Трапеция — геометрическая фигура представляет собой выпуклый четырехугольник с параллельными
противоположными сторонами. Они называются основаниями. Две другие стороны — боковые.
Трапеция, у которой они одинакового размера, называется равнобедренной. Если одна из боковых сторон
образует у основания угол в 90 градусов-прямоугольной.
Прямая линия, проведенная от одного основания
к другому, именуется высотой трапеции. Величина ее высчитывается делением суммы оснований на 2.
Диагонали — это отрезки, соединяющие противоположные углы фигуры. У равнобедренной трапеции
они равны по длине. Средняя линия-прямая, делящая пополам боковые стороны.
- Угол трапеции при основании через высоту и прилегающую
боковую сторону - Угол трапеции через нижнее основание, боковую сторону и
диагональ - Угол равнобедренной трапеции через нижнее основание,
среднию линию и боковую сторону - Угол равнобедренной трапеции через среднию линию, верхнее
основание и боковую сторону - Острый угол при нижнем основании прямоугольной трапеции
через высоту и два основания - Острый угол при нижнем основании прямоугольной трапеции
через два основания и боковую сторону
Угол трапеции при основании через высоту и прилегающую боковую сторону
Введем обозначения: h-высота, с — боковая сторона. Угол трапеции α при основании вычисляется с
помощью формулы
sin α = h/с
где: h — высота трапеции, c — боковая сторона.
Цифр после
запятой:
Результат в:
Пример. Заменим буквенные обозначения условными цифрами. Пример: если высота равна
9см, боковая сторона-11см, получим: sin α = 9 / 11 = 0,818 , отсюда α =
55º. Указанное значение находим в таблице синусов. Данный показатель синуса угла соответствует
величине 55 градусов.
Через нижнее основание, среднию линию и боковую сторону в равнобедренной трапеции
Угол равнобедренной трапеции через нижнее основание, среднюю линию и боковую сторону находится по
формуле:
cos α = (2a-2m) / 2c
где а — нижнее основание, m — средняя линия, с — боковая сторона.
Цифр после
запятой:
Результат в:
Пример.Заменим буквы условными цифровыми значениями. Если нижнее основание равно 8
см, средняя линия-6, а боковая сторона-4,8 см, то косинус угла равен 0,41666, что соответствует 65
градусам. cos α = (2 * 8 — 2 * 6) / 2 * 4,8 = 0, 41666, отсюда α =
65º. Равнобедренная трапеция — геометрическая фигура с нижними острыми углами. Это ее
особенность.
Угол трапеции, зная размер нижнего основания, боковой стороны и диагонали
Если известны эти величины, воспользуемся формулой:
cos α= (a²+c²-d²) / 2ac
где а-нижнее основание, d-диагональ, с-боковая сторона.
Цифр после
запятой:
Результат в:
Пример. При условной величине нижнего основания 4 см, диагонали — 5.7 см,
боковой стороны — 4,4 см косинус равняется 0,081534, что соответствует углу 85 градусов по
таблице функций. cos α= (4² + 4,4² — 5,7²) / 2*4*4,4 = 0,081534,
отсюда α = 85º.
Через среднюю линию, верхнее основание и боковую сторону в равнобедренной трапеции
Нахождение угла равнобедренной трапеции через среднюю линию, верхнее основание и боковую сторону
выполняется по предложенной формуле:
cos α = (2m-2b) / 2c
где m — средняя линия, b — верхнее основание, c — боковая сторона.
Цифр после
запятой:
Результат в:
Пример. Введем условные цифровые значения. Допустим, что у равнобедренной трапеции
верхнее основание равно 4 см, средняя линия-6, боковая сторона-4 см. Косинус составляет 0,5.
Значение соответствует 60 градусам по таблице Брадиса. cos α = (2 * 6 — 2 * 4) / 2 * 4 = 0,5,
отсюда α = 60º
Вычисление острого угла при нижнем основании, если известны величины обоих оснований и боковой
стороны в прямоугольной трапеции
Находится по формуле
cos α = (a — b) / c
где a,b — основания, c — боковая сторона.
Цифр после
запятой:
Результат в:
Пример. Если буквенные выражения заменить условными цифровыми, получится наглядный
пример вычисления. Допустим, длина нижнего основания а 8 см, верхнего b-5,8 см, размер боковой
стороны с-4,8. Подставив в формулу цифровые значения, получим итог: косинус равен 0,45833.
Сравниваем показатель с таблицей вычисления Брадиса: он соответствует углу 63 градуса. cos α=(8 — 5,8) / 4,8 = 0,45833, отсюда α = 63º
Острый угол при нижнем основании, зная высоту и размеры двух оснований прямоугольной трапеции
При известных указанных величинах воспользуемся следующей формулой:
tg(α) = h / (a-b)
где h — высота, a,b — верхнее и нижнее основания.
Цифр после
запятой:
Результат в:
Пример. Введя условные цифровые значения h = 15, a = 11, b = 10 получим tg(α) = 15 / (11-10) = 15. При вычислении получим значение тангенса: 15.
По таблице функций показатель соответствует 86 градусам.
Следует знать несколько закономерностей данной геометрической конструкции. У трапеции четыре угла,
общая сумма которых составляет 360 градусов.
Равнобедренная отличается двумя равными острыми, прилегающими к нижнему основанию, и тупыми
одинаковой величины-к верхнему. У прямоугольной трапеции два угла по 90 градусов, другие —
острый и тупой. Если он прилегает к нижнему основанию, величина такого угла определяется делением
высоты на разность между нижним и верхним основаниями. Угол трапеции при основании равен отношению
высоты к боковой стороне.
Здравствуйте, дорогие читатели. В этом выпуске разберемся, что нужно знать из 7 класса для легкого вычисления углов в параллелограмме и трапеции.
Как вы знаете, параллелограмм, прямоугольник, ромб и квадрат – это все параллелограммы. Параллелограмм – это четырехугольник у которого противоположные стороны попарно параллельны.
Трапеция – это четырехугольник, у которого две стороны параллельны, а две другие не параллельны.
Значит для вычисления углов в параллелограмме и трапеции нам нужно вспомнить теоремы об углах, образованных при пересечении двух параллельных прямых секущей.
1) Если две параллельные прямые пересечены секущей, то сумма односторонних углов равна 180 градусам.
Теперь применим это знание для решения задач из ОГЭ.
Задача №1
Для решения, воспользуемся свойством односторонних углов.
Для задания такого типа, можно мысленно продолжить стороны, у вас получится пересечение двух параллельных прямых секущей. Поэтому в данном случае воспользуемся тем, что сумма односторонних углов равна 180 градусов. Больший угол параллелограмма равен 180-61=119
Внимание!!! Будьте внимательны, в задании такого типа может быть написано, что нужно найти меньший угол. Меньший угол – это острый, больший угол – это тупой.
Точно также решается задача №2 с трапецией.
Меньший угол – это острый угол. Значит 180-131=49
Задача №3
Для решения такого типа задачи, нужно найти целый больший угол параллелограмма, он равен 70+35=105.
Найдем меньший угол параллелограмма – он острый, равен 180-105=75
2) Если две параллельные прямые пересечены секущей, то накрест лежащие углы равны.
Для этой теоремы подходят следующие задачи:
Задача №4
Решение:
Угол 1 и угол 2 накрест лежащие, значит они раны. Так как АЕ биссектриса, то угол 2 равен углу 3. Значит угол А равен 33+33=66
Задача №5
Решение:
Так как трапеция равнобедренная, то углы при основаниях равны. Значит нам достаточно найти чему равен угол А, тогда мы найдем угол ADC.
Так как накрест лежащие углы при пересечении двух параллельных прямых секущей, равны, то угол А равен 50+30=80, значит угол ADC равен 80
В следующем выпуске, поговорим о том, как найти углы в параллелограмме, где используются другие свойства и теоремы, такие как свойство равнобедренного треугольника, сумма углов треугольника, свойство диагоналей ромба.
Спасибо что дочитали. Вы меня очень поддержите, если поставите лайк и подпишитесь на мой блог.
Какими могут быть углы трапеции?
рисунок 1
Как и все другие четырехугольники и многоугольники, которые изучаются в школьном курсе, трапеция — выпуклый четырехугольник. Поэтому сумма углов трапеции равна 360º (речь идет о внутренних углах).
То есть для трапеции ABCD ∠A+∠B+∠C+∠D=360º.
Поскольку основания трапеции лежат на параллельных прямых, сумма углов трапеции, прилежащих к боковой стороне, равна 180 градусам.
Для трапеции ABCD (рисунок 1)
∠A+∠B=180º (как внутренние односторонние при AD ∥ BC и секущей AB),
∠C+∠D=180º (как внутренние односторонние при AD ∥ BC и секущей CD).
Следовательно, если один из углов, прилежащих к одной боковой стороне, острый, то другой — тупой. Если один из этих углов прямой, другой — тоже прямой.
Суммы углов, прилежащих к боковым сторонам трапеции, равны:
∠A+∠B=∠C+∠D
Могут ли углы трапеции, взятые в последовательном порядке, относиться как
1) 7:3:5:2?
Нет, поскольку 7k+3k≠5k+2k и 7K+2k≠3k+5k.
2) 5:4:6:3?
5k+4k=6k+3k, следовательно, углы трапеции могут быть пропорциональны этим числам.
На рисунке 1 углы прилежащие к основанию AD, оба острые, углы, прилежащие к основанию BC, оба тупые. В паре противолежащих углов ∠A и ∠С, ∠B и ∠D один — острый, другой — тупой.
Существует ли трапеция, у которой два противолежащих угла обо тупые или оба острые?
рисунок 2
Да, такая трапеция существует.
Например, трапеция, изображенная на рисунке 2.
Существует ли трапеция, у которой два противоположных угла оба прямые? Противоположные углы равны?
Нет, такой трапеции не существует (противоположные углы равны у параллелограмма).
Как найти угол в трапеции
Трапеция – это плоский четырехугольник, у которого две противолежащие стороны параллельны. Они называются основаниями трапеции, а две другие стороны – боковыми сторонами трапеции.
Инструкция
Задача нахождения произвольного угла в трапеции требует достаточного количества дополнительных данных. Рассмотрим пример, в котором известны два угла при основании трапеции. Пусть известны углы ∠BAD и ∠CDA, найдем углы ∠ABC и ∠BCD. Трапеция обладает таким свойством, что сумма углов при каждой боковой стороне равна 180°. Тогда ∠ABC = 180°-∠BAD, а ∠BCD = 180°-∠CDA.
В другой задаче может быть указано равенство сторон трапеции и какие-нибудь дополнительные углы. Например, как на рисунке, может быть известно, что стороны AB, BC и CD равны, а диагональ составляет с нижним основанием угол ∠CAD = α.Рассмотрим треугольник ABC, он равнобедренный, так как AB = BC. Тогда ∠BAC = ∠BCA. Обозначим его x для краткости, а ∠ABC – y. Сумма углов любого треугольника равна 180°, из этого следует, что 2x + y = 180°, тогда y = 180° – 2x. В то же время из свойств трапеции: y + x + α = 180° и следовательно 180° – 2x + x + α = 180°. Таким образом, x = α. Мы нашли два угла трапеции: ∠BAC = 2x = 2α и ∠ABC = y = 180° – 2α.Так как AB = CD по условию, то трапеция равнобокая или равнобедренная. Значит, диагонали равны и равны углы при основаниях. Таким образом, ∠CDA = 2α, а ∠BCD = 180° – 2α.
Войти на сайт
или
Забыли пароль?
Еще не зарегистрированы?
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
§5. Трапеция
Основные свойства трапеции
Во всякой трапеции середины боковых сторон и середины диагоналей лежат на одной прямой.
Через точку `M` – середину стороны `AB` – проведём прямую, параллельную основанию (рис. 24).
Докажем, что она разделит пополам обе диагонали и другую боковую сторону. В треугольнике `BAC` $$ MPparallel BC$$ и `AM = MB`. По теореме Фалеса `AP = PC`.
В треугольнике `ABD` точка `M` – середина стороны, $$ MQparallel AD$$. По теореме Фалеса `BQ = QD`. Наконец, в треугольнике `BDC` точка `Q` – середина `BD`, $$ QNparallel BC$$. По теореме Фалеса `CN = ND`.
Итак, середины боковых сторон (точки `M` и `N`) и середины диагоналей (точки `P` и `Q`) лежат на одной прямой.
Средняя линия трапеции равна полусумме оснований; отрезок, соединяющий середины диагоналей, равен полуразности оснований.
Пусть `AD = a`, `BC = b`. Из Свойства 1 следует, что `MQ` – средняя линия треугольника `ABD`, поэтому `MQ = a/2`; `MP` и `QN` – средние линии треугольников `BAC` и `BDC`, поэтому `MP = QN = b/2`.
Отсюда следует, что `MN = (a + b)/2` и `PQ = (a – b)/2`.
Во всякой трапеции середины оснований, точка пересечения диагоналей и точка пересечения продолжений боковых сторон лежат на одной прямой.
Пусть продолжения боковых сторон пересекаются в точке `K`. Через точку `K` и точку `O` пересечения диагоналей проведём прямую `KO` (рис. 25).
Докажем, что эта прямая делит основания пополам.
Обозначим `BM = x`, `MC = y`, `AN = u`, `ND = v`.
Имеем:
ΔBKM∼ΔAKN⇒BMAN=KMKN;ΔMKC∼ΔNKD⇒MCND=KMKN⇒BMAN=MCNDleft.begin{array}{rcl}Delta BKM sim Delta AKN Rightarrow frac {BM}{AN} = frac {KM}{KN};\Delta MKC sim Delta NKD Rightarrow frac {MC}{ND} = frac {KM}{KN}end{array}right} Rightarrow frac {BM}{AN} = frac {MC}{ND}, т. е. `x/u = y/v`.
Далее, `Delta BMO ~ Delta DNO => (BM)/(ND) = (MO)/(NO)`, `Delta CMO ~ Delta ANO => (MC)/(AN) = (MO)/(NO)`, поэтому `(BM)/(ND) = (MC)/(AN)`, т. е. `x/v = y/u`.
Перемножим полученные равенства, получим `x^2/(uv) = y^2/(uv)`, откуда следует `x = y`, но тогда и `u = v`.
В равнобокой трапеции углы при основании равны.
Проведём $$ CFparallel BA$$ (рис. 26).
`ABCF` – параллелограмм, `CF = BA`, тогда треугольник `FCD` равнобедренный, `/_ 1 = /_ 2`. Но `/_ 2 = /_ 3`, следовательно, `/_ 1 = /_ 3`.
В равнобокой трапеции высота, опущенная из конца меньшего основания на большее основание, делит его на два отрезка, один из которых равен полусумме оснований, другой – полуразности оснований.
Если `BM_|_ AD` и `CN _|_ AD`, то `Delta BAM = /_ CDN` (рис. 27).
`BMCN` – прямоугольник, `MN = b`, тогда `ND = (a – b)/2`, а `AN = a – (a – b)/2 = (a + b)/2`.
В равнобокой трапеции прямая, проходящая через середины оснований, перпендикулярна основаниям и является осью симметрии трапеции.
Пусть `K` – точка пересечения продолжений боковых сторон трапеции (рис. 28). Как следует из Свойства 2, середины оснований – точки `M` и `N` – и точка `K` лежат на одной прямой, а как следует из Свойства 4, углы `A` и `D` равны. Таким образом, треугольник `AKD` – равнобедренный, `KN` – его медиана, она является и высотой. Итак, `MN _|_ AD`.
Легко видеть, что при симметрии относительно прямой `MN` точки `A` и `B` переходят в точка `D` и `C` и наоборот. `MN` – ось симметрии трапеции.
В равнобокой трапеции диагонали равны.
Рассмотрим треугольники `ABD` и `DCA` (рис. 29): `AB = DC` (трапеция равнобокая), `AD` – общая сторона, `/_ BAD = /_ ADC` (следует из Свойства 4). По первому признаку равенства эти треугольники равны и `BD = AC`.
Диагонали трапеции перпендикулярны, одна из них равна `6`. Отрезок, соединяющий середины оснований, равен `4,5` (рис. 30). Найти другую диагональ.
1. Треугольник `AOD` – прямоугольный, `ON` – медиана, проведённая из вершины прямого угла, она равна половине гипотенузы, т. е.
`ON = 1/2 AD`.
Аналогично устанавливается, что `OM = 1/2 BC`. По Свойству 3 точки `M`, `O` и `N` лежат на одной прямой. Таким образом, `MN = OM + ON = 1/2 (AD + BC)`, поэтому `AD + BC = 2MN = 9`.
2. Проведём через точку `D` прямую, параллельную диагонали `AC`, пусть `K` – точка её пересечения с прямой `BC`, Угол `BDK` прямой, это угол между диагоналями трапеции. Кроме того, `ACKD` по построению параллелограмм, `CK = AD`, значит, `BK = BC + AD = 9`. Треугольник `BKD` – прямоугольный, один из катетов (пусть `DK`) равен `6`. По теореме Пифагора находим: `BD = sqrt(BK^2 – DK^2) = 3 sqrt5`.
В равнобокой трапеции с периметром `10` и высотой `2` диагонали, пересекаясь, делятся в отношении `4:1`. Найти основания.
1. Пусть `O` – точка пересечения диагоналей трапеции `ABCD` (рис. 31) и `AO:OC =BO:OD= 4:1`. Треугольники `AOD` и `COB` подобны, `AO:OC = AD:BC = 4`, т. е. `AD = 4BC`. Обозначим `BC = x`, тогда `AD = 4x`.
2. Пусть `CK _|_ AD`; `CK` – высота трапеции, по условию `CK = 2`, а как следует из Свойства 5,
`KD = 1/2 (AD – BC) = 3/2 x`.
Из прямоугольного треугольника `CKD` имеем `CD = sqrt(4 + 9/4 x^2)`. Выражаем периметр трапеции: `10 = (5x + 2 sqrt(4 + 9/4 x^2) )`.
Решаем уравнение `2 sqrt(4 + 9/4 x^2) = 10 – 5x`, оно имеет единственный корень `x = 1`.
Итак, `BC = 1`, `AD = 4`.