Как найти основание предела

Уважаемые студенты!
Срочно заказать решение своих задач можно здесь всего за 10 минут.

Второй замечательный предел

Данная статья: «Второй замечательный предел» посвящена раскрытию в пределах неопределенностей вида:

$ bigg[frac{infty}{infty}bigg]^infty $ и $ [1]^infty $.

Так же такие неопределенности можно раскрывать с помощью логарифмирования показательно-степенной функции, но это уже другой метод решения, о котором будет освещено в другой статье.

Формула и следствия

Формула второго замечательного предела записывается следующим образом: $$ lim_{x to infty} bigg (1+frac{1}{x}bigg)^x = e, text{ где } e approx 2.718 $$

Из формулы вытекают следствия, которые очень удобно применять для решения примеров с пределами: $$ lim_{x to infty} bigg (1 + frac{k}{x} bigg)^x = e^k, text{ где } k in mathbb{R} $$ $$ lim_{x to infty} bigg (1 + frac{1}{f(x)} bigg)^{f(x)} = e $$ $$ lim_{x to 0} bigg (1 + x bigg)^frac{1}{x} = e $$

Стоить заметить, что второй замечательный предел можно применять не всегда к показательно-степенной функции, а только в случаях когда основание стремится к единице. Для этого сначала в уме вычисляют предел основания, а затем уже делают выводы. Всё это будет рассмотрено в примерах решений.

Примеры решений

Рассмотрим примеры решений с использованием прямой формулы и её следствий. Так же разберем случаи, при которых формула не нужна. Достаточно записать только готовый ответ.

Пример 1
Найти предел $ lim_{xtoinfty} bigg( frac{x+4}{x+3} bigg)^{x+3} $
Решение

Подставим бесконечность в предел и посмотрим на неопределенность: $$ lim_{xtoinfty} bigg( frac{x+4}{x+3} bigg)^{x+3} = bigg(frac{infty}{infty}bigg)^infty $$

Найдем предел основания: $$ lim_{xtoinfty} frac{x+4}{x+3}= lim_{xtoinfty} frac{x(1+frac{4}{x})}{x(1+frac{3}{x})} = 1 $$

Получили основание равное единице, а это значит уже можно применить второй замечательный предел. Для этого подгоним основание функции под формулу путем вычитания и прибавления единицы:

$$ lim_{xtoinfty} bigg( 1 + frac{x+4}{x+3} – 1 bigg)^{x+3} = lim_{xtoinfty} bigg( 1 + frac{1}{x+3} bigg)^{x+3} = $$

Смотрим на второе следствие и записываем ответ:

$$ lim_{xtoinfty} bigg( 1 + frac{1}{x+3} bigg)^{x+3} = e $$

Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение онлайн. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя!

Ответ
$$ lim_{xtoinfty} bigg( 1 + frac{1}{x+3} bigg)^{x+3} = e $$
Пример 2
Определить предел $ lim_{xtoinfty} bigg (1+frac{1}{x^3}bigg)^{x^2} $
Решение

Замечаем, что основание степени стремится к единице $ 1+frac{1}{x^3} to 1 $, при $ xtoinfty $, а показатель $ x^2 to infty $. Поэтому можно применить второе следствие. Но сперва, разберемся с показателем и приведем его в нужный вид – сделаем равным знаменателю основания. Для этого умножим его на $ x $ и разделим на него же. Получаем:

$$ lim_{xtoinfty} bigg (1+frac{1}{x^3}bigg)^{x^2 cdot frac{x}{x}} = lim_{xtoinfty} bigg (1+frac{1}{x^3}bigg)^{frac{x^3}{x}} = $$

Уже теперь применяем формулу и получаем:

$$ lim_{xtoinfty}e^ frac{1}{x} = e^{lim_{xtoinfty} frac{1}{x}} = e^0 = 1 $$

Ответ
$$ lim_{xtoinfty} bigg (1+frac{1}{x^3}bigg)^{x^2} = 1 $$
Пример 3
Вычислить предел $ lim_{xto 1} (6-5x)^frac{x}{x-1} $
Решение

Получаем неопределенность $ 1^infty $. Для её раскрытия воспользуемся вторым замечательным пределом. Но у нас $ xto 1 $. Как быть? Выполняем замену $ y = x-1 $, тогда $ yto 0 $, при $ x to 1 $. Из замены следует, что $ x = y + 1 $.

$$ lim_{xto 1} (6-5x)^frac{x}{x-1} = lim_{yto 0} (6-5(y+1))^frac{y+1}{y} = 1^infty = $$

$$ = lim_{yto 0} (1-5y)^frac{y+1}{y} = lim_{yto 0} (1+(-5y))^frac{(y+1)cdot (-5)}{-5cdot y} = $$

$$ = lim_{yto 0} e^{-5cdot (y+1)} = e^{-5} $$

Ответ
$$ lim_{xto 1} (6-5x)^frac{x}{x-1} = e^{-5} $$
Пример 4
Решить предел $ lim_{xto infty} bigg (frac{3x^2+4}{3x^2-2} bigg) ^{3x} $
Решение

Находим предел основания и видим, что $ lim_{xtoinfty} frac{3x^2+4}{3x^2-2} = 1 $, значит можно применить второй замечательный предел. Стандартно по плану прибавляем и вычитаем единицу из основания степени:

$$ lim_{xto infty} bigg (1+frac{3x^2+4}{3x^2-2}-1 bigg) ^{3x} = lim_{xto infty} bigg (1+frac{6}{3x^2-2} bigg) ^{3x} = $$

Подгоняем дробь под формулу 2-го замеч. предела:

$$ = lim_{xto infty} bigg (1+frac{1}{frac{3x^2-2}{6}} bigg) ^{3x} = $$

Теперь подгоняем степень. В степени должна быть дробь равная знаменателю основания $ frac{3x^2-2}{6} $. Для этого умножим и разделим степень на неё, и продолжим решать:

$$ = lim_{xto infty} bigg (1+frac{1}{frac{3x^2-2}{6}} bigg) ^{frac{3x^2-2}{6} cdot frac{6}{3x^2-2}cdot 3x} = lim_{xto infty} e^{frac{18x}{3x^2-2}} = $$

Предел, расположенный в степени при $ e $ равен: $ lim_{xto infty} frac{18x}{3x^2-2} = 0 $. Поэтому продолжая решение имеем:

$$ = e^0 = 1 $$

Ответ
$$ lim_{xto infty} bigg (frac{3x^2+4}{3x^2-2} bigg) ^{3x} = 1 $$

Разберем случаи, когда задача похожа на второй замечательный предел, но решается без него.

Пример 5
Найти $ lim_{xtoinfty} bigg ( frac{x+3}{3x+4} bigg )^{x+1} $
Решение

Начинаем с проверки равен ли предел основания единице. Имеем:

$$ lim_{xtoinfty} frac{x+3}{3x+4} = frac{1}{3} $$

А это значит, что формулировка второго замечательного предела не соответствует данной задаче, так как $ frac{1}{3}ne 1 $

Продолжаем вычисление предела:

$$ lim_{xtoinfty} bigg ( frac{x+3}{3x+4} bigg )^{x+1} = bigg (frac{1}{3} bigg ) ^infty = 0 $$

Ответ
$$ lim_{xtoinfty} bigg ( frac{x+3}{3x+4} bigg )^{x+1} = 0 $$
Пример 6
Найти $ lim_{xtoinfty} bigg ( frac{3x+4}{x+3} bigg )^{x-5} $
Решение

Начинаем с проверки равен ли предел основания единице. Имеем:

$$ lim_{xtoinfty} frac{3x+4}{x+3} = 3 $$

А это значит, что формулировка второго замечательного предела не соответствует данной задаче, так как $ 3 ne 1 $

Продолжаем вычисление предела:

$$ lim_{xtoinfty} bigg ( frac{3x+4}{x+3} bigg )^{x-5} = 3^infty = infty $$

Ответ
$$ lim_{xtoinfty} bigg ( frac{3x+4}{x+3} bigg )^{x-5} =infty $$

В статье: «Второй замечательный предел: примеры решений» была разобрана формула, её следствия и приведены частые типы задач по этой теме.

Второй замечательный предел

Обычно второй замечательный предел записывают в такой форме:

$$
begin{equation}
lim_{xtoinfty}left(1+frac{1}{x}right)^x=e
end{equation}
$$

Число $e$, указанное в правой части равенства (1), является иррациональным. Приближённое значение этого числа таково: $eapprox{2{,}718281828459045}$. Если сделать замену $t=frac{1}{x}$, то формулу (1) можно переписать в следующем виде:

$$
begin{equation}
lim_{tto{0}}biggl(1+tbiggr)^{frac{1}{t}}=e
end{equation}
$$

Как и для первого замечательного предела, неважно, какое выражение стоит вместо переменной $x$ в формуле (1) или вместо переменной $t$ в формуле (2). Главное – выполнение двух условий:

  1. Основание степени (т.е. выражение в скобках формул (1) и (2)) должно стремиться к единице;
  2. Показатель степени (т.е. $x$ в формуле (1) или $frac{1}{t}$ в формуле (2)) должен стремиться к бесконечности.

Говорят, что второй замечательный предел раскрывает неопределенность $1^infty$. Заметьте, что в формуле (1) мы не уточняем, о какой именно бесконечности ($+infty$ или $-infty$) идёт речь. В любом из этих случаев формула (1) верна. В формуле (2) переменная $t$ может стремиться к нулю как слева, так и справа.

Отмечу, что есть также несколько полезных следствий из второго замечательного предела. Примеры на использование второго замечательного предела, равно как и следствий из него, очень популярны у составителей стандартных типовых расчётов и контрольных работ.

Пример №1

Вычислить предел $lim_{xtoinfty}left(frac{3x+1}{3x-5}right )^{4x+7}$.

Решение

Сразу отметим, что основание степени (т.е. $frac{3x+1}{3x-5}$) стремится к единице:

$$
lim_{xtoinfty}frac{3x+1}{3x-5}=left|frac{infty}{infty}right|
=lim_{xtoinfty}frac{3+frac{1}{x}}{3-frac{5}{x}}
=frac{3+0}{3-0}
=1.
$$

При этом показатель степени (выражение $4x+7$) стремится к бесконечности, т.е. $lim_{xtoinfty}(4x+7)=infty$.

Основание степени стремится к единице, показатель степени – к бесконечности, т.е. мы имеем дело с неопределенностью $1^infty$. Применим формулу (1) для раскрытия этой неопределённости. В основании степени формулы (1) расположено выражение $1+frac{1}{x}$, а в рассматриваемом нами примере основание степени таково: $frac{3x+1}{3x-5}$. Посему первым действием станет формальная подгонка выражения $frac{3x+1}{3x-5}$ под вид $1+frac{1}{x}$. Для начала прибавим и вычтем единицу:

$$
lim_{xtoinfty}left(frac{3x+1}{3x-5}right )^{4x+7}
=|1^infty|
=lim_{xtoinfty}left(1+frac{3x+1}{3x-5}-1right)^{4x+7}
$$

Следует учесть, что просто так добавить единицу нельзя. Если мы вынуждены добавить единицу, то её же нужно и вычесть, дабы не изменять значения всего выражения. Для продолжения решения учтём, что

$$
frac{3x+1}{3x-5}-1
=frac{3x+1}{3x-5}-frac{3x-5}{3x-5}
=frac{3x+1-3x+5}{3x-5}
=frac{6}{3x-5}.
$$

Так как $frac{3x+1}{3x-5}-1=frac{6}{3x-5}$, то:

$$
lim_{xtoinfty}left(1+ frac{3x+1}{3x-5}-1right)^{4x+7}
=lim_{xtoinfty}left(1+frac{6}{3x-5}right )^{4x+7}
$$

Продолжим «подгонку». В выражении $1+frac{1}{x}$ формулы (1) в числителе дроби находится 1, а в нашем выражении $1+frac{6}{3x-5}$ в числителе находится $6$. Чтобы получить $1$ в числителе, опустим $6$ в знаменатель с помощью следующего преобразования:

$$
1+frac{6}{3x-5}
=1+frac{1}{frac{3x-5}{6}}
$$

Таким образом,

$$
lim_{xtoinfty}left(1+frac{6}{3x-5}right )^{4x+7}
=lim_{xtoinfty}left(1+frac{1}{frac{3x-5}{6}}right )^{4x+7}
$$

Итак, основание степени, т.е. $1+frac{1}{frac{3x-5}{6}}$, подогнано под вид $1+frac{1}{x}$, который требуется в формуле (1). Теперь начнём работать с показателем степени. Заметьте, что в формуле (1) выражения, стоящие в показатели степени и в знаменателе, одинаковы:

Второй замечательный предел

Значит, и в нашем примере показатель степени и знаменатель нужно привести к одинаковой форме. Чтобы получить в показателе степени выражение $frac{3x-5}{6}$, просто домножим показатель степени на эту дробь. Естественно, что для компенсации такого домножения, придется тут же домножить на обратную дробь, т.е. на $frac{6}{3x-5}$. Итак, имеем:

$$
lim_{xtoinfty}left(1+frac{1}{frac{3x-5}{6}}right )^{4x+7}
=lim_{xtoinfty}left(1+frac{1}{frac{3x-5}{6}}right )^{frac{3x-5}{6}cdotfrac{6}{3x-5}cdot(4x+7)}
=lim_{xtoinfty}left(left(1+frac{1}{frac{3x-5}{6}}right)^{frac{3x-5}{6}}right)^{frac{6cdot(4x+7)}{3x-5}}
$$

Отдельно рассмотрим предел дроби $frac{6cdot(4x+7)}{3x-5}$, расположенной в степени:

$$
lim_{xtoinfty}frac{6cdot(4x+7)}{3x-5}
=left|frac{infty}{infty}right|
=lim_{xtoinfty}frac{6cdotleft(4+frac{7}{x}right)}{3-frac{5}{x}}
=6cdotfrac{4}{3}
=8.
$$

Согласно формуле (1) имеем $lim_{xtoinfty}left(1+frac{1}{frac{3x-5}{6}}right )^{frac{3x-5}{6}}=e$. Кроме того, $lim_{xtoinfty}frac{6cdot(4x+7)}{3x-5}=8$, поэтому возвращаясь к исходному пределу, получим:

$$
lim_{xtoinfty}left(left(1+frac{1}{frac{3x-5}{6}}right )^{frac{3x-5}{6}}right)^{frac{6cdot(4x+7)}{3x-5}}
=e^8.
$$

Полное решение без промежуточных пояснений будет иметь такой вид:

$$
lim_{xtoinfty}left(frac{3x+1}{3x-5}right )^{4x+7}=left|1^inftyright|
=lim_{xtoinfty}left(1+frac{3x+1}{3x-5}-1right)^{4x+7}
=lim_{xtoinfty}left(1+frac{6}{3x-5}right)^{4x+7}=\

=lim_{xtoinfty}left(1+frac{1}{frac{3x-5}{6}}right)^{4x+7}
=lim_{xtoinfty}left(1+frac{1}{frac{3x-5}{6}}right )^{frac{3x-5}{6}cdotfrac{6}{3x-5}cdot(4x+7)}
=lim_{xtoinfty}left(left(1+frac{1}{frac{3x-5}{6}}right)^{frac{3x-5}{6}}right)^{frac{6cdot(4x+7)}{3x-5}}
=e^8.
$$

Кстати сказать, вовсе не обязательно использовать первую формулу. Если учесть, что $frac{6}{3x-5}to{0}$ при $xtoinfty$, то применяя формулу (2), получим:

$$
lim_{xtoinfty}left(frac{3x+1}{3x-5}right )^{4x+7}=left|1^inftyright|
=lim_{xtoinfty}left(1+frac{3x+1}{3x-5}-1right)^{4x+7}
=lim_{xtoinfty}left(1+frac{6}{3x-5}right)^{4x+7}=\

=lim_{xtoinfty}left(1+frac{6}{3x-5}right)^{frac{3x-5}{6}cdotfrac{6}{3x-5}cdot(4x+7)}
=lim_{xtoinfty}left(left(1+frac{6}{3x-5}right)^{frac{3x-5}{6}}right)^{frac{6cdot(4x+7)}{3x-5}}
=e^8.
$$

Ответ: $lim_{xtoinfty}left(frac{3x+1}{3x-5}right)^{4x+7}=e^8$.

Пример №2

Найти предел $lim_{xto{1}}biggl(7-6xbiggr)^{frac{x}{3x-3}}$.

Решение

Выражение, стоящее в основании степени, т.е. $7-6x$, стремится к единице при условии $xto{1}$, т.е. $lim_{xto{1}}(7-6x)=7-6cdot1=1$. Для показателя степени, т.е. $frac{x}{3x-3}$, получаем: $lim_{xto{1}}frac{x}{3x-3}=infty$. Итак, здесь мы имеем дело с неопределенностью вида $1^infty$, которую раскроем с помощью второго замечательного предела.

Для начала отметим, что в формуле (1) переменная $x$ стремится к бесконечности, в формуле (2) переменная $t$ стремится к нулю. В нашем случае $xto{1}$, поэтому имеет смысл ввести новую переменную, чтобы она стремилась или к нулю (тогда применим формулу (2)), или к бесконечности (тогда применим формулу (1)). Введение новой переменной, вообще говоря, не является обязательным, это будет сделано просто для удобства решения. Проще всего новую переменную $y$ ввести так: $y=x-1$. Так как $xto{1}$, то ${x-1}to{0}$, т.е. $yto{0}$. Подставляя $x=y+1$ в рассматриваемый пример, и учитывая $yto{0}$, получим:

$$
lim_{xto{1}}biggl(7-6xbiggr )^{frac{x}{3x-3}}
=left|begin{aligned}&y=x-1;;x=y+1\&yto{0}end{aligned}right|=\
=lim_{yto{0}}biggl(7-6cdot(y+1)biggr)^{frac{y+1}{3cdot(y+1)-3}}
=lim_{yto{0}}biggl(1-6ybiggr)^frac{y+1}{3y}
=lim_{yto 0}biggl(1+(-6y)biggr)^frac{y+1}{3y}
$$

Применим формулу (2). Выражение в основании степени в формуле (2), т.е. $1+t$, соответствует форме выражения в основании степени нашего примера, т.е. $1+(-6y)$ (выражение $-6y$ играет роль $t$). Формула (2) предполагает, что показатель степени будет иметь вид $frac{1}{t}$, т.е. в нашем случае в показателе степени следует получить $frac{1}{-6y}$. Домножим показатель степени на выражение $frac{1}{-6y}$. Для компенсации такого домножения нужно домножить показатель степени на обратную дробь, т.е. на выражение $frac{-6y}{1}=-6y$:

$$
lim_{yto{0}}biggl(1-6ybiggr)^frac{y+1}{3y}=lim_{yto{0}}biggl(1+(-6y)biggr)^{frac{1}{-6y}cdot(-6y)cdotfrac{y+1}{3y}}
=lim_{yto{0}}left(biggl(1+(-6y)biggr)^{frac{1}{-6y}}right)^{-2(y+1)}
$$

Так как $lim_{yto{0}}biggl(1+(-6y)biggr)^{frac{1}{-6y}}=e$ и $lim_{yto{0}}(-2(y+1))=-2$, то получим:

$$
lim_{yto{0}}left(biggl(1+(-6y)biggr)^{frac{1}{-6y}}right)^{-2(y+1)}
=e^{-2}
=frac{1}{e^2}.
$$

Полное решение без пояснений таково:

$$
lim_{xto{1}}biggl(7-6xbiggr)^{frac{x}{3x-3}}
=left|begin{aligned}&y=x-1;;x=y+1\&yto{0}end{aligned}right|
=lim_{yto{0}}biggl(7-6cdot(y+1)biggr)^{frac{y+1}{3cdot(y+1)-3}}=\

=lim_{yto{0}}biggl(1-6ybiggr)^frac{y+1}{3y}
=lim_{yto{0}}biggl(1+(-6y)biggr)^{frac{1}{-6y}cdot(-6y)cdotfrac{y+1}{3y}}
=lim_{yto{0}}left(biggl(1+(-6y)biggr)^{frac{1}{-6y}}right)^{-2(y+1)}
=e^{-2}
=frac{1}{e^2}.
$$

Ответ: $lim_{xto{1}}biggl(7-6xbiggr)^{frac{x}{3x-3}}=frac{1}{e^2}$.

Пример №3

Найти предел $lim_{xto{0}}biggl(cos{2x}biggr)^{frac{1}{sin^2{3x}}}$.

Решение

Так как $lim_{xto{0}}(cos{2x})=1$ и $lim_{xto{0}}frac{1}{sin^2{3x}}=infty$ (напомню, что $sin{u}to{0}$ при $uto{0}$), то мы имеем дело с неопределённостью вида $1^infty$. Преобразования, аналогичные рассмотренным в примерах №1 и №2, укажем без подробных пояснений, ибо они были даны ранее:

$$
lim_{xto{0}}biggl(cos{2x}biggr)^{frac{1}{sin^2{3x}}}
=|1^infty|
=lim_{xto{0}}biggl(1+cos{2x}-1biggr)^{frac{1}{sin^2{3x}}}
$$

Так как $sin^2x=frac{1-cos{2x}}{2}$, то $cos{2x}-1=-2sin^2x$, поэтому:

$$
lim_{xto{0}}biggl(1+cos{2x}-1biggr)^{frac{1}{sin^2{3x}}}
=lim_{xto{0}}biggl(1+left(-2sin^2xright)biggr)^{frac{1}{-2sin^2x}cdot(-2sin^2x)cdotfrac{1}{sin^2 3x}}=\

=lim_{xto{0}}left(biggl(1+left(-2sin^2xright)biggr)^{frac{1}{-2sin^2x}}right)^{frac{-2sin^2{x}}{sin^2{3x}}}
=e^{-frac{2}{9}}.
$$

Здесь мы учли, что $lim_{xto{0}}frac{sin^2{x}}{sin^2{3x}}=frac{1}{9}$. Подробное описание того, как находить этот предел, дано в соответствующей теме.

Ответ: $lim_{xto{0}}biggl(cos{2x}biggr)^{frac{1}{sin^2{3x}}}=e^{-frac{2}{9}}$.

Пример №4

Найти предел $lim_{xto+infty}xleft(ln(x+1)-ln{x}right)$.

Решение

Так как при $x>0$ имеем $ln(x+1)-ln{x}=lnleft(frac{x+1}{x}right)$, то:

$$
lim_{xto+infty}xleft(ln(x+1)-ln{x}right)
=lim_{xto+infty}left(xcdotlnleft(frac{x+1}{x}right)right)
$$

Раскладывая дробь $frac{x+1}{x}$ на сумму дробей $frac{x+1}{x}=1+frac{1}{x}$ получим:

$$
lim_{xto+infty}left(xcdotlnleft(frac{x+1}{x}right)right)
=lim_{xto+infty}left(xcdotlnleft(1+frac{1}{x}right)right)
=lim_{xto+infty}left(lnleft(frac{x+1}{x}right)^xright)
=ln{e}
=1.
$$

Ответ: $lim_{xto+infty}xleft(ln(x+1)-ln{x}right)=1$.

Пример №5

Найти предел $lim_{xto{2}}biggl(3x-5biggr)^{frac{2x}{x^2-4}}$.

Решение

Так как $lim_{xto{2}}(3x-5)=6-5=1$ и $lim_{xto{2}}frac{2x}{x^2-4}=infty$, то мы имеем дело с неопределенностью вида $1^infty$. Подробные пояснения даны в примере №2, здесь же ограничимся кратким решением. Сделав замену $t=x-2$, получим:

$$
lim_{xto{2}}biggl(3x-5biggr)^{frac{2x}{x^2-4}}
=left|begin{aligned}&t=x-2;;x=t+2\&tto{0}end{aligned}right|
=lim_{tto{0}}biggl(1+3tbiggr)^{frac{2t+4}{t^2+4t}}=\

=lim_{tto{0}}biggl(1+3tbiggr)^{frac{1}{3t}cdot 3tcdotfrac{2t+4}{t^2+4t}}
=lim_{tto{0}}left(biggl(1+3tbiggr)^{frac{1}{3t}}right)^{frac{6cdot(t+2)}{t+4}}
=e^3.
$$

Можно решить данный пример и по-иному, используя замену: $t=frac{1}{x-2}$. Разумеется, ответ будет тем же:

$$
lim_{xto{2}}biggl(3x-5biggr)^{frac{2x}{x^2-4}}
=left|begin{aligned}&t=frac{1}{x-2};;x=frac{2t+1}{t}\&ttoinftyend{aligned}right|
=lim_{ttoinfty}left(1+frac{3}{t}right)^{tcdotfrac{4t+2}{4t+1}}=\

=lim_{ttoinfty}left(1+frac{1}{frac{t}{3}}right)^{frac{t}{3}cdotfrac{3}{t}cdotfrac{tcdot(4t+2)}{4t+1}}
=lim_{ttoinfty}left(left(1+frac{1}{frac{t}{3}}right)^{frac{t}{3}}right)^{frac{6cdot(2t+1)}{4t+1}}
=e^3.
$$

Ответ: $lim_{xto{2}}biggl(3x-5biggr)^{frac{2x}{x^2-4}}=e^3$.

Пример №6

Найти предел $lim_{xtoinfty}left(frac{2x^2+3}{2x^2-4}right)^{3x} $.

Решение

Выясним, к чему стремится выражение $frac{2x^2+3}{2x^2-4}$ при условии $xtoinfty$:

$$
lim_{xtoinfty}frac{2x^2+3}{2x^2-4}
=left|frac{infty}{infty}right|
=lim_{xtoinfty}frac{2+frac{3}{x^2}}{2-frac{4}{x^2}}
=frac{2+0}{2-0}=1.
$$

Таким образом, в заданном пределе мы имеем дело с неопределенностью вида $1^infty$, которую раскроем с помощью второго замечательного предела:

$$
lim_{xtoinfty}left(frac{2x^2+3}{2x^2-4}right)^{3x}
=|1^infty|
=lim_{xtoinfty}left(1+frac{2x^2+3}{2x^2-4}-1right)^{3x}=\

=lim_{xtoinfty}left(1+frac{7}{2x^2-4}right)^{3x}
=lim_{xtoinfty}left(1+frac{1}{frac{2x^2-4}{7}}right)^{3x}=\

=lim_{xtoinfty}left(1+frac{1}{frac{2x^2-4}{7}}right)^{frac{2x^2-4}{7}cdotfrac{7}{2x^2-4}cdot 3x}
=lim_{xtoinfty}left(left(1+frac{1}{frac{2x^2-4}{7}}right)^{frac{2x^2-4}{7}}right)^{frac{21x}{2x^2-4}}
=e^0
=1.
$$

Ответ: $lim_{xtoinfty}left(frac{2x^2+3}{2x^2-4}right)^{3x}=1$.

Содержание:

Замечательные пределы

Сравнение бесконечно малых функций

Признак существования предела (теорема о 2-х милиционерах)

Теорема: Если значения функции Замечательные пределы - определение и вычисление с примерами решения

значениями функций Замечательные пределы - определение и вычисление с примерами решения

Рассмотрим геометрический смысл данной теоремы (Рис. 62). Из рисунка видно, что в случае, когда функции Замечательные пределы - определение и вычисление с примерами решения стягиваются к прямой у=А, то они “вынуждают” функцию Замечательные пределы - определение и вычисление с примерами решения также приближаться к той же самой прямой (“куда идут два милиционера, ведущие арестованного, туда идет и сам арестованный”). Замечательные пределы - определение и вычисление с примерами решения

Рис. 62. Иллюстрация теоремы о “2-х милиционерах”.

Доказательство: Пусть Замечательные пределы - определение и вычисление с примерами решения – точка сгущения для функций Замечательные пределы - определение и вычисление с примерами решения в общей области определения. Это означает, что в некоторой Замечательные пределы - определение и вычисление с примерами решения-окрестности точки Замечательные пределы - определение и вычисление с примерами решениявыполняется неравенство Замечательные пределы - определение и вычисление с примерами решения В Замечательные пределы - определение и вычисление с примерами решения-окрестности точки Замечательные пределы - определение и вычисление с примерами решения выполняется неравенство Замечательные пределы - определение и вычисление с примерами решения Так как значения функции Замечательные пределы - определение и вычисление с примерами решения заключены между значениями функций Замечательные пределы - определение и вычисление с примерами решения то в некоторой Замечательные пределы - определение и вычисление с примерами решения-окрестности точки Замечательные пределы - определение и вычисление с примерами решения меньшей из Замечательные пределы - определение и вычисление с примерами решения-окрестностей будет выполняться неравенство Замечательные пределы - определение и вычисление с примерами решения Отсюда следует, что выполняется неравенство Замечательные пределы - определение и вычисление с примерами решения или Замечательные пределы - определение и вычисление с примерами решения

Первый замечательный предел

Определение: Предел отношения синуса какого-либо аргумента к этому аргументу при стремлении аргумента к нулю равен единице, т.е. Замечательные пределы - определение и вычисление с примерами решения и называется первым замечательным пределом.

Пример:

Пределы являются первыми замечательными пределами Замечательные пределы - определение и вычисление с примерами решения Замечательные пределы - определение и вычисление с примерами решения

Доказательство: Для вывода этой формулы построим окружность с центром в точке О(0; 0) и радиусом R = 1. Выберем угол Замечательные пределы - определение и вычисление с примерами решенияв первой координатной четверти и сравним площади трех фигур: треугольник АОВ, сектор АОВ и треугольник AOD (Рис. 63): Замечательные пределы - определение и вычисление с примерами решения

Рис. 63. Иллюстрация вывода формулы первого замечательного предела.

Из рисунка видно, что площади указанных фигу р связаны соотношением:

Замечательные пределы - определение и вычисление с примерами решения

Вычислим эти площади Замечательные пределы - определение и вычисление с примерами решения

Следовательно, вышеприведенное неравенство приводится к виду Замечательные пределы - определение и вычисление с примерами решения В силу того, что Замечательные пределы - определение и вычисление с примерами решения получаем Замечательные пределы - определение и вычисление с примерами решения Разделим полученное неравенство на Замечательные пределы - определение и вычисление с примерами решения знак всех неравенств не изменится: Замечательные пределы - определение и вычисление с примерами решения Переходя к обратным неравенствам, Замечательные пределы - определение и вычисление с примерами решения или в силу того, что Замечательные пределы - определение и вычисление с примерами решения то по теореме о 2-х милиционерах Замечательные пределы - определение и вычисление с примерами решения

Аналогично проводится доказательство для любого значения угла Замечательные пределы - определение и вычисление с примерами решения

Таким образом, наличие в пределе, сводящемся к неопределенности Замечательные пределы - определение и вычисление с примерами решения тригонометрических функции может указывать на первый замечательный предел.

При вычислении первого замечательного предела используют следующие формулы:

Замечательные пределы - определение и вычисление с примерами решения а также следующие таблицы:

Табл. 1. Значения синуса и косинуса на интервале Замечательные пределы - определение и вычисление с примерами решенияЗамечательные пределы - определение и вычисление с примерами решения

Табл. 2. Формулы приведения.

Замечательные пределы - определение и вычисление с примерами решения

Пример:

Найти Замечательные пределы - определение и вычисление с примерами решения

Решение:

При подстановке предельной величины переменной х имеем неопределенность Замечательные пределы - определение и вычисление с примерами решения Воспользуемся формулой Замечательные пределы - определение и вычисление с примерами решения и преобразуем данный предел следующим образом: Замечательные пределы - определение и вычисление с примерами решения

Пример:

Найти Замечательные пределы - определение и вычисление с примерами решения

Решение:

При подстановке предельного значения переменной х имеем неопределённость Замечательные пределы - определение и вычисление с примерами решения Воспользуемся формулой Замечательные пределы - определение и вычисление с примерами решения Замечательные пределы - определение и вычисление с примерами решения тогда данный предел равен:Замечательные пределы - определение и вычисление с примерами решения

Пример:

Найти Замечательные пределы - определение и вычисление с примерами решения

Решение:

При подстановке предельного значения переменной х имеем неопределённость Замечательные пределы - определение и вычисление с примерами решения Введём замену Замечательные пределы - определение и вычисление с примерами решения (при Замечательные пределы - определение и вычисление с примерами решения) и воспользуемся следующей формулой Замечательные пределы - определение и вычисление с примерами решения Предел преобразуется к виду:

Замечательные пределы - определение и вычисление с примерами решения

Пример:

Найти Замечательные пределы - определение и вычисление с примерами решения

Решение:

При подстановке предельного значения переменной х имеем неопределённость Замечательные пределы - определение и вычисление с примерами решения Воспользуемся формулами Замечательные пределы - определение и вычисление с примерами решенияЗамечательные пределы - определение и вычисление с примерами решения получим: Замечательные пределы - определение и вычисление с примерами решения

Замечательные пределы - определение и вычисление с примерами решения

Число e и натуральные логарифмы. Второй замечательный предел

Рассмотрим логарифмическую функцию Замечательные пределы - определение и вычисление с примерами решения Выбирая различные значения основания, будем вычислять тангенсы угла наклона касательной к графику этой функции в точке Замечательные пределы - определение и вычисление с примерами решения(см. график логарифмической функции в Лекции № 22).

Определение: Натуральным логарифмом называется логарифм, для которого основание выбрано так, чтобы тангенс угла наклона касательной к положительному направлению оси абсцисс (Ох) был равен 1.

Основанием натурального логарифма является число Замечательные пределы - определение и вычисление с примерами решения Это число трансцедентное, т.е. не является решением ни одного алгебраического уравнения. Установим связь между натуральными Замечательные пределы - определение и вычисление с примерами решения и десятичными Замечательные пределы - определение и вычисление с примерами решения логарифмами: Замечательные пределы - определение и вычисление с примерами решения

Определение: Вторым замечательным пределом называется предельное равенствоЗамечательные пределы - определение и вычисление с примерами решения (первая форма)

или

Замечательные пределы - определение и вычисление с примерами решения(вторая форма).

Замечание: Первая форма второго замечательного предела переходит во вторую с помощью замены Замечательные пределы - определение и вычисление с примерами решения с учетом теоремы о связи бесконечно большой функции с бесконечно малой функцией.

Замечание: Наличие неопределенности Замечательные пределы - определение и вычисление с примерами решения указывает на второй замечательный предел, т.е. если пределы функций Замечательные пределы - определение и вычисление с примерами решения что указывает на второй замечательный предел.

Пример:

Найти Замечательные пределы - определение и вычисление с примерами решения

Решение:

При подстановке предельного значения переменной х не имеем неопределенности Замечательные пределы - определение и вычисление с примерами решения

Замечательные пределы - определение и вычисление с примерами решения – не второй замечательный предел.

Пример:

Найти lim Замечательные пределы - определение и вычисление с примерами решения

Решение:

При подстановке предельного значения переменной х имеем неопределенность Замечательные пределы - определение и вычисление с примерами решения Проведём преобразование подлимитной функции: Замечательные пределы - определение и вычисление с примерами решения( – первая форма второго замечательного предела, преобразуем данное выражение под вид второго замечательного предела) Замечательные пределы - определение и вычисление с примерами решения

Замечательные пределы - определение и вычисление с примерами решения (роль функции Замечательные пределы - определение и вычисление с примерами решения играет выражение Замечательные пределы - определение и вычисление с примерами решения возведем круглую скобку в эту степень, а за квадратной скобкой возведем в обратную степень для тождественности проводимых преобразований, получим) =

Замечательные пределы - определение и вычисление с примерами решения = (выражение в квадратных скобках стремится к числу е, а показатель степени – к числу -4/5 (см. раскрытие неопределённости Замечательные пределы - определение и вычисление с примерами решения для полиномов примере из пункта Вычисление пределов и раскрытие неопределенностей поэтому окончательный ответ имеет вид)= Замечательные пределы - определение и вычисление с примерами решения

Пример:

Найти Замечательные пределы - определение и вычисление с примерами решения

Решение:

При подстановке предельного значения переменной х имеем неопределенность Замечательные пределы - определение и вычисление с примерами решения Проведём преобразование подлимитной функции:

Замечательные пределы - определение и вычисление с примерами решения (вторая форма второго замечательного предела, преобразуем данное выражение под вид второго замечательного предела)= Замечательные пределы - определение и вычисление с примерами решения = (роль функции Замечательные пределы - определение и вычисление с примерами решения играет выражение (2-2х))= Замечательные пределы - определение и вычисление с примерами решения

Замечательные пределы - определение и вычисление с примерами решения=(выражение в квадратных скобках стремится к числу е, а показатель степени – к числу -2 (подставить в показатель степени вместо переменной х ее предельное значение 1), поэтому окончательный ответ имеет вид) Замечательные пределы - определение и вычисление с примерами решения

  • Заказать решение задач по высшей математике

Сравнение бесконечно малых функций

Сравнить две бесконечно малые функции Замечательные пределы - определение и вычисление с примерами решения и Замечательные пределы - определение и вычисление с примерами решения означает вычислить предел Замечательные пределы - определение и вычисление с примерами решения

Определение: Если предел К не существует, то бесконечно малые функции Замечательные пределы - определение и вычисление с примерами решения и Замечательные пределы - определение и вычисление с примерами решенияназываются несравнимыми.

Пример:

ПустьЗамечательные пределы - определение и вычисление с примерами решения – две бесконечно малые функции при Замечательные пределы - определение и вычисление с примерами решения Доказать, что эти бесконечно малые функции несравнимые.

Решение:

Для доказательства вычислим предел Замечательные пределы - определение и вычисление с примерами решения -данный предел не существует, так как нельзя указать предельное значение для подлимитной функции cosx на бесконечности.

Определение: Если предел К равен нулю, то бесконечно малая функция Замечательные пределы - определение и вычисление с примерами решения называется бесконечно малой функцией более высокого порядка малости, чем бесконечно малая функция Замечательные пределы - определение и вычисление с примерами решения

Пример:

Пусть Замечательные пределы - определение и вычисление с примерами решения – две бесконечно малые функции при Замечательные пределы - определение и вычисление с примерами решения Доказать, что бесконечно малая функция Замечательные пределы - определение и вычисление с примерами решения является бесконечно малой функцией более высокого порядка малости, чем бесконечно малая функция Замечательные пределы - определение и вычисление с примерами решения

Решение:

Для доказательства вычислим предел Замечательные пределы - определение и вычисление с примерами решения Следовательно, бесконечно малая функция Замечательные пределы - определение и вычисление с примерами решения является бесконечно малой функцией более высокого порядка малости, чем бесконечно малая функция Замечательные пределы - определение и вычисление с примерами решенияпри Замечательные пределы - определение и вычисление с примерами решения

Определение: Если предел К равен Замечательные пределы - определение и вычисление с примерами решения то бесконечно малая функция Замечательные пределы - определение и вычисление с примерами решения называется бесконечно малой функцией более низкого порядка малости, чем бесконечно малая функция Замечательные пределы - определение и вычисление с примерами решения

Пример:

Пусть Замечательные пределы - определение и вычисление с примерами решения – две бесконечно малые функции при Замечательные пределы - определение и вычисление с примерами решения Доказать, что бесконечно малая функция Замечательные пределы - определение и вычисление с примерами решения является бесконечно малой функцией более низкого порядка малости, чем бесконечно малая функция Замечательные пределы - определение и вычисление с примерами решения

Решение:

Для доказательства вычислим предел Замечательные пределы - определение и вычисление с примерами решения

Следовательно, бесконечно малая функция Замечательные пределы - определение и вычисление с примерами решения является бесконечно малой функцией более низкого порядка малости, чем бесконечно малая функция Замечательные пределы - определение и вычисление с примерами решения

Определение: Если предел К равен конечному числу Замечательные пределы - определение и вычисление с примерами решения то бесконечно малые функции Замечательные пределы - определение и вычисление с примерами решения называются бесконечно малыми функциями одного порядка малости.

Пример:

Пусть Замечательные пределы - определение и вычисление с примерами решения – две бесконечно малые функции при Замечательные пределы - определение и вычисление с примерами решения Доказать, что бесконечно малые функции Замечательные пределы - определение и вычисление с примерами решения являются бесконечно малыми функциями одного порядка малости.

Решение:

Для доказательства вычислим предел Замечательные пределы - определение и вычисление с примерами решения

Следовательно, бесконечно малые функции Замечательные пределы - определение и вычисление с примерами решения являются бесконечно малыми функциями одного порядка малости при Замечательные пределы - определение и вычисление с примерами решения

Определение: Если предел К равен 1, то бесконечно малые функции а(х) и Д(х) называются эквивалентными.

Пример:

Пусть Замечательные пределы - определение и вычисление с примерами решения – две бесконечно малые функции при Замечательные пределы - определение и вычисление с примерами решения Доказать, что бесконечно малые функции Замечательные пределы - определение и вычисление с примерами решения являются эквивалентными.

Решение:

Вычислим предел Замечательные пределы - определение и вычисление с примерами решения Следовательно, бесконечно малые функции Замечательные пределы - определение и вычисление с примерами решения являются эквивалентными при Замечательные пределы - определение и вычисление с примерами решения Рассмотрим признак эквивалентности бесконечно малых функций.

Теорема: Для того чтобы бесконечно малые функции Замечательные пределы - определение и вычисление с примерами решения были эквивалентными, необходимо и достаточно, чтобы разность бесконечно малых функций Замечательные пределы - определение и вычисление с примерами решения была бесконечно малой функцией более высокого порядка малости, чем бесконечно малые функции Замечательные пределы - определение и вычисление с примерами решения.

Доказательство:

1. Необходимость. Пусть бесконечно малая функция Замечательные пределы - определение и вычисление с примерами решенияЗамечательные пределы - определение и вычисление с примерами решенияявляется бесконечно малой функцией более высокого порядка малости, чем бесконечно малые функции Замечательные пределы - определение и вычисление с примерами решения т.е. пределы Замечательные пределы - определение и вычисление с примерами решения Замечательные пределы - определение и вычисление с примерами решения Докажем, что бесконечно малые функции Замечательные пределы - определение и вычисление с примерами решения эквивалентны. Преобразуем первый из этих пределов: Замечательные пределы - определение и вычисление с примерами решения

Замечательные пределы - определение и вычисление с примерами решения Отсюда следует, что Замечательные пределы - определение и вычисление с примерами решения т.е. бесконечно малые функции Замечательные пределы - определение и вычисление с примерами решения эквивалентны. Аналогично преобразуется второй пре- дел.

2. Достаточность. Пусть бесконечно малые функции Замечательные пределы - определение и вычисление с примерами решения являются эквивалентными, т.е. Замечательные пределы - определение и вычисление с примерами решения Докажем, что разность двух бесконечно малых функций Замечательные пределы - определение и вычисление с примерами решения является бесконечно малой функцией более высокого порядка малости, чем бесконечно малые функции Замечательные пределы - определение и вычисление с примерами решения Преобразуем данный предел следующим образом: Замечательные пределы - определение и вычисление с примерами решения Отсюда следует, что функция Замечательные пределы - определение и вычисление с примерами решения является бесконечно малой функцией более высокого порядка малости, чем бесконечно малые функции Замечательные пределы - определение и вычисление с примерами решения Аналогично доказывается, что функция Замечательные пределы - определение и вычисление с примерами решения является бесконечно малой функцией более высокого порядка малости, чем бесконечно малые функции Замечательные пределы - определение и вычисление с примерами решения

Замечание: При вычислениях одна бесконечно малая функция может быть заменена на эквивалентную бесконечно малую функцию. Например, функции Замечательные пределы - определение и вычисление с примерами решения эквивалентны функции х при Замечательные пределы - определение и вычисление с примерами решения

—вышмат

Замечательные пределы

Первый замечательный предел

Предел отношения синуса бесконечно малой дуги к самой дуге, выраженной в радианах, равен единице:

Замечательные пределы - определение и вычисление с примерами решения Следовательно,

Замечательные пределы - определение и вычисление с примерами решения

Пример №25

Найти Замечательные пределы - определение и вычисление с примерами решения

Решение:

Применим первый замечательный предел:Замечательные пределы - определение и вычисление с примерами решения

Второй замечательный предел

Числом е называется предел функции

Замечательные пределы - определение и вычисление с примерами решения

Замечательные пределы - определение и вычисление с примерами решения

(Для запоминания: 2<е<3; 1828 – год рождения Л.Н. Толстого) Следовательно, Замечательные пределы - определение и вычисление с примерами решения

Задача о непрерывном начислении процентов

Первоначальный вклад в банк составил Замечательные пределы - определение и вычисление с примерами решения денежных единиц. Банк выплачивает ежегодно Замечательные пределы - определение и вычисление с примерами решения годовых. Необходимо найти размер вклада Замечательные пределы - определение и вычисление с примерами решения через t лет.

Решение:

Размер вклада будет увеличиваться ежегодно вЗамечательные пределы - определение и вычисление с примерами решения раз и

через t лет составит Замечательные пределы - определение и вычисление с примерами решения Если же начислять проценты n раз в году,

то будущая сумма составит Замечательные пределы - определение и вычисление с примерами решения Предположим, что проценты по вкладу начисляются каждое полугодие (n=2), ежеквартально (n=4), ежемесячно (n=12), каждый день (n=365), каждый час (n=8760) и, наконец, непрерывно (nЗамечательные пределы - определение и вычисление с примерами решения). Тогда за год размер вклада составит:Замечательные пределы - определение и вычисление с примерами решения

а за t лет: Замечательные пределы - определение и вычисление с примерами решения

Пример №26

Найти Замечательные пределы - определение и вычисление с примерами решения

Решение:

Т.к. Замечательные пределы - определение и вычисление с примерами решения имеем неопределенность вида Замечательные пределы - определение и вычисление с примерами решения Для ее раскрытия воспользуемся вторым замечательным пределом, выделив предварительно у дроби целую часть:

Замечательные пределы - определение и вычисление с примерами решения

Замечательные пределы - определение и вычисление с примерами решения

Пример №27

Найти Замечательные пределы - определение и вычисление с примерами решения

Решение:

Преобразуя выражение и используя непрерывность показательно-степенной функции, получим:

Замечательные пределы - определение и вычисление с примерами решения

  • Непрерывность функций и точки разрыва
  • Точки разрыва и их классификация
  • Дифференциальное исчисление
  • Исследование функций с помощью производных
  • Скалярное произведение и его свойства
  • Векторное и смешанное произведения векторов
  • Преобразования декартовой системы координат
  • Бесконечно малые и бесконечно большие функции
  1. Первый замечательный предел
  2. Раскрытие неопределенностей (left[frac00right]) с тригонометрическими функциями
  3. Второй замечательный предел
  4. Раскрытие неопределенности (left[1^{infty}right])
  5. Примеры

п.1. Первый замечательный предел

Исследуем поведение функции (f(x)=frac{sinx}{x}) вблизи (x_0=0).
Построим график.
Первый замечательный предел
Заполним таблицу со значениями (f(x)) непосредственно вблизи (x_0=0).

x -0,01 -0,001 -0,0001 0 0,0001 0,001 0,01
sin(x)/x 0,999983 0,99999983 0,9999999983 [0/0] 0,9999999983 0,99999983 0,999983

В самой точке 0 возникает неопределенность (left[frac00right]), но при приближении к ней с обеих сторон значение функции стремится к 1. Можем записать: $$ lim_{xrightarrow 0}frac{sinx}{x}=1 $$ Это равенство называют первым замечательным пределом.

п.2. Раскрытие неопределенностей (left[frac00right]) с тригонометрическими функциями

Из первого замечательного предела с помощью тригонометрических преобразований можно получить другие пределы: begin{gather*} lim_{xrightarrow 0}frac{tgx}{x}=1, lim_{xrightarrow 0}frac{arctgx}{x}=1\ lim_{xrightarrow 0}frac{arcsinx}{x}=1, lim_{xrightarrow 0}frac{1-cosx}{frac{x^2}{2}}=1 end{gather*} Все полученные формулы используются для раскрытия неопределенностей [0/0] при поиске пределов функций с тригонометрическими компонентами.

Например:
Найдем предел (lim_{xrightarrow 0}frac{1-cos4x}{x^2}) begin{gather*} lim_{xrightarrow 0}frac{1-cos4x}{x^2} = lim_{xrightarrow 0}frac{2sin^2 2x}{x^2}= 2lim_{xrightarrow 0}left(left(frac{sin2x}{x}right)cdotleft(frac{sin2x}{x}right)right)=\ =2cdot 4lim_{xrightarrow 0}left(left(frac{sin2x}{2x}right)cdotleft(frac{sin2x}{2x}right)right)= 8cdotlim_{xrightarrow 0}frac{sin2x}{2x}cdot lim_{xrightarrow 0}frac{sin2x}{2x}=8cdot 1cdot 1=8 end{gather*} Ответ: 8

п.3. Второй замечательный предел

Исследуем поведение функции (f(x)=left(1+frac1xright)^x) при (xrightarrowpminfty)
Построим график.
Второй замечательный предел
Заполним таблицу со значениями (f(x)) для больших по модулю x.

(x) -1000 -100 -10 10 100 1000 10000
(left(1+frac1xright)^x) 2,7196 2,7320 2,8680 2,5937 2,7048 2,7169 2,7181

На бесконечностях функция стремится к одному и тому же значению begin{gather*} e=2,7182818284\ lim_{xrightarrowinfty}left(1+frac1xright)^x=e end{gather*} Это равенство называют вторым замечательным пределом.
Число e часто называют числом Эйлера.
Бесконечность пишется без знаков, т.к. равенство справедливо как при (xrightarrow -infty), так и при (xrightarrow +infty).

п.4. Раскрытие неопределенности (left[1^{infty}right])

Если учесть, что (lim_{xrightarrowinfty}frac1x=0), тогда второй замечательный предел $$ lim_{xrightarrowinfty}left(1+frac1xright)^x=left[1^{infty}right]=e $$ дает ответ, чему равна единица в степени (infty). Поэтому его можно использовать для раскрытия неопределенностей, сводящихся к (left[1^{infty}right]).

Из второго замечательного предела с помощью преобразований для показательных и логарифмических функций можно получить другие полезные пределы: begin{gather*} lim_{xrightarrow 0}(1+x)^{frac1x}=e, lim_{xrightarrow infty}left(1+frac kxright)^x=e^k\ lim_{xrightarrow 0}frac{ln(1+x)}{x}=1, lim_{xrightarrow 0}frac{e^x-1}{x}=1 end{gather*} Для тех, кто заинтересовался, строгое доказательство замечательных пределов и их следствий можно найти в университетских учебниках по математическому анализу. Ваших знаний уже достаточно, чтобы полностью разобраться с этими вопросами.

Например:
Найдем предел (lim_{xrightarrow infty}left(frac{x+6}{x-2}right)^{3x+2})
Т.к. (lim_{xrightarrow infty}frac{x+6}{x-2}) и (lim_{xrightarrow infty}(3x+2)=infty), получаем неопределенность (left[1^{infty}right]).
Выделим целую часть из основания степени: $$ frac{x+6}{x-2}=frac{(x-2)+8}{x-2}=frac{x-2}{x-2}+frac{8}{x-2}=1+frac{8}{x-2} $$ Получаем: $$ lim_{xrightarrow infty}left(frac{x+6}{x-2}right)^{3x+2} = lim_{xrightarrow infty}left(1+frac{8}{x-2}right)^{3x+2} =left[1^{infty}right] $$ Замена переменных: (frac1t=frac{8}{x-2}, trightarrowinfty). Тогда (x=8t+2). begin{gather*} lim_{trightarrow infty}left(1+frac1tright)^{3(8t+2)+2}= lim_{trightarrow infty}left(1+frac1tright)^{24t+8} = left(lim_{trightarrow infty}left(1+frac1tright)^tright)^{24}cdot lim_{trightarrow infty}left(1+frac1tright)^8=\ =e^{24}cdot 1^8=e^{24} end{gather*} Здесь мы использовали (1^{infty}=e) и (1^8=1).
Ответ: (e^{24})

п.5. Примеры

Пример 1. Найдите значения пределов, используя первый замечательный предел:
a) ( lim_{xrightarrow 0}frac{1-cosx}{xsinx} ) begin{gather*} lim_{xrightarrow 0}frac{1-cosx}{xsinx}=left[frac00right]=lim_{xrightarrow 0}frac{2sin^2frac x2}{x^2underbrace{frac{sinx}{x}}_{=1}}=2lim_{xrightarrow 0}frac{sin^2frac x2}{x^2}=2lim_{xrightarrow 0}left(frac{sinfrac x2}{2cdotfrac x2}cdotfrac{sinfrac x2}{2cdotfrac x2}right)=\ =frac24lim_{xrightarrow 0}frac{sinfrac x2}{frac x2}cdot lim_{xrightarrow 0}frac{sinfrac x2}{frac x2}=frac12cdot 1cdot 1=frac12 end{gather*}

б) ( lim_{xrightarrow 0}frac{sin8x}{sin2x} ) begin{gather*} lim_{xrightarrow 0}frac{sin8x}{sin2x}=left[frac00right]=lim_{xrightarrow 0}frac{8xcdotoverbrace{frac{sin8x}{8x}}^{=1}}{2xcdotunderbrace{frac{sin2x}{2x}}_{=1}}=frac82=4 end{gather*}

в) ( lim_{xrightarrow 0}frac{sin(x^2-4)}{x^2-4} ) Заметим, что (lim_{xrightarrow 0}sin(x^2-4)=sin(-4)ne 0) и (lim_{xrightarrow 0}(x^2-4)=-4ne 0) $$ lim_{xrightarrow 0}frac{sin(x^2-4)}{x^2-4}neleft[frac00right] $$ Т.е., неопределенности (left[frac00right]) в этом примере нет, и он решается обычной подстановкой значения предела (x_0=0) вместо x: begin{gather*} lim_{xrightarrow 0}frac{sin(x^2-4)}{x^2-4}=frac{sin(-4)}{-4}=frac{-sin4}{-4}=frac{sin4}{4} end{gather*}

г) ( lim_{xrightarrow 2}frac{sin(x^2-4)}{x^2-4} ) А вот здесь при подстановке предела (x_0=2) получаем неопределенность (left[frac00right]). $$ lim_{xrightarrow 2}frac{sin(x^2-4)}{x^2-4}=left[frac00right] $$ Замена переменных: (t=x-2, trightarrow 0)
Тогда (x=t+2, x^2-4=(x-2)(x+2)=t(t+4)). Подставляем: begin{gather*} lim_{trightarrow 0}frac{sinleft(t(t+4)right)}{t(t+4)}=1 end{gather*} Последняя запись полностью соответствует определению первого замечательного предела с переменной (z=t(t+4), zrightarrow 0).

Внимание!

Следите, чтобы при подстановке значения предела в выражение действительно возникала неопределенность. И только тогда начинайте применять правила раскрытия неопределенностей и замечательные пределы.
Если неопределенности нет, то обычной подстановки достаточно, чтобы сразу получить ответ.
Что такое «неопределенность» – см. §37 данного справочника.

д) ( lim_{xrightarrow 0}frac{sqrt{x+3}-sqrt{3}}{sin5x} ) begin{gather*} lim_{xrightarrow 0}frac{sqrt{x+3}-sqrt{3}}{sin5x}=left[frac00right]=lim_{xrightarrow 0}frac{(sqrt{x+3}-sqrt{3})(sqrt{x+3}+sqrt{3})}{(sqrt{x+3}+sqrt{3})cdot sin5x}=\ =lim_{xrightarrow 0}frac{x+3-3}{(sqrt{x+3}+sqrt{3})cdot sin5x}= lim_{xrightarrow 0}frac{1}{(sqrt{x+3}+sqrt{3})cdotfrac{sin5x}{x}}=\ =lim_{xrightarrow 0}frac{1}{(sqrt{x+3}+sqrt{3})cdot 5cdot underbrace{frac{sin5x}{5x}}_{=1}}=frac15lim_{xrightarrow 0}frac{1}{sqrt{x+3}+sqrt{3}}=frac15cdotfrac{1}{2sqrt{3}}=frac{1}{10sqrt{3}}=frac{sqrt{3}}{30} end{gather*}
e*) ( lim_{xrightarrow 1}frac{sinpi x}{sin3pi x} ) При подстановке (x_0=1) получаем неопределенность (left[frac00right]).
Чтобы её раскрыть с помощью первого замечательного предела, нужно ввести новую переменную, которая стремится к 0.
Заметим, что: begin{gather*} sin(pi x-pi)=sinleft(pi(x-1)right)=-sinpi x\ sin(3pi x-3pi)=sinleft(3pi(x-1)right)=-sin3pi x end{gather*} Дробь можно заменить: $$ frac{sinpi x}{sin3pi x}=frac{-sinpi x}{-sin3pi x}=frac{sinleft(pi(x-1)right)}{sinleft(3pi(x-1)right)} $$ Замена переменной: (t=x-1, trightarrow 0). Получаем: begin{gather*} lim_{trightarrow 0}frac{sinpi t}{sin3pi t}=lim_{trightarrow 0}frac{pi tcdotoverbrace{frac{sinpi t}{pi t}}^{=1}}{3pi tcdotunderbrace{frac{sin3pi t}{3pi t}}_{=1}}=frac13 end{gather*} Ответ: а) (frac12); б) 4; в) (frac{sin4}{4}); г) 1; д) (frac{sqrt{3}}{30}); е) (frac 13)

Пример 2. Найдите значения пределов, используя второй замечательный предел:
a) ( lim_{xrightarrowinfty}left(1+frac{1}{3x}right)^{5x} ) $$ lim_{xrightarrowinfty}left(1+frac{1}{3x}right)^{5x}=left[1^{infty}right] $$ Замена переменной: (t=3x, trightarrowinfty). Тогда (x=frac t3). Подставляем: begin{gather*} lim_{xrightarrowinfty}left(1+frac 1tright)^{5cdotfrac t3}=left(underbrace{lim_{xrightarrowinfty}left(1+frac 1tright)^t}_{=e}right)^{frac53}=e^{frac53} end{gather*} б) ( lim_{xrightarrowinfty}left(frac{x-1}{x+4}right)^{2x} ) Предел основания степени: $$ lim_{xrightarrowinfty}frac{x-1}{x+4}=left[frac{infty}{infty}right]=lim_{xrightarrowinfty}frac{xleft(1-frac1xright)}{xleft(1+frac4xright)}=lim_{xrightarrowinfty}frac{1-frac1x}{1+frac4x}= frac{1-0}{1+0}=1 $$ Диагностируем неопределенность: $$ lim_{xrightarrowinfty}left(frac{x-1}{x+4}right)^{2x}=left[1^{infty}right] $$ Выделим целую часть из дроби: $$ frac{x-1}{x+4}=frac{(x+4)-5}{x+4}=1-frac{5}{x+4} $$ Замена: (t=-frac{(x+4)}{5}, trightarrowinfty) (знак бесконечности по условию не важен).
Тогда: (x=-5t-4). Подставляем: begin{gather*} lim_{xrightarrowinfty}left(frac{x-1}{x+4}right)^{2x}=lim_{xrightarrowinfty}left(1-frac{5}{x+4}right)^{2x}= lim_{trightarrowinfty}left(1+frac1tright)^{2cdot(-5t-4)}=\ =lim_{trightarrowinfty}left(1+frac1tright)^{-10t-8}=left(lim_{trightarrowinfty}left(1+frac1tright)^tright)^{-10}cdotlim_{trightarrowinfty}left(1+frac1tright)^{-8}=\ =e^{-10}cdot 1^{-8}=e^{-10} end{gather*}

в) ( lim_{xrightarrow +infty}left(frac{2x-1}{x+4}right)^{2x} ) Предел основания степени: $$ lim_{xrightarrow +infty}frac{2x-1}{x+4}=left[frac{infty}{infty}right]=lim_{xrightarrow +infty}frac{xleft(2-frac1xright)}{xleft(1+frac4xright)}=lim_{xrightarrow +infty}frac{2-frac1x}{1+frac4x}= frac{2-0}{1+0}=2 $$ Неопределенности здесь нет: $$ lim_{xrightarrow +infty}left(frac{2x-1}{x+4}right)^{2x}=2^{+infty}=+infty $$ Показательная функция с основанием >1 на плюс бесконечности стремится к плюс бесконечности.

г) ( lim_{xrightarrow -infty}left(frac{5x+3}{4x-1}right)^{3x-2} )
Предел основания степени: $$ lim_{xrightarrow -infty}frac{5x+3}{4x-1}=left[frac{infty}{infty}right]=lim_{xrightarrow -infty}frac{xleft(5+frac3xright)}{xleft(4-frac1xright)}=lim_{xrightarrow -infty}frac{5+frac3x}{4-frac1x}= frac{5-0}{4+0}=frac54 $$ Неопределенности здесь нет: $$ lim_{xrightarrow -infty}left(frac{5x+3}{4x-1}right)^{3x-2}=left(frac54right)^{-infty}=left(frac45right)^{+infty}=0 $$ Показательная функция с основанием <1 на плюс бесконечности стремится к нулю.

д) ( lim_{xrightarrow 0}(1+tgx)^frac1x )
Подставляем (x_0=0) в функцию, и получаем неопределенность: $$ lim_{xrightarrow 0}(1+tgx)^frac1x=left[1^inftyright] $$ Используем следствие из второго замечательного предела: (lim_{xrightarrow 0}(1+x)^frac1x=e)
Преобразуем выражение: $$ lim_{xrightarrow 0}(1+tgx)^frac1x= lim_{xrightarrow 0}(1+tgx)^{frac{tgx}{xcdot tgx}}= lim_{xrightarrow 0}left((1+tgx)^{frac{1}{tgx}}right)^{frac{tgx}{x}} $$ Теперь используем следствие из первого замечательного предела: (lim_{xrightarrow 0}frac{tgx}{x}=1)
Тогда: $$ lim_{xrightarrow 0}(1+tgx)^{frac{1}{tgx}}= left[ begin{array}{l} t=tgx\ trightarrow 0 end{array} right] = lim_{trightarrow 0}(1+t)^frac1t=e $$ Здесь мы записали замену переменных «на ходу». Такая запись часто используется по необходимости, особенно при интегрировании.
Заметим, что если ввести понятие «эквивалентных бесконечно малых», то пример вообще решается в одну строку, т.к. (tgxsim x) при (xrightarrow 0).

e*) ( lim_{xrightarrow 0}(cos2x)^frac{1}{sin^2 3x} )
Подставляем (x_0=0) в функцию, и получаем неопределенность: $$ lim_{xrightarrow 0}(cos2x)^frac{1}{sin^2 3x}=left[1^inftyright] $$ Используем следствие из второго замечательного предела: (lim_{xrightarrow 0}(1+x)^frac1x=e)
Преобразуем выражение: begin{gather*} lim_{xrightarrow 0}(cos2x)^frac{1}{sin^2 3x}= lim_{xrightarrow 0}(1-2sin^2 x)^frac{1}{sin^2 3x}= lim_{xrightarrow 0}left(1+(-2sin^2 x)right)^{frac{-2sin^2 x}{-2sin^2 xcdot sin^2 3x}}=\ lim_{xrightarrow 0}left((1+(-2sin^2 x))^{frac{1}{-2sin^2 x}}right)^{frac{-2sin^2x}{sin^2 3x}} end{gather*} Найдем предел для внешней степени: $$ lim_{xrightarrow 0}frac{-2sin^2x}{sin^2 3x}=left[frac00right]=-2lim_{xrightarrow 0}frac{x^2cdotleft(frac{sinx}{x}right)^2}{(3x)^2cdotleft(frac{sin3x}{3x}right)^2}= -2cdotfrac{1cdot 1}{9cdot 1}=-frac29 $$ Получаем: $$ lim_{xrightarrow 0}left((1+(-2sin^2x))^{frac{1}{-2sin^2x}}right)^{-frac29}= left[ begin{array}{l} t=-2sin^2 x\ trightarrow 0 end{array} right] = left(lim_{trightarrow 0}(1+t)^frac1tright)^{-frac29}=e^{-frac29} $$ Ответ: a) (e^{frac53}); б) (e^{-10}); в) (+infty); г) 0; д) (e); e) (e^{-frac29})

Определение непрерывности функции  в точке  и передела функции на бесконечности  и на использовании свойств предела непрерывной функции способствует непосредственному вычислению пределов.

Определение 1

Значение предела в точке непрерывности определено значением функции в этой точке.

При опоре на свойства основные элементарные функции имеют предел в любой точке из области определения, вычисляется как значение соответствующей функции в этих точках.

Пример 1

Произвести вычисление предела функции limx→5arctg35·x

Решение

Функция арктангенса отличается непрерывностью на всей своей области определения. Отсюда получим, что в точке x0=5 функция является непрерывной. Из определения имеем, что для нахождения предела является значением этой же функции. Тогда необходимо произвести подстановку. Получим, что

limx→5arctg35·x=arctg35·5=arctg3=π3

Ответ: π3.

Для вычисления односторонних пределов необходимо использовать значения точек границ предела. У акрксинуса и акрккосинуса  имеются такие значения x0=-1 или x0=1.

При x→+∞ или x→-∞ вычисляются пределы функции, заданные на бесконечностях.

Для упрощения выражений применяют свойства пределов:

Определение 2
  1. limx→x0(k·f(x))=k·limx→x0f(x), k является коэффициентом.
  2. limx→x0(f(x)·g(x))=limx→x0f(x)·limx→x0g(x), применяемое при получении неопределенности предела.
  3. limx→x0(f(g(x)))=flimx→x0gx,используемое для непрерывных функций, где знак функции и предельного перехода можно менять местами.

Для того, чтобы научиться вычислять переделы, необходимо знать и разбираться в основных элементарных функциях. Ниже приведена таблица, в которой имеются переделы этих функций с приведенными разъяснениями и подробным решением. Для вычисления необходимо основываться на определении предела функции в точке и на бесконечности.

Таблица пределов функции

Для упрощения  и решения пределов используется данная таблица основных пределов.

Функция корень n-ой степени

y=xn, где n=2, 4, 6 …

limx→∞xn=+∞n=+∞

Для любых x0 из опрелеления 

limx→x0xn=x0n

Функция корень n-ой степени

y=xn, где n=3, 5, 7 … 

limx→∞xn=+∞n=+∞limx→∞xn=-∞n=-∞

limx→x0xn=x0n

Степенная функция y=xa , a>0

  1. Для любого положительного числа a
    limx→∞xa=+∞a=+∞
  2. Если a=2, 4, 6 …, то
    limx→∞xa=-∞a=+∞
  3. Если a=1, 3, 5, …, то
    limx→∞xa=-∞a=-∞
  4. Для любых x0, из области определния
    limx→x0xa=(x0)a

Степенная функция y=xa, a<0

  1. Для любого отрицательного числа a
    limx→∞xa=(+∞)a=+0limx→0+0=(0+0)a=+∞
  2. Если a=-2, -4, -4, …, то
    limx→∞xa=-∞a=+0limx→0-0xa=(0-0)a=+∞
  3. Если a=-1, -3, -5, …, то
    limx→∞xa=-∞a=-0limx→0-0xa=(0-0)a=-∞
  4. Для любых x0 из области определения
    limx→x0xa=(x0)a

Показательная функия

y=ax, 0<a<1

limx→∞ax=a-∞=+∞limx→∞ax=a+∞=+0

Для любых x0 из области опреления limx→x0ax=ax0

Показательная функия

y=ax, a>1limx→∞ax=a-∞=+0limx→x0ax=a+∞=+∞

Для любых знвчений x0 из област опредения limx→x0ax=ax0

Логарифмическая функция

y=loga(x), 0<a<1

limx→0+0logax=loga(0+0)=+∞limx→∞logax=loga(+∞)=-∞

Для любых x0 из области опрелеленияlimx→x0logax=logax0

Логарифмическая функция

y=loga(x), a>1

limx→0+0logax=loga(0+0)=-∞limx→∞logax=loga(+∞)=+∞

Для любых x0 из области опрелеления

limx→x0logax=logax0

Тригонометрические функции

  • Синус
    limx→∞ sin x не существует
    Для любых x0 из области опрелеления
    limx→x0sin x=sin x0
  • Тангненсlimx→π2-0+π·ktg x=tgπ2-0+π·k=+∞limx→π2+0+π·ktg x=tgπ2+0+π·k=-∞

limx→∞tg x не существует

Для любых x0 из области опрелеления

limx→x0tg x=tg x0

Тригонометрические функции

  • Косинус
    limx→∞cos x не существует 
    Для любых x0 из области опрелеления
    limx→x0cos x=cos x0
  • Котангенсlimx→-0+π·kctg x=ctg(-0+π·k)=-∞limx→+0+π·kctg x=ctg(+0+π·k)=+∞

limx→∞ctg x не существует

Для любых x0 из области опрелеления
limx→x0сtg x=сtg x0

Обратные тригонометрические функции

  • Арксинус
    limx→-1+0arcsin x=-π2limx→1-0arcsin x=π2

Для любых x0 из области опрелеления

limx→x0arcsin x=arcsin x0

  • Арккосинус
    limx→-1+0arccos (x)=πlimx→1-0arccos (x)=0

Для любых x0 из области опрелеления

limx→x0arccis x=arccos x0

Обратные тригонометрические функции

  • Арктангес
    limx→-∞ arctg (x)=-π2limx→+∞ arctg (x)=π2

Для любых x0 из области опрелеления

limx→x0arctg x=arctg x0

  • Арккотангенс
    limx→-∞arcctg (x)=πlimx→+∞arcctg (x)=0

Для любых x0 из области опрелеления

limx→x0arcctg x=arcctg x0

Пример 2

Произвести вычисление предела limx→1×3+3x-1×5+3.

Решение

Для решения необходимо подставить значение х=1. Получаем, что

limx→1×3+3x-1×5+3=13+3·1-115+3=34=32

Ответ: limx→1×3+3x-1×5+3=32

Пример 3

Произвести вычисление предела функции limx→0(x2+2,5)1×2

Решение

Для того, чтобы раскрыть предел, необходимо подставить значение х, к которому стремится предел функции. В данном случае нужно произвести подстановку х=0. Подставляем числовое значение и получаем:

x2+2.5x=0=02+2.5=2.5

Предел записывается в виде limx→0(x2+2.5)1×2=limx→02.51×2. Далее необходимо заняться значением показателя. Он является степенной функцией 1×2=x-2. В таблице пределов, предоставленной выше, имеем, что limx→0+01×2=limx→0+0x-2=+∞ и limx→0+01×2=limx→0+0x-2=+∞, значит, имеем право записать как limx→01×2=limx→0x-2=+∞

Теперь вычислим предел. Получит вид limx→0(x2+2.5)1×2=limx→02.51×2=2.5+∞

По таблице пределов с показательными функциями, имеющими основание больше 1 получаем, что

limx→0(x2+2.5)1×2=limx→02.51×22.5+∞=+∞

Ответ: limx→0(x2+2.5)1×2=+∞

Когда задан более сложный предел, то при помощи таблицы не всегда получится получать целое или конкретное значение. Чаще получаются разные виды неопределенностей, для разрешения которых необходимо применять правила.

Рассмотрим графическое разъяснение приведенной выше таблицы пределов основных элементарных функций.

Предел константы

Предел константы  

Из рисунка видно, что функция у=С имеет предел на бесконечности. Такой же предел при аргументе, который стремится к х0. Он равняется числу C.

Предел функции корень n-ой степени

Предел функции корень n-ой степениПредел функции корень n-ой степени

Четные показатели корня применимы для limx→+∞xn=+∞n=+∞, а нечетные, равные больше, чем значение 1, – для limx→+∞xn=+∞n=+∞, limx→-∞xn=-∞n=-∞.  Область определения может принимать абсолютно любое значение х предела заданной функции корня n-ой степени, равного значению функции  в заданной точке.

Предел степенной функции

Необходимо разделить все степенные функции по группам, где имеются одинаковые значения пределов, исходя из показателя степени.

  1. Когда a является положительным числом, тогда limx→+∞xa=+∞a=+∞ и limx→-∞xa=-∞a=-∞. Когда x принимает любое значение, тогда предел степенной функции равняется значению функции в точке. Иначе это записывается как limx→∞xa=(∞)a=∞.

Предел степенной функции

  1. Когда a является положительным четным числом, тогда получаем limx→+∞xa=(+∞)a=+∞ и limx→-∞xa=(-∞)a=+∞, причем x из данной области определения  является пределом степенной функции и равняется значением функции в этой точке. Предел имеет вид limx→∞xa=∞a=+∞.

Предел степенной функции

  1. Когда a имеет другие значения, тогда limx→+∞xa=(+∞)a=+∞, а область определения x способствует определению предела функции в заданной точке.

Предел степенной функцииПредел степенной функции

  1. Когда a имеет значение отрицательных чисел, тогда получаем limx→+∞xa=+∞a=+0, limx→-∞xa=(-∞)a=-0, limx→0-0xa=(0-0)a=-∞,limx→0+0xa=0+0a=+∞, а значения x может быть любым из заданной области определения и равняется функции в заданной точке. Получаем, что limx→∞xa=∞a=0 иlimx→0xa=0a=∞.

Предел степенной функции

  1. Когда a является отрицательным четным числом, тогда получаем limx→+∞xa=(+∞)a=+0, limx→-∞xa=-∞a=+0, limx→0-0(0-0)a=+∞, limx→0+0xa=(0+0)a=+∞, а любое значение x на области определения дает результат предела степенной функции равным значению функции в точке. Запишем как limx→∞xa=(∞)a=+0 и limx→0xa=(0)a=+∞.

Предел степенной функции

  1. Когда значение a имеет другие действительные отрицательные числа, тогда получим limx→+∞xa=+∞a=+0 и limx→0+0xa=0+0a=+∞, когда x принимает любое значение из своей области определения, тогда предел степенной функции равняется значению функции в этой точке.

Предел степенной функцииПредел степенной функции

Предел показательной функции

Предел показательной функции

Предел показательной функции

Когда 0<a<1, имеем, что limx→-∞ax=a-∞=+∞, limx→+∞ax=(a)+∞=+∞, любое значение x из области определения дает пределу показательной функции значению функции в точке.

Когда a>1, тогда limx→-∞ax=(a)-∞=+0, limx→+∞ax=(a)+∞=+∞, а любое значение x из области определения дает предел функции равный значению этой функции в точке.

Предел логарифмической функции

Предел логарифмической функцииПредел логарифмической функции

Когда имеем 0<a<1, тогда limx→0+0logax=loga(0+0)=+∞, limx→+∞logax=loga(+∞)=-∞ ,  для всех остальных значений x из заданной области определения предел показательной функции равняется значению заданной функции в точках.

Когда a>1, получаем limx→0+0logax=loga(0+0)=-∞, limx→+∞logax=loga(+∞)=+∞,остальные значения x в заданной области определения дают решение предела показательной функции равному ее значению в точках.

Предел тригонометрических функций

Предел тригонометрических функций

Предел бесконечности не существует для таких функций как y=sin x, y=cos x. Любое значение x, входящее в область определения, равняется значению функции в точке.

 Предел тригонометрических функций

Функция тангенса имеет предел вида limx→π2-0+π·ktg(x)=+∞, limx→π2+π·ktg(x)=∞ или limx→π2+π·ktg(x)=∞, тогда остальные значения x, принадлежащие области определения тангенса, равняется значению функции в этих точках.

Предел тригонометрических функций

Для функции y=ctg x получаем limx→-0+π·kctg(x)=-∞, limx→+0+π·kctg(x)=+∞ или limx→π·kctg (x)=∞, тогда остальные значения x, принадлежащие области определения, дают предел котангенса, равный значению функции в этих точках.

Предел обратных тригонометрических функций

Предел обратных тригонометрических функций

Функция арксинус имеет предел вида limx→-1+0arcsin(x)=-π2 и limx→1-0arcsin (x)=π2, остальные значения x из области определения равняются значению функции в заданной точке.

Предел обратных тригонометрических функций 

Функция арккосинус имеет предел вида limx→-1+0arccos(x)=π и limx→1-0arccos(x)=0, когда остальные значения x, принадлежащие области определения, имеют предел арккосинуса, равного значению функции в этой точке.

Предел обратных тригонометрических функций

Функция арктангенс имеет предел вида limx→-∞arctg(x)=-π2 и limx→+∞arctg(x)=π2, причем другие значения x, входящие в область определения, равняется значению функции  в имеющихся точках.

Предел обратных тригонометрических функций 

Функция котангенса имеет предел вида limx→-∞arcctg(x)=π и limx→+∞arctg(x)=0, где x принимает любое значение из своей заданной области определения, где получаем предел арккотангенса, равного значению функции в имеющихся точках.

Все имеющееся значения пределов применяются в решении для нахождения предела любой из элементарных функций.

Добавить комментарий