Как найти минимальный потенциал

Макеты страниц

Рассмотрим маленькую сферическую поверхность, охватывающую точку электрического поля. Среднее значение потенциала на этой поверхности равно

Беря производную и применяя теорему Гаусса, получим

где – заряд внутри сферы. После интегрирования приходим к результату

В случае среднее значение потенциала на малой сфере, охватывающей точку такое же, как и в точке Отсюда вытекает теорема о том, что потенциал не может иметь ни максимума, ни минимума в тех точках пространства, где отсутствуют электрические заряды. Из определения потенциала следует, что для устойчивого равновесия положительный заряд должен находиться в точке минимума потенциала, а отрицательный — в точке, где потенциал максимален; при атом потенциал самого заряда, очевидно, исключается из рассмотрения. Поскольку по доказанному выше в электростатическом ноле нет ни максимумов, ни минимумов потенциала, то отсюда следует также теорема Ирншоу, утверждающая, что заряд в электрическом поле не может удерживаться в равновесии одними электрическими силами. Следовательно, если мы считаем природу вещества чисто электрической, т. е. все тела состоящими из положительных и отрицательных зарядов, между которыми действуют электрические силы, то эти силы взаимодействия должны быть отличны от электростатических.

Минимум – потенциал

Cтраница 1

Минимум потенциала у этой кривой поддерживается равновесием между потоком электронов, входящих в облако из катода, и суммарным потоком электронов, уходящих из облака в направлении к аноду и частично возвращающихся к катоду.
 [1]

Минимум потенциала расположен на катоде. Из этого условия вытекает: а) расстояние анод – минимум потенциала берется равным расстоянию анод – катод; б) разность потенциалов между анодом и минимумом потенциала принимается равной анодному напряжению; в) напряженность поля у катода считается равной нулю.
 [3]

Минимум потенциала имеет место при критическом расстоянии г0, где электрон находится в его стабильном, нейтральном состоянии и вращается вокруг ядра. Оказалось необходимым ограничить допустимую плотность заселения каждой орбиты электронами, что и является сущностью принципа Паули. В современной теории волновой механики подобные правила, определяющие ( Поведение электронов в свободном атоме, являются естественным следствием основных предпосылок, устраняющих их первоначальную произвольность.
 [4]

Минимум потенциала между витками защитной сетки определяет ее отталкивающее действие на электроны, находящиеся по обе стороны сетки.
 [6]

Минимум потенциала стали ( и максимум наводороживания) наблюдался нами при некоторой величине растягивающей нагрузки только в случае к а годно поляризованных образцов, что связано, очевидно.
 [7]

Минимуму потенциала зажигания соответствуют, следовательно, оптимальные энергетические условия для поддержания самостоятельного разряда.
 [8]

Создать минимум потенциала в пространстве анод – вторая сетка можно, либо увеличив плотность объемного электронного заряда в этом пространстве, либо введя в это пространство дополнительный электрод с потенциалом, значительно меньшим потенциалов анода и второй сетки.
 [10]

Однако минимум потенциала возле анода не только подавляет динатронный эффект, но и способствует возвращению некоторых электронов электронного потока на экранирующую сетку, что приводит к увеличению / г2 и росту потребления энергии источника напряжения в цепи этой сетки.
 [11]

Однако минимум потенциала возле анода не только подавляет динатронный эффект, но и способствует возвращению некоторых электронов электронного потока на экранирующую сетку, что приводит к увеличению / и росту потребления энергии источника напряжения в цепи этой сетки.
 [12]

Создать минимум потенциала в пространстве вторая сетка – анод можно либо увеличив плотность объемного заряда в этой области, либо введя в это пространство дополнительный электрод с потенциалом, значительно меньшим потенциалов анода и второй сетки.
 [14]

Страницы:  

   1

   2

   3

   4

   5

Теоре́ма И́рншоу — теорема об электростатическом поле, сформулирована английским физиком Ирншоу в 1842 году[1].

Является следствием теоремы Гаусса.

Теорема Ирншоу — чисто классическая (не квантовая) теорема и не имеет квантового аналога[⇨].

Формулировка[править | править код]

Всякая равновесная конфигурация точечных зарядов неустойчива, если на них кроме кулоновских сил притяжения и отталкивания не действуют иные силы.

  • Подразумевается, что точечные заряды «непроницаемы», то есть не могут занимать совпадающее положение в пространстве (то есть подразумевается, что в этом случае прежде, чем точечные заряды займут такое положение, между ними начнут действовать силы некулоновской природы, например, силы упругости поверхностей — если рассматривать точечный заряд как предельный случай маленького тела конечных размеров[2]); иными словами, очевидные случаи равновесия с совпадающими по пространственному положению положительным и отрицательным зарядами по условию теоремы исключаются из рассмотрения. Это можно мотивировать альтернативным «непроницаемости» способом тем, что такие случаи тривиальны и поэтому не интересны, а также физически сомнительны (подразумевают бесконечную энергию взаимодействия зарядов при таком положении).
  • В формулировку теоремы могут быть добавлены «внешние» электростатические поля (создаваемые закреплёнными источниками).
  • Теорема сама по себе не утверждает, что равновесие вообще возможно. Однако нетрудно найти примеры, показывающие, что неустойчивые стационарные конфигурации точечных зарядов могут существовать. Под неустойчивостью здесь понимается, что любое малое отклонение от стационарной конфигурации приводит к нарастанию неустойчивости и распаду конфигурации системы.

Доказательство[править | править код]

Существует два варианта доказательства, в рамках электростатики полностью эквивалентные и в принципе основанные на одной и той же физической (математической) идее, выраженной в несколько разных терминах.

Первый реализуется в терминах напряженности поля и основан на теореме Гаусса, второй же — в терминах потенциала и основан на уравнении Лапласа (или Пуассона).

Преимуществом первого способа является то, что он применим не только для случая потенциальных полей, то есть не требует того, чтобы напряжённость поля полностью выражалась через скалярный потенциал. В этом случае достаточно только того, чтобы оно подчинялось закону Гаусса[3].

Доказательство в терминах потенциала отличается несколько большей простотой и геометрической наглядностью.

Доказательство в терминах напряженности поля[править | править код]

Рассмотрим положительный точечный заряд. Действующая на него сила направлена вдоль вектора электростатического поля. Для устойчивого равновесия в какой-либо точке пространства, необходимо, чтобы при (малом) отклонении от неё на него начинала действовать возвращающая сила. То есть в случае электростатики для того, чтобы существовала такая точка, необходимо, чтобы в малой окрестности этой точки вектор поля, создаваемого всеми остальными зарядами, был направлен к ней (в её сторону). То есть линии поля должны сходиться в такую точку, если она существует. Это значит (вследствие теоремы Гаусса), что в ней должен находиться ещё отрицательный заряд. Но такой вариант равновесия не удовлетворяет условию теоремы (например, если рассматривать точечные заряды как очень маленькие твёрдые шарики, то прежде чем достичь описанного положения равновесия, они столкнутся поверхностями, то есть в реальном равновесии будут присутствовать силы не электростатической природы, если же рассматривать их как математические точки, это решение будет содержать бесконечную энергию взаимодействия, что не является физически приемлемым, а если рассматривать это с несколько другой точки зрения — это выходит за рамки применимости классической электростатики).

С точки зрения теоремы Гаусса, возникновение возвращающей силы (со всех сторон направленной к некоторой точке) означает, что вектор напряжённости внешних сил создаёт отрицательный поток через малую поверхность, окружающую точку предполагаемого равновесия. Но теорема Гаусса утверждает, что поток внешних сил через поверхность равен нулю, если внутри этой поверхности нет заряда[4]. Получаем противоречие.

В случае отрицательного заряда рассмотрение совершенно аналогично.

Доказательство в терминах потенциала[править | править код]

Рассмотрим один из точечных зарядов в поле остальных и покажем, что он, если и находится в равновесии, то только в неустойчивом. (Будем называть этот заряд выделенным).

Предположим, что выделенный заряд находится в равновесии (противоположный случай не интересен).

Потенциал, создаваемый остальными зарядами в окрестности нашего выделенного, подчиняется уравнению Лапласа (если только какой-то из этих остальных зарядов не совпадает по положению с положением выделенного заряда, что исключено формулировкой теоремы[5]), поскольку это электростатическое поле, а в данной области пространства отсутствуют его источники (другие заряды).

Уравнение Лапласа:

{frac  {partial ^{2}phi }{partial x^{2}}}+{frac  {partial ^{2}phi }{partial y^{2}}}+{frac  {partial ^{2}phi }{partial z^{2}}}=0

имеет своим следствием утверждение:

В первом случае очевидно, что потенциал не имеет минимума в данной точке, а значит, его не имеет в этой точке и потенциальная энергия рассматриваемого заряда, то есть его равновесие неустойчиво.

Второй случай распадается на два варианта:

1. Если все три вторые производные потенциала равны нулю не только в точке, но и в её конечной окрестности (а первые производные в самой точке равны нулю по предположению равновесия), то потенциал в этой окрестности есть константа и мы имеем, очевидно, случай безразличного равновесия, то есть это не есть равновесие устойчивое. Можно показать, что для случая конечного количества точечных источников этот вариант вообще не реализуется.[6]

2. Если все три вторые производные потенциала равны нулю только в единственной точке (т. н. точка уплощения), то можно показать, что[7]:

  • рассматриваемая точка всё равно не является точкой экстремума;
  • сам этот случай не может реализоваться для любого из зарядов в качестве выбранного, например, не реализуется для крайних зарядов, для которых вторые производные потенциала всегда не равны нулю[8].

Таким образом, приведённое доказательство достаточно полно для первого случая (случая общего положения) и только намечает вопросы, возникающие в некоторых особых случаях, и ответы на них.

Проще всего ответы на эти вопросы получаются с применением подхода, опирающегося на теорему Гаусса.

Обобщения[править | править код]

  • Тривиальным будет замечание, что теорема верна не только для электростатики, но и для поля любых сил, описываемых как убывающие подобно закону Кулона[9] (например, для сил ньютоновской гравитации[10]).
  • Теорема верна также для магнитостатики в случае фиксированных диполей и токов (в случае присутствия наведенных магнитных моментов она может нарушаться — см. пример ниже). Ключевым для доказательства здесь является теорема Гаусса для магнитного поля. В принципе доказательство для магнитостатики может быть сведено к электростатическому случаю, используя Теоремы Ампера о магнитном листке, но тогда требуется использовать электростатическую формулировку теоремы не для точечных частиц, а для протяжённых твёрдых тел (см. следующий пункт).
  • Теорема верна (формулировка при этом должна быть немного модифицирована[11]) для жёстких систем точечных зарядов и фиксированно[12] заряженных твёрдых (абсолютно твёрдых) тел (непроницаемых друг для друга — в каком-то из смыслов, аналогичных обозначенным в формулировке для точечных зарядов — то есть, по крайней мере, заряженные области твёрдых тел). Идея доказательства состоит в том, чтобы рассмотреть малые поступательные смещения твёрдого тела (без поворотов). Тогда потенциальная энергия[13] жёсткой системы зарядов есть просто сумма каждого заряда, умноженного на потенциал в его окрестности, взятый каждый раз в точке, обусловленной общим смещением тела:
{displaystyle U(delta mathbf {R} )=Sigma _{i}q_{i}phi (mathbf {r} _{i}+delta mathbf {R} ),}
где delta {mathbf  R} — вектор общего смещения тела, например, смещения его центра масс.

Поскольку потенциал phi ({mathbf  r}_{i}+delta {mathbf  R}) в окрестности каждой точки удовлетворяет уравнению Лапласа (подразумевается, что заряды другого тела отсутствуют в бесконечной близости к зарядом данного в силу их непроницаемости), то ему удовлетворяет и их линейная комбинация (сумма с коэффициентами), то есть, U(delta {mathbf  R}) — также удовлетворяет уравнению Лапласа[14], а значит, не может иметь минимума.

  • По-видимому, теорема верна и для случая упругих, в смысле закона Гука, связей зарядов.
  • Теорема верна для случая наведенных дипольных моментов (в электростатике и магнитостатике) при условии положительного коэффициента поляризуемости для наведенных диполей.
  • Теорема не верна для случая индуцированных внешним полем диполей с отрицательной поляризуемостью. Такой случай, по-видимому, не реализуется естественно для электрических диполей (случай искусственного управления дипольным моментом здесь не имеется в виду, он рассмотрен ниже).

Однако для наведенных магнитных диполей случай отрицательной поляризуемости встречается достаточно часто, например, для диамагнитных или сверхпроводящих тел, для которых, таким образом, обобщение теоремы Ирншоу не выполняется, то есть для них устойчивое равновесие вполне возможно (В. Браунбек[de], 1939)[15].

  • Достаточно очевидно, что теорема Ирншоу не применима к случаю взаимно проницаемых твёрдых тел. Например, при взаимодействии двух равномерно заряженных (зарядами одного знака, одинаковыми или разными по величине) шаров (одинакового или разного диаметра, в том числе вместо одного из шаров можно взять точечный заряд) будет иметь место устойчивое равновесие в положении, когда их центры совпадают. Правда, не очень ясна практическая ценность такой теоретической модели, как взаимно проницаемые твёрдые тела.

Границы применимости[править | править код]

Фундаментально-теоретические границы применимости теоремы[править | править код]

Теорема Ирншоу как таковая (и как она описана в данной статье) — чисто классическая (не квантовая) теорема. Этим определяется основная фундаментальная граница её области применимости.

Более того, хотя в некоторых частных случаях можно сформулировать некий её квантовый аналог, тем не менее и говоря вообще, и во многих конкретных ключевых и основополагающих случаях такое обобщение невозможно (если конечно не считать обобщением теорему с противоположным утверждением).

В двух словах, дело заключается в том, что в квантовом случае (то есть тогда, когда невозможно ограничиться классическим приближением), вообще говоря, нет взаимной непроницаемости (например, электрон и протон вполне могут занимать одно и то же место, проходить друг сквозь друга и даже «не замечать» друг друга при этом, за исключением электромагнитного[16] взаимодействия. Кроме того, само понятие классической точечной частицы в квантовом случае — то есть, например, если мы рассматриваем равновесие протона с электроном, то на пространственном масштабе порядка атомного диаметра — пропадает[17] само понятие точечной частицы.

Из всего этого следует и радикальное изменение ситуации с возможностью устойчивого равновесия заряженных частиц в квантовом случае.

В сущности, можно сказать, что атом водорода — это и есть устойчивое равновесие протона и электрона, взаимодействующих только электростатически[18].

Прикладной аспект[править | править код]

В технике с теоремой Ирншоу связаны определённые ограничения на решение инженерной задачи устойчивого удержания (или подвеса) некоторого тела с помощью полей (электрического, магнитного, часто в комбинации с естественным полем тяжести), то есть без непосредственного соприкосновения с твёрдыми и вообще вещественными удерживающими конструкциями.

Однако эти ограничения могут быть обойдены.

Основные способы, используемые для этого, таковы:

  1. Использование магнитного поля и тела с отрицательной магнитной восприимчивостью (диамагнетика) или сверхпроводника — идеального диамагнетика. В этом случае, можно достичь естественной устойчивости без применения каких-то дополнительных полей (и без затрат энергии). Достаточно правильно выбрать конфигурацию источников поля и форму диамагнитного тела.
  2. Использование дополнительных непотенциальных сил. Пример интересного устройство — левитрон, использующий для левитации вращающийся волчок. В этом случае магнит в форме волчка находится в потенциальной яме, а для преодоления неустойчивости к наклону используется эффект гироскопа.
  3. Использование систем автоматического регулирования удерживающего поля и/или электрическими или магнитными параметрами (зарядом, электрическим или магнитным дипольным моментом и т. п.) удерживаемого тела.

Применение[править | править код]

Теорема Ирншоу исторически сыграла важную роль в теории строения атома — предположения об атоме как о системе статических зарядов были на её основании отвергнуты, и для объяснения устойчивости атома была введена планетарная модель атома. Впрочем, см. выше.

Имеет прикладное значение в технике (см. выше).

Примечания[править | править код]

  1. Earnshaw, Samuel (1842). On the Nature of the Molecular Forces which Regulate the Constitution of the Luminiferous Ether. Trans. Camb. Phil. Soc. 7: pp. 97—112.
  2. Надо заметить, что если рассматривать точечные заряды как предельный случай твердых, но абсолютно проницаемых друг для друга тел, такое равновесие с (частичной) нейтрализацией оказывается возможным, однако такая модель точечного заряда отвергается при формулировке теоремы как физически нереалистичная (и в любом случае она даст для точечного предела бесконечные энергии взаимодействия).
  3. Например, такое доказательство остается в силе при добавлении к электростатическим полям внешнего вихревого электрического поля (которое может возникать в электродинамике, даже в течение некоторого промежутка времени не изменяясь).
  4. Имеется в виду не тот заряд, равновесие которого мы рассматриваем, а какие-то из остальных зарядов, создающих поле, равновесие данного заряда в котором рассматривается.
  5. Обсуждение всех оговорок — см. в параграфе Формулировка.
  6. Однако для обобщения теоремы на случай твердых тел с непрерывным распределением заряда случай безразличного равновесия встречается достаточно часто (См. Обобщения). Если же рассмотреть случай системы точечных зарядов без наложенных связей, однако допустить их бесконечное количество и даже непрерывное распределение зарядов, то в безразличном равновесии может оказаться какой-то из зарядов (например, дискретный точечный заряд в центре полой заряженной сферы, однако равновесие других зарядов (крайних) не может быть безразличным (мы это здесь не доказываем).
  7. Доказательство и того и другого здесь не приводится. В принципе, учёт этих тонких особенностей несколько нарушают простоту подхода с использованием потенциала для строгого доказательства. Хотя на «физическом уровне строгости» он, безусловно, нагляден и прост.
  8. По крайней мере, в варианте теоремы с конечным количеством дискретных зарядов. Для варианта с допущением непрерывных распределений (бесконечного количества) зарядов это утверждение должно дополнительно уточняться.
  9. Поскольку применение теоремы Ирншоу к гравитации (если не рассматривать антигравитации) не представляет интереса — см. следующее примечание, то среди известных фундаментальных сил кандидатов для её применения кроме электрических и магнитных просто не находится. Тем не менее, она может быть применена во всех случаях, когда такие силы вводятся чисто теоретически, а также в случаях, когда силы, подобные кулоновским появляются в какой-то феноменологической теории (например, в гидродинамике).
  10. Пример ньютоновской гравитации, хотя формально совершенно корректен, однако не слишком содержателен. Дело в том, что не только в ньютоновской, но и в любой другой теории гравитации, если она подразумевает только притяжение, факт отсутствия (статического) равновесия кроме столкновения притягивающихся объектов — совершенно очевиден и без теоремы Ирншоу.
  11. Строгая неустойчивость исходной теоремы должна быть заменена нестрогой, то есть становится допустим (и в принципе не слишком редок) случай безразличного равновесия.
  12. Здесь рассматривается случай, когда заряды — не существенно, точечные или распределенные, жестко закреплены в объёме или на поверхности твердых тел (или, так или иначе, соединены жесткими связями).
  13. Можно рассмотреть и вариант доказательства в терминах сил и напряженности поля, как это сделано в доказательстве главной теоремы в статье, а не потенциальной энергии и потенциала, что было бы полностью эквивалентно. Однако здесь для краткости и простоты мы ограничимся вторым вариантом.
  14. По сути, в этом месте теорема для твердого тела свелась к теореме для точечных зарядов.
  15. Физическая энциклопедия, статья «Ирншоу теорема».
  16. А в обсуждаемом нами контексте исследования равновесия — главным образом электростатического.
  17. Или, если угодно, изменяется до полной неузнаваемости. Даже сам термин точечная частица, как он обычно употребляется в квантовой физике, означает, в сущности, совершенно другое, чем в классическом, по большому счету не будет слишком большим преувеличением сказать, что употребление термина точечная частица в квантовом случае чисто условно и чуть ли не случайно созвучно классическому пониманию этого термина.
  18. Можно бы было возразить (вместе с физиками времен зарождения квантовой теории), что это равновесие не вполне статическое. Действительно, электрон в атоме водорода имеет кинетическую энергию и квадрат импульса. Однако в квантовой механике полностью остановиться электрон просто не может, по крайней мере, для того чтобы остановиться, ему пришлось бы занять всё бесконечное пространство. Таким образом, можно говорить о том, что или понятие статического равновесия в квантовом случае вообще исчезает (становится неприменимо) или остается согласиться, что атом водорода в основном (невозбужденном) состоянии представляет собой равновесие протона и электрона настолько статическое, насколько это только вообще возможно в квантовом случае.

Минимальный электрический потенциал

Этот пример показывает, как найти минимальный электрический потенциал путем решения уравнения

-∇⋅(ε∇V)=0

на единичном диске Ω={(x,y)|x2+y2≤1}, с V(x,y)=x2 на контуре ∂Ω. Вот, ε – абсолютная диэлектрическая диэлектрическая проницаемость материала. Тулбокс использует относительную диэлектрическую проницаемость материала εr=ε/ε0, где ε0 – абсолютная диэлектрическая проницаемость вакуума. Обратите внимание, что константа ε0 не влияет на результат в этом примере.

Для минимальной поверхностной задачи значение ε дается

ε=11+|∇V|2

Поскольку диэлектрическая проницаемость является функцией решения V, минимальная поверхностная задача является нелинейной эллиптической задачей.

Чтобы решить задачу минимальной поверхности, сначала создайте электромагнитную модель для электростатического анализа.

emagmodel = createpde('electromagnetic','electrostatic');

Создайте геометрию и включите ее в модель. The circleg функция представляет эту геометрию.

geometryFromEdges(emagmodel,@circleg);

Постройте график геометрии с метками ребер.

pdegplot(emagmodel,'EdgeLabels','on'); 
axis equal
title 'Geometry with Edge Labels';

Figure contains an axes. The axes with title Geometry with Edge Labels contains 5 objects of type line, text.

Задайте значение вакуумной диэлектрической проницаемости в системе модулей СИ.

emagmodel.VacuumPermittivity = 8.8541878128E-12;

Задайте относительную диэлектрическую проницаемость материала.

perm = @(region,state) 1./sqrt(1+state.ux.^2 + state.uy.^2);
electromagneticProperties(emagmodel,'RelativePermittivity',perm); 

Задайте электростатический потенциал на контуре с помощью функции V(x,y)=x2.

bc = @(region,~)region.x.^2;
electromagneticBC(emagmodel,'Voltage',bc,'Edge',1:emagmodel.Geometry.NumEdges); 

Сгенерируйте и постройте график mesh.

generateMesh(emagmodel);
figure; 
pdemesh(emagmodel); 
axis equal

Figure contains an axes. The axes contains 2 objects of type line.

Решить модель.

R = solve(emagmodel);
V = R.ElectricPotential;

Постройте график электрического потенциала, используя Contour параметр для отображения эквипотенциальных линий.

figure; 
pdeplot(emagmodel,'XYData',V,'ZData',V,'Contour','on');
xlabel 'x'
ylabel 'y'
zlabel 'V(x,y)'
title 'Minimal Electric Potential'

Figure contains an axes. The axes with title Minimal Electric Potential contains 12 objects of type patch, line.

Теорема
Ирншоу
 сформулирована
в XIX
веке английским
физиком Ирншоу.
Является следствием теоремы
Гаусса.

Теорема
Ирншоу — чисто классическая (не квантовая)
теорема и не имеет квантового аналога.

Формулировка

Всякая
равновесная конфигурация точечных
зарядов неустойчива, если на них кроме
кулоновских сил притяжения и отталкивания
ничто не действует.

  • Подразумевается,
    что точечные заряды «непроницаемы»,
    то есть не могут занимать одно и то же
    положение в пространстве (то есть,
    подразумевается, что в этом случае
    прежде, чем точечные заряды займут
    такое положение, между ними начнут
    действовать не-кулоновские силы,
    например, силы упругости поверхностей
    — если рассматривать точечный заряд
    как предельный случай маленького тела
    конечных размеров); иными словами,
    очевидные случаи равновесия с совпадающими
    по пространственному положению
    положительным и отрицательным зарядами
    по условию теоремы исключаются из
    рассмотрения. Это можно мотивировать
    альтернативным «непроницаемости»
    способом тем, что такие случаи тривиальны
    и поэтому не интересны, а также физически
    сомнительны (подразумевают бесконечную
    энергию взаимодействия зарядов при
    таком положении).

  • В
    формулировке теоремы могут быть
    добавлены «внешние» электростатические
    поля (создаваемые закрепленными
    источниками).

  • Теорема
    сама по себе ничего не утверждает о
    том, что равновесие вообще возможно.
    Однако нетрудно найти примеры,
    показывающие, что равновесные конфигурации
    точечных зарядов (неустойчивые) могут
    существовать.

Доказательство

Существует
два варианта доказательства, в рамках
электростатики полностью эквивалентные
и в принципе основанные на одной той же
физической (математической) идее,
выраженной в несколько разных терминах.

Первый
реализуется в терминах напряженности
поля и основан на теореме
Гаусса
,
второй же — в терминах потенциала и
основан на уравнении
Лапласа
 (или Пуассона).

Преимуществом
первого способа является то, что он
применим не только для случая потенциальных
полей, то есть не требует того, чтобы
напряженность поля полностью выражалась
через скалярный потенциал. В этом случае
достаточно только того, чтобы оно
подчинялось закону Гаусса.

Доказательство
в терминах потенциала отличается,
пожалуй, несколько большей простотой
и геометрической наглядностью.

Доказательство
в терминах напряженности поля

Рассмотрим
положительный точечный заряд. Действующая
на него сила направлена вдоль вектора
электростатического поля. Для устойчивого
равновесия в какой-либо точке пространства,
необходимо, чтобы при (малом) отклонении
от неё на него начинала действовать
возвращающая сила. То есть в случае
электростатики для того, чтобы существовала
такая точка, необходимо, чтобы в малой
окрестности этой точки, вектор поля,
создаваемого всеми остальными зарядами,
был направлен к ней (в её сторону). То
есть линии поля должны сходиться в такую
точку, если она существует. Это значит
(вследствие теоремы
Гаусса
),
что в ней должен находиться ещё
отрицательный заряд. Но по такой вариант
равновесия не удовлетворяет условию
теоремы (например, если рассматривать
точечные заряды как очень маленькие
твердые шарики, то прежде чем достичь
описанного положения равновесия, они
столкнутся поверхностями, то есть в
реальном равновесии будут присутствовать
силы не электростатической природы,
если же рассматривать их как математические
точки, это решение будет содержать
бесконечную энергию взаимодействия,
что не является физически приемлемым,
а если рассматривать это с несколько
другой точки зрения — это выходит за
рамки применимости классической
электростатики).

С
точки зрения теоремы Гаусса, возникновение
возвращающей силы (со всех сторон
направленной к некоторой точке) означает,
что вектор напряжённости внешних сил
создаёт отрицательный поток через малую
поверхность, окружающую точку
предполагаемого равновесия. Но теорема
Гаусса утверждает, что поток внешних
сил через поверхность равен нулю, если
внутри этой поверхности нет заряда.
Получаем противоречие.

В
случае отрицательного заряда рассмотрение
совершенно аналогично.

Доказательство
в терминах потенциала

Рассмотрим
один из точечных зарядов в поле остальных
и покажем, что он, если и находится в
равновесии, то только в неустойчивом.
(Будем называть этот заряд выделенным).

Предположим,
что выделенный заряд находится в
равновесии (противоположный случай не
интересен).

Потенциал,
создаваемый остальными зарядами в
окрестности нашего выделенного,
подчиняется уравнению
Лапласа
 (если
только какой-то из этих остальных зарядов
не совпадает по положению с положением
выделенного заряда, что исключено
формулировкой теоремы), поскольку это
электростатическое поле, а в данной
области пространства отсутствуют его
источники (другие заряды).

Уравнение
Лапласа

имеет
своим следствием утверждение:

  • или
    одна вторая производная потенциала 
     по
    какой-то из координат — x,
    y
     или z (то
    есть одно из трех слагаемы в левой
    части) меньше нуля,

  • или
    все три равны нулю.

В
первом случае, очевидно, что потенциал
не имеет экстремума в
данной точке, а значит, его не имеет тут
и потенциальная энергия выделенного
заряда, то есть его равновесие неустойчиво.

Второй
случай распадается на два варианта: 1.
Если все три вторые производные потенциала
равны нулю не только в точке, но и в её
конечной окрестности (а первые производные
в самой точке равны нулю по предположению
равновесия), то потенциал в этой
окрестности есть константа и мы имеем,
очевидно, случай безразличного равновесия,
то есть это не есть равновесие устойчивое.
Можно показать, что для случая конечного
количества дискретных точечных источников
этот вариант вообще не реализуется.

2.
Если все три вторые производные потенциала
равны нулю только в единственной точке
(т. н. точка
уплощения
),
то можно показать, что:

  • она
    всё равно не является точкой экстремума,

  • сам
    этот случай не может реализоваться для
    любого из зарядов в качестве выбранного,
    например, не реализуется для крайних
    зарядов, для которых вторые производные
    потенциала всегда не равны нулю.

Таким
образом, мы привели тут доказательство
достаточно полно для первого случая
(случая общего положения) и только
наметили вопросы, возникающие в некоторых
особых случаях, и ответы на них.

Приходится
признать, что, наверное, проще всего
доказательство этих ответов получается
всё-таки применением подхода, прямо
опирающегося на теорему Гаусса.

Обобщения

  • Тривиальным
    будет замечание, что теорема верна не
    только для электростатики, но для любых
    сил, подчиняющихся закону кулона
    (например, для сил ньютоновской
    гравитации).

  • Теорема
    верна также для магнитостатики в случае
    фиксированных диполей и токов (в случае
    присутствия наведенных магнитных
    моментов она может нарушаться). Ключевым
    для доказательства здесь является теорема
    Гаусса для магнитного поля
    .
    В принципе доказательство для
    магнитостатики может быть сведено к
    электростатическому случаю,
    используя Теоремы
    Ампера о магнитном листке
    ,
    но тогда требуется использовать
    электростатическую формулировку
    теоремы не для точечных частиц, а для
    твердых тел (см. следующий пункт).

  • Теорема
    верна (формулировка при этом должна
    быть немного модифицирована) для жестких
    систем точечных зарядов и
    фиксированно заряженных твердых
    (абсолютно твердых) тел (непроницаемых
    друг для друга — в каком-то из смыслов,
    аналогичных обозначенным в формулировке
    для точечных зарядов — то есть, по
    крайней мере, заряженные области твердых
    тел). Идея доказательства состоит в
    том, чтобы рассмотреть хотя бы малые
    поступательные смещения твердого тела
    (без поворотов). Тогда потенциальная
    энергия жесткой системы зарядов
    есть просто сумма каждого заряда,
    умноженного на потенциал в его
    окрестности, взятый каждый раз в точке,
    обусловленной общим смещением тела: 
    ,
    где 
     —
    вектор общего смещения тела, например,
    смещения его центра масс. Поскольку
    потенциал 
     в
    окрестности каждой точки удовлетворяет
    уравнению Лапласа (подразумевается,
    что заряды другого тела отсутствуют в
    бесконечной близости к зарядом данного
    в силу их непроницаемости), то ему
    удовлетворяет и их линейная комбинация
    (сумма с коэффициентами), то есть 
     —
    также удовлетворяет уравнению Лапласа
    а
    значит, не может иметь минимума.

  • По-видимому,
    теорема верна и для случая упругих
    связей зарядов.

  • Теорема
    верна для случая наведенных дипольных
    моментов (в электростатике и
    магнитостатике) при
    условии
     положительного
    коэффициента поляризуемости для
    наведенных диполей.

  • Теорема не верна
    для случая наведенных диполей с
    отрицательной поляризуемостью. Такой
    случай, по-видимому, не реализуется
    естественно для электрических диполей
    (случай искусственного управления
    дипольным моментом здесь не имеется в
    виду, он рассмотрен ниже). Однако для
    наведенных магнитных диполей случай
    отрицательной поляризуемости встречается
    достаточно часто, например,
    для диамагнитных или сверхпроводящих тел,
    для которых, таким образом, обобщение
    теоремы Ирншоу не
    выполняется
    ,
    то есть для них устойчивое равновесие
    вполне возможно (В.
    Браунбек
    [de]1939)

  • Достаточно
    очевидно, что теорема Ирншоу не применима
    к случаю взаимно проницаемых твердых
    тел. Например, нетрудно показать, что
    при взаимодействии двух равномерно
    заряженных (зарядами разного знака,
    одинаковыми или разными по величине)
    шаров (одинакового или разного диаметра,
    в том числе вместо одного из шаров можно
    взять точечный заряд) будет иметь место
    устойчивое равновесие в положении,
    когда их центры совпадают. Правда, не
    очень ясна практическая ценность такой
    теоретической модели, как взаимно
    проницаемые твердые тела.

Границы
применимости

Фундаментально-теоретические
границы применимости теоремы

Теорема
Ирншоу как таковая (и как она описана в
данной статье) — чисто классическая
(не квантовая) теорема. Этим определяется
основная фундаментальная граница её
области применимости.

Более
того, хотя в некоторых частных случаях
можно сформулировать некий её квантовый
аналог, тем не менее и говоря вообще, и
во многих конкретных ключевых и
основополагающих случаях такое обобщение
невозможно (если конечно не считать
обобщением теорему с противоположным
утверждением).

В
двух словах, дело заключается в том, что
в квантовом случае (то есть тогда, когда
невозможно ограничиться классическим
приближением), вообще говоря, нет взаимной
непроницаемости (например, электрон и
протон вполне могут занимать одно и то
же место, проходить друг сквозь друга
и даже «не замечать» друг друга при
этом, за исключением электромагнитного
 взаимодействия.
Кроме того, само понятие классической
точечной частицы в квантовом случае —
то есть, например, если мы рассматриваем
равновесие протона с электроном, то на
пространственном масштабе порядка
атомного диаметра — пропадает
само
понятие точечной частицы.

Из
всего этого следует и радикальное
изменение ситуации с возможностью
устойчивого равновесия заряженных
частиц в квантовом случае.

В
сущности, можно сказать, что атом водорода
— это и есть устойчивое равновесие
протона и электрона, взаимодействующих
только электростатически.

Прикладной
аспект

В
технике с теоремой Ирншоу связаны
определенные ограничения на решение
инженерной задачи устойчивого удержания
(или подвеса) некоторого тела с помощью
полей (электрического, магнитного, часто
в комбинации с естественным полем
тяжести), то есть без непосредственного
соприкосновения с твердыми и вообще
вещественными удерживающими конструкциями.

Однако
эти ограничения могут быть обойдены.

Основные
способы, используемые для этого, таковы:

  1. Использование
    магнитного поля и тела с отрицательной
    магнитной восприимчивостью (диамагнетика)
    или сверхпроводника. В этом случае, как
    упоминалось выше, можно достичь
    естественной автоматической устойчивости
    без применения каких-то дополнительных
    мер (и без затрат энергии). В принципе,
    достаточно правильно выбрать конфигурацию
    источников поля и форму диамагнитного
    тела.

  2. Использование
    высокочастотных колебаний поля и волн
    (частота колебаний высокая сравнительно
    с характерной частотой колебаний
    удерживаемого тела).

  3. Использование
    активного управления полем и/или
    электрическими или магнитными параметрами
    (зарядом, электрическим или магнитным
    дипольным моментом и т. п.) удерживаемого
    тела.

Применение

Теорема
Ирншоу исторически сыграла важную роль
в теории строения атома — предположения
об атоме как о системе статических
зарядов были на её основании отвергнуты,
и для объяснения устойчивости атома
была введена планетарная модель
атома
.

Имеет
заметное прикладное значение в технике.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Добавить комментарий