Кривые второго порядка. Эллипс: формулы и задачи
Понятие о кривых второго порядка
Кривыми второго порядка на плоскости называются линии, определяемые уравнениями, в которых переменные координаты x и y содержатся во второй степени. К ним относятся эллипс, гипербола и парабола.
Общий вид уравнения кривой второго порядка следующий:
,
где A, B, C, D, E, F — числа и хотя бы один из коэффициентов A, B, C не равен нулю.
При решении задач с кривыми второго порядка чаще всего рассматриваются канонические уравнения эллипса, гиперболы и параболы. К ним легко перейти от общих уравнений, этому будет посвящён пример 1 задач с эллипсами.
Эллипс, заданный каноническим уравнением
Определение эллипса. Эллипсом называется множество всех точек плоскости, таких, для которых сумма расстояний до точек, называемых фокусами, есть величина постоянная и бОльшая, чем расстояние между фокусами.
Фокусы обозначены как и на рисунке ниже.
Каноническое уравнение эллипса имеет вид:
,
где a и b (a > b) — длины полуосей, т. е. половины длин отрезков, отсекаемых эллипсом на осях координат.
Прямая, проходящая через фокусы эллипса, является его осью симметрии. Другой осью симметрии эллипса является прямая, проходящая через середину отрезка перпендикулярно этому отрезку. Точка О пересечения этих прямых служит центром симметрии эллипса или просто центром эллипса.
Ось абсцисс эллипс пересекает в точках (a, О) и (- a, О), а ось ординат — в точках (b, О) и (- b, О). Эти четыре точки называются вершинами эллипса. Отрезок между вершинами эллипса на оси абсцисс называется его большой осью, а на оси ординат — малой осью. Их отрезки от вершины до центра эллипса называются полуосями.
Если a = b , то уравнение эллипса принимает вид . Это уравнение окружности радиуса a , а окружность — частный случай эллипса. Эллипс можно получить из окружности радиуса a , если сжать её в a/b раз вдоль оси Oy .
Пример 1. Проверить, является ли линия, заданная общим уравнением , эллипсом.
Решение. Производим преобразования общего уравнения. Применяем перенос свободного члена в правую часть, почленное деление уравнения на одно и то же число и сокращение дробей:
Ответ. Полученное в результате преобразований уравнение является каноническим уравнением эллипса. Следовательно, данная линия — эллипс.
Пример 2. Составить каноническое уравнение эллипса, если его полуоси соответственно равны 5 и 4.
Решение. Смотрим на формулу канонического уравения эллипса и подставляем: бОльшая полуось — это a = 5 , меньшая полуось — это b = 4 . Получаем каноническое уравнение эллипса:
.
Точки и , обозначенные зелёным на большей оси, где
,
называются фокусами.
называется эксцентриситетом эллипса.
Отношение b/a характеризует «сплюснутость» эллипса. Чем меньше это отношение, тем сильнее эллипс вытянут вдоль большой оси. Однако степень вытянутости эллипса чаще принято выражать через эксцентриситет, формула которого приведена выше. Для разных эллипсов эксцентриситет меняется в пределах от 0 до 1, оставаясь всегда меньше единицы.
Пример 3. Составить каноническое уравнение эллипса, если расстояние между фокусами равно 8 и бОльшая ось равна 10.
Решение. Делаем несложные умозаключения:
— если бОльшая ось равна 10, то её половина, т. е. полуось a = 5 ,
— если расстояние между фокусами равно 8, то число c из координат фокусов равно 4.
Подставляем и вычисляем:
Результат — каноническое уравнение эллипса:
.
Пример 4. Составить каноническое уравнение эллипса, если его бОльшая ось равна 26 и эксцентриситет .
Решение. Как следует и из размера большей оси, и из уравнения эксцентриситета, бОльшая полуось эллипса a = 13 . Из уравнения эсцентриситета выражаем число c, нужное для вычисления длины меньшей полуоси:
.
Вычисляем квадрат длины меньшей полуоси:
Составляем каноническое уравнение эллипса:
Пример 5. Определить фокусы эллипса, заданного каноническим уравнением .
Решение. Следует найти число c, определяющее первые координаты фокусов эллипса:
.
Получаем фокусы эллипса:
Решить задачи на эллипс самостоятельно, а затем посмотреть решение
Пример 6. Фокусы эллипса расположены на оси Ox симметрично относительно начала координат. Составить каноническое уравнение эллипса, если:
1) расстояние между фокусами 30, а большая ось 34
2) малая ось 24, а один из фокусов находится в точке (-5; 0)
3) эксцентриситет , а один из фокусов находится в точке (6; 0)
Продолжаем решать задачи на эллипс вместе
Если — произвольная точка эллипса (на чертеже обозначена зелёным в верхней правой части эллипса) и — расстояния до этой точки от фокусов , то формулы для расстояний — следующие:
.
Для каждой точки, принадлежащей эллипсу, сумма расстояний от фокусов есть величина постоянная, равная 2a.
Прямые, определяемые уравнениями
,
называются директрисами эллипса (на чертеже — красные линии по краям).
Из двух вышеприведённых уравнений следует, что для любой точки эллипса
,
где и — расстояния этой точки до директрис и .
Пример 7. Дан эллипс . Составить уравнение его директрис.
Решение. Смотрим в уравнение директрис и обнаруживаем, что требуется найти эксцентриситет эллипса, т. е. . Все данные для этого есть. Вычисляем:
.
Получаем уравнение директрис эллипса:
Пример 8. Составить каноническое уравнение эллипса, если его фокусами являются точки , а директрисами являются прямые .
Решение. Смотрим в уравнение директрис, видим, что в нём можем заменить символ эксцентриситета формулой эксцентриситета как отношение первой координаты фокуса к длине большей полуоси. Так сможем вычислить квадрат длины большей полуоси. Получаем:
.
Теперь можем получить и квадрат длины меньшей полуоси:
Уравнение эллипса готово:
Пример 9. Проверить, находится ли точка на эллипсе . Если находится, найти расстояние от этой точки до фокусов эллипса.
Решение. Подставляем координаты точки x и y в уравнение эллипса, на выходе должно либо получиться равенство левой части уравнения единице (точка находится на эллипсе), либо не получиться это равенство (точка не находится на эллипсе). Получаем:
.
Получили единицу, следовательно, точка находится на эллипсе.
Приступаем к нахождению расстояния. Для этого нужно вычислить: число c, определяющее первые координаты фокусов, число e — эксцентриситет и числа «эр» с подстрочными индексами 1 и 2 — искомые расстояния. Получаем:
Проведём проверку: сумма расстояний от любой точки на эллипсе до фокусов должна быть равна 2a.
,
так как из исходного уравнения эллипса .
Одним из самых замечательных свойств эллипса является его оптическое свойство, состоящее в том, что прямые, соединяющие точку эллипса с его фокусами, пересекают касательную к эллипсу под разными углами. Это значит, что луч, пущенный из одного фокуса, после отраэения попадёт в другой. Это свойство лежит в основе аккустического эффекта, наблюдаемого в некоторых пещерах и искусственных сооружениях, своды которых имеют эллиптическую форму: если находиться в одном из фокусов, то речь человека, стоящего в другом фокусе, слышна так хорошо, как будто он находится рядом, хотя на самом деле расстояние велико.
Эллипс — определение и вычисление с примерами решения
Эллипс:
Определение: Эллипсом называется геометрическое место точек, сумма расстояний от которых до двух выделенных точек
Получим каноническое уравнение эллипса. Выберем декартову систему координат так, чтобы фокусы
Рис. 29. Вывод уравнения эллипса.
Расстояние между фокусами (фокусное расстояние) равно Согласно определению эллипса имеем Из треугольников и по теореме Пифагора найдем
соответственно. Следовательно, согласно определению имеем
Возведем обе части равенства в квадрат, получим
Перенося квадратный корень в левую часть, а все остальное в правую часть равенства, находим Раскроем разность квадратов Подставим найденное выражение в уравнение и сократим обе части равенства на 4, тогда оно перейдет в уравнение Вновь возведем обе части равенства в квадрат Раскрывая все скобки в правой части уравнения, получим Соберем не- известные в левой части, а все известные величины перенесем в правую часть уравнения, получим Введем обозначение для разности, стоящей в скобках Уравнение принимает вид Разделив все члены уравнения на получаем каноническое уравнение эллипса: Если то эллипс вытянут вдоль оси Ох, для противоположного неравенства — вдоль оси Оу (при этом фокусы тоже расположены на этой оси). Проанализируем полученное уравнение. Если точка М(х; у) принадлежит эллипсу, то ему принадлежат и точки следовательно, эллипс симметричен относительно координатных осей, которые в данном случае будут называться осями симметрии эллипса. Найдем координаты точек пересечения эллипса с декартовыми осями:
Определение: Найденные точки называются вершинами эллипса.
Рис. 30. Вершины, фокусы и параметры эллипса
Определение: Если то параметр а называется большой, а параметр b — малой полуосями эллипса.
Определение: Эксцентриситетом эллипса называется отношение фокусного рас- стояния к большой полуоси эллипса
Из определения эксцентриситета эллипса следует, что он удовлетворяет двойному неравенству Кроме того, эта характеристика описывает форму эллипса. Для демонстрации этого факта рассмотрим квадрат отношения малой полуоси эллипса к большой полуоси
Если и эллипс вырождается в окружность. Если и эллипс вырождается в отрезок
Пример:
Составить уравнение эллипса, если его большая полуось а = 5, а его эксцентриситет
Решение:
Исходя из понятия эксцентриситета, найдем абсциссу фокуса, т.е. параметр Зная параметр с, можно вычислить малую полуось эллипса Следовательно, каноническое уравнение заданного эллипса имеет вид:
Пример:
Найти площадь треугольника, две вершины которого находятся в фокусах эллипса а третья вершина — в центре окружности
Решение:
Для определения координат фокусов эллипса и центра окружности преобразуем их уравнения к каноническому виду. Эллипс:
Следовательно, большая полуось эллипса а малая полуось Так как то эллипс вытянут вдоль оси ординат Оу. Определим расположение фокусов данного эллипса Итак, Окружность: Выделим полные квадраты по переменным Следовательно, центр окружности находится в точке О(-5; 1).
Построим в декартовой системе координат треугольник Согласно школьной формуле площадь треугольника равна Высота а основание Следовательно, площадь треугольника равна:
Эллипс в высшей математике
где и —заданные положительные числа. Решая его относительно , получим:
Отсюда видно, что уравнение (2) определяет две функции. Пока независимое переменное по абсолютной величине меньше , подкоренное выражение положительно, корень имеет два значения. Каждому значению , удовлетворяющему неравенству соответствуют два значения , равных по абсолютной величине. Значит, геометрическое место точек, определяемое уравнением (2), симметрично относительно оси . Так же можно убедиться в том, что оно симметрично и относительно оси . Поэтому ограничимся рассмотрением только первой четверти.
При , при . Кроме того, заметим, что если увеличивается, то разность уменьшается; стало быть, точка будет перемещаться от точки вправо вниз и попадет в точку . Из соображений симметрии изучаемое геометрическое место точек будет иметь вид, изображенный на рис. 34.
Полученная линия называется эллипсом. Число является длиной отрезка , число —длиной отрезка . Числа и называются полуосями эллипса. Число эксцентриситетом.
Пример:
Найти проекцию окружности на плоскость, не совпадающую с плоскостью окружности.
Решение:
Возьмем две плоскости, пересекающиеся под углом (рис. 35). В каждой из этих плоскостей возьмем систему координат, причем за ось примем прямую пересечения плоскостей, стало быть, ось будет общей для обеих систем. Оси ординат различны, начало координат общее для обеих систем. В плоскости возьмем окружность радиуса с центром в начале координат, ее уравнение .
Пусть точка лежит на этой окружности, тогда ее координаты удовлетворяют уравнению .
Обозначим проекцию точки на плоскость буквой , а координаты ее—через и . Опустим перпендикуляры из и на ось , это будут отрезки и . Треугольник прямоугольный, в нем , ,, следовательно, . Абсциссы точек и равны, т. е. . Подставим в уравнение значение , тогда cos
а это есть уравнение эллипса с полуосями и .
Таким образом, эллипс является проекцией окружности на плоскость, расположенную под углом к плоскости окружности.
Замечание. Окружность можно рассматривать как эллипс с равными полуосями.
Уравнение эллипсоида
Определение: Трехосным эллипсоидом называется поверхность, полученная в результате равномерной деформации (растяжения или сжатия) сферы по трем взаимно перпендикулярным направлениям.
Рассмотрим сферу радиуса R с центром в начале координат:
где Х, У, Z — текущие координаты точки сферы.
Пусть данная сфера подвергнута равномерной деформации в направлении координатных осей с коэффициентами деформации, равными
В результате сфера превратится в эллипсоид, а точка сферы М (X, У, Z) с текущими координатами Х, У, Z перейдет в точку эллипсоидам (х, у, z) с текущими координатами х, у, г, причем
Иными словами, линейные размеры сферы в направлении оси Ох уменьшаются в раз, если , и увеличиваются в раз, если и т. д.
Подставляя эти формулы в уравнение (1), будем иметь
где Уравнение (2) связывает текущие координаты точки М’ эллипсоида и, следовательно, является уравнением трехосного эллипсоида.
Величины называются полуосями эллипсоида; удвоенные величины называются осями эллипсоида и, очевидно, представляют линейные размеры его в направлениях деформации (в данном случае в направлениях осей координат).
Если две полуоси эллипсоида равны между собой, то эллипсоид называется эллипсоидом вращения, так как может быть получен в результате вращения эллипса вокруг одной из его осей. Например, в геодезии считают поверхность земного шара эллипсоидом вращения с полуосями
а = b = 6377 км и с = 6356 км.
Если а = b = с, то эллипсоид превращается в сферу.
Рекомендую подробно изучить предметы: |
|
Ещё лекции с примерами решения и объяснением: |
- Гипербола
- Парабола
- Многогранник
- Решение задач на вычисление площадей
- Шар в геометрии
- Правильные многогранники в геометрии
- Многогранники
- Окружность
При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org
Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи
Сайт пишется, поддерживается и управляется коллективом преподавателей
Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.
Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.
Как найти координаты фокусов эллипса
Понятие о кривых второго порядка
Кривыми второго порядка на плоскости называются линии, определяемые уравнениями, в которых переменные координаты x и y содержатся во второй степени. К ним относятся эллипс, гипербола и парабола.
Общий вид уравнения кривой второго порядка следующий:
,
где A, B, C, D, E, F — числа и хотя бы один из коэффициентов A, B, C не равен нулю.
При решении задач с кривыми второго порядка чаще всего рассматриваются канонические уравнения эллипса, гиперболы и параболы. К ним легко перейти от общих уравнений, этому будет посвящён пример 1 задач с эллипсами.
Эллипс, заданный каноническим уравнением
Определение эллипса. Эллипсом называется множество всех точек плоскости, таких, для которых сумма расстояний до точек, называемых фокусами, есть величина постоянная и бОльшая, чем расстояние между фокусами.
Фокусы обозначены как и на рисунке ниже.
Каноническое уравнение эллипса имеет вид:
,
где a и b (a > b) — длины полуосей, т. е. половины длин отрезков, отсекаемых эллипсом на осях координат.
Прямая, проходящая через фокусы эллипса, является его осью симметрии. Другой осью симметрии эллипса является прямая, проходящая через середину отрезка перпендикулярно этому отрезку. Точка О пересечения этих прямых служит центром симметрии эллипса или просто центром эллипса.
Ось абсцисс эллипс пересекает в точках (a, О) и (- a, О), а ось ординат — в точках (b, О) и (- b, О). Эти четыре точки называются вершинами эллипса. Отрезок между вершинами эллипса на оси абсцисс называется его большой осью, а на оси ординат — малой осью. Их отрезки от вершины до центра эллипса называются полуосями.
Если a = b , то уравнение эллипса принимает вид . Это уравнение окружности радиуса a , а окружность — частный случай эллипса. Эллипс можно получить из окружности радиуса a , если сжать её в a/b раз вдоль оси Oy .
Пример 1. Проверить, является ли линия, заданная общим уравнением , эллипсом.
Решение. Производим преобразования общего уравнения. Применяем перенос свободного члена в правую часть, почленное деление уравнения на одно и то же число и сокращение дробей:
Ответ. Полученное в результате преобразований уравнение является каноническим уравнением эллипса. Следовательно, данная линия — эллипс.
Пример 2. Составить каноническое уравнение эллипса, если его полуоси соответственно равны 5 и 4.
Решение. Смотрим на формулу канонического уравения эллипса и подставляем: бОльшая полуось — это a = 5 , меньшая полуось — это b = 4 . Получаем каноническое уравнение эллипса:
.
Точки и , обозначенные зелёным на большей оси, где
,
называются фокусами.
называется эксцентриситетом эллипса.
Отношение b/a характеризует «сплюснутость» эллипса. Чем меньше это отношение, тем сильнее эллипс вытянут вдоль большой оси. Однако степень вытянутости эллипса чаще принято выражать через эксцентриситет, формула которого приведена выше. Для разных эллипсов эксцентриситет меняется в пределах от 0 до 1, оставаясь всегда меньше единицы.
Пример 3. Составить каноническое уравнение эллипса, если расстояние между фокусами равно 8 и бОльшая ось равна 10.
Решение. Делаем несложные умозаключения:
— если бОльшая ось равна 10, то её половина, т. е. полуось a = 5 ,
— если расстояние между фокусами равно 8, то число c из координат фокусов равно 4.
Подставляем и вычисляем:
Результат — каноническое уравнение эллипса:
.
Пример 4. Составить каноническое уравнение эллипса, если его бОльшая ось равна 26 и эксцентриситет .
Решение. Как следует и из размера большей оси, и из уравнения эксцентриситета, бОльшая полуось эллипса a = 13 . Из уравнения эсцентриситета выражаем число c, нужное для вычисления длины меньшей полуоси:
.
Вычисляем квадрат длины меньшей полуоси:
Составляем каноническое уравнение эллипса:
Пример 5. Определить фокусы эллипса, заданного каноническим уравнением .
Решение. Следует найти число c, определяющее первые координаты фокусов эллипса:
.
Получаем фокусы эллипса:
Решить задачи на эллипс самостоятельно, а затем посмотреть решение
Пример 6. Фокусы эллипса расположены на оси Ox симметрично относительно начала координат. Составить каноническое уравнение эллипса, если:
1) расстояние между фокусами 30, а большая ось 34
2) малая ось 24, а один из фокусов находится в точке (-5; 0)
3) эксцентриситет , а один из фокусов находится в точке (6; 0)
Продолжаем решать задачи на эллипс вместе
Если — произвольная точка эллипса (на чертеже обозначена зелёным в верхней правой части эллипса) и — расстояния до этой точки от фокусов , то формулы для расстояний — следующие:
.
Для каждой точки, принадлежащей эллипсу, сумма расстояний от фокусов есть величина постоянная, равная 2a.
Прямые, определяемые уравнениями
,
называются директрисами эллипса (на чертеже — красные линии по краям).
Из двух вышеприведённых уравнений следует, что для любой точки эллипса
,
где и — расстояния этой точки до директрис и .
Пример 7. Дан эллипс . Составить уравнение его директрис.
Решение. Смотрим в уравнение директрис и обнаруживаем, что требуется найти эксцентриситет эллипса, т. е. . Все данные для этого есть. Вычисляем:
.
Получаем уравнение директрис эллипса:
Пример 8. Составить каноническое уравнение эллипса, если его фокусами являются точки , а директрисами являются прямые .
Решение. Смотрим в уравнение директрис, видим, что в нём можем заменить символ эксцентриситета формулой эксцентриситета как отношение первой координаты фокуса к длине большей полуоси. Так сможем вычислить квадрат длины большей полуоси. Получаем:
.
Теперь можем получить и квадрат длины меньшей полуоси:
Уравнение эллипса готово:
Пример 9. Проверить, находится ли точка на эллипсе . Если находится, найти расстояние от этой точки до фокусов эллипса.
Решение. Подставляем координаты точки x и y в уравнение эллипса, на выходе должно либо получиться равенство левой части уравнения единице (точка находится на эллипсе), либо не получиться это равенство (точка не находится на эллипсе). Получаем:
.
Получили единицу, следовательно, точка находится на эллипсе.
Приступаем к нахождению расстояния. Для этого нужно вычислить: число c, определяющее первые координаты фокусов, число e — эксцентриситет и числа «эр» с подстрочными индексами 1 и 2 — искомые расстояния. Получаем:
Проведём проверку: сумма расстояний от любой точки на эллипсе до фокусов должна быть равна 2a.
,
так как из исходного уравнения эллипса .
Одним из самых замечательных свойств эллипса является его оптическое свойство, состоящее в том, что прямые, соединяющие точку эллипса с его фокусами, пересекают касательную к эллипсу под разными углами. Это значит, что луч, пущенный из одного фокуса, после отраэения попадёт в другой. Это свойство лежит в основе аккустического эффекта, наблюдаемого в некоторых пещерах и искусственных сооружениях, своды которых имеют эллиптическую форму: если находиться в одном из фокусов, то речь человека, стоящего в другом фокусе, слышна так хорошо, как будто он находится рядом, хотя на самом деле расстояние велико.
1. Окружность. 2Окружностью называется геометрическое место точек, равноудаленных от одной фиксированной точки, называемой центром окружности. Расстояние от произвольной точки окружности до его центра называется радиусом окружности.
g Если центр окружности находится в точке , а радиус равен R, то уравнение окружности имеет вид:
. (3.13)
4Обозначим через (рис. 3.5) произвольную точку окружности. Используя формулу расстояния между двумя токами (3.1) и определение окружности, получим: . Возводя полученное равенство в квадрат, мы получим формулу (3.13).3
2. Эллипс. 2 Эллипсом называется геометрическое место точек, сумма расстояний которых до двух фиксированных точек, называемых фокусами, есть величина постоянная.
Для того, чтобы вывести каноническое (простейшее) уравнение эллипса, примем за ось Ox прямую, соединяющую фокусы F1 и F2. Пусть при этом фокусы будут симметричны относительно начала координат, т.е. будут иметь координаты: и . Здесь через 2с обозначено расстояние между фокусами. Обозначим через x и y координаты произвольной точки М эллипса (рис 3.6). Тогда по определению эллипса, сумма расстояний от точки М до точек F1 и F2 равно константе (обозначим эту константу через 2а).
. (3.14)
Уравнение (3.14) является уравнением эллипса. Упростим данное уравнение, избавившись от квадратных корней. Для этого перенесем один из радикалов в правую часть равенства (3.14) и возведем обе части полученного равенства в квадрат:
,
,
,
.
Возводя последнее равенство в квадрат, получим
, или
,
.
Разделим обе части на :
.
Так как сумма расстояний от произвольной точки эллипса до его фокусов больше расстояния между фокусами, т.е. 2а > 2c, то .
Обозначим через b 2 . Тогда простейшее (каноническое) уравнение эллипса будет иметь вид:
, (3.15)
. (3.16)
Оси координат являются осями симметрии эллипса, заданного уравнением (3.15). Действительно, если точка с текущими координатами (x; y) принадлежит эллипсу, то и точки при любом сочетании знаков принадлежат эллипсу.
2Ось симметрии эллипса, на которой расположены фокусы, называется фокальной осью. Точки пересечения эллипса с его осями симметрии называются вершинами эллипса. Подставляя x = 0 или y = 0 в уравнение эллипса найдем координаты вершин:
2Отрезки А1А2 и B1B2, соединяющие противоположные вершины эллипса, а также их длины 2a и 2b, называют соответственно большой и малой осями эллипса. Числа a и b, называют соответственно большой и малой полуосями эллипса.
2Эксцентриситетом эллипса называется отношение расстояния между фокусами (2с) к большой оси (2a), т.е.
. (3.17)
Так как а и с положительны, причем c
2Отрезок 2a, длина которого равна расстоянию между вершинами гиперболы, называют действительной осью гиперболы. Отрезок 2b называют мнимой осью гиперболы. Числа a и b, называют соответственно действительной и мнимой полуосями гиперболы.
Можно доказать, что прямые линии
(3.23)
являются асимптотами гиперболы, т.е. такими прямыми, к которым неограниченно приближаются точки гиперболы при их неограниченном удалении от начала координат ( ).
2Эксцентриситетом гиперболы называется отношение расстояния между фокусами (2с) к действительной оси (2a), т.е., как и в случае эллипса
. (3.24)
Однако в отличии от эллипса эксцентриситет гиперболы больше единицы.
Если фокусы гиперболы расположены на оси Oy, то в левой части уравнения гиперболы изменятся знаки на противоположные:
. (3.25)
В этом случае полуось b будет действительной, а полуось a – мнимой. Ветви гиперболы будут симметричны относительно оси Oy (рис 3.9). Формулы (3.22) и (3.23) не изменятся, формула (3.24) будет выглядеть следующим образом:
. (3.26)
4. Парабола. Параболой называется геометрическое место точек, равноудаленных от данной точки, называемой фокусом и от данной прямой, называемой директрисой (предполагается, что фокус не лежит на директрисе).
Для того, чтобы составить простейшее уравнение параболы примем за ось Ox прямую, проходящую через ее фокус перпендикулярно директрисе, и направленную от директрисы к фокусу. За начало координат примем середину отрезка O от фокуса F до точки А пересечения оси Ox с директрисой. Длина отрезка AF обозначается через p и называется параметром параболы.
В данной системе координат координаты точек А и F будут, соответственно, , . Уравнение директрисы параболы будет . Обозначим через (x; y) координаты произвольной точки М параболы (рис. 3.10). Тогда по определению параболы:
. (3.27)
Возведем обе части равенства (3.27) в квадрат:
, или
, откуда
. (3.28)
Уравнение (3.28) называется каноническим уравнением параболы.
Каноническими являются так же следующие уравнения параболы.
. (3.29)
Ветви параболы, заданной уравнением (3.29), направлены влево, фокус имеет координаты , уравнение директрисы .
. (3.30)
Ветви параболы, заданной уравнением (3.30), направлены вверх, фокус имеет координаты , уравнение директрисы .
. (3.31)
Ветви параболы, заданной уравнением (3.31), направлены вниз, фокус имеет координаты , уравнение директрисы .
Задача 3.3. Найти координаты фокусов и эксцентриситет эллипса:
Решение. В каноническом виде уравнение эллипса выглядит следующим образом: Из этого уравнения видно, что большая полуось эллипса равна а малая полуось равна Расстояние от центра эллипса до его фокусов, находим из формулы (3.16): Таким образом, фокусы эллипса имеют координаты:
Эксцентриситет эллипса найдем по формуле (3.17):
Задача 3.4. Асимптоты гиперболы имеют уравнения и расстояние между фокусами равно 10. Составить каноническое уравнение гиперболы.
Решение. Из условия задачи следует, что
.
Подставляя в равенство (3.22) с = 5 и a = 2b, мы получим уравнение, из которого найдем b:
b 2 = 25 – 4b 2 , 5b 2 = 25, b 2 = 5, . Следовательно, a = 2b = .
Подставляя a 2 = 20 и b 2 = 5 в уравнение (3.21), получим искомое уравнение гиперболы:
Не нашли то, что искали? Воспользуйтесь поиском:
Лучшие изречения: Студент — человек, постоянно откладывающий неизбежность. 10572 — | 7332 — или читать все.
78.85.5.224 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.
Отключите adBlock!
и обновите страницу (F5)
очень нужно
Эллипс – геометрическое место точек M(x;y), сумма расстояний которых до двух данных точек F1F2 имеет одно и то же значение 2a:
точки F1 и F2 – называются фокусами эллипса;
расстояние F1F2 – фокусное расстояние и равно F1F2=2с;
a — большая полуось;
b — малая полуось;
c — фокальный радиус, то есть полу расстояние между фокусами;
p — фокальный параметр;
Rmin – минимальное расстояние от фокуса до точки на эллипсе;
Rmax — максимальное расстояние от фокуса до точки на эллипсе;
где
Длина малой оси эллипса 134 м. Длина большой оси равна 140 м. Найти коэффициент сжатия k и сжатие α этого эллипса
Постройте кривую 4x 2 +9y 2 =36. Найдите фокусы, фокальный параметр и эксцентриситет.
Делим обе части на 36 и получаем каноническое уравнение эллипса
a=3, b=2
c 2 =a 2 -b 2 =3 2 -2 2 =9-4=5
Отсюда находим Фокусы F1(-2,2;0) F2(2,2;0)
Фокальный параметр находим следующим образом
Эксцентриситет эллипса
Пример 3
Постройте кривую . Найдите фокусы и эксцентриситет.
Решение
Уравнение запишем в виде
a=1, b=5
Это уравнение не является каноническим уравнением эллипса, так как b>a, а должно быть b c 2 =a 2 − b 2 =5 2 −1 2 =25 − 1=24
Следовательно, фокусы в системе координат (x’;y’) имеют координаты (-4,9;0) и (4,9;0), а в системе (x;y) координаты
Эксцентриситет эллипса равен
источники:
http://www.evkova.org/ellips
http://hd01.ru/info/kak-najti-koordinaty-fokusov-jellipsa/
В
аналитической геометрии на плоскости
подробно изучаются геометрические
свойства эллипса, гиперболы и параболы,
представляющих собой линии пересечения
кругового конуса с плоскостями, не
проходящими через его вершину. Эти линии
часто встречаются во многих задачах
естествознания и техники. Например,
движение материальной точки под
воздействием центрального поля силы
тяжести происходит по одной из этих
линий; в инженерном деле для конструирования
прожекторов, антенн и телескопов
пользуются важным оптическим свойством
параболы, заключающимся в том, что лучи
света, исходящие из определённой точки
(фокуса параболы), после отражения от
параболы образуют параллельный пучок.
Определение.
Кривой
второго порядка
называется геометрическое место точек
координатной плоскости, координаты
которых удовлетворяют алгебраическому
уравнению 2-й степени с двумя
неизвестными:
.
ОКРУЖНОСТЬ.
Определение.
Окружностью
называется геометрическое место точек
плоскости равноудаленных от одной
фиксированной точки плоскости, называемой
центром
окружности.
Определение.
Расстояние от любой точки окружности
до ее центра называется радиусом
окружности.
Теорема.
Окружность является кривой 2-го порядка
и ее уравнение имеет вид:
где
– координаты центра окружности,– радиус окружности.
Определение.
Если центр окружности находится в начале
координат, то такая система координат
называется канонической
для окружности, а уравнение
называется каноническим уравнением
окружности.
ЭЛЛИПС.
Определение.
Эллипсом
называется геометрическое место точек
плоскости, для которых сумма расстояний
до двух фиксированных точек плоскости,
называемых фокусами,
есть величина постоянная. Эту величину
принято обозначать через
.
Определение.
Расстояние между фокусами эллипса
называется фокусным
расстоянием.
Фокусы эллипса принято обозначать
буквами
и,
расстояние между ними – через.
По определению эллипса.
Определение.
Расстояния от точки
,
лежащей на эллипсе, до фокусовиназываютсяфокальными
радиусами
точки
.
Замечание.
Из определения эллипса следует, что
точка
является точкой эллипса тогда и только
тогда, когда сумма её фокальных радиусов.
Определение.
Число
называетсябольшой
осью
эллипса, число
,
где,
называетсямалой
осью
эллипса. Числа
иназываются соответственнобольшой
и малой
полуосями
эллипса.
Определение.
Отношение фокусного расстояния эллипса
к его большой оси называется эксцентриситетом
эллипса, и обозначается буквой
или:
Определение.
Ось, на которой лежат фокусы эллипса,
называется фокальной
осью
эллипса.
В
канонической для эллипса системе
координат, оси координат являются
главными осями эллипса, а начало координат
является центром эллипса.
Определение.
Точки
эллипса, лежащие на его осях, называются
вершинами
эллипса.
Теорема.
(Каноническое уравнение эллипса.) Эллипс
является кривой 2-го порядка, и в
канонической для эллипса системе
координат его уравнение имеет вид:.
Теорема.
(Фокальные радиусы точки эллипса.) Пусть
в канонической для эллипса системе
координат точка
лежит на эллипсе. Тогда ее фокальные
радиусы равны:,,
где– большая полуось эллипса,–
его эксцентриситет.
Определение.
В канонической для эллипса системе
координат прямые
называютсядиректрисами
эллипса.
Теорема.
(Свойство директрис эллипса.) Пусть
– произвольная точка эллипса,и– ее фокальные радиусы. Обозначим черези,
соответственно, расстояния от точкидо левой и правой директрисы эллипса.
Тогда.
Теорема.
(Зеркальное свойство эллипса.) Луч света,
выпущенный из одного фокуса эллипса
после отражения от зеркала эллипса
проходит через второй его фокус.
Теорема.
В канонической для эллипса системе
координат уравнение касательной к
эллипсу в точке
имеет вид:
ГИПЕРБОЛА
Определение.
Гиперболой
называется геометрическое место точек
плоскости, модуль разности расстояний
которых до двух фиксированных точек
плоскости, называемых фокусами, есть
величина постоянная.
Фокусы
гиперболы принято обозначать буквами
и.
Расстояния от точки,
лежащей на гиперболе, до фокусов
обозначаютсяи,
и называются еёфокальными
радиусами.
Замечание.
Из определения гиперболы следует, что
точка М является точкой гиперболы тогда
и только тогда, когда модуль разности
её фокальных радиусов
есть величина постоянная для данной
гиперболы. Эту константу принято
обозначать через.
Определение.
Расстояние между фокусами гиперболы
называется фокусным
расстоянием.
Фокусное
расстояние для данной гиперболы есть
величина постоянная и ее принято
обозначать через
:.
Замечание.
Так как сторона треугольника больше
модуля разности двух его других сторон,
то отсюда и из определения гиперболы
следует, что
Определение.
Число
называетсядействительной
осью
гиперболы, число
,
где,
называетсямнимой
осью
гиперболы. Числа
иназываются соответственнодействительной
и мнимой полуосями
гиперболы.
Определение.
Отношение фокусного расстояния гиперболы
к её действительной оси называется
эксцентриситетом
гиперболы, и обозначается буквой
или:
В
канонической для гиперболы системе
координат, оси координат являются
главными осями гиперболы, а начало
координат является центром гиперболы.
Теорема.
(Каноническое уравнение гиперболы.)
Гипербола является кривой 2-го порядка,
и в канонической для гиперболы системе
координат её уравнение имеет вид:
.
Определение.
Точки
гиперболы, лежащие на её действительной
оси, называются действительными
вершинами
гиперболы. Две точки плоскости
(в канонической для гиперболы системе
координат), лежащие на мнимой оси
гиперболы называютсямнимыми
вершинами
гиперболы.
Определение.
Две пары прямых, параллельных осям
гиперболы
высекают прямоугольник, который
называетсяосновным
прямоугольником
гиперболы.
Гипербола
состоит из двух кривых, называемых её
ветвями,
которые в канонической системе
координат описываются уравнениями
Теорема.
Прямые
являются асимптотами гиперболы.
Теорема.
(Фокальные радиусы точек гиперболы.)
Пусть в канонической для гиперболы
системе координат точка
лежит на гиперболе. Тогда ее фокальные
радиусы равны:|,,
где– действительная полуось гиперболы,– её эксцентриситет.
Определение.
В канонической для гиперболы системе
координат прямые
называютсядиректрисами
гиперболы.
Теорема.
(Свойство директрис гиперболы.) Пусть
– произвольная точка гиперболы,и– ее фокальные радиусы. Обозначим черези,
соответственно, расстояния от точкидо левой и правой директрисы гиперболы.
Тогда.
Теорема.
(Зеркальное свойство гиперболы.) Луч
света, выпущенный из одного фокуса
гиперболы после отражения от зеркала
гиперболы кажется наблюдателю идущим
из второго её фокуса.
Теорема.
В канонической для гиперболы системе
координат уравнение касательной к
гиперболе в точке
имеет вид:
ПАРАБОЛА
Определение.
Параболой
называется геометрическое место точек
плоскости, расстояние от которых до
фиксированной прямой, называемой
директрисой,
равно расстоянию до фиксированной
точки, называемой фокусом.
Определение.
Расстояние от произвольной точки
плоскости до фокуса параболы называетсяфокальным
радиусом точки
.
Обозначения:
– фокус параболы,– фокальный радиус точки,– расстояние от точкидо директрисы.
По
определению параболы, точка
является точкой параболы тогда и только
тогда, когда.
Определение.
Расстояние от фокуса параболы до ее
директрисы называется фокальным
параметром
параболы, и обозначается буквой
.
Замечание.
Из определений следует, что в канонической
для параболы системе координат фокус
имеет координаты
,
а директриса описывается уравнением.
Теорема.
(Каноническое уравнение параболы.)
Парабола является кривой 2-го порядка,
и в канонической для неё системе координат
её уравнение имеет вид:
Теорема.
В канонической для параболы системе
координат, фокальный радиус точки
параболы равен
Теорема.
(Зеркальное свойство параболы.) Луч
света, выпущенный из фокуса параболы
после отражения от зеркала параболы
проходит параллельно её фокальной оси.
Теорема.
В канонической для параболы системе
координат уравнение касательной к
параболе в точке
имеет вид:.
Определение.
Парабола
имеет одну ось симметрии, называемую
осью
параболы, с которой она пересекается в
единственной точке. Точка пересечения
параболы с осью называется ее вершиной.
Замечание.
Если координатная система выбрана так,
что ось абсцисс совмещена с осью параболы,
начало координат – с вершиной, но
парабола лежит в левой полуплоскости,
то ее уравнение будет иметь вид:
В
случае, когда начало координат находится
в вершине, а с осью совмещена ось ординат,
то парабола будет иметь уравнение:
,
если она лежит в верхней полуплоскости,
и
–
если в нижней полуплоскости.
Полярная
система координат.
Определение.
Точка О называется полюсом,
а луч L
– полярной
осью.
Задание
какой-либо системы координат на плоскости
состоит в том, чтобы каждой точке
плоскости поставить в соответствие
пару действительных чисел, определяющих
положение этой точки на плоскости. В
случае полярной системы координат роль
этих чисел играют расстояние точки от
полюса и угол между полярной осью и
радиус– вектором этой точки. Этот угол
называется полярным
углом.
0
Можно
установить связь между полярной системой
координат и декартовой прямоугольной
системой, если поместить начало декартовой
прямоугольной системы в полюс, а полярную
ось направить вдоль положительного
направления оси
.
Тогда
координаты произвольной точки в двух
различных системах координат связываются
соотношениями:
x
= rcos;
y = rsin;
x2
+ y2
= r2.
Взаимосвязь
полярных и декартовых координат
определяется формулами:
.
В
полярной системе координат уравнения
эллипса, параболы или правой ветви
гиперболы имеют вид:
,
причем, данное уравнение задает эллипс,
если;
параболу, если;
гиперболу, если.
Левая ветвь гиперболы задается уравнением.
Инварианты
кривых второго порядка.
Определение.
Инвариантами
уравнения линии второго порядка
называются следующие выражения:,,.
Определение.
Если инвариант
,
то линия называется линией эллиптического
типа, если,
то – гиперболического типа, если,
то – параболического типа.
Таблица
для определения типа кривой второго
порядка.
парабола |
пара |
|||||
эллипс |
точка |
|
гипербола |
пара |
Решение
типовых задач.
Задача
№1.
Составить
уравнение параболы, если даны её фокус
и директриса
Решение:
I
способ
Пусть
– произвольная точка параболы, тогда
(по определению параболы) расстояние
от точкидо фокусаF
равно её расстоянию
до директрисы.
Возведём
в квадрат обе части, получим искомое
уравнение:
II
способ
Сделаем
чертёж:
Очевидно, Вершина |
Совершим
параллельный перенос системы
на вектор:
В
полученной системе координат
уравнение параболы имеет канонический
вид:
,
где
– расстояние между фокусом и директрисой,.
Тогда.
Из формул параллельного переноса
следует:.
Поэтому уравнение параболы примет вид:.
Ответ:
.
Задача
№2.
Найти
фокус и директрису параболы
.
Решение:
выразим из уравнения:
.
Сделаем
преобразование системы координат
:
.
Тогда
–
это преобразование есть параллельный
перенос.
Уравнение
параболы в системе
примет
вид:
Очевидно, |
Перейдём
к исходной системе координат: уравнение
директрисы:.
Фокус
F
имеет координаты:
Ответ:
.
Задача
№3.
Точка
лежит на гиперболе, фокус которойа соответствующая директриса задана
уравнением.
Составить уравнение этой гиперболы.
Решение:
Пусть– произвольная точка гиперболы. По
теореме об отношении расстояний
(отношение расстоянияr
от любой точки гиперболы до фокуса к
расстоянию d
от этой точки до соответствующей
директрисы есть величина постоянная,
равная эксцентриситету гиперболы):
,
;
,e
найдём, применив теорему для данной
точки
тогда
.
Сделав
соответствующие преобразования, получим
уравнение:.
Ответ:
.
Задача
№4.
Точка
лежит
на эллипсе, фокус которогоа соответствующая директриса задана
уравнением.
Составить уравнение этого эллипса.
Решение:
Решение
этой задачи аналогично предыдущей
задачи.
Пусть
– произвольная точка эллипса. По теореме
об отношении расстояний имеем:.
e
найдём по этой же теореме, используя
точку
Тогда
уравнение эллипса примет вид:
.
Ответ:
.
Задача
№5.
Из
фокуса параболы
опущен перпендикуляр на прямую, проходящую
через центр эллипсаи составляющую с осьюугол 135°. Составить уравнение этой прямой
и найти длину перпендикуляра.
Решение:
Найдём
координаты центра эллипса, для этого
преобразуем его уравнение:
;
.
Итак,
координаты
эллипсаПрямая
проходит через точку,
угловой коэффициент прямой,
поэтому уравнение прямой примет вид:,
т.е..
Найдём
фокус параболы
,
т.е.= 8, поэтому
Искомая
длина перпендикуляра – это расстояние
от фокуса до прямой,
поэтому.
Ответ:
,.
Задача
№6.
Даны
вершина параболы
и уравнение её директрисы.
Составить уравнение этой параболы.
Решение:
Найдём
фокус параболы, для этого опустим из
вершины
параболы перпендикуляр на директрису:
.
Эта прямая является осью симметрии
параболы.
Найдём
точку
,
пересечение оси симметрии параболы с
её директрисой:.
Фокус
параболы – это конец отрезка
с известными началоми серединойпоэтомуЗная фокус параболы и её директрису,
найдём её уравнение.
Ответ:
.
Задача
№7.
Определить,
при каких значениях
прямая:
1)
пересекает эллипс
;
2)
касается его;
3)
проходит вне этого эллипса.
Решение:
Решая
систему
,
получим уравнение.
-
Чтобы
прямая пересекала эллипс, нужно чтобы
полученное квадратное уравнение
относительно x
имело два решения, для этого дискриминант
D>0.
.
Откуда
.
-
Чтобы
прямая касалась эллипса, нужно чтобы
,
т.е. -
Нет
пересечений, если
т.е.
Ответ:1)
при
пересекает эллипс;
2)
при
касается эллипса;
3)
при
проходит вне эллипса.
Задача
№8.
Провести
касательные к эллипсу
параллельно прямойи вычислить расстояние между ними.
Решение:
Если
–
точка касания, то уравнение касательной
к эллипсу имеет вид:.
Угловой
коэффициент
к
этой касательной равен:.
Но
касательная параллельна прямой
,
поэтомуПоэтому, чтобы найти точки касания,
решим систему:.
Оттуда
точка
имеет координатыиПоэтому, используя уравнение,
будем иметь уравнения касательных:и.
Расстояние
между касательными – это расстояние
от точки
до второй касательной:
.
Ответ:,,.
Задача
№9.
Написать
уравнение эллипса, для которого прямые
иесть
соответственно большая и малая оси, и
длины полуосей которого,.
Решение:
Найдём
центр
эллипса:
Обозначим Через В |
Повернём
систему
на угол, равный -45º, тогда система совпадёт
с системой.
Формулы поворота:
или
.
А
уравнение эллипса примет вид:
.
Сделаем
второе преобразование: параллельно
перенесём систему
на вектор.
Формулы
параллельного переноса:
.
Уравнение
эллипса в системе
примет
вид:
.
Ответ:.
Задача
№10.
Не
приводя преобразование координат,
установить, какой геометрический образ
определяет уравнение, и найти величины
его полуосей:
.
Решение:
.
.
.
Итак,
уравнение определяет эллипс. Составим
характеристическое уравнение:
.
Тогда
преобразованное уравнение примет вид:
.
Откуда
каноническое уравнение примет вид:
.
Ответ:
эллипс,
,.
Задача
№11.
Не
приводя преобразования координат,
установить тип кривой и найти величины
её полуосей:
.
Решение:
Уравнение
определяет гиперболу. Т.к.
>0,
то действительной осью является ось.
Составим характеристическое уравнение:
.
Каноническое
уравнение гиперболы:
,
т.е..
Ответ:
гипербола,
,.
Задача
№12.
Не
приводя преобразования координат,
установить тип кривой и найти величины
её полуосей:.
Решение:
,
,– парабола,.
Каноническое уравнение:.
Ось
параболы определяется уравнением:
.
В
разбираемом случае имеем:
.
Вершину параболы находим как точку
пересечения линии с её осью из системы
уравнений:
или
или
или
.
Вершина
параболы
.
Единичный направляющий вектор оси
параболы в сторону вогнутости приопределяется уравнением и неравенством:.
В
рассматриваемом случае имеем:
Имеем:
;.
Ответ:
парабола,
;.
Задача
№13.
Не
приводя преобразования координат,
установить тип кривой и найти величины
её полуосей:.
Решение:
,
,– пересекающиеся прямые. Точка пересечения
находиться как центр линий:
Точка
пересечения
.
Направляющие векторы прямых находятся
как векторы асимптотических направлений:
Направляющие
векторы прямых:
Уравнения
прямых:
и
или
Ответ:
пересекающиеся прямые:
Задача
№14.
Не
приводя преобразования координат,
установить тип кривой и найти величины
её полуосей:
Решение:
,
,–
пара прямых (действительных, мнимых или
совпадающих).
Чтобы
решить, какие это прямые, достаточно
найти точки пересечения данной линии
с осью
.
Имеем:
,x
= 0, или
–
действительные параллельные прямые.
Направляющие векторы прямых имеют
асимптотические направления и находятся
из уравнения:.
Направляющие
векторы прямых
.
Их угловой коэффициент.
Уравнения прямых:или.
Ответ:
параллельные прямые:
.
Задача
№15.
Установить,
какие линии определяются следующими
уравнениями:
1)
;
2)
.
Решение:
1)
.
ОДЗ:
;.
После
преобразований уравнение эллипса
принимает вид:
.
Итак,
координаты центра эллипса
полуосии.
Учитывая, что,
можно сказать, что искомой линией
является половина эллипса, расположенная
над прямой.
2)
.
ОДЗ: |
|
|
Т.к. Итак, Центр . Ответ:
,
в |
Задача
№16.
Определить,
какие линии определяются следующими
уравнениями:
Изобразить
линии на чертеже.
Решение:
1)
ОДЗ:
,.
Ответ:
часть гиперболы
,
расположенная в верхней полуплоскости.
Ответ: |
|
.
Ответ:
Ветвь гиперболы
,
расположенная
в
левой полуплоскости.
Задача
№17.
Уравнение
кривой в полярной системе координат
имеет вид:
.
Найти уравнение кривой в декартовой
прямоугольной системе координат,
определит тип кривой, найти фокусы и
эксцентриситет. Схематично построить
кривую.
Решение.
Воспользуемся
связью декартовой прямоугольной и
полярной системы координат:
;
;
;
;
;
;
;
;
.
Получили
каноническое уравнение эллипса. Из
уравнения видно, что центр эллипса
сдвинут вдоль оси
навправо, большая полуосьa
равна
,
меньшая полуосьравна,
половина расстояния между фокусами
равно1/2.
Эксцентриситет равен.
Фокусыи
y
F1
F2
-1 0
½ 1 2
–
Образовательным
результатом после изучения данной темы
является сформированность компонент,
заявленных во введении, совокупности
компетенций (знать, уметь, владеть) на
двух уровнях: пороговый и продвинутый.
Пороговый уровень соответствует оценке
«удовлетворительно», продвинутый
уровень соответствует оценкам «хорошо»
или «отлично» в зависимости от результатов
защиты кейс-заданий.
Для
самостоятельной диагностики данных
компонент вам предлагаются следующие
задания.
Эллипс – это замкнутая плоская кривая, сумма расстояний от каждой точки до двух точек равняется постоянной величине.
Что такое эллипс и фокусное расстояние
Эллипс – это множество точек плоскости, сумма расстояний которых от двух заданных точек, что называются фокусами, есть постоянная величина и равна .
Обозначим фокусы эллипса и . Допустим, что расстояние = – фокусное расстояние.
Рис. 1
– фокусы .
; ,
– половина расстояния между фокусами;
– большая полуось;
– малая полуось.
Теорема:
Фокусное расстояние и полуоси связаны соотношением:
Если точка находится на пересечении эллипса с вертикальной осью, (теорема Пифагора). Если же точка находится на пересечении его с горизонтальной осью, . Так как по определению сумма – постоянная величина, то приравнивая получается:
.
Уравнение эллипса
Уравнение элиппса бывает двух видов:
- Каноническое уравнение эллипса.
- Параметрическое уравнение эллипса.
Сначала рассмотрим каноническое уравнение эллипса:
Уравнение описывает эллипс в декартовой системе координат. Если центр эллипсa в начале системы координат, а большая ось лежит на абсциссе, то эллипс описывается уравнением:
Если центр эллипсa смещен в точку с координатами тогда уравнение:
Чтобы получить каноническое уравнение эллипса, разместим и на оси симметричной к началу координат. Тогда у фокусов будут такие координаты и (см. рис. 2).
Пусть – произвольная точка эллипса. Обозначим через и – расстояние от точки к фокусам. Согласно с определением эллипса:
(1)
Рис. 2
Подставим в (1) , и освободимся от иррациональности, подняв обе части к квадрату, получим:
(подносим к квадрату обе части): ,
Обозначим: , получаем каноническое уравнение эллипса:
(2)
Отметим, что по известному свойству треугольника (сумма двух сторон больше третьей) из у нас получается . Так как , тогда , и поэтому .
Для построения эллипса обратим внимание, что если точка принадлежит эллипсу, то есть удовлетворяет уравнение (2), тогда точки тоже удовлетворяют это уравнение: из
.
Точки – расположены симметрично относительно осей координат. Значит, эллипс – фигура, симметричная относительно координатных осей. Поэтому достаточно построить график в первой четверти, а тогда симметрично продолжить его.
Из уравнения (2) находим , для первой четверти .
Если , тогда . Если же , тогда . Точки и , а также симметричные с ними , – вершины эллипса, точка – центр эллипса, = большая ось, – малая ось эллипса.
Если первой четверти, тогда из получается, что при возрастании от к значение падает от к . (рис. 3)
Параметрическое уравнение выглядит так:
Основные свойства эллипса
Рассмотрим основные свойства эллипса, которые необходимы для решения многих задач.
1. Угол между касательной к эллипсу и фокальным радиусом равен углу между касательной и фокальным радиусом .
2. Уравнение касательной к эллипсу в точке с координатами :
.
3. Если эллипс пересекается двумя параллельными прямыми, то отрезок, который соединяет середины отрезков образовавшихся при пересечении прямых и эллипса, всегда проходит через середину (центр) эллипсa. (При помощи данного свойства можно построить эллипс при помощи циркуля и линейка, а также найти центр эллипса).
4. Эволюта эллипсa – это астероида, которая растянута вдоль короткой оси.
5. Если вписать эллипс с фокусами и у треугольника , тогда выполняется соотношение:
=
Эксцентриситет эллипса
Эксентриситет эллипса – это величина отношения межфокусного расстояния к большей оси и после сокращения на обозначается
Значения эксентриситета характеризует степень “сплющенность” эллипса. Если , тогда – получается круг. Если же , тогда – эллипс превращается в отрезок. В некоторых случаях . Для фокальных радиусов приведём без доказательства такие формулы:
Рис. 3
Эллипс можно построить механическим способом. Из канонического уравнения нужно найти полуоси и , тогда вычислим – полуфокусное расстояние.
Строим фокусы и на расстоянии один от другого Концы не растянутой нити длиной закрепляем в точках и . Натягивая остриём карандаша нитку, водим остриём по плоскости таким образом, чтобы нитка скользила по острию. Карандаш при этом опишет полуось. Оттягивая нить в противоположную сторону, начертим вторую половину эллипса.
Примеры решения задач
Задача
Задан эллипс уравнением и точки . Необходимо:
- убедиться, что точки и лежат на эллипсе;
- найти полуоси эллипса и координаты его фокусов;
- найти расстояние от точки к фокусам;
- убедиться, что сумма этих расстояний равна длине большой оси;
- найти эксентриситет эллипса.
Решение
1. Подставим координаты точки в левую часть уравнения эллипса:
– точка лежит на эллипсе. Аналогично для :
точка лежит на эллипсе.
2. С канонического и данного уравнения эллипса выходит: Из равенства получается:
– полуфокусное расстояние. Координаты фокусов и .
3. Найдём фокальные радиусы точки :
4. Найдём сумму , что отвечает определению эллипса.
5. Эксцентриситет находится по формуле .
Задача
Найти оси, вершины и фокусы эллипса
Решение
Сведём обычное уравнение к каноническому:
, . Вершины эллипса в точках , , , . Строим вершины на координатных осях и соединяем плавной линией (см. рис. 2). Так как в данном случае больше, чем , то эллипс, который вытянут вдоль оси , находим полуфокусное расстояние .
Фокусы в точках и . (см. рис. 3)
Рис. 4
Найти оси, вершины и фокусы эллипса или . Построить эллипс.
Сравнивая последнее уравнение с уравнением (2), у нас получается:
, . Откуда находим оси эллипса: , и координаты вершин: , , , . Дальше из формулы:
. Значит, фокусами эллипса есть точки: и . Для построения эллипса отложим на осях и вершины соответственно соединим их плавной линией, (см. задачу 1).
Замечание! Если в каноническом уравнении большей полуосью будет , тогда фокусы эллипса будут расположены на оси и тогда .
Содержание:
Геометрической фигурой или просто фигурой на плоскости называется множество точек. Задать фигуру – значит указать, из каких точек плоскости она состоит. Одним из важных способов задания фигуры на плоскости является ее задание при помощи уравнений с двумя неизвестными. Произвольное уравнение с двумя неизвестными х и у записывается в виде
- Если точка М(а,Ь) принадлежит фигуре Ф, то координаты (а,Ь) являются решениями уравнения
- если пара чисел (c,d) является решением уравнения F(x,y) = 0, то точка N(c,d) принадлежит фигуре Ф.
Это определение в более компактной записи выглядит следующим образом. Уравнение называется уравнением фигуры, если , то есть (а, b) – решение уравнения F(x,y) = 0.
Из определения уравнения фигуры следует, что фигура Ф состоит только из тех точек плоскости, координаты которых являются решениями уравнения , т.е. уравнение фигуры задает эту фигуру.
Возможны два вида задач:
- дано уравнение и надо построить фигуру Ф, уравнением которой является ;
- дана фигура Ф и надо найти уравнение этой фигуры.
Первая задача сводится к построению графика уравнения и решается, чаще всего, методами математического анализа.
Для решения второй задачи, как следует из определения уравнения фигуры, достаточно:
- Задать фигуру геометрически, т.е. сформулировать условие, которому удовлетворяют только точки фигуры (довольно часто определение фигуры содержит такое условие);
- Записать в координатах условие, сформулированное в первом пункте.
Эллипс
Эллипсом называется линия, состоящая из всех точек плоскости, для каждой из которых сумма расстояний до двух данных точек , есть величина постоянная (большая, чем расстояние между ).
Точки называются фокусами эллипса. Обозначив расстояние между фокусами через 2с, а сумму расстояний от точек эллипса до фокусов через 2а, имеем с<а. Если это условие не выполнено, то рассматриваемое множество точек либо отрезок прямой, заключенной между фокусами, либо не содержит ни одной точки.
Из определения эллипса вытекает следующий метод его построения: если концы нерастяжимой нити длины 2а закрепить в точках и натянуть нить острием карандаша, то при движении острия будет вычерчиваться эллипс с фокусами и с суммой расстояний от произвольной точки эллипса до фокусов, равной 2 а (Рис. 7.1).
Составим уравнение эллипса. Для этой цели расположим декартову прямоугольную систему координат таким образом, чтобы ось Ох походила через фокусы положительное направление оси – от , начало координат выберем в середине отрезка . Тогда координаты точек будут соответственно (-с,0) и (с,0).
Пусть М(х,у) – произвольная точка эллипса, тогда:
Подставляя сюда значения имеем:
(7.1)
Уравнение (1) и есть уравнение эллипса. Преобразуя, упростим
его:
Возведя обе части уравнения в квадрат и приведя подобные члены, получим:
Возведем еще раз обе части в квадрат и приведем подобные члены. Получаем или
(7.2)
Положительную величину обозначим через. Тогда уравнение (7.2) примет вид:
(7.3)
Оно называется каноническим уравнение эллипса.
Координаты точек эллипса ограничены неравенствами. Значит, эллипс ограниченная фигура, не выходящая за пределы прямоугольника со сторонами 2а и 2b •
Заметим, что в уравнение (7.3) входят лишь четные степени х и у. Поэтому, если точка M(х,у) принадлежит эллипсу, то и точки также ему принадлежат. А это означает, что эллипс – линия симметричная относительно координатных осей Ох и Оу.
Поэтому для исследования формы эллипса достаточно рассмотреть его в первой координатной четверти, а в остальных четвертях его строение определяется по симметрии. Для первой четверти, из уравнения (7.3) имеем:
(7.4)
При возрастании x от 0 до а, у монотонно убывает от а до 0. График функции изображен на Рис. 7.4.
Рис. 7.4
Достроив остальные четверти эллипса по симметрии, получим весь эллипс (Рис. 7.5).
Рис. 7.5. Оси симметрии эллипса (оси Ох и Оу) называются просто его осями, а центр симметрии – точка О – центром эллипса. Точки пересечения эллипса с осями координат называются вершинами эллипса. Отрезки , а также их длины а и Ь называются полуосями эллипса. В случае, когда фокусы эллипса находятся на оси Ох (как в нашем случае), из равенства следует, что a>b. В этом случае а называется большой полуосью, a b – малой.
Если а =Ь, то уравнение (7.3) можно переписать в виде:
(7.5)
Это уравнение окружности с центром в начале координат. Эллипс (3) можно получить из окружности (4) сжатием плоскости к оси Ох. Пусть на плоскости выбрана прямоугольная система координат Оху. Тогда преобразование, переводящее произвольную точку М(х,у) в точку координаты которой задаются формулами будет окружность (4) переводить в эллипс, заданный соотношением
Число называется эксцентриситетом эллипса. Эксцентриситет характеризует форму эллипса: чем ближе к нулю, тем больше эллипс похож на окружность; при увеличении становится более вытянутым
Фокальными радиусами точки М эллипса называются отрезки прямых, соединяющие эту точку с фокусами . Их длины и задаются формулами Прямые называются директрисами эллипса. Директриса называется левой, а – правой. Так как для эллипса и, следовательно, левая директриса располагается левее левой вершины эллипса, а правая – правее правой вершины.
Директрисы обладают следующим свойством: отношение расстояния г любой точки эллипса от фокуса к ее расстоянию d до соответствующей директрисы есть величина постоянная, равная эксцентриситету, т.е.
Гипербола
Гиперболой называется линия, состоящая из всех точек плоскости, модуль разности расстояний от которых до двух данных точек есть величина постоянная (не равная нулю и меньшая, чем расстояние между ).
Точки называются фокусами гиперболы. Пусть по-прежнему расстояние между фокусами равно 2с. Модуль расстояний от точек гиперболы до фокусов обозначим через а. По условию, а <с.
Выбрав декартову систему координат, как в случае эллипса, и используя определение гиперболы, составляем ее уравнение: (7.6) где ху – координаты произвольной точки гиперболы,
Уравнение (7.6) называется каноническим уравнением гиперболы.
Из уравнения (7.6) видно, что . Это означает, что вся гипербола располагается вне полосы, ограниченной прямыми х = -а и х = а.
Так как в уравнение входят только четные степени x и у, то гипербола симметрична относительно каждой из координатных осей и начала координат. Поэтому достаточно построить эту кривую в первой четверти: в остальных четвертях гипербола строится по симметрии. Из уравнения (7.6) для первой четверти, имеем:
График этой функции от точки A(а,0) уходит неограниченно вправо и вверх (Рис. 7.7), и как угодно близко подходит к прямой:
Поэтому говорят, что гипербола асимптоматически приближается к прямой (7.7), и эту прямую называют асимптотой гиперболы. Из симметрии гиперболы следует, что у нее две асимптоты
Построим гиперболу. Сначала строим, так называемый, основной прямоугольник гиперболы, центр которой совпадает с началом координат, а стороны равны 2а и 2Ь параллельны осям координат. Прямые, на которых расположены диагонали этого прямоугольника, являются асимптотами гиперболы. Сделаем рисунок гиперболы (Рис. 7.8).
Гипербола состоит из двух отдельных ветвей. Центр симметрии гиперболы называется ее центром, оси симметрии называются осями гиперболы. Точки , пересечения гиперболы с осью Ох называются вершинами гиперболы. Величины а и Ь называются полуосями гиперболы. Если а=Ь, то гипербола называется равносторонней.
Эксцентриситетом гиперболы называется число. Для любой гиперболы . Эксцентриситет характеризует форму гиперболы: чем меньше, тем больше вытягивается гипербола вдоль оси Ох. На рисунке 7.9 изображены гиперболы с различными значениями £.
Фокальными радиусами точки гиперболы называются отрезки прямых, соединяющие эту точку с фокусами. Их длины и задаются формулами:
Для правой – ветви ,
Для левой – ветви
Прямые называются директрисами гиперболы. Как и в случае эллипса, точки гиперболы характеризуются соотношением
Парабола
Параболой называется линия, состоящая из всех точек плоскости, равноудаленных от данной точки F (фокуса) и данной прямой (директрисы).
Для вывода канонического уравнения параболы ось Ох проводят через фокус F перпендикулярно директрисе в направлении от директрисы к фокусу; начало координат берут в середине отрезка между фокусом F и точкой D пересечения оси Ох с директрисой . Если обозначить через р расстояние фокуса от директрисы, то и уравнение директрисы будет иметь вид
В выбранной системе координат уравнение параболы имеет вид:
(7.8)
Это уравнение называется каноническим уравнением параболы. Из уравнения (7.8) видно, что л: может принимать только неотрицательные значения. Значит, на рисунке вся парабола располагается справа от оси Оу. Так как уравнение (7.8) содержит у только в четной степени, то парабола симметрична относительно оси Ох и поэтому достаточно рассмотреть ее форму в первой четверти. В этой четверти .
При неограниченном возрастании x неограниченно растет и у. Парабола, выходя из начала координат, уходит неограниченно вправо и вверх, четвертой четверти парабола строится по симметрии. Сделаем рисунок параболы (Рис. 7.10).
Ось симметрии параболы называется ее осью. Точка пересечения с ее осью называется вершиной параболы.
Исследование на плоскости уравнения второй степени
Рассмотрим уравнение:
(7.9)
где среди коэффициентов А, В, С есть отличные от нуля, т.е. (7.9) – уравнение второй степени относительно х и у.
Возьмем на плоскости две прямоугольные системы координат: Оху, которую будем называть старой, и новую, полученную из Оху поворотом ее вокруг начала координат на угол
Старые координаты х, у выражаются через новые координаты по формулам:
(7.10)
Подставив выражения для х и у в уравнение (8), получим: (7.11)
Это уравнение в системе координат задает ту же линию, что и уравнение (7. 9) в системе Оху.
Если в уравнении (7.9) , то за счет выбора угла а в (7.10) можно добиться того, что В’ = 0. Для этого угол а надо взять таким, чтобы . Поэтому будем считать В’= 0, тогда уравнение (7.11) примет вид:
(7.12)
Преобразуя это уравнение и применяя параллельный перенос координатных осей, придем к уравнению:
(7.13)
В зависимости от знаков коэффициентов уравнения (7.13) рассмотрим следующие случаи:
Рассматривая далее методично все случаи, придем к выводу: уравнение вида (7.9) задает одну из следующих фигур: эллипс, гиперболу, параболу, пару пересекающихся прямых, пару параллельных прямых, прямую, точку или пустое множество.
Кривые второго порядка в высшей математике
Выяснение взаимосвязей между различными показателями экономического характера часто приводит к форме этих связей в виде гиперболы и параболы. В этой лекции приведём краткие сведения обо всех кривых второго порядка.
Окружность
Определение 9.1. Окружностью называется геометрическое место точек, равноудаленных от данной точки – центра окружности.
Если точка – центр (рис.9.1), N(x,y) – произвольная точка окружности и R – её радиус, то согласно определения можно записать
или
Найдём условия, при которых общее уравнение второй степени с двумя переменными
определяет окружность. Раскрыв скобки в (9.1.1), получим
Сравнивая (9.1.2) и (9.1.3), находим условия А = С, В = О,
, при выполнении которых общее уравнение (9.1.2) определяет окружность.
Эллипс
Определение 9.2. Эллипсом называется геометрическое место точек, для которых сумма расстояний от двух фиксированных точек плоскости, называемых фокусами, есть постоянная величина, большая, чем расстояние между фокусами.
Пусть на плоскости хОу (рис. 9.2) дан эллипс с фокусами и. Пусть начало координат лежит на середине отрезка . Выведем уравнение эллипса.
Если точка А – произвольная точка эллипса с координатами (х, у), то
(9.2.1)
где – постоянная сумма. Так как
расположены симметрично относительно начала координат, то они имеют координаты (с,0) и (-с,0) соответственно. Воспользовавшись формулой для вычисления расстояния между двумя точками, находим . Подставив значения
и в (9.2.1), получаем уравнение
Обе части этого уравнения возведем в квад-Упростив и обозначив
получим. Разделим обе части уравнения на правую часть
Уравнение (9.2.2) называется каноническим уравнением эллипса, где а – большая полуось, b – малая полуось.
Это уравнение второго порядка, следовательно, эллипс есть линия второго порядка. Для определения формы эллипса служит его эксцентриситет , т.е. отношение расстояния между фокусами этого эллипса к длине его большей полуоси. Так как са, то эксцентриситет каждого эллипса меньше единицы. Поскольку
, то подставив значение в равенство, получим
Следовательно, эксцентриситет определяется отношение осей эллипса; а отношение осей определяется эксцентриситетом. Чем ближе эксцентриситет к единице, тем меньше , тем меньше, следовательно, отношение . Это значит, что эллипс вытянут вдоль оси Ох. В случае Ь=а и получаем окружность.
Две прямые, перпендикулярные к большей оси эллипса и расположенные симметрично относительно центра на расстоянии от него, называются директрисами эллипса. Уравнения директрис
Пример:
Исследовать, какая линия определяется уравнением
Решение:
Сгруппируем члены, содержащие одну и туже переменную, получим
Из второй скобки вынесем коэффициент при , после чего предыдущее уравнение примет вид
В каждой из скобок выделим полный квадрат
или
Произведём замену: . Исследуемое уравнение принимает вид: .
Разделив обе части этого уравнения на , получим канонический вид данного уравнения:
Заданное уравнение определяет эллипс с полуосями , центр которого находится в точке
Выбираем на плоскости произвольным образом прямоугольную систему координат хОу. С помощью параллельного переноса переносим оси координат в новое начало в точку . В новой системе координат строим основной прямоугольник со сторонами , стороны которого параллельны новым осям координат, а центр находится в точке . Вписываем в него эллипс.
Гипербола
Определение 9.3.1. Гиперболой называется геометрическое место точек, для которых разность расстояний от двух фиксированных точек плоскости, называемых фокусами, есть постоянная величина, меньшая, чем расстояние между фокусами и отличная от нуля (указанная разность берется по абсолютному значению).
Пусть М- произвольная точка гиперболы с фокусами (рис. 9.4). Отрезки называются фокальными радиусами точки М и обозначаются По определению гиперболы . Так как и т.к. расположены симметрично относительно начала координат, то, применяя формулу для вычисления расстояния между двумя точками, находим . Заменяя в равенстве найденными выражениями, получаем:
.
Возведя в квадрат обе части этого уравнения и обозначая , получим: или, разделив все члены уравнения на правую часть, приводим его к виду:
Уравнение (9.3.1)- это каноническое уравнение гиперболы, линии второго порядка.
Прямоугольник со сторонами 2а и 2b, расположенный симметрично относительно осей гиперболы и касающийся ее в вершинах, называется основным прямоугольником. Его диагонали совпадают с асимптотами гиперболы . Поэтому, если требуется построить гиперболу с полуосями а и b, то следует, прежде всего, построить ее основной прямоугольник, затем асимптоты.
Уравнение вида определяет гиперболу, вершины которой расположены на оси Оу (Рис. 9.5).
Форму гиперболы характеризует её эксцентриситет , т.е. отношение расстояния между фокусами этой гиперболы к расстоянию между её вершинами. Поскольку , то подставив в формулу получимоткуда. Следовательно, эксцентриситет oредсляется отношением , а отношение – эксцентриситетом. Следовательно, эксцентриситет характеризует форму гиперболы. Чем меньше эксцентриситет, тем меньше отношение , а это значит, что основной прямоугольник вытянут в направлении оси, соединяющей вершины.
Прямые, заданные уравнениями называются директрисами гиперболы.
Пример:
Составить уравнение геометрического места точек, отношение расстояний которых от данной точки А(4, 0) и от данной прямой х=1 равно 2.
Решение:
В системе координат хОу построим точку А(4, 0) и прямую х = 1. Пусть М(х, у) – произвольная точка искомого геометрического места точек. Опустим перпендикуляр MB на данную прямую х = 1 и определим координаты точки В. Так как точка В лежит на заданной прямой, то её абсцисса равна 1. Ордината точки В равна ординате точки М. Следовательно, B(1, у) (рис. 9.6).По условию задачи .Подставив значения расстояний, которые находим по формуле расстояния между двумя точками, получим:
Возводя в квадрат левую и правую части равенства и последовательно преобразовывая, находим уравнение:
Полученное уравнение определяет гиперболу, у которой действительная полуось -а = 2, а мнимая .
Определим фокусы гиперболы. Для гиперболы выполняется равенство . Следовательно, .А – фокусы гиперболы. Как видно, заданная точка
А(4, 0) является правым фокусом гиперболы.
Эксцентриситет полученной гиперболы равен
Подставив значения а и b в уравнения асимптот и
у =—получим уравнения асимптот гиперболы:и .
Для построения гиперболы строим основной прямоугольник с полуосями , затеем асимптоты и а далее строим и саму гиперболу (рис.9.6).
- Заказать решение задач по высшей математике
Парабола
Определение 9.4.1. Параболой называется геометрическое место точек, для каждой из которых, расстояние до некоторой фиксированной точки плоскости, называемой фокусом, равно расстоянию до некоторой фиксированной прямой, называемой директрисой,(директриса не проходит через фокус).
Обозначим фокус параболы – F, расстояние от фокуса до директрисы – р(р > 0) (рис. 9.7). Ось абсцисс проведём через фокус F перпендикулярно директрисе. Начало координат расположим посередине между фокусом и директрисой. Пусть А – произвольная точка плоскости с координатами (х, у) и пусть . Тогда точка А будет лежать на параболе, если r=d, где d- расстояние от точки А до директрисы. Фокус F имеет координаты .
Тогда А расстояние Подставив в формулу r=d, будем иметь. Возведя обе части равенства в квадрат, получим
или
(9.4.1)
Уравнение (9.4.1)- каноническое уравнение параболы. Уравнения также определяют параболы.
Легко показать, что уравнение , определяет параболу, ось симметрии которой перпендикулярна оси абсцисс; эта парабола будет восходящей, если а > 0 и нисходящей, если а О. Для этого выделим полный квадрат:
и сделаем параллельный перенос по формулам
В новых координатах преобразуемое уравнение примет вид: где р – положительное число, определяется равенством .
Пример:
Пусть заданы точка F и прямая у =-1 (рис. 9.8). Множество точек Р(х, y) для которых расстояние |PF| равно расстоянию, называется параболой. Прямая у = -1 называется директрисой параболы, а точка F – фокусом параболы. Чтобы выяснить, как располагаются точки Р, удовлетворяющие условию, запишем это равенство с помощью координат: , или после упрощения . Это уравнение геометрического места точек, образующих параболу (рис. 9.8).
Кривые второго порядка на плоскости
Кривой второго порядка называется фигура на плоскости, задаваемая в прямоугольной системе координат уравнением второй степени относительно переменных х и у:
где коэффициенты А, В и С не равны одновременно нулю
Любая кривая второго порядка на плоскости принадлежит к одному из типов: эллипс, гипербола, парабола, две пересекающиеся прямые, 2 параллельные прямые, прямая, точка, пустое множество.
Кривая второго порядка принадлежит эллиптическому типу, если коэффициент В равен нулю: В=0, а коэффициенты А и С имеют одинаковые знаки: АС>0.
Кривая второго порядка принадлежит гиперболическому типу, если коэффициент В равен нулю: В=0, а коэффициенты А и С имеют противоположные знаки: АС<0.
Кривая второго порядка принадлежит параболическому типу, если коэффициент В равен нулю: В=0 и только один из коэффициентов А и С не равен нулю: АС=0 и
Рассмотрим канонические (простейшие) уравнения эллипса, гиперболы и параболы.
Эллипсом называется множество всех точек плоскости, для которых сумма расстояний до двух данных точек, называемых фокусами, есть величина постоянная, большая расстояния между фокусами.
Геометрическое свойство точек эллипса выразим аналитически. Расстояние между фокусами назовем фокусным расстоянием и обозначим через 2с. Постоянную величину, о которой идет речь в определении эллипса, обозначим через 2а: 2а>2с. Точка М(х,у) принадлежит эллипсу тогда и только тогда, когда ее координаты удовлетворяют уравнению
которое называют каноническим уравнением эллипса.
Число а называют большей полуосью эллипса, число – мень-
шей полуосью эллипса, 2а и 2b – соответственно большей и меньшей осями эллипса. Точки называют вершинами эллипса, а – его фокусами (рис. 12).
Координатные оси являются осями симметрии эллипса, а начало координат – его центром симметрии. Центр симметрии эллипса называется центром эллипса.
Замечание. Каноническое уравнение эллипса можно рассматривать и в случае b>а. Оно определяет эллипс с большей полуосью b, фокусы которого лежат на оси Оу.
В случае а=b каноническое уравнение эллипса принимает вид и определяет окружность радиуса а с центром в начале координат.
Эксцентриситетом эллипса называется отношение фокусного расстояния к длине большей оси.
Так, в случае а>b эксцентриситет эллипса выражается формулой:
Эксцентриситет изменяется от нуля до единицы и характеризует форму эллипса. Для окружности Чем больше эксцентриситет, тем более вытянут эллипс.
Пример:
Показать, что уравнение
является уравнением эллипса. Найти его центр, полуоси, вершины, фокусы и эксцентриситет. Построить кривую.
Решение:
Дополняя члены, содержащие х и у соответственно, до полных квадратов, приведем данное уравнение к каноническому виду:
– каноническое уравнение эллипса с центром в точке большей полуосью а=3 и меньшей полуосью
Найдем эксцентриситет эллипса:
Для вычисления вершин и фокусов удобно пользовать новой прямоугольной системой координат, начало которой находится в точке а оси параллельны соответственно осям Ох, Оу и имеют те же направления (осуществили преобразование параллельного переноса). Тогда новые координаты точки будут равны ее старым координатам минус старые координаты нового начала, т.е.
В новой системе координат координаты вершин и фокусов гиперболы будут следующими:
Переходя к старым координатам, получим:
Построим график эллипса.
Задача решена.
Гиперболой называется множество всех точек плоскости, для которых модуль разности расстояний до двух данных точек, называемых фокусами, есть величина постоянная, меньшая расстояния между фокусами.
Так же, как и для эллипса, геометрическое свойство точек гиперболы выразим аналитически. Расстояние между фокусами назовем фокусным расстоянием и обозначим через 2с. Постоянную величину обозначим через 2а: 2а<2с. Точка М(х,у) принадлежит гиперболе тогда и только тогда, когда ее координаты удовлетворяют уравнению
которое называют каноническим уравнением гиперболы.
Число а называют действительной полуосью гиперболы, число
– мнимой полуосью гиперболы, 2а и 2b – соответственно действительной и мнимой осями гиперболы. Точки называют вершинами гиперболы, – ее фокусами (рис. 13).
Координатные оси являются осями симметрии гиперболы, а начало координат – ее центром симметрии. Центр симметрии гиперболы называется центром гиперболы.
Точки гиперболы по мере удаления от начала координат неограниченно (асимптотически) приближаются к прямым у=±kх (где ), которые называются асимптотами гиперболы.
Эксцентриситетом гиперболы называется отношение фокусного расстояния к длине действительной оси:
Эксцентриситет гиперболы изменяется от единицы до бесконечности и характеризует форму гиперболы. Чем меньше эксцентриситет гиперболы, тем ее ветви более сжаты к оси Ох.
Замечание. Каноническое уравнение определяет сопряженную гиперболу с действительной полуосью b, вершинами в точках и фокусами на оси Оу.
Пример:
Составить каноническое уравнение гиперболы с центром в начале координат, если ее действительная полуось равна трем, а эксцентриситет -четырем третьим.
Решение:
Каноническое уравнение гиперболы имеет вид
По условию задачи нам известно: а=3, Найдем мнимую полуось.
Следовательно, уравнение искомой гиперболы:
Задача решена.
Параболой называется множество всех точек плоскости, каждая из которых находится на одинаковом расстоянии от данной точки, называемой фокусом параболы, и от данной прямой, называемой директрисой и не проходящей через фокус.
Расстояние между фокусом и директрисой обозначим р. Для того чтобы точка М(х,у) принадлежала параболе, необходимо и достаточно, чтобы ее координаты удовлетворяли уравнению которое называется каноническим уравнением параболы.
Точка O(0,0) называется вершиной параболы, число р – параметром параболы, – директрисой пир,болы, а – ее фокусом. Прямая у=0 является осью симметрии параболы, ветви которой направлены вправо. Центра симметрии у параболы нет (рис. 14).
Если поменять ролями оси Ох и Оу, то каноническое уравнение параболы примет вид (уравнение параболы с вертикальной осью, уравнением директрисы фокусом ветви направлены вверх).
Замечание. Канонические уравнения параболы можно рассматривать и в случае, когда ветви направлены влево или вниз:
Пример:
Составить уравнение параболы с вершиной в начале координат, симметричной относительно оси Оу и отсекающей на биссектрисе первого координатного угла отрезок длиной
Решение:
Каноническое уравнение параболы с вершиной в начале координат, симметричной относительно оси Оу и ветвями, направленными вверх, имеет вид:
Уравнение биссектрисы первого координатного угла у=х. Найдем точки пересечения параболы с биссектрисой. Для этого решим систему уравнений
Следовательно, точка М(2р,2р) будет принадлежать параболе. С другой стороны, парабола отсекает на биссектрисе отрезок длиной который является гипотенузой равнобедренного прямоугольного треугольника с катетами 2р.
По теореме Пифагора
Тогда искомое уравнение параболы
Уравнение директрисы параболы: у=-1, координаты ее фокуса F(0,1).
Задача решена.
- Евклидово пространство
- Матрица – виды, операции и действия с примерами
- Линейный оператор – свойства и определение
- Многочлен – виды, определение с примерами
- Числовые множества
- Вектор – определение и основные понятия
- Прямая – понятие, виды и её свойства
- Плоскость – определение, виды и правила
0
Mefody66
[35.1K]
9 лет назад
Общее уравнение эллипса
(x-x0)^2/a^2 + (y-y0)^2/b^2 = 1
Здесь A(x0, y0) – центр эллипса, a, b – полуоси.
Расстояние |F1F2| = 2c, где с можно найти из условия
c^2 = |a^2 – b^2|
Если координатные оси параллельны осям эллипса, то координаты фокусов F1(x0 – c, y0), F2(x0 + c, y0).
автор вопроса выбрал этот ответ лучшим
комментировать
в избранное
ссылка
отблагодарить