычисление с примерами решения

Пример:

Упростите выражение: Квадратные корни - определение и вычисление с примерами решения если Квадратные корни - определение и вычисление с примерами решения

Квадратные корни - определение и вычисление с примерами решения если Квадратные корни - определение и вычисление с примерами решения

Решение:

1) По теореме об арифметическом квадратном корне из степени имеем:

Квадратные корни - определение и вычисление с примерами решения

2) Имеем: Квадратные корни - определение и вычисление с примерами решения Поскольку по условию Квадратные корни - определение и вычисление с примерами решения то Квадратные корни - определение и вычисление с примерами решения Тогда

Квадратные корни - определение и вычисление с примерами решения

3) Имеем: Квадратные корни - определение и вычисление с примерами решенияПоскольку по условию Квадратные корни - определение и вычисление с примерами решения то Квадратные корни - определение и вычисление с примерами решения Поскольку Квадратные корни - определение и вычисление с примерами решения то Квадратные корни - определение и вычисление с примерами решения Следовательно,

Квадратные корни - определение и вычисление с примерами решения

4) Имеем: Квадратные корни - определение и вычисление с примерами решения Поскольку Квадратные корни - определение и вычисление с примерами решения то Квадратные корни - определение и вычисление с примерами решения

Пример:

Найдите значение выражения: Квадратные корни - определение и вычисление с примерами решения

Квадратные корни - определение и вычисление с примерами решения

Решение:

1) Преобразовав подкоренное выражение по формуле разности квадратов, получаем:

Квадратные корни - определение и вычисление с примерами решения

Пример:

Постройте график функции Квадратные корни - определение и вычисление с примерами решения

Решение:

Поскольку Квадратные корни - определение и вычисление с примерами решения то Квадратные корни - определение и вычисление с примерами решения

Если Квадратные корни - определение и вычисление с примерами решения то Квадратные корни - определение и вычисление с примерами решения

Если Квадратные корни - определение и вычисление с примерами решения то Квадратные корни - определение и вычисление с примерами решения

Следовательно, Квадратные корни - определение и вычисление с примерами решения

График функции изображен на рисунке 28.

Квадратные корни - определение и вычисление с примерами решения

Тождественные преобразования выражений, содержащих квадратные корни

Пользуясь теоремой об арифметическом квадратном корне из произведения, преобразуем выражение Квадратные корни - определение и вычисление с примерами решения Имеем: Квадратные корни - определение и вычисление с примерами решения Выражение Квадратные корни - определение и вычисление с примерами решения мы представили в виде произведения рационального числа 4 и иррационального числа Квадратные корни - определение и вычисление с примерами решения Такое преобразование называют вынесением множителя из-под знака корня. В данном случае был вынесен из-под знака корня множитель 4. Рассмотрим выполненное преобразование в обратном порядке:

Квадратные корни - определение и вычисление с примерами решения

Такое преобразование называют внесением множителя под знак корня. В данном случае был внесен под знак корня множитель 4.

Пример:

Вынесите множитель из-под знака корня: Квадратные корни - определение и вычисление с примерами решения

Квадратные корни - определение и вычисление с примерами решения если Квадратные корни - определение и вычисление с примерами решения

Решение:

1) Представим число, стоящее под знаком корня, в виде произведения двух чисел, одно из которых является квадратом рационального числа:

Квадратные корни - определение и вычисление с примерами решения

2) Квадратные корни - определение и вычисление с примерами решения

3) Поскольку подкоренное выражение должно быть неотрицательным, то из условия следует, что Квадратные корни - определение и вычисление с примерами решения Тогда

Квадратные корни - определение и вычисление с примерами решения

4) Из условия следует, что Квадратные корни - определение и вычисление с примерами решения Тогда

Квадратные корни - определение и вычисление с примерами решения

5) Из условия следует, что Квадратные корни - определение и вычисление с примерами решения Поскольку подкоренное выражение должно быть неотрицательным, то получаем, что Квадратные корни - определение и вычисление с примерами решения Тогда

Квадратные корни - определение и вычисление с примерами решения

Пример:

Внесите множитель под знак корня: Квадратные корни - определение и вычисление с примерами решения

Квадратные корни - определение и вычисление с примерами решения

Решение:

Квадратные корни - определение и вычисление с примерами решения

2) Если Квадратные корни - определение и вычисление с примерами решения то Квадратные корни - определение и вычисление с примерами решения если Квадратные корни - определение и вычисление с примерами решения то Квадратные корни - определение и вычисление с примерами решенияКвадратные корни - определение и вычисление с примерами решения

3) Из условия следует, что Квадратные корни - определение и вычисление с примерами решения Тогда Квадратные корни - определение и вычисление с примерами решения

Квадратные корни - определение и вычисление с примерами решения

4) Из условия следует, что Квадратные корни - определение и вычисление с примерами решения Тогда Квадратные корни - определение и вычисление с примерами решения

Пример:

Упростите выражение:

Квадратные корни - определение и вычисление с примерами решения

Квадратные корни - определение и вычисление с примерами решения

Решение:

1) Имеем:

Квадратные корни - определение и вычисление с примерами решения

2) Квадратные корни - определение и вычисление с примерами решения

3) Применяя формулы сокращенного умножения (квадрат двучлена и произведение разности и суммы двух выражений), получим:

Квадратные корни - определение и вычисление с примерами решения

Пример:

Разложите на множители выражение: Квадратные корни - определение и вычисление с примерами решения

Квадратные корни - определение и вычисление с примерами решения если Квадратные корни - определение и вычисление с примерами решения

Решение:

1) Представив данное выражение в виде разности квадратов, получим:

Квадратные корни - определение и вычисление с примерами решения

2) Поскольку по условию Квадратные корни - определение и вычисление с примерами решения то Квадратные корни - определение и вычисление с примерами решения

3) Применим формулу квадрата разности:

Квадратные корни - определение и вычисление с примерами решения

4) Имеем: Квадратные корни - определение и вычисление с примерами решения

5) Квадратные корни - определение и вычисление с примерами решения

6) Квадратные корни - определение и вычисление с примерами решения

Пример:

Сократите дробь: Квадратные корни - определение и вычисление с примерами решения

если Квадратные корни - определение и вычисление с примерами решения

Решение:

1) Разложив числитель данной дроби на множители, получаем:

Квадратные корни - определение и вычисление с примерами решения

2) Квадратные корни - определение и вычисление с примерами решения

3) Поскольку по условию Квадратные корни - определение и вычисление с примерами решения и Квадратные корни - определение и вычисление с примерами решения то числитель и знаменатель данной дроби можно разложить на множители и полученную дробь сократить:

Квадратные корни - определение и вычисление с примерами решения

Освободиться от иррациональности в знаменателе дроби означает преобразовать дробь так, чтобы ее знаменатель не содержал квадратного корня.

Пример:

Освободитесь от иррациональности в знаменателе дроби: Квадратные корни - определение и вычисление с примерами решения

Решение:

1) Умножив числитель и знаменатель данной дроби на Квадратные корни - определение и вычисление с примерами решения получаем:

Квадратные корни - определение и вычисление с примерами решения

2) Умножив числитель и знаменатель данной дроби на выражение Квадратные корни - определение и вычисление с примерами решенияполучаем:

Квадратные корни - определение и вычисление с примерами решения

Пример:

Докажите тождество

Квадратные корни - определение и вычисление с примерами решения

Решение:

Квадратные корни - определение и вычисление с примерами решения

Пример:

Упростите выражение Квадратные корни - определение и вычисление с примерами решения

Решение:

Представив подкоренное выражение в виде квадрата суммы, получаем:

Квадратные корни - определение и вычисление с примерами решения

Растут ли в огороде радикалы?

В Древней Греции действие извлечения корня отождествляли с поиском стороны квадрата по его площади, а сам квадратный корень называли «стороной».

В Древней Индии слово «мула» означало «начало», «основание», «корень дерева». Это же слово стали употреблять и по отношению к стороне квадрата, возможно, исходя из такой ассоциации: из стороны квадрата, как из корня, вырастает сам квадрат. Вероятно, поэтому в латинском языке понятия «сторона» и «корень» выражаются одним и тем же словом — radix. От этого слова произошел термин «радикал».

Слово radix можно также перевести как «редис», то есть корнеплод — часть растения — видоизмененный корень, который может являться съедобным.

В XIII-XV вв. европейские математики, сокращая слово radix, обозначали квадратный корень знаками Квадратные корни - определение и вычисление с примерами решения Например, запись Квадратные корни - определение и вычисление с примерами решения имела следующий вид: Квадратные корни - определение и вычисление с примерами решения.

В XVI в. стали использовать знак Квадратные корни - определение и вычисление с примерами решения Происхождение этого символа, по-видимому, связано с рукописным начертанием латинской буквы Квадратные корни - определение и вычисление с примерами решения

В XVII в. выдающийся французский математик Рене Декарт, соединив знак Квадратные корни - определение и вычисление с примерами решения с горизонтальной черточкой, получил символ Рене Декарт Квадратные корни - определение и вычисление с примерами решения который мы и используем сегодня. (1596-1650)

Множество и его элементы. Подмножество

Мы часто говорим: стадо баранов, букет цветов, коллекция марок, косяк рыб, стая птиц, рой пчел, собрание картин, набор ручек, компания друзей.

Если в этих парах перемешать первые слова, то может получиться смешно: букет баранов, косяк картин, стадо друзей. В то же время такие словосочетания, как коллекция рыб, коллекция птиц, коллекция картин, коллекция ручек и т. д., вполне приемлемы. Дело в том, что слово «коллекция» достаточно универсальное. Однако в математике есть термин, которым можно заменить любое из первых слов в данных парах. Это слово множество.

Приведем еще несколько примеров множеств:

Отдельным важнейшим множествам присвоены общепринятые названия и обозначения:

Как правило, множества обозначают прописными буквами латинского алфавита: Квадратные корни - определение и вычисление с примерами решения и т. д.

Объекты, составляющие данное множество, называют элементами этого множества. Обычно элементы обозначают строчными буквами латинского алфавита: Квадратные корни - определение и вычисление с примерами решения и т. д.

Если Квадратные корни - определение и вычисление с примерами решения — элемент множества Квадратные корни - определение и вычисление с примерами решения то пишут: Квадратные корни - определение и вычисление с примерами решения (читают: «Квадратные корни - определение и вычисление с примерами решенияпринадлежит множеству Квадратные корни - определение и вычисление с примерами решения»). Если Квадратные корни - определение и вычисление с примерами решения не является элементом множества Квадратные корни - определение и вычисление с примерами решения, то пишут: Квадратные корни - определение и вычисление с примерами решения (читают: «Квадратные корни - определение и вычисление с примерами решения не принадлежит множеству Квадратные корни - определение и вычисление с примерами решения»).

Если множество Квадратные корни - определение и вычисление с примерами решения состоит из трех элементов Квадратные корни - определение и вычисление с примерами решения то пишут: Квадратные корни - определение и вычисление с примерами решения

Если Квадратные корни - определение и вычисление с примерами решения — множество натуральных делителей числа 6, то пишут: Квадратные корни - определение и вычисление с примерами решения Множество делителей числа 6, являющихся составными числами, имеет следующий вид: {6}. Это пример одноэлементного множества.

Задавать множество с помощью фигурных скобок, в которых указан список его элементов, удобно в тех случаях, когда множество состоит из небольшого количества элементов.

Определение: Два множества Квадратные корни - определение и вычисление с примерами решения и Квадратные корни - определение и вычисление с примерами решения называют равными, если они состоят из одних и тех же элементов, то есть каждый элемент множества Квадратные корни - определение и вычисление с примерами решения принадлежит множеству Квадратные корни - определение и вычисление с примерами решения и, наоборот, каждый элемент множества В принадлежит множеству Квадратные корни - определение и вычисление с примерами решения.

Если множества Квадратные корни - определение и вычисление с примерами решения и Квадратные корни - определение и вычисление с примерами решения равны, то пишут: Квадратные корни - определение и вычисление с примерами решения

Из определения следует, что множество однозначно определяется своими элементами. Если множество записано с помощью фигурных скобок, то порядок, в котором выписаны его элементы, не имеет значения. Так, для множества, состоящего из трех элементов Квадратные корни - определение и вычисление с примерами решения существует шесть вариантов его записи:

Квадратные корни - определение и вычисление с примерами решения

Поскольку из определения равных множеств следует, что, например, Квадратные корни - определение и вычисление с примерами решения то в дальнейшем будем рассматривать множества, состоящие из разных элементов. Так, множество букв слова «космодром» имеет вид {к, о, с, м, д, р}.

Заметим, что Квадратные корни - определение и вычисление с примерами решения Действительно, множество Квадратные корни - определение и вычисление с примерами решения состоит из одного элемента и; множество Квадратные корни - определение и вычисление с примерами решения состоит из одного элемента — множества Квадратные корни - определение и вычисление с примерами решения.

Чаще всего множество задают одним из следующих двух способов.

Первый способ состоит в том, что множество задают указанием (перечислением) всех его элементов. Мы уже использовали этот способ, записывая множество с помощью фигурных скобок, в которых указывали список его элементов. Ясно, что не всякое множество можно задать таким способом. Например, множество четных чисел так задать невозможно.

Второй способ состоит в том, что указывают характеристическое свойство элементов множества, то есть свойство, которым обладают все элементы данного множества и только они. Например, свойство «натуральное число при делении на 2 дает в остатке 1» задает множество нечетных чисел.

Если задавать множество характеристическим свойством его элементов, то может оказаться, что ни один объект этим свойством не обладает.

Обратимся к примерам.

Приведенные примеры указывают на то, что удобно к совокупности множеств отнести еще одно особенное множество, не содержащее ни одного элемента. Его называют пустым множеством и обозначают символом Квадратные корни - определение и вычисление с примерами решения

Заметим, что множество Квадратные корни - определение и вычисление с примерами решения не является пустым. Оно содержит один элемент — пустое множество.

Рассмотрим множество цифр десятичной системы счисления: Квадратные корни - определение и вычисление с примерами решения Выделим из множества его элементы, являющиеся четными цифрами. Получим множество Квадратные корни - определение и вычисление с примерами решенияКвадратные корни - определение и вычисление с примерами решения все элементы которого являются элементами множества Квадратные корни - определение и вычисление с примерами решения

Определение: Множество Квадратные корни - определение и вычисление с примерами решения называют подмножеством множества Квадратные корни - определение и вычисление с примерами решения если каждый элемент множества Квадратные корни - определение и вычисление с примерами решения является элементом множества Квадратные корни - определение и вычисление с примерами решения

Это записывают так: Квадратные корни - определение и вычисление с примерами решения или Квадратные корни - определение и вычисление с примерами решения (читают: «множество Квадратные корни - определение и вычисление с примерами решения является подмножеством множества Квадратные корни - определение и вычисление с примерами решения» или «множество Квадратные корни - определение и вычисление с примерами решения содержит множество Квадратные корни - определение и вычисление с примерами решения»).

Рассмотрим примеры:

Для иллюстрации соотношений между множествами пользуются схемами, которые называют диаграммами Эйлера.

На рисунке 20 изображены множество Квадратные корни - определение и вычисление с примерами решения (больший круг) и множество Квадратные корни - определение и вычисление с примерами решения (меньший круг, содержащийся в большем). Эта схема означает, что Квадратные корни - определение и вычисление с примерами решения (или Квадратные корни - определение и вычисление с примерами решения).

Из определений подмножества и равенства множеств следует, что если Квадратные корни - определение и вычисление с примерами решения и Квадратные корни - определение и вычисление с примерами решения то Квадратные корни - определение и вычисление с примерами решения

Квадратные корни - определение и вычисление с примерами решения

Если в множестве Квадратные корни - определение и вычисление с примерами решения нет элемента, не принадлежащего множеству А, то множество Квадратные корни - определение и вычисление с примерами решения является подмножеством множества Квадратные корни - определение и вычисление с примерами решения. В силу этих соображений пустое множество считают подмножеством любого множества. Действительно, пустое множество не содержит ни одного элемента, следовательно, в нем нет элемента, который не принадлежит данному множеству Квадратные корни - определение и вычисление с примерами решения. Поэтому для любого множества Квадратные корни - определение и вычисление с примерами решения справедливо утверждение: Квадратные корни - определение и вычисление с примерами решения

Любое множество Квадратные корни - определение и вычисление с примерами решения является подмножеством самого себя, то есть Квадратные корни - определение и вычисление с примерами решения

  • Заказать решение задач по высшей математике

Пример:

Выпишите все подмножества множества Квадратные корни - определение и вычисление с примерами решения

Решение:

Имеем: Квадратные корни - определение и вычисление с примерами решения

Числовые множества

Натуральные числа — это первые числа, которыми начали пользоваться люди. С ними вы ознакомились в детстве, когда учились считать предметы. Все натуральные числа образуют множество натуральных чисел, которое обозначают буквой Квадратные корни - определение и вычисление с примерами решения

Практические потребности людей привели к возникновению дробных чисел. Позже появилась необходимость рассматривать величины, для характеристики которых положительных чисел оказалось недостаточно. Так возникли отрицательные числа.

Все натуральные числа, противоположные им числа и число нуль образуют множество целых чисел, которое обозначают буквой Квадратные корни - определение и вычисление с примерами решения

Например, Квадратные корни - определение и вычисление с примерами решения

Множество натуральных чисел является подмножеством множества целых чисел, то есть Квадратные корни - определение и вычисление с примерами решения

Целые и дробные (как положительные, так и отрицательные) числа образуют множество рациональных чисел, которое обозначают буквой Квадратные корни - определение и вычисление с примерами решения Например, Квадратные корни - определение и вычисление с примерами решения

Понятно, что Квадратные корни - определение и вычисление с примерами решения Схема, изображенная на рисунке 21, показывает, как соотносятся множества Квадратные корни - определение и вычисление с примерами решения и Квадратные корни - определение и вычисление с примерами решения

Квадратные корни - определение и вычисление с примерами решения

Каждое рациональное число можно представить в виде отношения Квадратные корни - определение и вычисление с примерами решения где Квадратные корни - определение и вычисление с примерами решения — целое число, а Квадратные корни - определение и вычисление с примерами решения — натуральное. Например,

Квадратные корни - определение и вычисление с примерами решенияКвадратные корни - определение и вычисление с примерами решения

С возможностью такого представления связано название «рациональное число»: одним из значений латинского слова ratio является «отношение».

В 6 классе вы узнали, что каждое рациональное число можно представить в виде конечной десятичной дроби или в виде бесконечной периодической десятичной дроби. Для дроби Квадратные корни - определение и вычисление с примерами решения такое представление можно получить, выполнив деление числа Квадратные корни - определение и вычисление с примерами решения на число Квадратные корни - определение и вычисление с примерами решения уголком.

Например, Квадратные корни - определение и вычисление с примерами решения

Число Квадратные корни - определение и вычисление с примерами решения записано в виде конечной десятичной дроби, а число Квадратные корни - определение и вычисление с примерами решения в виде бесконечной периодической десятичной дроби. В записи 0,454545… цифры 4 и 5 периодически повторяются. Повторяющуюся группу цифр называют периодом дроби и записывают в круглых скобках. В данном случае период дроби составляет 45, а дробь Квадратные корни - определение и вычисление с примерами решения записывают так: Квадратные корни - определение и вычисление с примерами решения

Заметим, что любую конечную десятичную дробь и любое целое число можно представить в виде бесконечной периодической десятичной дроби. Например,

Квадратные корни - определение и вычисление с примерами решения

Следовательно, каждое рациональное число можно представить в виде бесконечной периодической десятичной дроби.

Справедливо и такое утверждение: каждая бесконечная периодическая десятичная дробь является записью некоторого рационального числа.

В 9 классе вы научитесь записывать бесконечную периодическую десятичную дробь в виде обыкновенной дроби.

Сумма и произведение двух натуральных чисел являются натуральными числами. Однако разность натуральных чисел не всегда обладает таким свойством. Например, Квадратные корни - определение и вычисление с примерами решения

Сумма, разность, произведение двух целых чисел являются целыми числами. Однако частное целых чисел не всегда обладает таким свойством. Например, Квадратные корни - определение и вычисление с примерами решения

Сумма, разность, произведение и частное (кроме деления на нуль) двух рациональных чисел являются рациональными числами.

Итак, действие вычитания натуральных чисел может вывести результат за пределы множества Квадратные корни - определение и вычисление с примерами решениядействие деления целых чисел — за пределы множества Квадратные корни - определение и вычисление с примерами решения однако выполнение любого из четырех арифметических действий с рациональными числами не выводит результат за пределы множества Квадратные корни - определение и вычисление с примерами решения

Вы ознакомились с новым действием — извлечением квадратного корня. Возникает естественный вопрос: всегда ли квадратный корень из неотрицательного рационального числа является рациональным числом? Иными словами, может ли действие извлечения квадратного корня из рационального числа вывести результат за пределы множества Квадратные корни - определение и вычисление с примерами решения

Рассмотрим уравнение Квадратные корни - определение и вычисление с примерами решения Поскольку Квадратные корни - определение и вычисление с примерами решения то это уравнение имеет два корня: Квадратные корни - определение и вычисление с примерами решения и Квадратные корни - определение и вычисление с примерами решения (рис. 22). Однако не существует рационального числа, квадрат которого равен 2 (доказательство этого факта вы можете найти в рубрике «Когда сделаны уроки» в рассказе «Открытие иррациональности»), то есть числа Квадратные корни - определение и вычисление с примерами решения и Квадратные корни - определение и вычисление с примерами решения не являются рациональными. Эти числа — примеры иррациональных чисел (приставка «ир» означает отрицание).

Квадратные корни - определение и вычисление с примерами решения

Следовательно, действие извлечения корня из рационального числа может вывести результат за пределы множества Квадратные корни - определение и вычисление с примерами решения

Ни одно иррациональное число не может быть представлено в виде дроби Квадратные корни - определение и вычисление с примерами решения где Квадратные корни - определение и вычисление с примерами решения а следовательно, и в виде бесконечной периодической десятичной дроби.

Иррациональные числа могут быть представлены в виде бесконечных непериодических десятичных дробей.

Например, с помощью специальной компьютерной программы можно установить, что

Квадратные корни - определение и вычисление с примерами решения

Числа Квадратные корни - определение и вычисление с примерами решения и Квадратные корни - определение и вычисление с примерами решения — это не первые иррациональные числа, с которыми вы встречаетесь. Число Квадратные корни - определение и вычисление с примерами решения равное отношению длины окружности к диаметру, также является иррациональным:

Квадратные корни - определение и вычисление с примерами решения

Иррациональные числа возникают не только в результате извлечения квадратных корней. Их можно конструировать, строя бесконечные непериодические десятичные дроби.

Например, число Квадратные корни - определение и вычисление с примерами решения (после запятой записаны последовательно степени числа 10) является иррациональным. Действительно, если предположить, что у рассматриваемой десятичной дроби есть период, состоящий из Квадратные корни - определение и вычисление с примерами решения цифр, то с некоторого места этот период будет полностью состоять из нулей. Иными словами, начиная с этого места в записи не должна встретиться ни одна единица, что противоречит конструкции числа.

Вместе множества иррациональных и рациональных чисел образуют множество действительных чисел. Его обозначают буквой Квадратные корни - определение и вычисление с примерами решения (первой буквой латинского слова realis — «реальный», «существующий в действительности»).

Теперь «цепочку» Квадратные корни - определение и вычисление с примерами решения можно продолжить: Квадратные корни - определение и вычисление с примерами решения

Связь между числовыми множествами, рассмотренными в этом пункте, иллюстрирует схема, изображенная на рисунке 23.

Квадратные корни - определение и вычисление с примерами решения

Длину любого отрезка можно выразить действительным числом. Eh-от факт позволяет установить связь между множеством Квадратные корни - определение и вычисление с примерами решения и множеством точек координатной прямой. Точке Квадратные корни - определение и вычисление с примерами решения началу отсчета, поставим в соответствие число 0. Каждой точке Квадратные корни - определение и вычисление с примерами решения координатной прямой, отличной от точки Квадратные корни - определение и вычисление с примерами решения поставим в соответствие единственное число, равное длине отрезка Квадратные корни - определение и вычисление с примерами решения если точка А расположена справа от точки Квадратные корни - определение и вычисление с примерами решения и число, противоположное длине отрезка Квадратные корни - определение и вычисление с примерами решения если точка Квадратные корни - определение и вычисление с примерами решения расположена слева от точки Квадратные корни - определение и вычисление с примерами решения. Также понятно, что каждое действительное число является соответствующим единственной точке координатной прямой.

Над действительными числами можно выполнять четыре арифметических действия: сложение, вычитание, умножение, деление (кроме деления на ноль), в результате будем получать действительное число. Эти действия обладают известными вам свойствами:

  • Квадратные корни - определение и вычисление с примерами решения Переместительное свойство сложения
  • Квадратные корни - определение и вычисление с примерами решения Переместительное свойство умножения
  • Квадратные корни - определение и вычисление с примерами решения Сочетательное свойство сложения
  • Квадратные корни - определение и вычисление с примерами решения Сочетательное свойство умножения
  • Квадратные корни - определение и вычисление с примерами решения Распределительное свойство умножения относительно сложения

Действительные числа можно сравнивать, используя правила сравнения десятичных дробей, то есть сравнивая цифры в соответствующих разрядах. Например, Квадратные корни - определение и вычисление с примерами решения

Любое положительное действительное число больше нуля и любого отрицательного действительного числа. Любое отрицательное действительное число меньше нуля. Из двух отрицательных действительных чисел больше то, у которого модуль меньше.

Если отметить на координатной прямой два действительных числа, то меньшее из них будет расположено слева от большего.

Находя длину окружности и площадь круга, вы пользовались приближенным значением числа Квадратные корни - определение и вычисление с примерами решения (например, Квадратные корни - определение и вычисление с примерами решения). Аналогично при решении практических задач, где нужно выполнить действия с действительными числами, при необходимости эти числа заменяют их приближенными значениями. Например, для числа Квадратные корни - определение и вычисление с примерами решения можно воспользоваться такими приближенными равенствами: Квадратные корни - определение и вычисление с примерами решения или Квадратные корни - определение и вычисление с примерами решения Первое из них называют приближенным значением числа Квадратные корни - определение и вычисление с примерами решения по недостатку с точностью до 0,001, второе — приближенным значением числа Квадратные корни - определение и вычисление с примерами решения по избытку с точностью до 0,001. Более подробно о приближенных значениях вы узнаете в 9 классе.

В заключение подчеркнем, что из любого неотрицательного действительного числа можно извлечь квадратный корень и в результате этого действия получить действительное число. Следовательно, действие извлечения квадратного корня из неотрицательного действительного числа не выводит результат за пределы множества Квадратные корни - определение и вычисление с примерами решения

Открытие иррациональности

Решая графически уравнение Квадратные корни - определение и вычисление с примерами решения мы установили, что длина каждого из отрезков Квадратные корни - определение и вычисление с примерами решения и Квадратные корни - определение и вычисление с примерами решения равна Квадратные корни - определение и вычисление с примерами решения (рис. 24). Покажем, что число Квадратные корни - определение и вычисление с примерами решения иррациональное. Предположим, что число Квадратные корни - определение и вычисление с примерами решения рациональное. Тогда его можно

представить в виде несократимой дроби Квадратные корни - определение и вычисление с примерами решения где Квадратные корни - определение и вычисление с примерами решения и Квадратные корни - определение и вычисление с примерами решения — натуральные числа. Имеем:

Квадратные корни - определение и вычисление с примерами решения

Тогда Квадратные корни - определение и вычисление с примерами решения

Из последнего равенства следует, что число Квадратные корни - определение и вычисление с примерами решения четное. А это значит, что четным является и число Квадратные корни - определение и вычисление с примерами решения Тогда Квадратные корни - определение и вычисление с примерами решения где Квадратные корни - определение и вычисление с примерами решения — некоторое натуральное число. Имеем: Квадратные корни - определение и вычисление с примерами решения Отсюда следует, что число Квадратные корни - определение и вычисление с примерами решения а следовательно, и число Квадратные корни - определение и вычисление с примерами решения четные.

Таким образом, числитель и знаменатель дроби Квадратные корни - определение и вычисление с примерами решения — четные числа. Следовательно, эта дробь является сократимой. Получили противоречие.

Приведенный пример показывает, что существуют отрезки (в нашем случае это отрезки Квадратные корни - определение и вычисление с примерами решения и Квадратные корни - определение и вычисление с примерами решения на рисунке 24), длины которых нельзя выразить рациональными числами, то есть для измерения отрезков рациональных чисел недостаточно.

Этот факт был открыт в школе великого древнегреческого ученого Пифагора.

Квадратные корни - определение и вычисление с примерами решения

Сначала пифагорейцы считали, что для любых отрезков Квадратные корни - определение и вычисление с примерами решения и Квадратные корни - определение и вычисление с примерами решения всегда можно найти такой отрезок Квадратные корни - определение и вычисление с примерами решения который в каждом из них укладывается целое число раз. Отсюда следовало, что отношение длин любых двух отрезков выражается отношением целых чисел, то есть рациональным числом.

Например, на рисунке 25 имеем: Квадратные корни - определение и вычисление с примерами решения

и Квадратные корни - определение и вычисление с примерами решения. Отрезок Квадратные корни - определение и вычисление с примерами решения называют общей мерой отрезков Квадратные корни - определение и вычисление с примерами решения и Квадратные корни - определение и вычисление с примерами решения

Квадратные корни - определение и вычисление с примерами решения

Если для отрезков существует общая мера, то их называют соизмеримыми. Например, отрезки Квадратные корни - определение и вычисление с примерами решения и Квадратные корни - определение и вычисление с примерами решения (рис. 25) являются соизмеримыми.

Итак, древнегреческие ученые считали, что любые два отрезка соизмеримы. А из этого следовало, что длину любого отрезка можно выразить рациональным числом.

Действительно, пусть некоторый отрезок Квадратные корни - определение и вычисление с примерами решения выбран в качестве единичного. Тогда для отрезка Квадратные корни - определение и вычисление с примерами решения и любого другого отрезка Квадратные корни - определение и вычисление с примерами решения существует отрезок длиной Квадратные корни - определение и вычисление с примерами решения являющийся их общей мерой. Получаем: Квадратные корни - определение и вычисление с примерами решения где Квадратные корни - определение и вычисление с примерами решения и — некоторые натуральные числа. Отсюда Квадратные корни - определение и вычисление с примерами решения Поскольку Квадратные корни - определение и вычисление с примерами решения то Квадратные корни - определение и вычисление с примерами решения

Однако сами же пифагорейцы сделали выдающееся открытие. Они доказали, что диагональ и сторона квадрата несоизмеримы, то есть если сторону квадрата принять за единицу, то длину диагонали квадрата выразить рациональным числом нельзя.

Для доказательства рассмотрим произвольный квадрат Квадратные корни - определение и вычисление с примерами решения и примем его сторону за единицу длины. Тогда его площадь равна Квадратные корни - определение и вычисление с примерами решения На диагонали Квадратные корни - определение и вычисление с примерами решения построим квадрат Квадратные корни - определение и вычисление с примерами решения (рис. 26). Понятно, что площадь квадрата Квадратные корни - определение и вычисление с примерами решения в 2 раза больше площади квадрата Квадратные корни - определение и вычисление с примерами решения. Отсюда Квадратные корни - определение и вычисление с примерами решения, то есть Квадратные корни - определение и вычисление с примерами решенияСледовательно, длина диагонали Квадратные корни - определение и вычисление с примерами решения не может быть выражена рациональным числом.

Квадратные корни - определение и вычисление с примерами решения

Это открытие изменило один из фундаментальных постулатов древнегреческих ученых, заключавшийся в том, что отношение любых двух величин выражается отношением целых чисел.

Существует легенда о том, что пифагорейцы держали открытие иррациональных чисел в строжайшей тайне, а человека, разгласившего этот факт, покарали боги: он погиб при кораблекрушении.

ГЛАВНОЕ В ПАРАГРАФЕ 2

Свойства функции Квадратные корни - определение и вычисление с примерами решения

Область определения: Квадратные корни - определение и вычисление с примерами решения

Область значений: множество неотрицательных чисел.

График: парабола.

Нуль функции: Квадратные корни - определение и вычисление с примерами решения

Свойство графика: если точка Квадратные корни - определение и вычисление с примерами решения принадлежит графику функции, то точка Квадратные корни - определение и вычисление с примерами решения также принадлежит графику.

Квадратный корень

Квадратным корнем из числа Квадратные корни - определение и вычисление с примерами решения называют число, квадрат которого равен Квадратные корни - определение и вычисление с примерами решения

Арифметический квадратный корень

Арифметическим квадратным корнем из числа Квадратные корни - определение и вычисление с примерами решения называют неотрицательное число, квадрат которого равен Квадратные корни - определение и вычисление с примерами решения

Равные множества

Два множества Квадратные корни - определение и вычисление с примерами решения и Квадратные корни - определение и вычисление с примерами решения называют равными, если они состоят из одних и тех же элементов, то есть каждый элемент множества Квадратные корни - определение и вычисление с примерами решения принадлежит множеству Квадратные корни - определение и вычисление с примерами решения и, наоборот, каждый элемент множества Квадратные корни - определение и вычисление с примерами решения принадлежит множеству Квадратные корни - определение и вычисление с примерами решения.

Подмножество

Множество Квадратные корни - определение и вычисление с примерами решения называют подмножеством множества Квадратные корни - определение и вычисление с примерами решения, если каждый элемент множества Квадратные корни - определение и вычисление с примерами решения является элементом множества Квадратные корни - определение и вычисление с примерами решения.

Обозначения числовых множеств

Квадратные корни - определение и вычисление с примерами решения — множество натуральных чисел;

Квадратные корни - определение и вычисление с примерами решения — множество целых чисел;

Квадратные корни - определение и вычисление с примерами решения — множество рациональных чисел;

Квадратные корни - определение и вычисление с примерами решения — множество действительных чисел.

Связь между числовыми множествами

Квадратные корни - определение и вычисление с примерами решения

Свойства арифметического квадратного корня

Для любого действительного числа Квадратные корни - определение и вычисление с примерами решения выполняется равенство

Квадратные корни - определение и вычисление с примерами решения

Для любого действительного числа Квадратные корни - определение и вычисление с примерами решения и любого натурального числа Квадратные корни - определение и вычисление с примерами решения выполняется равенство Квадратные корни - определение и вычисление с примерами решения

Для любых действительных чисел Квадратные корни - определение и вычисление с примерами решения и Квадратные корни - определение и вычисление с примерами решения таких, что Квадратные корни - определение и вычисление с примерами решения и Квадратные корни - определение и вычисление с примерами решения выполняется равенство Квадратные корни - определение и вычисление с примерами решения

Для любых действительных чисел Квадратные корни - определение и вычисление с примерами решения и Квадратные корни - определение и вычисление с примерами решения таких, что Квадратные корни - определение и вычисление с примерами решения и Квадратные корни - определение и вычисление с примерами решения

выполняется равенство Квадратные корни - определение и вычисление с примерами решения

Для любых неотрицательных чисел Квадратные корни - определение и вычисление с примерами решения и Квадратные корни - определение и вычисление с примерами решения таких, что Квадратные корни - определение и вычисление с примерами решения выполняется неравенство Квадратные корни - определение и вычисление с примерами решения

Свойства функции Квадратные корни - определение и вычисление с примерами решения

Область определения: множество неотрицательных чисел.

Область значений: множество неотрицательных чисел.

График: ветвь параболы.

Нуль функции: Квадратные корни - определение и вычисление с примерами решения

Большему значению аргумента соответствует большее значение функции.

———

Квадратные корни

Функция y=x2 её график и свойства

Функция Квадратные корни - определение и вычисление с примерами решения её график и свойства

Пример №223

Пусть сторона квадрата равна Квадратные корни - определение и вычисление с примерами решения см. Тогда его площадь (в Квадратные корни - определение и вычисление с примерами решения можно найти но формуле Квадратные корни - определение и вычисление с примерами решения В этой формуле каждому положительному значению переменной Квадратные корни - определение и вычисление с примерами решения соответствует единственное значение переменной Квадратные корни - определение и вычисление с примерами решения

Если обозначить независимую переменную через Квадратные корни - определение и вычисление с примерами решения а зависимую – через Квадратные корни - определение и вычисление с примерами решения то получим функцию, которую задают формулой Квадратные корни - определение и вычисление с примерами решения В этой формуле переменная Квадратные корни - определение и вычисление с примерами решения может принимать любые значения (положительные, отрицательные, значение нуль).

Составим таблицу значений функции Квадратные корни - определение и вычисление с примерами решения для нескольких значений аргумента: Квадратные корни - определение и вычисление с примерами решения

Отметим на координатной плоскости точки Квадратные корни - определение и вычисление с примерами решения координаты которых записаны в таблице (рис. 8). Если на этой плоскости отметить больше точек, координаты которых удовлетворяют формуле Квадратные корни - определение и вычисление с примерами решения а потом соединить их плавной линией, то получим график функции Квадратные корни - определение и вычисление с примерами решения (рис. 9). График этой функции называют параболой, точку (0; 0) – вершиной параболы. Вершина делит параболу на две части, каждую из которых называют ветвью параболы.

Квадратные корни - определение и вычисление с примерами решения

Сформулируем некоторые свойства функции Квадратные корни - определение и вычисление с примерами решения

1. Область определения функции состоит из всех чисел.

2. Область значений функции состоит из всех неотрицательных чисел, то есть Квадратные корни - определение и вычисление с примерами решения

Действительно, так как Квадратные корни - определение и вычисление с примерами решения для любого Квадратные корни - определение и вычисление с примерами решения то Квадратные корни - определение и вычисление с примерами решения

3. Графиком функции является парабола с вершиной в точке Квадратные корни - определение и вычисление с примерами решения ветви которой направлены вверх. Все точки параболы, за исключением вершины, лежат выше оси абсцисс.

4. Противоположным значениям аргумента соответствует одно и то же значение функции.

Действительно, это следует из того, что Квадратные корни - определение и вычисление с примерами решения при любом значении Квадратные корни - определение и вычисление с примерами решения

Пример №224

Решите графически уравнение Квадратные корни - определение и вычисление с примерами решения

Решение:

График функции Квадратные корни - определение и вычисление с примерами решения – парабола, а функции Квадратные корни - определение и вычисление с примерами решения – прямая, проходящая через точки (0; 3) и (2; -1).Квадратные корни - определение и вычисление с примерами решения Построим эти графики в одной системе координат ( рис.10). Они пересекутся в двух точках с абсциссами Квадратные корни - определение и вычисление с примерами решения

Квадратные корни - определение и вычисление с примерами решения

Убедимся, что числа 1 и -3 являются корнями уравнения:

1) для Квадратные корни - определение и вычисление с примерами решения

2) для Квадратные корни - определение и вычисление с примерами решения

Следовательно, 3 и -1 – корни уравнения Квадратные корни - определение и вычисление с примерами решения

Ответ. -3; 1.

Пример №225

Между какими последовательными целыми числами лежит корень уравнения Квадратные корни - определение и вычисление с примерами решения

Решение:

Решим уравнение графически, построив графики функций Квадратные корни - определение и вычисление с примерами решения в одной системе координат. Так как Квадратные корни - определение и вычисление с примерами решения для любого Квадратные корни - определение и вычисление с примерами решения то в данном уравнении и Квадратные корни - определение и вычисление с примерами решения

Откуда Квадратные корни - определение и вычисление с примерами решения Поэтому рассмотрим графики функций только для Квадратные корни - определение и вычисление с примерами решения Это ветвь гиперболы и ветвь параболы, лежащие в первой координатной четверти (рис. 11).

Графики пересекаются в одной точке, абсцисса которой является корнем уравнения и заключена между числами 1 и 2.

Таким образом, корень уравнения Квадратные корни - определение и вычисление с примерами решения лежит между числами 1 и 2.

Ответ. Между числами 1 и 2. Квадратные корни - определение и вычисление с примерами решения

Арифметический квадратный корень

Если известна сторона квадрата, можно легко найти его площадь. Но часто приходится решать и обратную задачу: по известной площади квадрата находить его сторону.

Пример №226

Площадь квадрата равна Квадратные корни - определение и вычисление с примерами решения Чему равна длина его стороны?

Решение:

Пусть длина стороны квадрата равна Квадратные корни - определение и вычисление с примерами решения см, тогда его площадь будет Квадратные корни - определение и вычисление с примерами решения Имеем уравнение: Квадратные корни - определение и вычисление с примерами решения корнями которого являются числа 4 и -4. Действительно, Квадратные корни - определение и вычисление с примерами решения и Квадратные корни - определение и вычисление с примерами решения Длина не может выражаться отрицательным числом, поэтому условию задачи удовлетворяет только один из корней уравнения – число 4. Следовательно, длина стороны квадрата равна 4 см.

Корни уравнения Квадратные корни - определение и вычисление с примерами решения то есть числа, квадраты которых равны 16, называют квадратными корнями из числа 16.

Квадратным корнем из числа Квадратные корни - определение и вычисление с примерами решения называют число, квадрат которого равен Квадратные корни - определение и вычисление с примерами решения.

Например, квадратными корнями из числа 100 являются числа 10 и -10, потому что Квадратные корни - определение и вычисление с примерами решения Квадратным корнем из числа 0 является число 0, потому что Квадратные корни - определение и вычисление с примерами решения Квадратного корня из числа -16 мы не найдем, ведь среди известных нам чисел не существует числа, квадрат которого равнялся бы -16.

Число 4, являющееся неотрицательным корнем уравнения . Квадратные корни - определение и вычисление с примерами решения называют арифметическим квадратным корнем из числа 16.

Арифметическим квадратным корнем из числа а называют неотрицательное число, квадрат которого равен Квадратные корни - определение и вычисление с примерами решения

Арифметический квадратный корень из числа Квадратные корни - определение и вычисление с примерами решения обозначают Квадратные корни - определение и вычисление с примерами решения знак арифметического квадратного корня, или радикал). Выражение, стоящее под знаком корня, называют подкоренным выражением. Запись Квадратные корни - определение и вычисление с примерами решения читают следующим образом: квадратный корень из Квадратные корни - определение и вычисление с примерами решения (слово арифметический при чтении принято опускать, поскольку в школе рассматривают только арифметические корни).

Пример №227

1) Квадратные корни - определение и вычисление с примерами решения так как Квадратные корни - определение и вычисление с примерами решения

2) Квадратные корни - определение и вычисление с примерами решения так как Квадратные корни - определение и вычисление с примерами решения

Квадратные корни - определение и вычисление с примерами решения

Вообще равенство Квадратные корни - определение и вычисление с примерами решения является верным, если выполняются два условия: Квадратные корни - определение и вычисление с примерами решения

Так как Квадратные корни - определение и вычисление с примерами решения для всех значений переменной Квадратные корни - определение и вычисление с примерами решения

Выражение Квадратные корни - определение и вычисление с примерами решения не имеет смысла, если Квадратные корни - определение и вычисление с примерами решения

Например, не имеют смысла выражения Квадратные корни - определение и вычисление с примерами решения

Действие нахождения значения арифметического квадратного корня называют извлечением квадратного корня. Из небольших чисел квадратный корень желательно извлекать устно. Извлекать квадратный корень из больших чисел поможет таблица квадратов двузначных натуральных чисел на форзаце или калькулятор.

Пример №228

Найдите значение корня Квадратные корни - определение и вычисление с примерами решения

Решение:

По таблице квадратов двузначных натуральных чисел имеем: Квадратные корни - определение и вычисление с примерами решения Поэтому Квадратные корни - определение и вычисление с примерами решения

Пример №229

Вычислите Квадратные корни - определение и вычисление с примерами решения

Решение:

Сначала нужно найти значение выражения Квадратные корни - определение и вычисление с примерами решения а потом извлечь из него корень:

Квадратные корни - определение и вычисление с примерами решения

Ответ. 35.

Рассмотрим уравнение Квадратные корни - определение и вычисление с примерами решения где Квадратные корни - определение и вычисление с примерами решения – некоторое число. Если Квадратные корни - определение и вычисление с примерами решения то по определению квадратного корня следует, что Квадратные корни - определение и вычисление с примерами решения Если же Квадратные корни - определение и вычисление с примерами решения то уравнение не имеет решений, так как по определению число Квадратные корни - определение и вычисление с примерами решения – неотрицательное.

Систематизируем данные о решениях уравнения Квадратные корни - определение и вычисление с примерами решения в виде схемы:

Квадратные корни - определение и вычисление с примерами решения

Пример №230

Решите уравнение:

Квадратные корни - определение и вычисление с примерами решения

Ответ. 1) 49; 2) решений нет; 3) 13.

Множество. Подмножество. Числовые множества. Рациональные числа. Иррациональные числа. Действительные числа

Понятие множества является одним из основных понятий математики. Под множеством будем понимать совокупность объектов, имеющих общую природу (или объединенных по общему признаку), сами объекты при этом будем называть элементами множества.

Как правило, множества обозначают большими латинскими буквами. Если, например, множество Квадратные корни - определение и вычисление с примерами решения состоит из чисел 1, 2, 3, а множество Квадратные корни - определение и вычисление с примерами решения – из знаков Квадратные корни - определение и вычисление с примерами решения то это записывают так: Квадратные корни - определение и вычисление с примерами решения Числа 1, 2, 3 – элементы множества Квадратные корни - определение и вычисление с примерами решения а знаки Квадратные корни - определение и вычисление с примерами решения – элементы множества Квадратные корни - определение и вычисление с примерами решения Тот факт, что число 1 принадлежит множеству Квадратные корни - определение и вычисление с примерами решения записывают с помощью уже известного нам символа Квадратные корни - определение и вычисление с примерами решения а именно: Квадратные корни - определение и вычисление с примерами решения Тот факт, что число 1 не принадлежит множеству Квадратные корни - определение и вычисление с примерами решения записывают так: Квадратные корни - определение и вычисление с примерами решения

Множества, количество элементов которых можно выразить натуральным числом, называют конечными.

Множество, не содержащее ни одного элемента, называют пустым множеством. Его обозначают символом Квадратные корни - определение и вычисление с примерами решения Так, например, пустым множеством является множество корней уравнения Квадратные корни - определение и вычисление с примерами решения

Множества, количество элементов которых нельзя выразить натуральным числом и которые не являются пустыми, называют бесконечными.

Если каждый элемент множества Квадратные корни - определение и вычисление с примерами решения является элементом множества Квадратные корни - определение и вычисление с примерами решения то говорят, что множество Квадратные корни - определение и вычисление с примерами решения является подмножеством множества Квадратные корни - определение и вычисление с примерами решения

Записывают это следующим образом: Квадратные корни - определение и вычисление с примерами решения Схематическая иллюстрация этого факта представлена на рисунке 12.

Квадратные корни - определение и вычисление с примерами решения

Пример №231

Пусть Квадратные корни - определение и вычисление с примерами решения Квадратные корни - определение и вычисление с примерами решения Тогда множество Квадратные корни - определение и вычисление с примерами решения является подмножеством множества Квадратные корни - определение и вычисление с примерами решения то есть Квадратные корни - определение и вычисление с примерами решения Множество Квадратные корни - определение и вычисление с примерами решения не является подмножеством множества Квадратные корни - определение и вычисление с примерами решения так как множество Квадратные корни - определение и вычисление с примерами решения содержит элемент – число 5, которое не является элементом множества Квадратные корни - определение и вычисление с примерами решения

Считают, что пустое множество является подмножеством любого множества, то есть Квадратные корни - определение и вычисление с примерами решения

Целые числа и дробные числа образуют множество рациональных чисел.

Множество натуральных чисел обозначают буквой Квадратные корни - определение и вычисление с примерами решения множество целых чисел – буквой Квадратные корни - определение и вычисление с примерами решения множество рациональных чисел -буквой Квадратные корни - определение и вычисление с примерами решения Они являются бесконечными множествами.

Можно утверждать, что Квадратные корни - определение и вычисление с примерами решения

Любое рациональное число можно представить в виде Квадратные корни - определение и вычисление с примерами решения где Квадратные корни - определение и вычисление с примерами решения – целое число, Квадратные корни - определение и вычисление с примерами решения – натуральное число.

Например Квадратные корни - определение и вычисление с примерами решения

Рациональное число можно также представить и в виде десятичной дроби. Для этого достаточно числитель дроби разделить на ее знаменатель. Например,

Квадратные корни - определение и вычисление с примерами решения

В последнем случае мы получили бесконечную десятичную периодическую дробь. Дроби Квадратные корни - определение и вычисление с примерами решения также можно представить в виде бесконечных десятичных периодических дробей, дописав справа в десятичной части бесконечное много нулей:

Квадратные корни - определение и вычисление с примерами решения

Таким образом, каждое рациональное число можно представить в виде бесконечной десятичной периодической дроби.

Справедливо и обратное утверждение:

Каждая бесконечная периодическая десятичная дробь является записью некоторого рационального числа.

Например,

Квадратные корни - определение и вычисление с примерами решения

В правильности этих равенств легко убедиться, выполнив соответствующее деление.

Но в математике существуют числа, которые нельзя записать в виде Квадратные корни - определение и вычисление с примерами решения где Квадратные корни - определение и вычисление с примерами решения – целое число, а Квадратные корни - определение и вычисление с примерами решения – натуральное.

Числа, которые нельзя записать в виде Квадратные корни - определение и вычисление с примерами решения где Квадратные корни - определение и вычисление с примерами решения – целое число, a Квадратные корни - определение и вычисление с примерами решения — натуральное, называют иррациональными числами.

Префикс «иp» означает отрицание, иррациональные значит не рациональные.

Например, иррациональными являются числа Квадратные корни - определение и вычисление с примерами решения Приближенные значения таких чисел можно находить с определенной точностью (то есть округленными до определенного разряда) с помощью микрокалькулятора или компьютера:

Квадратные корни - определение и вычисление с примерами решения

Каждое иррациональное число можно представить в виде бесконечной десятичной непериодической дроби.

Рациональные числа вместе с иррациональными числами образуют множество действительных чисел.

Множество действительных чисел обозначают буквой Квадратные корни - определение и вычисление с примерами решения

Так как каждое натуральное число является целым числом, то множество Квадратные корни - определение и вычисление с примерами решения является подмножеством множества Квадратные корни - определение и вычисление с примерами решения Аналогично, множество Квадратные корни - определение и вычисление с примерами решения является подмножеством множества Квадратные корни - определение и вычисление с примерами решения а множество Квадратные корни - определение и вычисление с примерами решения подмножеством множества Квадратные корни - определение и вычисление с примерами решения (рис. 13).

Квадратные корни - определение и вычисление с примерами решения

Действительные числа, записанные в виде бесконечных десятичных непериодических дробей, можно сравнивать по тем же правилам, что и конечные десятичные дроби. Например,

Квадратные корни - определение и вычисление с примерами решения

В задачах с практическим содержанием действительные числа (для выполнения арифметических действий) заменяют на их приближенные значения, округленные до определенного разряда.

Пример №232

Вычислите Квадратные корни - определение и вычисление с примерами решения с точностью до тысячных.

Решение:

Квадратные корни - определение и вычисление с примерами решения

Заметим, что при сложении, вычитании, умножении, делении и возведении в степень действительных чисел справедливы те же свойства и ограничения, что и при действиях с рациональными числами.

Понятие числа появилось очень давно.

А еще раньше Оно является одним из самых общих понятий математики. Потребность в измерениях и подсчетах обусловила появление положительных рациональных чисел. Именно тогда возникли и использовались натуральные числа и дробные числа, которые рассматривались как отношение натуральных чисел.

Следующим этапом развития понятия числа является введение в практику отрицательных чисел. В Древнем Китае эти числа появились во II в. до н. э. Там умели складывать и вычитать отрицательные числа. Отрицательные числа толковали как долг, а положительные – как имущество. В Индии в VII в. эти числа воспринимали так же, но еще и умели их умножать и делить.

Уже древние вавилоняне около 4 тыс. лет назад знали ответ на вопрос: «Какова должна быть длина стороны квадрата, чтобы его площадь равнялась Квадратные корни - определение и вычисление с примерами решения Ими были составлены таблицы квадратов чисел и квадратных корней. Вавилоняне использовали и метод нахождения приближенного значения квадратного корня из числа Квадратные корни - определение и вычисление с примерами решения не являющегося квадратом натурального числа. Суть метода заключалась в том, что число Квадратные корни - определение и вычисление с примерами решения записывали в виде Квадратные корни - определение и вычисление с примерами решения было достаточно малым в сравнении с Квадратные корни - определение и вычисление с примерами решения и применяли формулу

Квадратные корни - определение и вычисление с примерами решения

Например, с помощью этого метода:

Квадратные корни - определение и вычисление с примерами решения

Проверим точность результата: Квадратные корни - определение и вычисление с примерами решения

Такой метод вычисления приближенного значения квадратного корня использовался и в Древней Греции. Его детально описал Герон Александрийский (I в. н. э.).

В эпоху Возрождения (XV – нач. XVII в.) европейские математики обозначали корень латинским словом Radix (корень), потом – сокращенно – буквой Квадратные корни - определение и вычисление с примерами решения Так появился термин «радикал», которым называют знак корня. Впоследствии для обозначения корня стали использовать точку, а потом ромбик. Спустя некоторое время – уже знак Квадратные корни - определение и вычисление с примерами решения и горизонтальную черточку над подкоренным выражением. Затем знак Квадратные корни - определение и вычисление с примерами решения и черточка были объединены, и современные математики стали использовать знак квадратного корня в привычном нам виде: Квадратные корни - определение и вычисление с примерами решения

Тождество (√a)2=a, a⩾0 уравнение Квадратные корни - определение и вычисление с примерами решения x2=a

Тождество Квадратные корни - определение и вычисление с примерами решения уравнение Квадратные корни - определение и вычисление с примерами решения

Напомним, что для любых значений Квадратные корни - определение и вычисление с примерами решения равенство Квадратные корни - определение и вычисление с примерами решения является верным, если выполняются два условия: Квадратные корни - определение и вычисление с примерами решенияКвадратные корни - определение и вычисление с примерами решения Подставив в последнее равенство вместо Квадратные корни - определение и вычисление с примерами решения его запись в виде Квадратные корни - определение и вычисление с примерами решения получим тождество Квадратные корни - определение и вычисление с примерами решения

Для любого Квадратные корни - определение и вычисление с примерами решения справедливо тождество

Квадратные корни - определение и вычисление с примерами решения

Пример №233

Вычислите:

Квадратные корни - определение и вычисление с примерами решения

Решение:

Квадратные корни - определение и вычисление с примерами решения

Квадратные корни - определение и вычисление с примерами решения Ответ: Квадратные корни - определение и вычисление с примерами решения

Рассмотрим уравнение Квадратные корни - определение и вычисление с примерами решения где Квадратные корни - определение и вычисление с примерами решения – некоторое число.

Так как квадрат числа не может быть отрицательным, то при Квадратные корни - определение и вычисление с примерами решения уравнение Квадратные корни - определение и вычисление с примерами решения не имеет решений, что можно записать следующим образом: Квадратные корни - определение и вычисление с примерами решения

Если Квадратные корни - определение и вычисление с примерами решения то единственным корнем уравнения Квадратные корни - определение и вычисление с примерами решения является число 0.

Если Квадратные корни - определение и вычисление с примерами решения то корни уравнения Квадратные корни - определение и вычисление с примерами решения – числа Квадратные корни - определение и вычисление с примерами решения Действительно, Квадратные корни - определение и вычисление с примерами решения Для того чтобы убедиться, что уравнение Квадратные корни - определение и вычисление с примерами решения при Квадратные корни - определение и вычисление с примерами решения других корней не имеет, обратимся к графическому методу решения уравнения. Построим графики функций Квадратные корни - определение и вычисление с примерами решения (рис. 14). Эти графики пересекутся дважды: в точках с абсциссами Квадратные корни - определение и вычисление с примерами решения Систематизируем данные о решениях уравнения Квадратные корни - определение и вычисление с примерами решения в виде схемы:

Квадратные корни - определение и вычисление с примерами решения

Пример №234

Решите уравнение:

Квадратные корни - определение и вычисление с примерами решения

Решение:

Квадратные корни - определение и вычисление с примерами решения

2) уравнение корней не имеет, то есть Квадратные корни - определение и вычисление с примерами решения

Квадратные корни - определение и вычисление с примерами решения

Квадратные корни - определение и вычисление с примерами решения Эти корни являются иррациональными числами;

4) Имеем:

Квадратные корни - определение и вычисление с примерами решения

Таким образом, получим два корня: Квадратные корни - определение и вычисление с примерами решения

Ответ. Квадратные корни - определение и вычисление с примерами решения

Свойства арифметического квадратного корня

Сравним значения выражений Квадратные корни - определение и вычисление с примерами решенияКвадратные корни - определение и вычисление с примерами решения

Имеем: Квадратные корни - определение и вычисление с примерами решения то есть корень из произведения двух чисел равен произведению их корней. Это свойство справедливо для произведения любых двух неотрицательных чисел.

Теорема (о корне из произведения). Корень из произведения двух неотрицательных чисел равен произведению корней из этих чисел, то есть при Квадратные корни - определение и вычисление с примерами решения и Квадратные корни - определение и вычисление с примерами решения

Доказательство: Так как Квадратные корни - определение и вычисление с примерами решения то выражения Квадратные корни - определение и вычисление с примерами решения имеют смысл, причем Квадратные корни - определение и вычисление с примерами решения Поэтому Квадратные корни - определение и вычисление с примерами решения Кроме того, Квадратные корни - определение и вычисление с примерами решения

Имеем: Квадратные корни - определение и вычисление с примерами решения Тогда по определению арифметического квадратного корня: Квадратные корни - определение и вычисление с примерами решения

Доказанная теорема распространяется и на случай, когда множителей под знаком корня три и больше.

Следствие. Корень из произведения неотрицательных множителей равен произведению корней из этих множителей.

Доказательство: Докажем это следствие, например, для трех чисел Квадратные корни - определение и вычисление с примерами решения

Имеем: Квадратные корни - определение и вычисление с примерами решения

Пример №235

Квадратные корни - определение и вычисление с примерами решения

Квадратные корни - определение и вычисление с примерами решения

Замечание 1. Очевидно, что выражение Квадратные корни - определение и вычисление с примерами решения имеет смысл при условии Квадратные корни - определение и вычисление с примерами решения то есть когда переменные Квадратные корни - определение и вычисление с примерами решения – одного знака, а значит и тогда, когда переменные Квадратные корни - определение и вычисление с примерами решения одновременно отрицательны. В таком случае тождество, рассмотренное выше, принимает вид Квадратные корни - определение и вычисление с примерами решения где Квадратные корни - определение и вычисление с примерами решенияи Квадратные корни - определение и вычисление с примерами решения Учитывая оба случая, можно записать, что

Квадратные корни - определение и вычисление с примерами решения

Если в равенстве Квадратные корни - определение и вычисление с примерами решения поменять местами левую и правую части, получим тождество:

Квадратные корни - определение и вычисление с примерами решения

Произведение корней из неотрицательных чисел равно корню из произведения этих чисел.

Пример №236

Квадратные корни - определение и вычисление с примерами решения

Рассмотрим квадратный корень из дроби.

Теорема (о корне из дроби). Корень из дроби, числитель которой неотрицателен, а знаменатель -положителен, равен корню из числителя, деленному на корень из знаменателя, то есть при Квадратные корни - определение и вычисление с примерами решения

Квадратные корни - определение и вычисление с примерами решения

Доказательство: Так как Квадратные корни - определение и вычисление с примерами решения то выражения Квадратные корни - определение и вычисление с примерами решения имеют смысл и Квадратные корни - определение и вычисление с примерами решения Поэтому Квадратные корни - определение и вычисление с примерами решения

Кроме того,

Квадратные корни - определение и вычисление с примерами решения

Имеем: Квадратные корни - определение и вычисление с примерами решения Тогда по определению квадратного корня: Квадратные корни - определение и вычисление с примерами решения

Пример №237

Квадратные корни - определение и вычисление с примерами решения

Замечание 2. По аналогии с замечанием 1, тождество, только что рассмотренное нами, можно записать и так:

Квадратные корни - определение и вычисление с примерами решения

Если в равенстве Квадратные корни - определение и вычисление с примерами решения поменять местами левую и правую части, получим тождество:

Квадратные корни - определение и вычисление с примерами решения

Частное, числитель которого является корнем из неотрицательного числа, а знаменатель — корнем из положительного числа, равно корню из частного этих чисел.

Пример №238

Квадратные корни - определение и вычисление с примерами решения

Квадратные корни - определение и вычисление с примерами решения

Рассмотрим, как извлечь квадратный корень из квадрата.

Теорема (о корне из квадрата). Для любого значения справедливо равенство

Квадратные корни - определение и вычисление с примерами решения

Доказательство: Так как Квадратные корни - определение и вычисление с примерами решения для любого Квадратные корни - определение и вычисление с примерами решения то по определению квадратного корня: Квадратные корни - определение и вычисление с примерами решения

Пример №239

Квадратные корни - определение и вычисление с примерами решения

Рассмотрим квадратный корень из степени.

Теорема (о корне из степени). Для любого значения Квадратные корни - определение и вычисление с примерами решения и натурального числа Квадратные корни - определение и вычисление с примерами решения справедливо равенство

Квадратные корни - определение и вычисление с примерами решения

Доказательство: Квадратные корни - определение и вычисление с примерами решения По теореме о корне из квадрата имеем Квадратные корни - определение и вычисление с примерами решения Следовательно, Квадратные корни - определение и вычисление с примерами решения

Пример №240

Вычислите: Квадратные корни - определение и вычисление с примерами решения

Решение:

Квадратные корни - определение и вычисление с примерами решения

Пример №241

Упростите выражение: Квадратные корни - определение и вычисление с примерами решения

Решение:

Квадратные корни - определение и вычисление с примерами решения Так как Квадратные корни - определение и вычисление с примерами решения для любого Квадратные корни - определение и вычисление с примерами решения то Квадратные корни - определение и вычисление с примерами решения Следовательно, Квадратные корни - определение и вычисление с примерами решения

Квадратные корни - определение и вычисление с примерами решения Так как Квадратные корни - определение и вычисление с примерами решения поэтому Квадратные корни - определение и вычисление с примерами решения Следовательно, если Квадратные корни - определение и вычисление с примерами решения

Ответ. Квадратные корни - определение и вычисление с примерами решения

Тождественные преобразования выражений, содержащих квадратные корни

Рассмотрим тождественные преобразования выражений, содержащих квадратные корни.

Вынесение множителя из-под знака корня

Воспользуемся теоремой о корне из произведения для преобразования выражения Квадратные корни - определение и вычисление с примерами решения

Квадратные корни - определение и вычисление с примерами решения

Говорят, что множитель вынесли из-под знака корня. В данном случае из-под знака корня вынесли множитель 2.

Пример №242

Вынесите множитель из-под знака корня в выражении Квадратные корни - определение и вычисление с примерами решения

Решение:

Выражение Квадратные корни - определение и вычисление с примерами решения имеет смысл при Квадратные корни - определение и вычисление с примерами решения поскольку Квадратные корни - определение и вычисление с примерами решения если Квадратные корни - определение и вычисление с примерами решенияПредставим выражение Квадратные корни - определение и вычисление с примерами решения в виде произведения Квадратные корни - определение и вычисление с примерами решения в котором Квадратные корни - определение и вычисление с примерами решения является степенью с четным показателем. Тогда

Квадратные корни - определение и вычисление с примерами решения

Так как Квадратные корни - определение и вычисление с примерами решения Поэтому Квадратные корни - определение и вычисление с примерами решения

Следовательно, Квадратные корни - определение и вычисление с примерами решения

Ответ. Квадратные корни - определение и вычисление с примерами решения

Внесение множителя под знак корня

Рассмотрим тождественное преобразование, обратное к предыдущему. Воспользуемся правилом умножения корней:

Квадратные корни - определение и вычисление с примерами решения

Говорят, что множитель внесли под знак корня. В данном случае под знак корня внесли множитель 2.

Отметим, что под знак корня можно вносить только положительный множитель.

Пример №243

Внести множитель под знак корня:

Квадратные корни - определение и вычисление с примерами решения

Решение:

Квадратные корни - определение и вычисление с примерами решения

2) Множитель Квадратные корни - определение и вычисление с примерами решения может принимать любые значения (быть положительным, нулем или отрицательным). Поэтому рассмотрим два случая:

– если Квадратные корни - определение и вычисление с примерами решения

– если Квадратные корни - определение и вычисление с примерами решения

Ответ. Квадратные корни - определение и вычисление с примерами решения

Сложение, вычитание, умножение, деление и возведение в степень выражений, содержащих квадратные корни

Используя свойства умножения и деления корней, можно выполнять арифметические действия с выражениями, содержащими квадратные корни.

Пример №244

Квадратные корни - определение и вычисление с примерами решения

Квадратные корни - определение и вычисление с примерами решения

Используя тождество Квадратные корни - определение и вычисление с примерами решения можно возводить в степень выражения, содержащие квадратные корни.

Пример №245

Квадратные корни - определение и вычисление с примерами решения

Квадратные корни - определение и вычисление с примерами решения

Рассмотрим примеры, где квадратные корни можно складывать.

Пример №246

Упростите выражение Квадратные корни - определение и вычисление с примерами решения

Решение:

Слагаемые содержат общий множитель Квадратные корни - определение и вычисление с примерами решения Вынесем его за скобки и выполним действие в скобках: Квадратные корни - определение и вычисление с примерами решения

Обычно решение записывают короче: Квадратные корни - определение и вычисление с примерами решения

Заметим, что выражения Квадратные корни - определение и вычисление с примерами решения в данном примере называют подобными радикалами (по аналогии с подобными слагаемыми), мы их сложили по правилу приведения подобных слагаемых.

Пример №247

Упростите выражение Квадратные корни - определение и вычисление с примерами решения

Решение:

В каждом из слагаемых можно вынести множитель из-под знака корня, в результате получим подобные радикалы и приведем их: Квадратные корни - определение и вычисление с примерами решенияКвадратные корни - определение и вычисление с примерами решения

Ответ. Квадратные корни - определение и вычисление с примерами решения

Пример №248

Упростите выражение:

Квадратные корни - определение и вычисление с примерами решения

Решение:

Применим формулы сокращенного умножения.

Квадратные корни - определение и вычисление с примерами решения

Ответ. Квадратные корни - определение и вычисление с примерами решения

Сокращение дробей

Пример №249

Сократите дробь: Квадратные корни - определение и вычисление с примерами решения

Решение:

1) Учитывая, что Квадратные корни - определение и вычисление с примерами решения числитель дроби представим в виде разности квадратов, получим:

Квадратные корни - определение и вычисление с примерами решения

2) Учитывая, что Квадратные корни - определение и вычисление с примерами решения в числителе и знаменателе вынесем за скобки общий множитель, получим:

Квадратные корни - определение и вычисление с примерами решения

Ответ. Квадратные корни - определение и вычисление с примерами решения

Избавление от иррациональности в знаменателе дроби

Пример №250

Преобразуйте дробь Квадратные корни - определение и вычисление с примерами решения так, чтобы она не содержала корня в знаменателе.

Решение:

Учитывая, что Квадратные корни - определение и вычисление с примерами решения достаточно числитель и знаменатель дроби умножить на Квадратные корни - определение и вычисление с примерами решения

Квадратные корни - определение и вычисление с примерами решения

Ответ. Квадратные корни - определение и вычисление с примерами решения

В таких случаях говорят, что избавились от иррациональности в знаменателе дроби.

Пример №251

Избавьтесь от иррациональности в знаменателе дроби Квадратные корни - определение и вычисление с примерами решения

Решение:

Умножим числитель и знаменатель дроби на Квадратные корни - определение и вычисление с примерами решения чтобы в знаменателе получить формулу сокращенного умножения разности двух выражений на их сумму:

Квадратные корни - определение и вычисление с примерами решения

Ответ. Квадратные корни - определение и вычисление с примерами решения

Заметим, что выражение Квадратные корни - определение и вычисление с примерами решения называют сопряженным выражению Квадратные корни - определение и вычисление с примерами решенияВообще-то, если в формулах сокращенного умножения в результате умножения скобок, содержащих радикалы, получается рациональное выражение, то выражения в скобках называют взаимно сопряженными. Так, Квадратные корни - определение и вычисление с примерами решения и Квадратные корни - определение и вычисление с примерами решениявзаимно сопряженные выражения.

Взаимно сопряженными также являются выраженияКвадратные корни - определение и вычисление с примерами решения и им подобные.

Функция y= √x её график и свойства

Функция Квадратные корни - определение и вычисление с примерами решения её график и свойства

Пример №252

Пусть Квадратные корни - определение и вычисление с примерами решения – площадь квадрата, а см – длина его стороны. Так как Квадратные корни - определение и вычисление с примерами решения то зависимость длины стороны Квадратные корни - определение и вычисление с примерами решения квадрата от его площади Квадратные корни - определение и вычисление с примерами решения можно задать формулой

Квадратные корни - определение и вычисление с примерами решения

Рассмотрим функцию Квадратные корни - определение и вычисление с примерами решения Очевидно, что переменная Квадратные корни - определение и вычисление с примерами решения принимает только неотрицательные значения, то есть Квадратные корни - определение и вычисление с примерами решения

Составим таблицу значений функции Квадратные корни - определение и вычисление с примерами решения для нескольких значений аргумента: Квадратные корни - определение и вычисление с примерами решения

Отметим эти точки на координатной плоскости (рис. 15). Если бы мы отметили на этой плоскости больше точек, координаты которых удовлетворяют уравнению Квадратные корни - определение и вычисление с примерами решения а потом соединили их плавной линией, то получили бы график функции Квадратные корни - определение и вычисление с примерами решения (рис. 16).

Графиком этой функции является ветвь параболы. Квадратные корни - определение и вычисление с примерами решенияКвадратные корни - определение и вычисление с примерами решения

Обобщим свойства функции Квадратные корни - определение и вычисление с примерами решения

1. Областью определения функции является множество всех неотрицательных чисел: Квадратные корни - определение и вычисление с примерами решения

2. Областью значений функции является множество всех неотрицательных чисел: Квадратные корни - определение и вычисление с примерами решения

3. График функции – ветвь параболы, выходящая из точки Квадратные корни - определение и вычисление с примерами решения все другие точки графика лежат в первой координатной четверти.

Большему значению аргумента соответствует большее значение функции

Последнее свойство дает возможность сравнивать значения выражении, содержащих корни.

Пример №253

Сравните числа:

Квадратные корни - определение и вычисление с примерами решения

Решение:

1) Так как Квадратные корни - определение и вычисление с примерами решения

Квадратные корни - определение и вычисление с примерами решения поэтому Квадратные корни - определение и вычисление с примерами решения значит, Квадратные корни - определение и вычисление с примерами решения

3) Внесем множитель в обоих выражениях под знак корня:

Квадратные корни - определение и вычисление с примерами решения

Так как Квадратные корни - определение и вычисление с примерами решения поэтому Квадратные корни - определение и вычисление с примерами решения

Пример №254

Решите графически уравнение Квадратные корни - определение и вычисление с примерами решения

Решение:

Поскольку мы пока не умеем строить график функции Квадратные корни - определение и вычисление с примерами решенияразделим обе части уравнения на число 5. Получим уравнение: Квадратные корни - определение и вычисление с примерами решения

Построим графики функций Квадратные корни - определение и вычисление с примерами решения в одной системе координат (рис. 17). Они пересекаются в точке с абсциссой 4. Проверкой убеждаемся, что число 4 – корень уравнения. Действительно, Квадратные корни - определение и вычисление с примерами решения

Ответ. 4. Квадратные корни - определение и вычисление с примерами решения

Пример №255

Постройте график функции

Квадратные корни - определение и вычисление с примерами решения

Ответ. График изображен на рисунке 18.

Квадратные корни - определение и вычисление с примерами решения

  • Квадратные уравнения
  • Неравенства
  • Числовые последовательности
  • Предел числовой последовательности
  • Формулы сокращенного умножения
  • Разложение многочленов на множители
  • Системы линейных уравнений с двумя переменными
  • Рациональные выражения

Извлечение корня из комплексного числа

30 ноября 2021

Третий урок по комплексным числам. В этом уроке вы узнаете:

  1. Определение комплексного корня;
  2. Основная формула — как извлекать корни;
  3. Геометрическая интерпретация;
  4. Почему корней всегда ровно n;
  5. Краткие выводы — если лень читать урок.:)

Начнём с ключевого определения.

1. Определение комплексного корня

Определение. Корнем $n$-й степени из комплексного числа $z$, где $nin mathbb{N}$, $n gt 1$, называется такое комплексное число $omega $, что

[{{omega }^{n}}=z]

т.е. $n$-я степень числа $omega $ равна $z$.

Таких корней на множестве комплексных чисел всегда будет ровно $n$ штук. Все они обозначаются привычным знаком радикала:

[omega =sqrt[n]{z}]

Пример. Вычислить $sqrt[3]{-1}$ на множестве комплексных чисел.

Очевидно, привычная нам единица является таким корнем, потому что ${{left( -1 right)}^{3}}=-1$. Но есть ещё два корня:

[begin{align} {{left( frac{1}{2}+icdot frac{sqrt{3}}{2} right)}^{3}} &={{left( 1cdot left( cos frac{pi }{3}+icdot sin frac{pi }{3} right) right)}^{3}}= \ & =1cdot left( cos pi +isin pi right)=-1 \ {{left( frac{1}{2}-icdot frac{sqrt{3}}{2} right)}^{3}} &={{left( 1cdot left( cos left( -frac{pi }{3} right)+icdot sin left( -frac{pi }{3} right) right) right)}^{3}}= \ & =1cdot left( cos left( -pi right)+isin left( -pi right) right)=-1 end{align}]

Итого три корня. Как и предполагалось.

Теорема. Для любого комплексного числа $zne 0$ существует ровно $n$ комплексных чисел, каждое из которых является корнем $n$-й степени из числа $z.$

Все эти корни считаются по следующей формуле.

2. Формула корней

Теорема. Пусть комплексное число записано в тригонометрической форме:

[z=left| z right|cdot left( cos varphi +isin varphi right)]

Тогда все корни степени $n$ из этого числа можно найти по формуле:

[begin{align} sqrt[n]{z} & =sqrt[n]{left| z right|}cdot left( cos frac{varphi +2pi k}{n}+isin frac{varphi +2pi k}{n} right) \ k & in left{ 0,1,2,…,n-1 right} \ end{align}]

По сути, эта теорема является обратной к формуле Муавра:

[{{z}^{n}}={{left| z right|}^{n}}cdot left( cos nvarphi +isin n varphi right)]

Почему степень всегда одна, а корней несколько — об этом в конце урока. Сейчас для нас главное — алгоритм извлечения корня из комплексного числа. Он состоит из четырёх шагов:

  1. Перевести комплексное число в тригонометрическую форму;
  2. Записать общую формулу корня степени $n$;
  3. Подставить в эту формулу $k=0$, затем $k=1$ и так до $k=n-1$.
  4. Получим $n$ комплексных корней. Вместе они и будут ответом.

В ответе всегда будет набор из $n$ чисел. Потому что невозможно однозначно извлечь корень из комплексного числа $zne 0$.

Пример. Вычислить $sqrt[3]{-8i}$.

Представим число $-8i$ в тригонометрической форме:

[begin{align} -8i &=0+left( -8 right)cdot i= \ & =8cdot left( 0+left( -1 right)cdot i right)= \ & =8cdot left( cos left( -frac{pi }{2} right)+isin left( -frac{pi }{2} right) right) end{align}]

Запишем формулу корней в общем виде:

[begin{align} sqrt[3]{-8i} & =sqrt[3]{8cdot left( cos left( -frac{pi }{2} right)+isin left( -frac{pi }{2} right) right)}= \ & =sqrt[3]{8}cdot left( cos frac{-frac{pi }{2}+2pi k}{3}+isin frac{-frac{pi }{2}+2pi k}{3} right)= \ & =2cdot left( cos left( -frac{pi }{6}+frac{2pi k}{3} right)+isin left( -frac{pi }{6}+frac{2pi k}{3} right) right) \ end{align}]

Подставим $k=0$:

[sqrt[3]{-8i}=2cdot left( cos left( -frac{pi }{6} right)+isin left( -frac{pi }{6} right) right)=sqrt{3}-i]

Подставим $k=1$:

[sqrt[3]{-8i}=2cdot left( cos frac{pi }{2}+isin frac{pi }{2} right)=2i]

И, наконец, $k=2$:

[sqrt[3]{-8i}=2cdot left( cos frac{7pi }{6}+isin frac{7pi }{6} right)=-sqrt{3}-i]

В ответе нужно указать все три числа: $2i$; $sqrt{3}-i$; $-sqrt{3}-i$.

Ещё раз: подставляя разные $k$, мы будем получать разные корни. Всего таких корней будет ровно $n$. А если взять $k$ за пределами диапазона $left{ 0,1,…,n-1 right}$, то корни начнут повторяться, и ничего нового мы не получим.

3. Геометрическая интерпретация

Если отметить на комплексной плоскости все значения корня $n$-й степени из некоторого комплексного числа $zne 0$, то все они будут лежать на окружности с центром в начале координат и радиусом $R=sqrt[n]{left| z right|}$. Более того: эти точки образуют правильный $n$-угольник.

Отметить на комплексной плоскости все числа вида $sqrt[3]{i}$.

Представим число $z=i$ в тригонометрической форме:

[begin{align} z & =1cdot left( 0+icdot 1 right)= \ & =1cdot left( cos frac{pi }{2}+isin frac{pi }{2} right) end{align}]

Формула комплексных корней:

[sqrt[3]{z}=1cdot left( cos left( frac{pi }{6}+frac{2pi k}{3} right)+isin left( frac{pi }{6}+frac{2pi k}{3} right) right)]

Это три точки ${{z}_{1}}$, ${{z}_{2}}$ и ${{z}_{3}}$ на окружности радиуса $R=1$:

Получили правильный треугольник. Его первая вершина лежит на пересечении окружности радиуса 1 и начального луча, который образован поворотом оси $OX$ на угол ${pi }/{6};$.

Рассмотрим более сложный пример:

Отметить на комплексной плоскости все числа вида $sqrt[4]{1+i}$.

Сразу запишем формулу корней с выделением начального луча:

[sqrt[4]{z}=sqrt[8]{2}cdot left( cos left( frac{pi }{16}+frac{pi k}{2} right)+isin left( frac{pi }{16}+frac{pi k}{2} right) right)]

Отмечаем эти точки на комплексной плоскости. Радиус окружности $R=sqrt[8]{2}$, начальный луч ${pi }/{16};$:

И вновь всё чётко: четыре точки — правильный четырёхугольник, т.е. квадрат. С отклонением начального луча ${pi }/{16};$.

Ну и ещё один пример — вновь без промежуточных вычислений. Только формулировка задачи, формула корней и окончательный чертёж:

Отметить на комплексной плоскости все числа вида $sqrt[6]{-64}$.

Формула корней с выделением начального луча:

[sqrt[6]{z}=2cdot left( cos left( frac{pi }{6}+frac{pi k}{3} right)+isin left( frac{pi }{6}+frac{pi k}{3} right) right)]

Получили правильный шестиугольник со стороной 2 и начальным лучом ${pi }/{6};$.

Таким образом, мы получаем «графический» алгоритм извлечения корня $n$-й степени из комплексного числа $zne 0$:

  1. Перевести число в тригонометрическую форму;
  2. Найти модуль корня: $sqrt[n]{left| z right|}$ — это будет радиусом окружности;
  3. Построить начальный луч с отклонением $varphi ={arg left( z right)}/{n};$;
  4. Построить все остальные лучи с шагом ${2pi }/{n};$;
  5. Получим точки пересечения лучей с окружностью — это и есть искомые корни.

Такой алгоритм прекрасно работает, когда аргумент исходного числа и отклонение начального луча $varphi $ — стандартные «табличные» углы вроде ${pi }/{6};$. На практике чаще всего именно так и бывает. Поэтому берите на вооружение.:)

4. Почему корней всегда ровно n

С геометрической точки зрения, всё очевидно: если мы будем последовательно зачёркивать вершины правильного $n$-угольника, то ровно через $n$ шагов все вершины будут зачёркнуты. И для дальнейшего зачёркивания придётся выбирать вершину среди уже зачёркнутых.

Однако рассмотрим проблему с точки зрения алгебры. Ещё раз запишем формулу корня $n$-й степени:

[begin{align} sqrt[n]{z} & =sqrt[n]{left| z right|}cdot left( cos frac{varphi +2pi k}{n}+isin frac{varphi +2pi k}{n} right) \ k & in left{ 0;1;2;…;n-1 right} \ end{align}]

Последовательно подставим в эту формулу указанные значения параметра $k$:

[begin{align} {{omega }_{0}} & =sqrt[n]{left| z right|}cdot left( cos frac{varphi }{n}+isin frac{varphi }{n} right) \ {{omega }_{1}} & =sqrt[n]{left| z right|}cdot left( cos frac{varphi +2pi }{n}+isin frac{varphi +2pi }{n} right) \ & … \ {{omega }_{n-1}} & =sqrt[n]{left| z right|}cdot left( cos frac{varphi +2pi cdot left( n-1 right)}{n}+isin frac{varphi +2pi cdot left( n-1 right)}{n} right) \ end{align}]

Очевидно, последняя строка получена при $k=n-1$. Подставим теперь $k=n$:

[begin{align} {{omega }_{n}} & =sqrt[n]{left| z right|}cdot left( cos frac{varphi +2pi n}{n}+isin frac{varphi +2pi n}{n} right)= \ & =sqrt[n]{left| z right|}cdot left( cos left( frac{varphi }{n}+2pi right)+isin left( frac{varphi }{n}+2pi right) right)= \ & =sqrt[n]{left| z right|}cdot left( cos frac{varphi }{n}+isin frac{varphi }{n} right)={{omega }_{0}} \ end{align}]

Поскольку синус и косинус — периодические функции с периодом $2pi $, ${{omega }_{n}}={{omega }_{0}}$, и далее корни будут повторяться. Как мы и заявляли в самом начале урока.

5. Выводы

Ключевые факты из урока.

Определение. Корень степени $n$ из комплексного числа $z$ — это такое число $omega $, что ${{omega }^{n}}=z$.

Обозначение. Для обозначения комплексных корней используется знакомый знак радикала: $omega =sqrt[n]{z}$.

Замечание. Если $zne 0$, таких чисел корней будет ровно $n$ штук.

Алгоритм нахождения корней состоит из двух шагов.

Шаг 1. Представить исходное число в тригонометрической форме:

[z=left| z right|cdot left( cos varphi +isin varphi right)]

Шаг 2. Воспользоваться формулой Муавра для вычисления корней:

[begin{align} sqrt[n]{z} & =sqrt[n]{left| z right|}cdot left( cos frac{varphi +2pi k}{n}+isin frac{varphi +2pi k}{n} right) \ k & in left{ 0;1;2;…;n-1 right} \ end{align}]

Все полученные корни лежат на окружности радиуса $sqrt[n]{left| z right|}$ с центром в начале координат и являются вершинами правильного $n$-угольника. Первая вершина лежит на т.н. «начальном луче», который отклонён от положительной полуоси $OX$ на угол ${varphi }/{n};$. Остальные вершины обычно легко находятся из соображений симметрии с помощью циркуля и линейки.

Геометрическую интерпретацию можно использовать для быстрого «графического» извлечения корней. Но это требует практики и хорошего понимания, что именно и зачем вы делаете. Технология такого извлечения корней описана выше в разделе «Геометрическая интерпретация».

Всё. В следующем уроке начнём решать уравнения в комплексных числах.:)

Смотрите также:

  1. Тригонометрическая форма комплексного числа
  2. Системы линейных уравнений: основные понятия
  3. Радианная мера угла
  4. Как представить обычную дробь в виде десятичной
  5. Задача B2 на проценты: железнодорожные билеты
  6. Логарифмические уравнения в задаче C1

Из этой статьи вы узнаете:

  • что такое «извлечение корня»;
  • в каких случаях он извлекается;
  • принципы нахождения значения корня;
  • основные способы извлечения корня из натуральных и дробных чисел.

Что такое «извлечение корня»

Для начала введем определение «извлечение корня».

Определение 1

Извлечение корня — процесс нахождения значения корня.

При извлечении корня n-ной степени из числа a, мы находим число b, n-ная степень которого равняется a. Если мы нашли такое число b, можно утверждать, что корень извлечен.

Замечание 1

Выражения «извлечение корня» и «нахождение значения корня» равнозначны.

В каких случаях извлекается корень?

Определение 2

Корень n-ной степени можно извлечь из числа a точно в случае, если a можно представить в виде n-ной степени некоторого числа b. 

Пример 1

4=2×2, следовательно, из числа 4 можно точно извлечь квадратный корень, который равен 2

Определение 3

Когда корень n-ной степени из числа a невозможно представить в виде n-ной степени числа b, то такой корень не извлекается, либо извлекается только приближенное значение корня с точностью до любого десятичного разряда. 

Пример 2

2≈1,4142.

Принципы нахождения значения корня и способы их извлечения

  • Использование таблицы квадратов, таблицы кубов и т.д.
  • Разложение подкоренного выражения (числа) на простые множители
  • Извлечение корней из дробных чисел
  • Извлечение корня из отрицательного числа
  • Поразрядное нахождение значения корня

Необходимо понять, по каким принципам находится значение корней, и каким образом они извлекаются.

Определение 4

Главный принцип нахождения значения корней — основываться на свойствах корней, в том числе на равенстве: bnn=b, которое является справедливым для любого неотрицательного числа b.

Начать следует с наиболее простого и очевидного способа: таблицы квадратов, кубов и т.д.

Когда таблицы под руками нет, вам поможет способ разложения подкоренного числа на простые множители (способ незатейливый).

Стоит уделить внимание извлечению корня из отрицательного числа, что является возможным для корней с нечетными показателями.

Изучим, как извлекать корни из дробных чисел, в том числе из смешанных чисел, обыкновенных и десятичных дробей.

И потихоньку рассмотрим способ поразрядного нахождения значения корня — наиболее сложного и многоступенчатого.

Использование таблицы квадратов, кубов и т.д.

Таблица квадратов включает в себя все числа от 0 до 99 и состоит из 2 зон: в первой зоне можно составить любое число до 99 с помощью вертикального столбца с десятками и горизонтальной строки с единицами, во второй зоне содержатся все квадраты образуемых чисел.

Таблица квадратов

Таблица квадратов единицы
0 1 2 3 4 5 6 7 8 9
десятки 0 0 1 4 9 16 25 36 49 64 81
1 100 121 144 169 196 225 256 289 324 361
2 400 441 484 529 576 625 676 729 784 841
3 900 961 1024 1089 1156 1225 1296 1369 1444 1521
4 1600 1681 1764 1849 1936 2025 2116 2209 2304 2041
5 2500 2601 2704 2809 2916 3025 3136 3249 3364 3481
6 3600 3721 3844 3969 4096 4225 4356 4489 4624 4761
7 4900 5041 5184 5329 5476 5625 5776 5929 6084 6241
8 6400 6561 6724 6889 7056 7225 7396 7569 7744 7921
9 8100 8281 8464 8649 8836 9025 9216 9409 9604 9801

Существуют также таблицы кубов, четвертой степени и т.д., которые созданы по принципу, аналогичному таблице квадратов.

Таблица кубов

Таблица кубов   единицы
0 1 2 3 4 5 6 7 8 9
десятки 0 0 1 8 27 64 125 216 343 512 729
1 1000 1 331 1 728 2 197 2 744 3 375 4 096 4 913 5 832 6 859
2 8000 9 261 10 648 12 167 13 824 15 625 17 576 19 683 21 952 24 389
3 27000 29 791 32 768 35 937 39 304 42 875 46 656 50 653 54 872 59 319
4 64000 68 921 74 088 79 507 85 184 91 125 97 336 103 823 110 592 117 649
5 125000 132 651 140 608 148 877 157 464 166 375 175 616 185 193 195 112 205 379
6 216000 226 981 238 328 250 047 262 144 274 625 287 496 300 763 314 432 328 509
7 343000 357 911 373 248 389 017 405 224 421 875 438 976 456 533 474 552 493 039
8 512000 531 441 551 368 571 787 592 704 614 125 636 056 658 503 681 472 704 969
  729000 753 571 778 688 804 357 830 584 857 375 884 736 912 673 941 192 970 299

Принцип функционирования таких таблиц прост, однако их часто нет под рукой, что значительно усложняет процесс извлечение корня, поэтому необходимо владеть минимум несколькими способами извлечения корней.

Разложение подкоренного числа на простые множители 

Наиболее удобный способ нахождения значения корня после таблицы квадратов и кубов.

Определение 5

Способ разложения подкоренного числа на простые множители подразумевает под собой представление числа в виде степени с необходимым показателем, что дает нам возможность получить значение корня.

Пример 3

Извлечем квадратный корень из 144.

Разложим 144 на простые множители:

Таким образом: 144=2×2×2×2×3×3=(2×2)2×32=(2×2×3)2=122. Следовательно, 144=122=12.

Также при использовании свойств степени и корней можно записать преобразование немного по-другому:

144=2×2×2×2×3×3=24×32=24×32=22×3=12

144=12 – окончательный ответ.

Извлечение корней из дробных чисел

Запоминаем: любое дробное число должно быть записано в виде обыкновенной дроби. 

Определение 6

Следуя свойству корня из частного, справедливым является следующее равенство:

pqn=pnqn. Исходя из этого равенства, необходимо воспользоваться правилом извлечения корня из дроби: корень из дроби равен от деления корня числителя на корень знаменателя.

Пример 4

Рассмотрим пример извлечения корня из десятичной дроби, поскольку извлечь корень из обыкновенной дроби можно с помощью таблицы.

Необходимо извлечь кубический корень из 474,552. Первым делом, представим десятичную дробь в виде обыкновенной: 474,552 = 474552/1000. Из этого следует: 47455210003=474552310003. Затем можно приступить к процессу извлечения кубических корней в числителе и знаменателе:

474552=2×2×2×3×3×3×13×13×13=(2×3×13)3=783 и 1000=103, то

4745523=7833=78 и 10003=1033=10.

Завершаем вычисления: 474552310003=7810=7,8.

Извлечение корня из отрицательных чисел

Если знаменатель является нечетным числом, то число под знаком корня может оказаться отрицательным. Из этого следует: для отрицательного числа -a и нечетного показателя корня 2n-1 справедливо равенство:

-a2×n-1=-a2×n-1

Определение 7

Правило извлечения нечетной степени из отрицательных чисел: чтобы извлечь корень из отрицательного числа необходимо извлечь корень из противоположного ему положительного числа и поставить перед ним знак минус.

Пример 5

-122092435. Для начала необходимо преобразовать выражение, чтобы под знаком корня оказалось положительно число:

-122092435=12209243-5​​​​​​

Затем следует заменить смешанное число обыкновенной дробью:

12209243-5=3125243-5

Пользуясь правилом извлечения корней из обыкновенной дроби, извлекаем:

3125243-5=-312552435

Вычисляем корни в числителе и знаменателе:

-312552435=-555355=-53=-123

Краткая запись решения:

-122092435=12209243-5=3125243-5=-312552435=-555355=-53=-123.

Ответ: -122092435=-123.

Поразрядное нахождение значения корня

Бывают случаи, когда под корнем находится число, которое не получается представить в виде n-ной степени некоторого числа. Но необходимо знать значение корня с точностью до некоторого знака. 

В таком случае необходимо воспользоваться алгоритмом поразрядного нахождения значения корня, с помощью которого можно получить достаточное количество значений искомого числа.

Пример 6

Как это происходит, разберем на примере извлечения квадратного корня из 5.

Сперва необходимо найти значение разряда единиц. Для этого начнем перебирать значения 0,1,2,…,9, вычисляя при этом 02, 12, …, 92 до необходимого значения, которое больше, чем подкоренное число 5. Все это удобно представить в виде таблицы:

Возможное значение корня 0 1 2 3
Это значение в степени 0 1 4 9

Значение ряда единиц равняется 2 (так как 22<5, а 23>5). Переходим в разряду десятых — будем возводить в квадрат числа 2,0, 2,1, 2,2,…,2,9, , сравнивая полученные значения с числом 5.

Возможное значение корня 2,0 2,1 2,2 2,3
Это значение в степени 4 4,41 4,84 5,29

Поскольку 2,22<5, а 2,32>5, то значение десятых равняется 2. Переходим к нахождению значения сотых:

Возможное значение корня 2.20 2,21 2,22 2,23 2,24
Это значение в степени 4,84 4,8841 4,8294 4,9729 5,0176

Таким образом, найдено значение корня из пяти — 2,23. Можно находить значения корня дальше: 

2,236, 2,2360, 2, 23606, 2,236067,…

Итак, мы изучили несколько наиболее распространенных способов нахождения значения корня, воспользоваться которыми можно в любой ситуации.

Методы вычисления квадратных корней — это вычислительные алгоритмы для вычисления приближённых значений главных (или неотрицательных) квадратных корней (обычно обозначаемых как {displaystyle {sqrt {S}}}, {displaystyle {sqrt[{2}]{S}}} или {displaystyle S^{1/2}}) вещественного числа. Арифметически это означает, что если дано число S, процедура находит число, которое при умножении на себя даёт S. Алгебраически это означает процедуру нахождения неотрицательного корня уравнения {displaystyle x^{2}-S=0}. Геометрически это означает построение стороны квадрата с заданной площадью.

Любое вещественное число имеет два корня[1]. Главное значение квадратного корня большинства чисел является иррациональным числом с бесконечной последовательностью десятичных цифр. Как результат, десятичное представление любого такого квадратного корня может быть вычислено только приближённо с конечной точностью (знаков после запятой). Однако, даже если мы берём корень от полного квадрата целого числа, так что результат имеет конечное представление, некоторые процедуры, используемые для вычисления корня, могут вернуть лишь ряд приближений с возрастающей точностью.

Представление вещественного числа в виде цепной дроби может быть использовано вместо десятичного или двоичного разложения и это представление имеет свойство, что квадратный корень любого рационального числа (который не является полным квадратом) имеет период, то есть периодическое разложение, похожее на то, как рациональные числа имеют повторяющееся разложения десятичной системе счисления.

Большинство общепризнанных аналитических методов являются итеративными и состоят из двух шагов: нахождения подходящего начального значения с последующим итеративным уточнением пока не будет достигнут определённый критерий остановки. Начальным значением может быть любое число, но если оно ближе к конечному значению, число требуемых итераций потребуется меньше. Наиболее известным таким методом, да ещё и удобным для программирования, является метод Ньютона, который основывается на вычислении производной. Несколько методов, такие как обычное деление вручную по схеме Горнера или разложение в ряд, не требуют задание начального значения. В некоторых приложениях требуется найти целочисленный квадратный корень, который является квадратным корнем, округлённым до ближайшего целого (в этом случае может быть использована модифицированная процедура).

Используемый метод зависит от того, как результат будет использован (то есть, насколько точен должен быть результат) и какие средства есть под рукой. Методы можно грубо разбить на те, которые можно выполнить в уме, которые требуют карандаша и листа бумаги, или те, которые реализуются в виде программы и выполняются на компьютерах или других вычислительных устройствах. Могут приниматься в расчёт скорость сходимости (сколько итераций потребуется для достижения заданной точности), вычислительной сложности отдельных операций (таких как деление) или итераций, и распределение ошибок (точность результата).

Процедуры поиска квадратных корней (в частности, корня из 2) известны по меньшей мере со времён древнего Вавилона (17-й век до нашей эры). Метод Герона из Египта первого века был первым проверяемым алгоритмом для вычисления квадратного корня. Современные аналитические методы начались разрабатываться после принятия арабских цифр в Западной Европе в Раннем Ренессансе. В настоящие дни почти все вычислительные устройства имеют функцию быстрого и точного вычисления квадратного корня в виде встроенной конструкции языка программирования, библиотечной функции или аппаратного оператора, которые основываются на описанных ниже процедурах.

Начальная оценка[править | править код]

Многие итеративные алгоритмы вычисления квадратного корня требуют задания начального случайного значения. Это значение должно быть ненулевым положительным числом. Оно должно быть между 1 и S, числом, квадратным корень которого мы ищем, поскольку квадратный корень должен быть в этих пределах. Если начальное значение очень далеко от корня, алгоритму потребуется больше итераций. Если начать с {displaystyle x_{0}=1} (или с S), будет отработано лишних примерно {displaystyle {tfrac {1}{2}}vert log _{2}Svert } итераций просто для получения порядка корня. Поэтому полезно иметь грубую оценку корня, которая может иметь слабую точность, но зато легко вычисляется. В общем случае чем точнее оценка, тем быстрее сходимость. Для метода Ньютона (называемого также вавилонским или методом Герона), начальное значение несколько большее корня даёт более быструю сходимость, по сравнению с начальным значением, меньшим корня.

Вообще говоря, оценка рассматривается на произвольном интервале, в котором известно, что в нём содержится корень (таком как {displaystyle [x_{0},S/x_{0}]}). Получение лучшей оценки вовлекает либо получение более узких границ интервала, либо лучшего функционального приближения к {displaystyle f(x).} Последнее обычно означает использование для аппроксимации многочленов более высокого порядка, хотя не все аппроксимации используют многочлены. Общие методы оценки бывают скалярные, линейные, гиперболические и логарифмические. Десятичная система счисления обычно используется для оценки в уме или на бумаге. Двоичная система счисления более пригодна для компьютерных оценок. При оценке экспонента и мантисса обычно обрабатываются отдельно.

Десятичная оценка[править | править код]

Обычно число S выражается в экспоненциальном виде как {displaystyle atimes 10^{2n}}, где {displaystyle 1leqslant a<100}, а n — целое число, тогда оценкой возможного квадратного корня может быть {displaystyle {sqrt {a}}times 10^{n}}, где {displaystyle 1leqslant {sqrt {a}}<10}.

Скалярные оценки[править | править код]

Скалярные методы делят весь диапазон на интервалы и оценка в каждом интервале представлена одним числом. Если диапазон рассматривается как один интервал, то арифметическое среднее (5,5) или геометрическое среднее ({displaystyle {sqrt {10}}approx 3{,}16)times 10^{n}} являются приемлемыми оценками. Абсолютная и относительная оценка для этих оценок будет отличаться. В общем случае отдельное число будет очень неточно. Более точные оценки разбивают диапазон на два и более интервалов, но скалярная оценка продолжает оставаться очень грубой.

Для двух интервалов, разбитых геометрически, квадратный корень {displaystyle {sqrt {S}}={sqrt {a}}times 10^{n}} можно оценить как[2].

{displaystyle {sqrt {S}}approx {begin{cases}2cdot 10^{n}&{text{если }}a<10,\6cdot 10^{n}&{text{если }}ageqslant 10.end{cases}}}

Эта оценка имеет максимальную абсолютную погрешность {displaystyle 4cdot 10^{n}} в точке = 100 и максимальную относительную ошибку в 100% в точке = 1.

Например, для {displaystyle S=125348} с разложением {displaystyle 12{,}5348times 10^{4}}, оценка будет {displaystyle {sqrt {S}}approx 6cdot 10^{2}=600}. {displaystyle {sqrt {125348}}=354{,}0}, с абсолютной ошибкой 246 и относительной ошибкой почти 70%.

Линейная оценка[править | править код]

Лучшей оценкой и стандартным методом является линейное приближение функции y = x^2 на малой дуге. Если, как и выше, степень выделена из числа S, а интервал сокращён до {displaystyle [1,100]}, можно использовать секущую или касательную где-то вдоль дуги для аппроксимации, но прямая регрессии метода наименьших квадратов будет более точной.

Прямая, получающаяся методом наименьших квадратов, минимизирует среднее расстояние между оценкой и значением функции. Её уравнение — {displaystyle y=8{,}7x-10}. После преобразования {displaystyle x=0{,}115y+1{,}15} и округления коэффициентов для упрощения вычислений получим

{displaystyle {sqrt {S}}approx (a/10+1{,}2)cdot 10^{n}}

Это лучшая оценка в среднем, которую можно получить одной попыткой линейной аппроксимации функции y=x^2 в интервале {displaystyle [1,100]}. Оценка имеет максимальную абсолютную ошибку 1,2 в точке a=100 и максимальную относительную ошибку в 30% в точках S=1 и 10[3].

Чтобы разделить на 10, вычитаем единицу из показателя степени a или, образно говоря, передвигаем десятичную запятую на одну позицию влево. Для этой формулы любая добавленная константа, равная 1 плюс маленькое приращение, даёт удовлетворительную оценку, так что запоминать точное число нет необходимости. Аппроксимация (округлённая или не округлённая) с помощью одной прямой, стягивающей область {displaystyle [1,100]} по точности даёт не более одного верного знака. Относительная ошибка более чем 1/22, так что даёт менее 2 битов информации. Точность сильно ограничена, поскольку область охватывает два порядка, что достаточно большая величина для такого рода оценок.

Существенно лучшую оценку можно получить при помощи кусочно–линейной аппроксимации, то есть с помощью нескольких отрезков, которые приближают поддугу исходной дуги. Чем больше отрезков используется, тем лучше приближение. Наиболее употребительно применение касательных. Критичным моментом является как делить дугу и где располагать точки касания. Действенным методом деления дуги от y=1 до y=100 является геометрический — для двух интервалов границей интервалов является квадратный корень исходного интервала, 1*100, то есть {displaystyle [1,{sqrt[{2}]{100}}]} и {displaystyle [{sqrt[{2}]{100}},100]}. Для трёх интервалов будут кубические корни — {displaystyle [1,{sqrt[{3}]{100}}],[{sqrt[{3}]{100}},({sqrt[{3}]{100}})^{2}]}, и {displaystyle [({sqrt[{3}]{100}})^{2},100]}, и так далее. Для двух интервалов {displaystyle {sqrt[{2}]{100}}=10} является очень удобным числом. Легко получить касательные прямые в точках касания {displaystyle x={sqrt {1*{sqrt {10}}}}} и {displaystyle x={sqrt {10*{sqrt {10}}}}}. Их уравнения: {displaystyle y=3{,}56x-3{,}16} и {displaystyle y=11{,}2x-31{,}6}. Обращая уравнения, получим, что квадратные корни равны {displaystyle x=0{,}28y+0{,}89} и {displaystyle x=0{,}089y+2{,}8}. Тогда для {displaystyle S=acdot 10^{2n}}:

{displaystyle {sqrt {S}}approx {begin{cases}(0{,}28a+0{,}89)cdot 10^{n}&{text{если }}a<10,\(0{,}089a+2{,}8)cdot 10^{n}&{text{если }}ageqslant 10.end{cases}}}

Максимальные абсолютные значения оказываются в правых границах интервалов, в точках a=10 и 100, и равны 0,54 и 1,7 соответственно. Максимальные относительные ошибки появляются на концах интервалов, в точках a=1, 10 и 100, и равны 17%. 17% или 0,17. Они больше, чем 1/10, так что метод даёт точность менее одной значащей цифры.

Гиперболическая оценка[править | править код]

В некоторых случаях может оказаться действенной гиперболическая оценка, поскольку гипербола также является выпуклой кривой и может лежать вдоль дуги Y = x2 лучше, чем прямая. Гиперболическая оценка вычислительно более сложная, поскольку для неё нужно деление на число с плавающей запятой. Почти оптимальной гиперболической аппроксимацией к x2 на интервале {displaystyle [1,100]} является {displaystyle y=190/(10-x)-20}. После преобразования получим {displaystyle x=-190/(y+20)+10}. Тогда для {displaystyle S=acdot 10^{2n}}:

{displaystyle {sqrt {S}}approx left({frac {-190}{a+20}}+10right)cdot 10^{n}}

Деление с плавающей запятой должно быть с точностью до одного десятичного знака, поскольку вся оценка даёт такую точность, и такое деление можно выполнить в уме. Гиперболическая оценка в среднем лучше, чем скалярная или линейная оценка. Её максимальная абсолютная ошибка составляет 1,58 в точке 100, а максимальная относительная ошибка составляет 16,0% в точке 10. Для худшего случая a=10 оценка равна 3,67. Если начать с 10 и применять итерации Нютона-Рапсона напрямую, требуется две итерации, которые дают 3,66, прежде чем достичь точности гиперболической оценки. Для более типичного случая наподобие 75 гиперболическая оценка даёт 8,00 и требуется 5 итераций Ньютона-Рапсона с начальным значением 75, чтобы получить более точный результат.

Арифметическая оценка[править | править код]

Метод, аналогичный кусочно-линейной аппроксимации, но использующий лишь арифметические операции вместо алгебраических уравнений, использует таблицу умножения в обратную сторону — квадратный корень чисел между 1 и 100 где-то между 1 и 10, так что, поскольку мы знаем, что 25 является точным квадратом (5 × 5) и 36 является точным квадратом (6 × 6), то квадратный корень из числа, которое больше 25, но меньше 36, начинается с цифры 5. Аналогично для чисел между другими квадратами. Этот метод даёт правильный первый знак, но точность его всего одна цифра — первая цифра квадратного корня из 35, например, равна 5, но сам корень из 35 почти равен 6.

Лучше делить интервал между двумя квадратами пополам. Так что корень любого числа между 25 и половины пути до 36 (что есть 30,5) оценивается как 5, остальные числа, большие 30,5 вплоть до 36 оцениваются как 6[4]. Процедура требует очень мало арифметики для нахождения середины двух произведений из таблицы. Вот таблица таких чисел:

a nearest square {displaystyle k={sqrt {a}}} est.
1 to 2,5 1 (= 12) 1
2,5 to 6,5 4 (= 22) 2
6,5 to 12,5 9 (= 32) 3
12,5 to 20,5 16 (= 42) 4
20,5 to 30,5 25 (= 52) 5
30,5 to 42,5 36 (= 62) 6
42,5 to 56,5 49 (= 72) 7
56,5 to 72,5 64 (= 82) 8
72,5 to 90,5 81 (= 92) 9
90,5 to 100 100 (= 102) 10

Конечной операцией будет умножение оценки k на степень десятки, делённой пополам, так что для {displaystyle S=acdot 10^{2n}},

{displaystyle {sqrt {S}}approx kcdot 10^{n}}

Метод даёт точность в одну значащую цифру, поскольку он округляет до лучшей первой цифры.

Метод можно распространить до 3 значащих цифр в большинстве случаев, интерполируя между ближайшими квадратами. Если {displaystyle k^{2}leqslant a<(k+1)^{2}}, то {sqrt {a}} примерно равен k плюс дробь, равная разности a и k^{2}, делённой на разность между двумя квадратами:

{displaystyle {sqrt {a}}approx k+R} где {displaystyle R={frac {(a-k^{2})}{(k+1)^{2}-k^{2}}}}

Конечной операцией, как и выше, служит умножение результата на степень десятки, делённой пополам

{displaystyle {sqrt {S}}={sqrt {a}}cdot 10^{n}approx (k+R)cdot 10^{n}}

Число k есть десятичная цифра, а R есть дробь, которую следует превратить в десятичную. Дробь имеет обычно одну цифру в числителе и одну или две цифры в знаменателе, так что преобразование в десятичную дробь можно провести в уме.

Пример: найти квадратный корень из 75. {displaystyle 75=75times 10^{2cdot 0}}, так что a равно 75, а n равно 0. Исходя из таблицы умножения квадратный корень мантиссы должен быть 8 с дробью, поскольку {displaystyle 8times 8=64}, а {displaystyle 9times 9=81}, слишком велико. Так что k равно 8 с дробью является десятичным представлением R. Дробь R имеет {displaystyle 75-k^{2}=11} в числителе и {displaystyle 81-k^{2}=17} в знаменателе. 11/17 чуть меньше, чем 12/18, что равно 2/3 или 0,67, так что 0,66 является хорошим предположением (здесь можно ограничиться и предположением поскольку ошибка мала). Так что оценка корня равна {displaystyle 8+0{,}66=8{,}66}. 75 до трёх значащих цифр будет 8,66, так что оценка до трёх значащих цифр хорошая. Не все оценки с помощью такого метода столь точны, но они довольно близки.

Двоичная оценка[править | править код]

Когда работа ведётся в двоичной системе счисления (скажем, в процессоре компьютера), S выражается как {displaystyle atimes 2^{2n}}, где {displaystyle 0{,}1_{2}leqslant a<10_{2}}, квадратный корень {displaystyle {sqrt {S}}={sqrt {a}}times 2^{n}} можно оценить величиной

{displaystyle {sqrt {S}}approx (0{,}485+0{,}485cdot a)cdot 2^{n}}

что является регрессией методом наименьших квадратов по 3 старшим битам. {sqrt {a}} имеет максимальную абсолютную ошибку 0,0408 в точке a=2 и максимальную относительную ошибку в 3,0% в точке a=1. Для вычислений удобна округлённая оценка (поскольку коэффициенты являются степенями 2)

{displaystyle {sqrt {S}}approx (0{,}5+0{,}5cdot a)cdot 2^{n}}[5]

которая имеет максимальную абсолютную ошибку 0,086 в точке 2 и максимальную относительную ошибку в 6,1% в точках {displaystyle a=0{,}5} и {displaystyle a=2{,}0}.

Для {displaystyle S=125348=1;1110;1001;1010;0100_{2}=1{,}1110;1001;1010;0100_{2}times 2^{16},} двоичное приближение даёт {displaystyle {sqrt {S}}approx (0{,}5+0{,}5cdot a)cdot 2^{8}=1{,}0111;0100;1101;0010_{2}cdot 1;0000;0000_{2}=1{,}456cdot 256=372{,}8.} Поскольку {displaystyle {sqrt {125348}}=354{,}0}, оценка даёт абсолютную ошибку в 19 и относительную ошибку 5,3%. Относительная ошибка чуть меньше 1/24, так что приближение даёт точность до 4+ бит.

Оценку для a с точностью до 8 бит можно получить путём просмотра таблицы по старшим 8 битам a, учитывая, что старший бит задаётся неявно в большинстве представлений чисел с плавающей запятой, а младшие биты после 8 бит должны быть округлены. Таблица содержит 256 байт заранее вычисленных 8-битных квадратных корней. Например, для индекса 111011012, что в десятичной системе равно 1,851562510, значение в таблице равно 101011102, что в десятичной системе равно 1,35937510, квадратному корню числа 1,851562510 с точностью до 8 бит (2+ десятичных знака).

Вавилонский метод[править | править код]

Полулогарифмические графики сравнения скорости сходимости вавилонского метода нахождения квадратного корня для 100 различных начальных значений. Отрицательное начальное значение приводит к отрицательному корню. Заметим, что более близкие к корню значения сходятся быстрее, и все приближения являются завышенными. В SVG файле наведите курсор мыши на конкретный график, чтобы видеть точки этого графика.

Возможно первым алгоритмом, используемым для аппроксимации {displaystyle {sqrt {S}}}, является метод, известный как вавилонский метод, несмотря на то, что нет никаких прямых свидетельств, за исключением гипотетических умозаключений, что вавилонские математики использовали этот метод[6]. Метод известен также как метод Герона, по имени греческого математика первого столетия Герона, который дал первое явное описание метода в своей работе 60 года Метрика[7].Основная методика заключается в том, что если x больше квадратного корня неотрицательного вещественного числа S то {displaystyle {tfrac {S}{x}}} будет меньше корня и наоборот. Так что среднее этих двух чисел резонно ожидать более близким к корню (формальное доказательство этого факта основывается на неравенстве о среднем арифметическом, геометрическом и гармоническом, которое показывает, что это среднее всегда больше квадратного корня, что обеспечивает сходимость). Метод эквивалентен использованию метода Ньютона для решения уравнения {displaystyle x^{2}-S=0}.

Точнее, если x является начальным приближением для {displaystyle {sqrt {S}}}, а varepsilon ошибка в нашей оценке, такая что {displaystyle S=(x+varepsilon )^{2}}, мы можем раскрыть скобки и получим

{displaystyle varepsilon ={frac {S-x^{2}}{2x+varepsilon }}approx {frac {S-x^{2}}{2x}},} поскольку {displaystyle varepsilon ll x}.

Следовательно, мы можем компенсировать ошибку и обновить нашу старую оценку

{displaystyle x+varepsilon approx x+{frac {S-x^{2}}{2x}}={frac {S+x^{2}}{2x}}={frac {{frac {S}{x}}+x}{2}}equiv x_{text{обновлённый}}}

Поскольку вычисленная ошибка не была точной, она станет нашим следующим приближением. Процесс обновления продолжается пока не достигнем нужной точности. Это алгоритм с квадратичной сходимостью, что означает, что число верных цифр приближения (грубо говоря) удваивается с каждой итерацией. Работает он так:

  1. Начинаем с любого положительного начального значения x_{0} (чем ближе к истинному квадратному корню числа S, тем лучше).
  2. Положим x_{{n+1}} равным среднему между x_{n} и {displaystyle {tfrac {S}{x_{n}}}} (используем среднее арифметическое для аппроксимации среднего геометрического).
  3. Повторяем шаг 2 пока не достигнем нужной точности.

Алгоритм можно представить следующим образом:

{displaystyle x_{0}approx {sqrt {S}},}
{displaystyle x_{n+1}={frac {1}{2}}left(x_{n}+{frac {S}{x_{n}}}right),}
{displaystyle {sqrt {S}}=lim _{nto infty }x_{n}.}

Алгоритм работает также хорошо и для p-адических чисел, но не может быть использован для отождествления вещественных квадратных корней с p-адичными квадратными корнями. Можно, например, построить последовательность рациональных чисел, полученных этим методом, которая сходится к +3 в случае вещественных чисел, но к -3 в 2-адичных числах.

Пример[править | править код]

Для вычисления S, где S = 125348, с точностью до шести значащих цифр используем метод грубой оценки, описанный выше

{displaystyle {begin{aligned}{begin{array}{rlll}x_{0}&=6cdot 10^{2}&&=600{,}000\[0,3em]x_{1}&={frac {1}{2}}left(x_{0}+{frac {S}{x_{0}}}right)&={frac {1}{2}}left(600{,}000+{frac {125348}{600{,}000}}right)&=404{,}457\[0.3em]x_{2}&={frac {1}{2}}left(x_{1}+{frac {S}{x_{1}}}right)&={frac {1}{2}}left(404{,}457+{frac {125348}{404{,}457}}right)&=357{,}187\[0.3em]x_{3}&={frac {1}{2}}left(x_{2}+{frac {S}{x_{2}}}right)&={frac {1}{2}}left(357{,}187+{frac {125348}{357{,}187}}right)&=354{,}059\[0.3em]x_{4}&={frac {1}{2}}left(x_{3}+{frac {S}{x_{3}}}right)&={frac {1}{2}}left(354{,}059+{frac {125348}{354{,}059}}right)&=354{,}045\[0.3em]x_{5}&={frac {1}{2}}left(x_{4}+{frac {S}{x_{4}}}right)&={frac {1}{2}}left(354{,}045+{frac {125348}{354{,}045}}right)&=354{,}045end{array}}end{aligned}}}

Поэтому {displaystyle {sqrt {125348}}approx 354{,}045}.

Сходимость[править | править код]

Предположим, что x0 > 0 и S > 0. Тогда для любого n xn > 0. Относительная ошибка[en] xn определена как

{displaystyle varepsilon _{n}={frac {x_{n}}{sqrt {S}}}-1>-1}

а тогда

{displaystyle x_{n}={sqrt {S}}cdot (1+varepsilon _{n}).}

Теперь можно показать, что

{displaystyle varepsilon _{n+1}={frac {varepsilon _{n}^{2}}{2(1+varepsilon _{n})}}geqslant 0.}

а следовательно

{displaystyle varepsilon _{n+2}leqslant min left{{frac {varepsilon _{n+1}^{2}}{2}},{frac {varepsilon _{n+1}}{2}}right}}

а отсюда следует гарантированная сходимость и эта сходимость квадратичная.

Сходимость в худшем случае[править | править код]

Если использовать метод грубой оценки с вавилонским методом, то наихудшие случаи точности в нисходящей последовательности:

{displaystyle {begin{aligned}S&=1;&x_{0}&=2;&x_{1}&=1{,}250;&varepsilon _{1}&=0{,}250.\S&=10;&x_{0}&=2;&x_{1}&=3{,}500;&varepsilon _{1}&<0{,}107.\S&=10;&x_{0}&=6;&x_{1}&=3{,}833;&varepsilon _{1}&<0{,}213.\S&=100;&x_{0}&=6;&x_{1}&=11{,}333;&varepsilon _{1}&<0{,}134.end{aligned}}}

А тогда в любом случае

{displaystyle varepsilon _{1}leqslant 2^{-2}.,}
{displaystyle varepsilon _{2}<2^{-5}<10^{-1}.,}
{displaystyle varepsilon _{3}<2^{-11}<10^{-3}.,}
{displaystyle varepsilon _{4}<2^{-23}<10^{-6}.,}
{displaystyle varepsilon _{5}<2^{-47}<10^{-14}.,}
{displaystyle varepsilon _{6}<2^{-95}<10^{-28}.,}
{displaystyle varepsilon _{7}<2^{-191}<10^{-57}.,}
{displaystyle varepsilon _{8}<2^{-383}<10^{-115}.,}

Ошибки округления ослабляют сходимость. Рекомендуется хранить по меньшей мере одну лишнюю цифру выше желаемой точности xn, чтобы минимизировать ошибки округления.

Метод Бакхшали[править | править код]

Этот метод для поиска приближения квадратного корня был написан в древнеиндийской рукописи, называемой манускриптом Бакхшали. Метод эквивалентен двум итерациям вавилонского метода с начальным значением x0. Таким образом, алгоритм является квадратично сходящимся, что означает, что число верных знаков приближения увеличивается примерно в четыре раза с каждой итерацией[8]. Представление алгоритма в современной нотации следующее: Следует вычислить {displaystyle {sqrt {S}}}, пусть x02 будет начальным приближением к корню S. Последовательно выполняются итерации

{displaystyle {begin{aligned}a_{n}&={frac {S-x_{n}^{2}}{2x_{n}}},\b_{n}&=x_{n}+a_{n},\x_{n+1}&=b_{n}-{frac {a_{n}^{2}}{2b_{n}}}=(x_{n}+a_{n})-{frac {a_{n}^{2}}{2(x_{n}+a_{n})}}.end{aligned}}}

Это можно использовать для построения рационального приближения к квадратному корню, начав с целого числа. Если {displaystyle x_{0}=N} — это целое число, выбранное так, что N^2 близко к S, и {displaystyle d=S-N^{2}} — это разность, абсолютная величина которой минимизируется, то первую итерацию можно записать следующим образом:

{displaystyle {sqrt {S}}approx N+{frac {d}{2N}}-{frac {d^{2}}{8N^{3}+4Nd}}={frac {8N^{4}+8N^{2}d+d^{2}}{8N^{3}+4Nd}}={frac {N^{4}+6N^{2}S+S^{2}}{4N^{3}+4NS}}={frac {N^{2}(N^{2}+6S)+S^{2}}{4N(N^{2}+S)}}.}

Метод Бакхшали может быть обобщён для вычисления произвольного корня, включая дробные корни[9].

Пример[править | править код]

Используем тот же пример, что был приведён для вавилонского метода. Пусть {displaystyle S=125348.} Тогда первая итерация даёт

{displaystyle {begin{aligned}x_{0}&=600\a_{1}&={frac {125348-600^{2}}{2times 600}}&&=&-195{,}543\b_{1}&=600+(-195{,}543)&&=&404{,}456\x_{1}&=404{,}456-{frac {(-195{,}543)^{2}}{2times 404{,}456}}&&=&357{,}186end{aligned}}}

Аналогично вторая итерация даёт

{displaystyle {begin{aligned}a_{2}&={frac {125348-357{,}186^{2}}{2times 357{,}186}}&&=&-3{,}126\b_{2}&=357{,}186+(-3{,}126)&&=&354{,}060\x_{2}&=354{,}06-{frac {(-3{,}1269)^{2}}{2times 354{,}06}}&&=&354{,}046end{aligned}}}

Цифра за цифрой[править | править код]

Это метод последовательного поиска каждой цифры квадратного корня. Метод медленнее вавилонского, но имеет некоторые преимущества

  • Он проще для вычислений вручную.
  • Каждый найденный знак корня заведомо верный, то есть он не будет изменён на следующих итерациях.
  • Если представление квадратного корня имеет конечное число цифр, алгоритм завершается после последней найденной цифры. Таким образом, он может быть использован для проверки, что данное число является полным квадратом.
  • Алгоритм работает в любой системе счисления, и естественно, работа алгоритма зависит от выбранной системы счисления.

Палочки Непера включают дополнительные средства для выполнения этого алгоритма. Алгоритм вычисления n-го корня цифра за цифрой[en] является обобщением этого метода.

Основной принцип[править | править код]

Рассмотрим сначала случай нахождения квадратного корня из числа Z, являющегося квадратом двузначного числа XY, где X — это цифра десятков, а Y — цифра единиц. Имеем:

{displaystyle Z=(10X+Y)^{2}=100X^{2}+20XY+Y^{2}}

Сначала определим значение X. X — это наибольшая цифра, такая что X2 не превосходит Z, от которого отброшены две последние цифры.

На следующей итерации соединяем пару цифр, умножая X на 2 и помещая результат в позицию десятков, а затем пытаемся найти, чему же равно Y.

Поскольку в нашем случае ответом является точный квадратный корень, алгоритм останавливается.

Та же идея может быть распространена на вычисление произвольного квадратного корня. Представим, что мы можем найти квадратный корень из N как сумму n положительных чисел, таких что

{displaystyle N=(a_{1}+a_{2}+a_{3}+dotsb +a_{n})^{2}.}

Путём многократного использования тождества

{displaystyle (x+y)^{2}=x^{2}+2xy+y^{2},}

правую часть можно представить в виде

{displaystyle {begin{aligned}&(a_{1}+a_{2}+a_{3}+dotsb +a_{n})^{2}\=&,a_{1}^{2}+2a_{1}a_{2}+a_{2}^{2}+2(a_{1}+a_{2})a_{3}+a_{3}^{2}+dotsb +a_{n-1}^{2}+2left(sum _{i=1}^{n-1}a_{i}right)a_{n}+a_{n}^{2}\=&,a_{1}^{2}+[2a_{1}+a_{2}]a_{2}+[2(a_{1}+a_{2})+a_{3}]a_{3}+dotsb +left[2left(sum _{i=1}^{n-1}a_{i}right)+a_{n}right]a_{n}.end{aligned}}}

Это выражение позволяет нам найти квадратный корень последовательным подбором значений a_{i}. Предположим, что числа {displaystyle a_{1},ldots ,a_{m-1}} уже подобраны, тогда m-й член задаётся выражением {displaystyle Y_{m}=[2P_{m-1}+a_{m}]a_{m},}, где {displaystyle P_{m-1}=sum _{i=1}^{m-1}a_{i}} является найденным приближением к квадратному корню. Теперь каждый новый подбор a_m должен удовлетворять рекурсии

{displaystyle X_{m}=X_{m-1}-Y_{m},}

так что {displaystyle X_{m}geqslant 0} для всех {displaystyle 1leqslant mleqslant n,} при начальном значении {displaystyle X_{0}=N.} Если {displaystyle X_{n}=0,} найден точный квадратный корень. Если нет, то сумма a_{i} даёт подходящую аппроксимацию к квадратному корню и X_n будет ошибкой аппроксимации.

Например, в десятичной системе мы имеем

{displaystyle N=(a_{1}cdot 10^{n-1}+a_{2}cdot 10^{n-2}+cdots +a_{n-1}cdot 10+a_{n})^{2},}

где {displaystyle 10^{n-i}} являются указателями положения цифр, а коэффициенты {displaystyle a_{i}in {0,1,2,ldots ,9}}. На каждом m-м шаге вычисления квадратного корня находится приближённый квадратный корень. Величина {displaystyle P_{m-1}} и суммируемые члены Y_{m} задаются формулами

{displaystyle P_{m-1}=sum _{i=1}^{m-1}a_{i}cdot 10^{n-i}=10^{n-m+1}sum _{i=1}^{m-1}a_{i}cdot 10^{m-i-1},}
{displaystyle Y_{m}=[2P_{m-1}+a_{m}cdot 10^{n-m}]a_{m}cdot 10^{n-m}=left[20sum _{i=1}^{m-1}a_{i}cdot 10^{m-i-1}+a_{m}right]a_{m}cdot 10^{2(n-m)}.}

Поскольку указатели положения Y_{m} имеют чётную степень 10, нам нужно работать только с парой старших цифр в оставшемся члене {displaystyle X_{m-1}} на любом m-м шаге. Раздел ниже систематизирует эту процедуру.

Очевидно, что подобный метод может быть использован для вычисления квадратного корня в любой системе счисления, не обязательно в десятичной. Например, нахождение цифра за цифрой квадратного корня в двоичной системе довольно эффективно, поскольку значение a_{i} ищется в малом наборе цифр {0,1}. Это делает вычисление более быстрым, поскольку на каждом шаге значение Y_{m} либо равно {displaystyle Y_{m}=0} для {displaystyle a_{m}=0}, либо {displaystyle Y_{m}=2P_{m-1}+1} для {displaystyle a_{m}=1}. Факт, что имеется всего две возможности для a_m также делает проще процесс выбора значения a_m на m-м шаге вычислений. Это потому, что нам нужно лишь проверить, что {displaystyle Y_{m}leqslant X_{m-1}} для {displaystyle a_{m}=1.} Если это условие выполняется, мы берём {displaystyle a_{m}=1}; а если не выполняется, то берём {displaystyle a_{m}=0.} Также факт, что умножение на 2 осуществляется сдвигом влево, помогает при вычислениях.

Десятичная система счисления[править | править код]

Запишем исходное число в десятичном виде. Числа, записываются по аналогии алгоритму деления столбиком, и, как и в длинном делении, квадратный корень будет писаться в верхней строке. Теперь разобьём цифры на пары, начиная с запятой, в обе стороны от неё. Десятичная запятая квадратного корня будет на десятичной запятой квадрата. Одна цифра квадратного корня записывается над парой цифр квадрата.

Начиная с крайне левой позиции выполняем следующую процедуру для каждой пары цифр:

  1. Сносим вниз старшую пару ещё неиспользованных цифр (если все цифры использованы, пишем “00”) и записываем их справа от остатка предыдущего шага (на первом шаге остатка нет). Другими словами, умножаем остаток на 100 и добавляем две цифры. Это будет текущим значением c.
  2. Находим p, y и x следующим образом:
  3. Вычитаем y из c для образования нового остатка.
  4. Если остаток равен нулю и нет больше цифр, которые можно спустить вниз, алгоритм останавливается. В противном случае возвращаемся на шаг 1 и выполняем следующую итерацию.

Примеры[править | править код]

Находим квадратный корень из 152,2756.

          1  2. 3  4 
       /
     /  01 52,27 56

         01                   1*1 <= 1 < 2*2                 x = 1
         01                     y = x*x = 1*1 = 1
         00 52                22*2 <= 52 < 23*3              x = 2
         00 44                  y = (20+x)*x = 22*2 = 44
            08 27             243*3 <= 827 < 244*4           x = 3
            07 29               y = (240+x)*x = 243*3 = 729
               98 56          2464*4 <= 9856 < 2465*5        x = 4
               98 56            y = (2460+x)*x = 2464*4 = 9856
               00 00          Алгоритм останавливается: Ответ 12,34

Двоичная система счисления[править | править код]

Этот раздел использует формализм раздела «Вычисление цифра за цифрой» с небольшими изменениями, что {displaystyle N^{2}=(a_{n}+dotsb +a_{0})^{2}}, а каждое a_m равно 2^{m} или {displaystyle 0}.
Теперь мы пробегаем по всем 2^{m} от 2^{n} вниз до 2^0 и строим приближённое решение {displaystyle P_{m}=a_{n}+a_{n-1}+ldots +a_{m}} в виде суммы всех a_{i}, для которых мы найдём значение.
Чтобы определить, равно ли a_m значению 2^{m} или {displaystyle 0}, мы берём {displaystyle P_{m}=P_{m+1}+2^{m}}. Если {displaystyle P_{m}^{2}leqslant N^{2}} (то есть квадрат нашего приближения включая 2^{m} не превосходит исходного квадрата), то полагаем {displaystyle a_{m}=2^{m}}, в противном случае полагаем {displaystyle a_{m}=0} и {displaystyle P_{m}=P_{m+1}}.
Чтобы избежать возведения в квадрат {displaystyle P_{m}} на каждом шаге, мы запоминаем разность {displaystyle X_{m}=N^{2}-P_{m}^{2}} и обновляем её на каждой итерации, полагая {displaystyle X_{m}=X_{m+1}-Y_{m}} с {displaystyle Y_{m}=P_{m}-P_{m+1}=2P_{m+1}a_{m}+a_{m}^{2}}.
Первоначально мы устанавливаем {displaystyle a_{n}=P_{n}=2^{n}} для наибольшего n с {displaystyle (2^{n})^{2}=4^{n}leqslant N^{2}}.

В качестве дополнительной оптимизации сохраняем {displaystyle P_{m+1}2^{m+1}} и {displaystyle (2^{m})^{2}}, два члена Y_{m} в случае, когда a_m не нуль, в отдельных переменных {displaystyle c_{m}}, {displaystyle d_{m}}:

{displaystyle c_{m}=P_{m+1}2^{m+1}}
{displaystyle d_{m}=(2^{m})^{2}}
{displaystyle Y_{m}={begin{cases}c_{m}+d_{m}&{text{если }}a_{m}=2^{m}\0&{text{если }}a_{m}=0end{cases}}}

{displaystyle c_{m}} и {displaystyle d_{m}} можно эффективно обновлять на каждом шаге:

{displaystyle c_{m-1}=P_{m}2^{m}=(P_{m+1}+a_{m})2^{m}=P_{m+1}2^{m}+a_{m}2^{m}={begin{cases}c_{m}/2+d_{m}&{text{если }}a_{m}=2^{m}\c_{m}/2&{text{если }}a_{m}=0end{cases}}}
{displaystyle d_{m-1}={frac {d_{m}}{4}}}

Заметим, что

{displaystyle c_{-1}=P_{0}2^{0}=P_{0}=N}, что является конечным результатом, возвращаемым функцией, представленной ниже.

Реализация алгоритма на языке C[10]:

int32_t isqrt(int32_t n) 
{ assert(("входное значение должно быть неотрицательным", n > 0));
  int32_t x = n;    // X_{{n+1}}
  int32_t c = 0;    // c_n
  // d_{n} начинается с наибольшей степени четырёх <= n
  int32_t d = 1 << 30; // Второй старший бит устанавливаем в 1.
                        // То же самое, что ((unsigned)INT32_MAX + 1) / 2.
  while (d > n) d >>= 2;
  while (d != 0)    // для {displaystyle d_{n}dots d_{0}}
  { if (x >= c + d) // если {displaystyle X_{m+1}geqslant Y_{m}}, то {displaystyle a_{m}=2^{m}}
    { x -= c + d;       // {displaystyle X_{m}=X_{m+1}-Y_{m}}
     c = (c >> 1) + d;  // {displaystyle c{m-1}=c_{m}/2+d_{m}(a_{=}2^{m})}
   } else
          c >>= 1;      // {displaystyle c_{m-1}=c_{m}/2(a_{m}=0)}
    d >>= 2;            // {displaystyle d_{m-1}=d_{m}/4}
  }
  return c;             // c_{{-1}}
}

Можно реализовать более быстрый алгоритм как в двоичной, так и в десятичной системе счисления, если использовать таблицы для выбора, то есть реализация принципа использование больше памяти сокращает время исполнения[11].

Экспоненциальное тождество[править | править код]

Карманные калькуляторы обычно реализуют хорошие программы вычисления экспоненты и натурального логарифма. Вычисление квадратного корня S тогда производится с помощью свойств логарифмов ({displaystyle ln x^{n}=nln x}) и экспоненты ({displaystyle e^{ln x}=x}):

{displaystyle {sqrt {x}}=e^{{frac {1}{2}}ln x},,x>0.}

Или в более общем случае:

{displaystyle {sqrt[{n}]{x}}=e^{{frac {1}{n}}ln x},,x>0.}

Знаменатель дроби n соответствует степени корня. В случае квадратного корня знаменатель равен 2. То же самое тождество используется для вычисления квадратного корня с помощью таблиц логарифмов или логарифмических линеек.

Такой метод вычисления квадратного корня удобен для калькуляторов, поскольку они обычно не критичны ко времени выполнения операции. Однако ресурсоемкость данного метода делает его малопригодным для использования в ЭВМ, где простые арифметические операции должны обладать минимальными задержками. Тем не менее описанный метод вычисления квадратного корня применялся в ЭВМ ZX Spectrum.

Итеративный метод с двумя переменными[править | править код]

Этот метод применим для поиска квадратного корня из {displaystyle 0<S<3,!} и лучше всего сходится для {displaystyle Sapprox 1}.
Это, однако, не является существенным ограничением для вычислений на компьютерах, поскольку в представлениях двоичных чисел с плавающей запятой и с фиксированной запятой тривиально умножить {displaystyle S,!} на целую степень числа 4, с последующей коррекцией {displaystyle {sqrt {S}}} на нужную степень 2 путём изменения экспоненты или сдвигом соответственно. Таким образом, {displaystyle S,!} может быть сдвинуто в пределы {displaystyle {frac {1}{2}}leqslant S<2}. Более того, приведённый ниже метод не использует делений общего вида, а только сложение, вычитание, умножение и деление на степень двойки. Последнее из этих действий тривиально реализуется. Недостатком метода является накопление ошибки, в отличие от итеративных методов с одной переменной, таких как вавилонский.

Начальный шаг метода

{displaystyle a_{0}=S,!}
{displaystyle c_{0}=S-1,!}

Итерационные шаги

{displaystyle a_{n+1}=a_{n}-a_{n}c_{n}/2,!}
{displaystyle c_{n+1}=c_{n}^{2}(c_{n}-3)/4,!}

Тогда {displaystyle a_{n}rightarrow {sqrt {S}}} (при {displaystyle c_{n}rightarrow 0}).

Заметим, что сходимость {displaystyle c_{n},!}, а потому и {displaystyle a_{n},!}, квадратична.

Доказательство метода достаточно простое. Сначала перепишем итерационное определение {displaystyle c_{n},!} как

{displaystyle 1+c_{n+1}=(1+c_{n})(1-c_{n}/2)^{2},!}.

Теперь «в лоб» доказывается, что

{displaystyle S(1+c_{n})=a_{n}^{2}}

а потому сходимость {displaystyle a_{n},!} к желаемому результату {displaystyle {sqrt {S}}} обеспечивается сходимостью {displaystyle c_{n},!} к 0, что, в свою очередь, вытекает из {displaystyle -1<c_{0}<2,!}.

Этот метод разработали около 1950 года М. В. Уилкс, Д. Дж. Уилер и С. Гилл[12] для использования в EDSAC, одном из первых электронных компьютеров[13]. Позднее метод был обобщён на неквадратные корни[14].

Итеративные методы вычисления обратного к квадратному корню числа[править | править код]

Далее приведены итеративные методы вычисления обратного к квадратному корню из S числа, то есть {displaystyle 1/{sqrt {S}}}. Если такое значение найдено, находим {displaystyle {sqrt {S}}} просто умножением: {displaystyle {sqrt {S}}=Scdot (1/{sqrt {S}})}. Эти итерации используют только умножение и не используют деления. Потому методы быстрее, чем вавилонский метод. Однако методы нестабильны, если начальное значение не близко к обратному к корню значению, итерации расходятся. Поэтому может быть выгодным сначала сделать итерацию вавилонским методом для грубой оценки корня перед началом использования этих методов.

Алгоритм Гольдшмидта[править | править код]

Некоторые компьютеры используют алгоритм Гольдшмидта для одновременного вычисления {displaystyle {sqrt {S}}} и {displaystyle 1/{sqrt {S}}}.
Алгоритм Гольдшмидта находит {displaystyle {sqrt {S}}} быстрее, чем итерация Ньютона-Рапсона, на компьютерах с операциями совмещённого умножения-сложения и имеющих либо конвейерный процессор плавающей запятой, либо два независимых процессора плавающей запятой[15].

Первый способ записи алгоритма Гольдшмидта начинается с

{displaystyle b_{0}=S}
{displaystyle Y_{0}approx 1/{sqrt {S}}} (обычно используется поиск в таблице)
{displaystyle y_{0}=Y_{0}}
{displaystyle x_{0}=Sy_{0}}

и осуществляются итерации

{displaystyle b_{n+1}=b_{n}Y_{n}^{2}}
{displaystyle Y_{n+1}=(3-b_{n+1})/2}
{displaystyle x_{n+1}=x_{n}Y_{n+1}}
{displaystyle y_{n+1}=y_{n}Y_{n+1}}

пока b_{i} не окажется достаточно близко к 1 или не будет проведено фиксированное число итераций. Итерации сходятся к

{displaystyle lim _{nto infty }x_{n}={sqrt {S}}},
{displaystyle lim _{nto infty }y_{n}=1/{sqrt {S}}}.

Заметим, что можно опустить вычисление x_{n} или y_{n}, а если оба значения желательны, то {displaystyle x_{n}=Sy_{n}} можно использовать в конце вместо вычисления на каждой итерации.

Второй способ, использующий операции совмещённого умножения-сложения начинается с

{displaystyle y_{0}approx 1/{sqrt {S}}} (обычно используется поиск в таблице)
{displaystyle x_{0}=Sy_{0}}
{displaystyle h_{0}=y_{0}/2}

и осуществляются итерации

{displaystyle r_{n}=0{,}5-x_{n}h_{n}}
{displaystyle x_{n+1}=x_{n}+x_{n}r_{n}}
{displaystyle h_{n+1}=h_{n}+h_{n}r_{n}}

пока r_{i} не станет достаточно близко к 0, либо не будет осуществлено фиксированное число итераций. Значения сходятся к

{displaystyle lim _{nto infty }x_{n}={sqrt {S}}}
{displaystyle lim _{nto infty }2h_{n}=1/{sqrt {S}}}.

Ряды Тейлора[править | править код]

Если N является приближением к {displaystyle {sqrt {S}}}, лучшее приближения может быть найдено использованием ряда Тейлора функции квадратного корня:

{displaystyle {sqrt {N^{2}+d}}=Nsum _{n=0}^{infty }{frac {(-1)^{n}(2n)!}{(1-2n)n!^{2}4^{n}}}{frac {d^{n}}{N^{2n}}}=Nleft(1+{frac {d}{2N^{2}}}-{frac {d^{2}}{8N^{4}}}+{frac {d^{3}}{16N^{6}}}-{frac {5d^{4}}{128N^{8}}}+cdots right)}

Порядок сходимости равен числу используемых членов ряда. При использовании двух членов метод эквивалентен вавилонскому методу. При использовании трёх членов каждая итерация использует почти столько же операций, сколько использует приближение Бакхшали, но сходимость слабее. Поэтому этот метод не является особенно эффективным способом вычисления. Для максимизации скорости сходимости, следует выбрать N так, чтобы {displaystyle {frac {|d|}{N^{2}}},} было как можно меньше.

Разложение в цепную дробь[править | править код]

Квадратичные иррациональности (числа вида {displaystyle {frac {a+{sqrt {b}}}{c}}}, где a, b и c целые числа), и, в частности, квадратные корни из целых чисел, имеют периодические цепные дроби[en]. Иногда целью является не нахождение численного значения квадратного корня, а его разложение в цепную дробь, а следовательно его рационального приближения. Пусть S будет положительным числом, корень из которого требуется найти. Теперь пусть a будет начальным приближением, а r будет остаточным членом, тогда мы можем записать {displaystyle S=a^{2}+r.} Поскольку мы имеем {displaystyle S-a^{2}=({sqrt {S}}+a)({sqrt {S}}-a)=r}, мы можем выразить квадратный корень из S как

{displaystyle {sqrt {S}}=a+{frac {r}{a+{sqrt {S}}}}.}

Применяя это выражение для {displaystyle {sqrt {S}}} к знаменателю дроби, получим

{displaystyle {sqrt {S}}=a+{frac {r}{a+(a+{frac {r}{a+{sqrt {S}}}})}}=a+{frac {r}{2a+{frac {r}{a+{sqrt {S}}}}}}.}
Компактная запись

Числитель/знаменатель разложения для непрерывных дробей (см. слева) затруднительно записывать, а также трудно укладывается в существующую систему форматирования документов. По этой причине была разработана специальная нотация для компактного представления целой и периодической частей непрерывных дробей. Одно из таких соглашений использует лексическую «ломаную линию» для представления черты между числителем и знаменателем, что позволяет записывать дробь горизонтально, а не вертикально:

{displaystyle {sqrt {S}}=a+{frac {r|}{|2a}}+{frac {r|}{|2a}}+{frac {r|}{|2a}}+cdots }

Здесь каждая горизонтальная черта (в дроби) представлена тремя чертами — двумя вертикальными и одной горизонтальной, которые отделяют r от 2a.

Ещё более компактная нотация имеет специальный вид

{displaystyle [a;2a,2a,2a,...]}

Для периодических непрерывных дробей (которыми являются все квадратные корни), повторяющаяся часть указывается лишь один раз с чертой над повторяющейся частью:

{displaystyle [a;{overline {2a}}]}

Для 2 значение a равно 1, так что представлением будет

{displaystyle [1;{overline {2}}]}

Следуя этим путём мы получаем обобщённую непрерывную дробь[en] для квадратного корня
{displaystyle {sqrt {S}}=a+{cfrac {r}{2a+{cfrac {r}{2a+{cfrac {r}{2a+ddots }}}}}}}

Первым шагом вычисления такой дроби для получения квадратного корня является подстановки для корня и выбор числа знаменателей. Например, в канонической форме r равен 1 и для 2, a равен 1, так что численно непрерывной дробью для 3 знаменателей будет

{displaystyle {sqrt {2}}approx 1+{cfrac {1}{2+{cfrac {1}{2+{cfrac {1}{2}}}}}}}

Шаг 2. Непрерывная дробь свёртывается снизу вверх, один знаменатель за раз, чтобы получить рациональную дробь, числитель и знаменатель которой являются целыми числами. Процесс свёртывания тогда выглядит следующим образом (беря первые три знаменателя):

{displaystyle 1+{cfrac {1}{2+{cfrac {1}{2+{cfrac {1}{2}}}}}}=1+{cfrac {1}{2+{cfrac {1}{frac {5}{2}}}}}}

{displaystyle =1+{cfrac {1}{2+{cfrac {2}{5}}}}=1+{cfrac {1}{frac {12}{5}}}}
{displaystyle =1+{cfrac {5}{12}}={frac {17}{12}}}

Наконец (шаг 3), делим числитель на знаменатель рациональной дроби, чтобы получить приближённое значение корня:

{displaystyle 17div 12=1{,}42} округлено до трёх знаков.

Действительное значение корня 2 равно 1,41 с точностью до трёх значащих цифр. Относительная ошибка равна 0,17%, так что рациональная дробь хороша почти до трёх знаков. Если брать больше знаменателей, получим последовательное улучшение приближения — четыре знаменателя дают дробь {displaystyle {frac {41}{29}}=1{,}4137}, что даёт почти 4 цифры точности, и т.д.

Непрерывные дроби доступны в таблицах по меньшей мере для малых чисел и общеизвестных констант. Для произвольных чисел в десятичной системе счисления предварительно вычисленные значения, скорее всего, бесполезны. Следующая таблица малых рациональных дробей, называемых подходящими дробями, полученных из канонических непрерывных дробей для нескольких констант:

S цепная дробь ~десятичное Подходящие дроби
2 {displaystyle [1;{overline {2}}]} 1,41421 {displaystyle {frac {3}{2}},{frac {7}{5}},{frac {17}{12}},{frac {41}{29}},{frac {99}{70}}}
3 {displaystyle [1;{overline {1,2}}]} 1,73205 {displaystyle {frac {2}{1}},{frac {5}{3}},{frac {7}{4}},{frac {19}{11}},{frac {26}{15}},{frac {71}{41}},{frac {97}{56}}}
5 {displaystyle [2;{overline {4}}]} 2,23607 {displaystyle {frac {9}{4}},{frac {38}{17}},{frac {161}{72}}}
6 {displaystyle [2;{overline {2,4}}]} 2,44949 {displaystyle {frac {5}{2}},{frac {22}{9}},{frac {49}{20}},{frac {218}{89}}}
10 {displaystyle [3;{overline {6}}]} 3,16228 {displaystyle {frac {19}{6}},{frac {117}{37}}}
{displaystyle {sqrt {pi }}} {displaystyle [1;1,3,2,1,1,6...]} 1,77245 {displaystyle {frac {2}{1}},{frac {7}{4}},{frac {16}{9}},{frac {23}{13}},{frac {39}{22}}}
{displaystyle {sqrt {e}}} {displaystyle [1;1,1,1,5,1,1...]} 1,64872 {displaystyle {frac {2}{1}},{frac {3}{2}},{frac {5}{3}},{frac {28}{17}},{frac {33}{20}},{frac {61}{37}}}
{displaystyle {sqrt {phi }}} {displaystyle [1;3,1,2,11,3,7...]} 1,27202 {displaystyle {frac {4}{3}},{frac {5}{4}},{frac {14}{11}}}

Примечание: Перечислены все подходящие дроби вплоть до знаменателя 99.

В общем виде чем больше знаменатель рациональной дроби, тем лучше аппроксимация. Также можно доказать, что отсечение непрерывной дроби приводит к рациональной дроби, с лучшим приближением к корню любой дроби со знаменателем, меньшим или равным знаменателю этой дроби. Например, никакая дробь со знаменателем, не превосходящем 70, не будет так же хороша, как аппроксимация к 2 числом 99/70.

Метод последовательности Люка[править | править код]

Последовательность Люка первого рода {displaystyle U_{n}(P,Q)} определяется рекуррентным отношением

{displaystyle U_{n}(P,Q)={begin{cases}0&{text{если }}n=0\1&{text{если }}n=1\Pcdot U_{n-1}(P,Q)-Qcdot U_{n-2}(P,Q)&{text{в противном случае}}end{cases}}}

и его характеристическим многочленом является

{displaystyle x^{2}-Pcdot x+Q=0}

, он имеет дискриминант {displaystyle D=P^{2}-4Q} и корни

{displaystyle {begin{matrix}x_{1}={dfrac {P+{sqrt {D}}}{2}},&x_{2}={dfrac {P-{sqrt {D}}}{2}}end{matrix}}}

Всё это даёт следующее положительное значение

{displaystyle lim _{nto infty }{dfrac {U_{n+1}}{U_{n}}}=x_{1}}

. Так что если мы хотим получить {sqrt {a}}, мы можем выбрать {displaystyle P=2} и {displaystyle Q=1-a}, а затем вычислить {displaystyle x_{1}=1+{sqrt {a}}} используя {displaystyle U_{n+1}} и U_{n}для больших значений n.
Наиболее эффективный способ вычисления {displaystyle U_{n+1}} и U_{n}

{displaystyle {begin{bmatrix}U_{n}\U_{n+1}end{bmatrix}}={begin{bmatrix}0&1\-Q&Pend{bmatrix}}cdot {begin{bmatrix}U_{n-1}\U_{n}end{bmatrix}}={begin{bmatrix}0&1\-Q&Pend{bmatrix}}^{n}cdot {begin{bmatrix}U_{0}\U_{1}end{bmatrix}}}

Итог:

{displaystyle {begin{bmatrix}0&1\a-1&2end{bmatrix}}^{n}cdot {begin{bmatrix}0\1end{bmatrix}}={begin{bmatrix}U_{n}\U_{n+1}end{bmatrix}},}

а тогда при nto infty :

{displaystyle {sqrt {a}}={frac {U_{n+1}}{U_{n}}}-1}

Аппроксимации, зависящие от представления в виде числа с плавающей запятой[править | править код]

Число представляется в виде числа с плавающей запятой как {displaystyle mtimes b^{p}}. Этот формат записи называется также экспоненциальной записью. Квадратный корень из этого числа равен {displaystyle {sqrt {m}}times b^{tfrac {p}{2}}} и аналогичные формулы могут быть представлены для кубических корней и логарифмов. Это не упрощает задачу, но если требуется только аппроксимация, то {displaystyle b^{tfrac {p}{2}}} является хорошей оценкой порядка мантиссы. Далее, понимаем, что некоторые степени p могут оказаться нечётными, тогда для {displaystyle 3141{,}59=3{,}14159{times }10^{3}} вместо работы с дробными степенями основания умножаем на него и вычитаем единицу из степени, делая её чётной. Уточнённое представление превращается в {displaystyle 31{,}4159{times }10^{2}}, так что квадратный корень будет равен {displaystyle {sqrt {31,4159}}{times }10^{1}}.

Если взять лишь целую часть мантиссы, она может принимать значения от 1 до 99 и это можно использовать в качестве индекса в таблице из 99 предварительно вычисленных корней для завершения оценки. Компьютер, использующий шестнадцатеричное основание может потребовать большей таблицы, но при использовании основания 2 таблица будет состоять лишь из трёх величин — возможными битами целой части уточнённого представления мантиссы могут быть 01 (если степень чётная, так что нет никакого сдвига, и заметим, что нормализованное число с плавающей точкой всегда имеет ненулевую старшую цифру), или, если степень была нечётной, 10 или 11, это два первых бита исходной мантиссы. Тогда 6,25 (= 110,01 в двоичном представлении) нормализуется к {displaystyle 1{,}1001times 2^{2}} с чётной степенью, так что парой битов мантиссы будет 01, в то время как 0,625 (= 0,101 в двоичном представлении) нормализуется к {displaystyle 1{,}01times 2^{-1}} с нечётной степенью, так что требуется преобразование числа к {displaystyle 10{,}1times 2^{-2}}, а тогда парой бит будет 10. Заметим, что младший бит порядка отражается в старший бит сгруппированной парами мантиссы. Чётная степень имеет нулевой младший бит и уточнённая мантисса будет начинаться с нуля, в то время как нечётная степень имеет 1 в младшем бите и уточнённая мантисса будет начинаться с 1. Таким образом, когда степень делится пополам, это эквивалентно тому, что младший бит порядка сдвигается в первый бит попарно сгруппированной мантиссы.

Таблица с тремя элементами может быть расширена для включения дополнительных бит мантиссы. Однако в случае компьютеров вместо вычисления интерполяции в таблице часто лучше искать более простой способ вычислений, дающий те же результаты. Всё теперь зависит от точных деталей формата представления чисел и от операций, которые доступны для получения частей числа и работы с ними. Например, Фортран содержит функцию EXPONENT(x) для получения степени. Усилия, потраченные на получение хорошего начального приближения окупаются за счёт исключения дополнительных итераций процесса уточнения, которые потребовались бы в случае плохого приближения.

Многие компьютеры следуют стандарту IEEE для чисел с плавающей запятой[en] (или достаточно близкое представление) и очень быстрое приближение для квадратного корня может быть получено в качестве стартового значения метода Ньютона. Техника данного приближения вытекает из факта, что формат плавающего числа (по основанию два) аппроксимирует логарифм по основанию 2. То есть, {displaystyle log _{2}(mtimes 2^{p})=p+log _{2}(m)}

Так что для 32-битного числа с плавающей запятой в формате IEEE (в котором степень имеет смещение[en] на 127[16]) вы можете получить приближённый логарифм путём интерпретации числа как 32-битного целого, умножения его на {displaystyle 2^{-23}} и вычета смещения 127, то есть

{displaystyle x_{text{int}}cdot 2^{-23}-127approx log _{2}(x).}

Например, число 1,0 в шестнадцатеричной системе имеет вид 0x3F800000, что можно представить как {displaystyle 1065353216=127cdot 2^{23}}, если рассматривать его как целое. Используя вышеприведённую формулу вы получите {displaystyle 1065353216cdot 2^{-23}-127=0}, как и ожидалось от {displaystyle log _{2}(1{,}0)}. Аналогичным образом вы получите 0,5 из 1,5 (=0x3FC00000).

Log2approx.png

Чтобы получить квадратный корень, делим логарифм на 2 и преобразуем результат обратно. Ниже программа демонстрирует идею. Заметим, что младший бит порядка намеренно переводится в мантиссу. Одним из способов обоснования шагов этой программы, в предположении что b является смещением степени, а n является числом запоминаемых бит в мантиссе, заключается в доказательстве

{displaystyle (((x_{text{int}}/2^{n}-b)/2)+b)cdot 2^{n}=(x_{text{int}}-2^{n})/2+((b+1)/2)cdot 2^{n}.}
/* Предполагаем, что плавающее число имеет формат IEEE 754 */
#include <stdint.h>
float sqrt_approx(float z)
{
	union { float f; uint32_t i; } val = {z};	/* Преобразуем тип не меняя битового представления */
	/*
	 * Для обоснования работы кода докажите, что
	 * ((((val.i / 2^m) - b) / 2) + b) * 2^m = ((val.i - 2^m) / 2) + ((b + 1) / 2) * 2^m)
	 * где
	 * b = смещение степени
	 * m = число бит в мантиссе
	 */
	val.i -= 1 << 23;	/* Вычитаем 2^m. */
	val.i >>= 1;		/* Делим на 2. */
	val.i += 1 << 29;	/* Добавляем ((b + 1) / 2) * 2^m. */

	return val.f;		/* Интерпретируем снова как плавающее */
}

Три арифметические операции, образующие ядро функции можно представить в одну строку. Дополнительное уточнение может быть добавлено для уменьшения максимальной относительной ошибки. Таким образом, три операции, не включая приведение к вещественному, можно переписать как

	val.i = (1 << 29) + (val.i >> 1) - (1 << 22) + a;

где a — смещение для уменьшения ошибок аппроксимации. Например, с a = 0 результаты точны для чётных степеней двойки 2 (например, 1,0), но для других чисел результат будет несколько великоват (например, 1,5 для 2,0 вместо 1,414… с ошибкой 6%). При a = −0x4B0D2 максимальная относительная ошибка сокращается до ±3,5%.

Если приближение нужно использовать как начальное значение для метода Ньютона в уравнении {displaystyle (1/x^{2})-S=0}, то обратная форма, показанная в следующем разделе, предпочтительнее.

Обратное значение квадратного корня[править | править код]

Вариант описанной выше процедуры представлен ниже и он может быть использован для вычисления обратного к квадратному корню, то есть {displaystyle x^{-{1 over 2}}}. Этот вариант написал Грег Уолш. Приближение сдвигом даёт относительную ошибку менее 4% и ошибка уменьшается до 0,15% после одной итерации метода Ньютона[17]. В компьютерной графике это очень эффективный способ нормализации вектора.

float invSqrt(float x) {
    float xhalf = 0.5f * x;
    union {
        float x;
        int i;
    } u;
    u.x = x;
    u.i = 0x5f375a86 - (u.i >> 1);
    /* Следующая строка может быть повторена произвольное число раз для увеличения точности */
    u.x = u.x * (1.5f - xhalf * u.x * u.x);
    return u.x;
}

Некоторые СБИС реализуют нахождение обратной величины к квадратному корню с помощью полиномиальной оценки с последующей итерацией Голдшмидта[18].

Корень из отрицательного или комплексного числа[править | править код]

Если S<0, то его главный корень равен

{displaystyle {sqrt {S}}={sqrt {vert Svert }},,i,.}

Если {displaystyle S=a+bi}, где a и b вещественные числа и bneq 0, то его главный корень равен

{displaystyle {sqrt {S}}={sqrt {frac {vert Svert +a}{2}}},+,operatorname {sgn}(b){sqrt {frac {vert Svert -a}{2}}},,i,.}

Это можно проверить возведением в квадрат[19][20]. Здесь

{displaystyle vert Svert ={sqrt {a^{2}+b^{2}}}}

является модулем числа S. Главный корень комплексного числа определяется как корень с неотрицательной вещественной частью.

См. также[править | править код]

  • Алгоритм альфа max плюс бета min[en]
  • Целочисленный квадратный корень

Примечания[править | править код]

  1. Кроме главного корня имеется отрицательный квадратный корень, равный по модулю главному корню, но с противоположным знаком, за исключением случая нуль, когда имеется два одинаковых корня, равных нулю.
  2. Множители два и шесть используются ввиду того, что они аппроксимируют среднее геометрическое нижнего и верхнего возможных значений с заданным числом знаков: {displaystyle {sqrt {{sqrt {1}}cdot {sqrt {10}}}}={sqrt[{4}]{10}}approx 1{,}78,} и {displaystyle {sqrt {{sqrt {10}}cdot {sqrt {100}}}}={sqrt[{4}]{1000}}approx 5{,}62,}.
  3. Неокруглённая оценка имеет максимальную абсолютную ошибку 2,65 в точке 100 и максимальную относительную ошибку в 26,5% в точках y=1, 10 и 100
  4. Если число находится ровно посередине между двумя квадратами, наподобие 30,5, берём большее число, которое в нашем случае 6
  5. Это уравнение касательной прямой к y=x2 в точке y=1.
  6. Fowler, Robson, 1998, с. 376.
  7. Heath, 1921, с. 323–324.
  8. Bailey, Borwein, 2012, с. 646–657.
  9. Bucking down to the Bakhshali manuscript. Simply Curious blog (5 июня 2018). Дата обращения: 21 декабря 2020. Архивировано 26 октября 2020 года.
  10. Fast integer square root by Mr. Woo’s abacus algorithm (archived)
  11. Integer Square Root function. Дата обращения: 30 декабря 2021. Архивировано 30 сентября 2007 года.
  12. Wilkes, Wheeler, Gill, 1951.
  13. Campbell-Kelly, 2009.
  14. Gower, 1958, с. 142–143, 1958.
  15. Markstein, Peter (November 2004). Software Division and Square Root Using Goldschmidt’s Algorithms (PDF). 6th Conference on Real Numbers and Computers. Dagstuhl, Germany. CiteSeerX 10.1.1.85.9648. Архивировано (PDF) из оригинала 2022-04-28. Дата обращения 2021-12-30.
  16. К экспоненте числа добавляется 127, что позволяет интерпретировать экспоненту как число без знака.
  17. Fast Inverse Square Root Архивная копия от 6 февраля 2009 на Wayback Machine by Chris Lomont

  18. “High-Speed Double-Precision Computation of Reciprocal, Division, Square Root and Inverse Square Root”
    by José-Alejandro Piñeiro and Javier Díaz Bruguera 2002 (abstract)
  19. Abramowitz, Stegun, 1964, с. 17.
  20. Cooke, 2008, с. 59.

Литература[править | править код]

  • David Fowler, Eleanor Robson. Square Root Approximations in Old Babylonian Mathematics: YBC 7289 in Context // Historia Mathematica. — 1998. — Т. 25, вып. 4. — doi:10.1006/hmat.1998.2209.
  • Thomas Little Heath. A History of Greek Mathematics. — Oxford: Clarendon Press, 1921. — Т. 2. — С. 323–324.
  • David Bailey, Jonathan Borwein. Ancient Indian Square Roots: An Exercise in Forensic Paleo-Mathematics // American Mathematical Monthly. — 2012. — Т. 119, вып. 8.
  • Miltonn Abramowitz, Irene A. Stegun. Section 3.7.26 // Handbook of mathematical functions with formulas, graphs, and mathematical tables. — Courier Dover Publications, 1964. — С. 17. — ISBN 978-0-486-61272-0.
  • J. C. Gower. A Note on an Iterative Method for Root Extraction // The Computer Journal. — 1958. — Т. 1 1, вып. 3.
  • M. Campbell-Kelly. Origin of Computing // Scientific American. — 2009. — Сентябрь.
  • Roger Cooke. Classical algebra: its nature, origins, and uses. — John Wiley and Sons, 2008. — ISBN 978-0-470-25952-8.
  • M. V. Wilkes, D. J. Wheeler, S. Gill. The Preparation of Programs for an Electronic Digital Computer. — Addison-Wesley, 1951.

СсылкиWeisstein, Eric W. Square root algorithms (англ.) на сайте Wolfram MathWorld.[править | править код]

  • Square roots by subtraction
  • Integer Square Root Algorithm by Andrija Radović
  • Personal Calculator Algorithms I : Square Roots (William E. Egbert), Hewlett-Packard Journal (may 1977) : page 22
  • Калькулятор для обучения квадратному корню

Некоторые задачи в математике требуют умения вычислять значение корня квадратного. К таким задачам относится решение уравнений второго порядка. В данной статье приведем эффективный метод вычисления квадратных корней и используем его при работе с формулами корней квадратного уравнения.

Что такое квадратный корень?

В математике этому понятию соответствует символ √. Исторические данные говорят, что он начал использоваться впервые приблизительно в первой половине XVI века в Германии (первый немецкий труд по алгебре Кристофа Рудольфа). Ученые полагают, что указанный символ является трансформированной латинской буквой r (radix означает “корень” на латыни).

Гимназия при Русском музее, Санкт-Петербург: отзывыВам будет интересно:Гимназия при Русском музее, Санкт-Петербург: отзывы

Корень из какого-либо числа равен такому значению, квадрат которого соответствует подкоренному выражению. На языке математики это определение будет выглядеть так: √x = y, если y2 = x.

Корень из положительного числа (x > 0) является также числом положительным (y > 0), однако если берут корень из отрицательного числа (x < 0), то его результатом уже будет комплексное число, включающее мнимую единицу i.

Приведем два простых примера:

√9 = 3, поскольку 32 = 9; √(-9) = 3i, поскольку i2 = -1.

Итерационная формула Герона для нахождения значений корней квадратных

Психология и философия: связь наук, общие понятия, отличияВам будет интересно:Психология и философия: связь наук, общие понятия, отличия

Приведенные выше примеры являются очень простыми, и вычисление корней в них не представляет никакого труда. Сложности начинают появляться уже при нахождении значений корня для любого значения, которое не может быть представлено в виде квадрата натурального числа, например √10, √11, √12, √13, не говоря уже о том, что на практике необходимо находить корни для нецелых чисел: например √(12,15), √(8,5) и так далее.

Во всех вышеназванных случаях следует применять специальный метод вычисления корня квадратного. В настоящее время таких методов известно несколько: например разложение в ряд Тейлора, деление столбиком и некоторые другие. Из всех известных методов, пожалуй, наиболее простым и эффективным является использование итерационной формулы Герона, которая также известна как вавилонский способ определения квадратных корней (существуют свидетельства, что древние вавилоняне применяли ее в своих практических вычислениях).

Пусть необходимо определить значение √x. Формула нахождения квадратного корня имеет следующий вид:

an+1 = 1/2(an+x/an), где limn->∞(an) => x.

Расшифруем эту математическую запись. Для вычисления √x следует взять некоторое число a0 (оно может быть произвольным, однако для быстрого получения результата следует выбирать его таким, чтобы (a0)2 было максимально близко к x. Затем подставить его в указанную формулу вычисления квадратного корня и получить новое число a1, которое уже будет ближе к искомому значению. После этого необходимо уже a1 подставить в выражение и получить a2. Эту процедуру следует повторять до получения необходимой точности.

Пример применения итерационной формулы Герона

Описанный выше алгоритм получения корня квадратного из некоторого заданного числа для многих может звучать достаточно сложно и запутанно, на деле же оказывается все гораздо проще, поскольку эта формула сходится очень быстро (особенно если выбрано удачное число a0).

Приведем простой пример: необходимо вычислить √11. Выберем a0 = 3, так как 32 = 9, что ближе к 11, чем 42 = 16. Подставляя в формулу, получим:

a1 = 1/2(3 + 11/3) = 3,333333;

a2 = 1/2(3,33333 + 11/3,33333) = 3,316668;

a3 = 1/2(3,316668 + 11/3,316668) = 3,31662.

Дальше нет смысла продолжать вычисления, поскольку мы получили, что a2 и a3 начинают отличаться лишь в 5-м знаке после запятой. Таким образом, достаточно было применить всего 2 раза формулу, чтобы вычислить √11 с точностью до 0,0001.

В настоящее время широко используются калькуляторы и компьютеры для вычисления корней, тем не менее отмеченную формулу полезно запомнить, чтобы иметь возможность вручную вычислять их точное значение.

Уравнения второго порядка

Понимание того, что такое корень квадратный, и умение его вычислять используется при решении квадратных уравнений. Этими уравнениями называют равенства с одной неизвестной, общий вид которых приведен на рисунке ниже.

Здесь c, b и a представляют собой некоторые числа, причем a не должно равняться нулю, а значения c и b могут быть совершенно произвольными, в том числе и равными нулю.

Любые значения икса, удовлетворяющие указанному на рисунке равенству, называются его корнями (следует не путать это понятие с квадратным корнем √). Поскольку рассматриваемое уравнение имеет 2-й порядок (x2), то корней для него не может быть больше, чем два числа. Рассмотрим далее в статье, как находить эти корни.

Нахождения корней квадратного уравнения (формула)

Этот способ решения рассматриваемого типа равенств также называется универсальным, или методом через дискриминант. Его можно применять для любых квадратных уравнений. Формула дискриминанта и корней квадратного уравнения имеет следующий вид:

Из нее видно, что корни зависят от значения каждого из трех коэффициентов уравнения. Более того, вычисление x1 отличается от расчета x2 только знаком перед корнем квадратным. Подкоренное выражение, которое равно b2 – 4ac, является не чем иным, как дискриминантом рассматриваемого равенства. Дискриминант в формуле корней квадратного уравнения играет важную роль, поскольку он определяет число и тип решений. Так, если он равен нулю, то решение будет всего одно, если он положительный, то уравнение обладает двумя действительными корнями, наконец, отрицательный дискриминант приводит к двум комплексным корням x1 и x2.

Теорема Виета или некоторые свойства корней уравнений второго порядка

В конце XVI века один из основоположников современной алгебры француз Франсуа Виет, изучая уравнения второго порядка, смог получить свойства его корней. Математически их можно записать так:

x1 + x2 = -b / a и x1 * x2 = c / a.

Оба равенства легко может получить каждый, для этого необходимо лишь выполнить соответствующие математические операции с корнями, полученными через формулу с дискриминантом.

Совокупность этих двух выражений можно по праву назвать второй формулой корней квадратного уравнения, которая предоставляет возможность угадывать его решения, не используя при этом дискриминант. Здесь следует оговориться, что хотя оба выражения справедливы всегда, применять их для решения уравнения удобно только в том случае, если оно может быть разложено на множители.

Задача на закрепление полученных знаний

Решим математическую задачу, в которой продемонстрируем все приемы, обсуждаемые в статье. Условия задачи следующие: необходимо найти два числа, для которых произведение равно -13, а сумма составляет 4.

Это условие сразу напоминает о теореме Виета, применяя формулы суммы квадратных корней и их произведения, записываем:

x1 + x2 = -b / a = 4;

x1 * x2 = c / a = -13.

Если предположить, что a = 1, тогда b = -4 и c = -13. Эти коэффициенты позволяют составить уравнение второго порядка:

x2 – 4x – 13 = 0.

Воспользуемся формулой с дискриминантом, получим следующие корни:

x1,2 = (4 ± √D)/2, D = 16 – 4 * 1 * (-13) = 68.

То есть задача свелась к нахождению числа √68. Заметим, что 68 = 4 * 17, тогда, используя свойство квадратного корня, получим: √68 = 2√17.

Теперь воспользуемся рассмотренной формулой квадратного корня: a0 = 4, тогда:

a1 = 1/2(4 + 17/4) = 4,125;

a2 = 1/2(4,125 + 17/4,125) = 4,1231.

В вычислении a3 нет необходимости, поскольку найденные значения отличаются всего на 0,02. Таким образом, √68 = 8,246. Подставляя его в формулу для x1,2, получим:

x1 = (4 + 8,246)/2 = 6,123 и x2 = (4 – 8,246)/2 = -2,123.

Как видим, сумма найденных чисел действительно равна 4, если же найти их произведение, то оно будет равно -12,999, что удовлетворяет условию задачи с точностью до 0,001.

Добавить комментарий