Как найти скорость центра масс диска

Определение центра масс, теория и онлайн калькуляторы

Определение центра масс

При исследовании поведения систем частиц, часто удобно использовать для описания движения такую точку, которая характеризует положение и движение рассматриваемой системы как единого целого. Такой точкой служит центр масс.

Для однородных тел обладающих симметрией центр масс часто совпадает с геометрическим центром тела. В однородном изотропном теле одной выделенной точке найдется симметричная ей точка.

Радиус-вектор и координаты центра масс

Предположим, что у нас имеются две частицы с равными массами, им соответствуют радиус-векторы: ${overline{r}}_1 и {overline{r}}_2$ . В этом случае центр масс расположен посередине между частицами. Центр масс (точка C) определён радиус-вектором ${overline{r}}_C$ (рис.1).

Определение центра масс, рисунок 1

Из рис.1 видно, что:

[{overline{r}}_C=frac{{overline{r}}_1+ {overline{r}}_2}{2}left(1right).]

Можно ожидать, что вместе с геометрическим центром системы радиус-вектор, которого равен ${overline{r}}_C,$ играет роль точка, положение которой определяет распределение массы. Ее определяют так, чтобы вклад каждой частицы был пропорционален ее массе:

[{overline{r}}_C=frac{{overline{r}}_1m_1+ {overline{r}}_2m_2}{m_1+m_2}left(2right).]

Радиус -вектор ${overline{r}}_C$, определенный выражением (2) – средне взвешенная величина радиус-векторов частиц ${overline{r}}_1$ и ${overline{r}}_2$. Это становится очевидным, если формулу (2) представить в виде:

[{overline{r}}_C=frac{m_1}{m_1+m_2}{overline{r}}_1+frac{m_2}{m_1+m_2}{overline{r}}_2left(3right).]

Выражение (3) показывает, что радиус-вектор каждой частицы входит в ${overline{r}}_C$ с весом, который пропорционален его массе.

Выражение (3) легко обобщается для множества материальных точек, которые расположены произвольным образом.

Если положения N материальных точек системы задано при помощи их радиус-векторов, то радиус – вектор, определяющий положение центра масс находим как:

[{overline{r}}_c=frac{sumlimits^N_{i=1}{m_i{overline{r}}_i}}{sumlimits^N_{i=1}{m_i}}left(4right).]

Выражение (4) считают определением центра масс системы.

При этом абсцисса центра масс равна:

[x_c=frac{sumlimits^N_{i=1}{m_ix_i}}{sumlimits^N_{i=1}{m_i}}left(5right).]

Ордината ($y_c$) центра масс и его аппликата ($z_c$):

[y_c=frac{sumlimits^N_{i=1}{m_iy_i}}{sumlimits^N_{i=1}{m_i}}left(6right).]

[z_c=frac{sumlimits^N_{i=1}{m_iz_i}}{sumlimits^N_{i=1}{m_i}}left(7right).]

Формулы (4-7) совпадают с формулами, которые используют для определения тяжести тела. В том случае, если размеры тела малы в сравнении с расстоянием до центра Земли, центр тяжести считают совпадающим с центром масс тела. В большинстве задач центр тяжести совпадает с центром масс тела.

Скорость центра масс

Выражение для скорости центра масс (${overline{v}}_c=frac{d{overline{r}}_c}{dt}$) запишем как:

[{overline{v}}_c=frac{m_1{overline{v}}_1+m_2{overline{v}}_2+dots +m_n{overline{v}}_n}{m_1+m_2+dots +m_n}=frac{overline{P}}{M}left(8right),]

где $overline{P}$ – суммарный импульс системы частиц; $M$ масса системы. Выражение (8) справедливо при движениях со скоростями которые существенно меньше скорости света.

Если система частиц является замкнутой, то сумма импульсов ее частей не изменяется. Следовательно, скорость центра масс при этом величина постоянная. Говорят, что центр масс замкнутой системы перемещается по инерции, то есть прямолинейно и равномерно, и это движение не зависимо от движения составных частей системы. В замкнутой системе могут действовать внутренние силы, в результате их действия части системы могут иметь ускорения. Но это не оказывает влияния на движение центра масс. Под действием внутренних сил скорость центра масс не изменяется.

Примеры задач на определение центра масс

Пример 2

Задание. Система составлена из материальных точек (рис.2), запишите координаты ее центра масс?

Определение центра масс, пример 1

Решение. Рассмотрим рис.2. Центр масс системы лежит на плоскости, значит, у него две координаты ($x_c,y_c$). Найдем их используя формулы:

[left{ begin{array}{c}
x_c=frac{sumlimits_i{Delta m_ix_i}}{m};; \
y_с=frac{sumlimits_i{Delta m_iy_i}}{m}. end{array}
right.]

Вычислим массу рассматриваемой системы точек:

[m=m+2m+3m+4m=10 m.]

Тогда абсцисса центра масс $x_{c } $равна:

[x_c=frac{0cdot 4m+3mcdot b+2mcdot b}{10m}=0,5 b.]

Ордината $y_с$:

[y_с=frac{0cdot m+mcdot b+2mcdot b}{10m}=0,3 b.]

Ответ. $x_c=0,5 b$; $y_с=0,3 b$

Пример 2

Задание. Космонавт, имеющий массу $m$, неподвижен относительно корабля массы $M$. Двигатель космического аппарата выключен. Человек начинает подтягиваться к кораблю при помощи легкого троса. Какое расстояние пройдет космонавт ($s_1$), какое корабль ($s_2$) до точки встречи? В начальный момент расстояние между ними равно $s$.

Решение. Центр масс корабля и космонавта лежит на прямой, соединяющей эти объекты.

В космосе, где внешние силы отсутствуют, центр масс замкнутой системы (корабль-космонавт) либо покоится, либо движется с постоянной скоростью. В избранной нами (инерциальной) системе отсчета он покоится. При этом:

[frac{s_1}{s_2}=frac{m_2}{m_1}left(2.1right).]

По условию:

[s=s_1+s_2left(2.2right).]

Из уравнений (2.1) и (2.2) получаем:

[s_1=sfrac{m_2}{m_1+m_2};; s_2=sfrac{m_1}{m_1+m_2}.]

Ответ. $s_1=sfrac{m_2}{m_1+m_2};; s_2=sfrac{m_1}{m_1+m_2}$

Читать дальше: период и частота колебаний.

236

проверенных автора готовы помочь в написании работы любой сложности

Мы помогли уже 4 396 ученикам и студентам сдать работы от решения задач до дипломных на отлично! Узнай стоимость своей работы за 15 минут!

Содержание:

Количество движения материальной точки и системы импульс силы:

Количеством движения называют меру механического движения, выражающуюся геометрической суммой произведений массы каждой частицы материальной системы на ее скорость.
Количество движения в теоретической механике

Количество движения точки и системы. Ньютон во введении к «Началам» дал такое определение «Количество движения есть мера такового, устанавливаемая пропорционально скорости и массе»

Всякая материальная частица обладает двумя мерами механического движения, о чем уже было сказано в § 37 Одна из этих мер, называемая количеством движения, имеет применение всякий раз, когда
механическое движение от одного тела переходит другому в виде механического же движения Так, например, один биллиардный шар, ударивши другой, передает ему часть своего механического движения, выражаемого количеством движения

Количество движения материальной частицы обладающей массой m и скоростью Количество движения в теоретической механике

Количество движения в теоретической механике    (156)

Размерность количества движения в физической системе единиц

[K]ф = L1W1T-1

например м кг/сек Эта величина принята за единицу количества движения в СИ

В технической системе единиц размерность количества движения

[К]T = L0F1T1,

например кГ сек, если в технической системе сила выражена в килограммах, а время — в секундах

Наряду с вектором количества движения в механике применяют проекции количества движения на оси

Kx = mυ cos αυ = mυx, Ky = mυ cos βυ = mυy,
Kz = mυ co∙, γτ  = z    (157)

Направляющие косинусы количества движения равны направляю щим косинусам (62) скорости, так как вектор количества движения материальной точки ичи частицы направлен по скорости.

Количество движения в теоретической механике

Количество движения в теоретической механике      (62//)

Модуль количества движения легко подсчитать по формуле

Количество движения в теоретической механике    (158)

Проекция количества движения на ось (как и проекция на ось всякого вектора)—скаляр 2-го рода и определяется величиной и знаком

Если мы умножим проекцию количества движения на единичный вектор этой оси, то получим составляющую, или компоненту, количества движения по оси Вектор количества движения точки (или материальной частицы) связан со своими компонентами по координатным осям обычным соотношением

Количество движения в теоретической механике

Количество движения материальной системы выражается суммой количеств движения всех частиц этой системы «Количество движения целого есть сумма количеств движения отдельных частей его» (Ньютон) Таким образом, для материальной системы, содержащей n частиц или n точек,

Количество движения в теоретической механике    (159)

где суммирование распространено на все частицы материальной системы

Под проекцией количества движения системы на какую-либо ось понимают алгебраическую сумму проекции количеств движения всех точек системы на эту ось

Количество движения в теоретической механике    (159/)

Точку, определяемую координатами, равными отношению статического момента тела или системы относительно соответствующей оси к ею массе, называют центром масс

Центр масс

Ознакомимся с очень важным в динамике понятием, частично известным нам из курса статики твердого тела (см гл VII) Напомним, что центр тяжести твердого тела — это центр параллельных сил, представляющих веса материальных частиц твердого тела Для определения координат центра тяжести мы вывели формулы

Количество движения в теоретической механике    (45)

где в числителе — статический момент веса относительно соответствующей оси, а в знаменателе — вес всего тела или в векторной форме

Количество движения в теоретической механике    (45/)

Понятие «центр тяжести» и формулы, определяющие координаты этой точки, связаны с весом, с тяжестью. Но в динамике встречается такое состояние механических систем, при котором подобное определение недостаточно. Вспомним, например, «состояние невесомости», о котором рассказывали наши космонавты,— здесь понятие «вес» и «тяжесть» теряют свой смысл. Кроме того, в мировом пространстве существуют области, где в состоянии невесомости пребывает всякое тело независимо от его движения, как, например, точка пространства, в которой материальное тело притягивается к Земле и к Солнцу с равными и противоположно направленными силами. В таких случаях понятие «центр тяжести тела» теряет смысл, но сама точка продолжает существовать и не теряет своего значения. Поэтому целесообразно определить эту точку в зависимости не от веса, а от массы частиц.

Пусть какое-либо твердое тело или материальная система подвержены действию силы тяжести, и координаты центра тяжести определяются равенствами (45). Поделим в,этих равенствах и числители и знаменатели на ускорение свободно падающего тела. Координаты точки от деления числителя и знаменателя на одно и то же число не изменятся, но в знаменателе мы получим, согласно (124), не вес, а массу системы, а в числителе—статические моменты масс:

Количество движения в теоретической механике    (160)

Точка, определяемая координатами (160), совпадает с центром тяжести, но определение ее связано не с весом, а с массой частиц твердого тела или системы. Ее называют центром инерции, или центром масс. Это понятие шире понятия центра тяжести, так как масса не исчезает даже при таких обстоятельствах, при которых вес неощутим.

Количество движения системы материальных точек равно количеству движения ее центра масс, в котором предполагают сосредоточенной массу всей системы:
Количество движения в теоретической механике

Выражение количества движения системы через ее массу и скорость центра масс. Координаты центра инерции C материальной системы, движущейся относительно осей xOyz, принимаемых за неподвижные, определяются равенствами (160), где .va, yk и zk— переменные координаты точек системы. Из этих равенств, освободившись от знаменателя, определим статические моменты массы на данное мгновение:

Количество движения в теоретической механике    (161)

Продифференцировав по времени, находим, что проекция количества движения на ось равна произведению массы системы и проекции скорости центра масс на ту же ось:

Количество движения в теоретической механике

Но если равны проекции векторов на любую ось, то, следовательно, равны и сами векторы:

Количество движения в теоретической механике

Мы нашли, что количество движения всякой материальной системы равно количеству движения ее центра масс, если сосредоточить в нем массу всей системы:

Количество движения в теоретической механике    (162)

Задача №1

Вычислить количество движения К однородного диска радиуса r =50 см и массы 80 кг в двух случаях:
1)    диск вращается вокруг неподвижной оси, проходящей через ею центр, делая 60 об/мин;
2)   диск катится без скольжения и буксования по прямолинейному рельсу, делая 60 об/мин.

Решение. Количество движения диска равно количеству движения точки, масса которой равна массе диска, а скорость равна скорости центра масс диска. Задачу решаем в единицах СИ.
1)    В первом случае скорость центра масс равна нулю, следовательно, K=O.
2)    Во втором случае скорость центра масс определим как вращательную относительно мгновенного центра скоростей, находящегося в точке касания диска и рельса:

Количество движения в теоретической механике

K = 80π =251,20 кг. м/сек.

Ответ. 1) К= 0; 2) К = 251,20 кг. м/сек.

Задача №2

Определить количество движения эллипсографа (рис. 173, а), состоящего из кривошипа OD, линейки А В и двух ползунов, центры масс которых совпадают с шарнирами А и В, соединяющими ползуны с линейкой АВ. Кривошип и линейку рассматривать как однородные стержни веса P и 2Р, причем OD- AD = BD-l, веса ползунов одинаковы и равны Q; кривошип вращается с угловой скоростью ω.

Количество движения в теоретической механикеКоличество движения в теоретической механике

Рис. 173

Решение. Механическая система состоит из четырех тел: кривошипа, линейки и двух ползунов. Найдем центр масс системы. Центр масс кривошипа находится в середине кривошипа (рнс. 173, б). Центр масс линейки и двух ползунов совпадает с их центром симметрии D. Центр масс всего механизма лежит на кривошипе между этими точками. Расстояние центра масс системы от точки О определим по (160):

Количество движения в теоретической механике

Умножая это расстояние иа угловую скорость ω кривошипа, найдем скорость центра масс системы:
Количество движения в теоретической механике

Умножая υc на массу Количество движения в теоретической механике всей системы, найдем количество движения системы.

Ответ. Количество движения—вектор, равный Количество движения в теоретической механике, перпендикулярный кривошипу и приложенный в центре масс эллипсографа.

Импульсом постоянной силы называют меру механического воздействия на материальную частицу со стороны других материальных объектов за данный промежуток времени, выражающуюся произведением силы на время ее действия:
Количество движения в теоретической механике

Импульс постоянной силы. Мы определили механическое действие материальных тел на данную материальную частицу тремя основными характеристиками: величиной, направлением и продолжительностью. Рассматривая это механическое действие лишь за одно мгновение, мы пришли тогда к понятию силы. Но действие всегда происходит во времени, хотя бывают механические действия (не которые случаи удара), продолжительность которых измеряется всего лишь миллионными долями секунды. Если Количество движения в теоретической механике, то векторную величину Количество движения в теоретической механике, направленную по силе и равную по модулю произведению модуля силы на время ее действия, называют импульсом постоянной силы за данный промежуток времени:

Количество движения в теоретической механике    (163)

Определим размерность импульса силы в физической системе единиц:

[S]φ = L1M1T-1

Единицей импульса силы в системе СИ является 1 м . кг/сек. Размерность импульса силы в технической системе единиц

[S]= L0F1T1.

Если сила выражена в кГ, а время — в сек, то единицей импульса силы является 1 кГ. сек.

Размерности импульса силы и количества движения одинаковы.

Импульс переменной силы

Если сила непостоянна по величине или по направлению, то для определения ее импульса за данный промежуток времени надо разбить этот промежуток времени на столь малые интервалы, в течение которых можно пренебречь изменением силы, и определить для каждого такого интервала элементарный импульс. Элементарным импульсом силы называют импульс за столь малый промежуток времени, при котором можно пренебречь изменением силы:
Количество движения в теоретической механике    (164)

Импульс переменной силы за конечный промежуток времени выражают пределом геометрической суммы элементарных импульсов за бесконечно малые части данного промежутка:

Количество движения в теоретической механике    (164/)

Следовательно, импульс переменной силы за данное время выражается интегралом от вектора Количество движения в теоретической механике по скалярному аргументу t.

Для вычисления импульса переменной силы пользуются его проекциями на оси координат. Построим прямоугольную систему координат и спроецируем элементарный импульс на ось Ох:

dSx = Fdt cos a= X dt.

Интегрируя в пределах от t0 до t, находим Sx и аналогично Sy и Sz:

Количество движения в теоретической механике    (165)

По проекциям (165) легко определить модуль и направляющие косинусы вектора, однако в этом редко встречается необходимость и практически обычно ограничиваются определением проекций (165).

Проекция импульса равнодействующей на любую ось равна сумме проекций импульсов составляющих сил на ту же ось:
Количество движения в теоретической механике

Пусть на точку действует несколько сил, проекции которых на какую-либо ось Ox обозначим X1, X2, …, Х„, а проекцию ‘ равнодействующей этих сил обозначим X. Тогда

X = X1 + X2 + … + Хn.

Умножим обе части этого равенства на бесконечно малый промежуток времени dt и проинтегрируем в пределах от t0 до t:

Количество движения в теоретической механике

или

Sx = Sxl + Sx2 + … + Sxn.    (166)

Итак, проекция импульса равнодействующей на любую ось за данный промежуток времени равна алгебраической сумме проекций импульсов составляющих сил на ту же ось и за то же время, следовательно, импульс равнодействующей равен геометрической сумме импульсов составляющих:
Количество движения в теоретической механике    (166/)

Теоремы о количестве движения точки и системы и о движении центра масс

Изменение количества движения материальной точки за какой-либо промежуток времени равно импульсу силы, действующей на точку за тот же промежуток времени:
Количество движения в теоретической механике

Теорема об изменении количества движения материальной точки. По основному закону динамики под действием силы материальная точка получает ускорение. Но, чтобы сообщить материальной точке скорость, сила должна действовать в течение некоторого времени. Таким образом, скорость .материальной точке сообщает не сила, а импульс силы. Конечно, эта скорость зависит не только от импульса силы, но и от массы точки.

Напишем дифференциальные уравнения движения материальной точки в форме (127):
Количество движения в теоретической механике

Умножая каждое из уравнений (127) на dt и вводя постоянную m под знак дифференциала, получим

dm υx = X dt, dm υy = Ydt, dm υz = Zdt.    (167)

Мы нашли, что дифференциал проекции количества движения равен проекции элементарного импульса силы на ту же ось.

Проинтегрируем левую и правую части первого из этих уравнений в соответствующих пределах υ0x, υx и t0, t; аналогично поступив и с двумя другими уравнениями, получим:.

Количество движения в теоретической механике    (168)

т. е. изменение проекции количества движения материальной точки на ось равно проекции импульса силы на ту же ось и за то же время. Но если равны проекции на любую ось двух векторов, то, следовательно, равны и эти векторы:

Количество движения в теоретической механике    (168/)

т. е. вектор изменения количества движения материальной точки за какое-либо время равен вектору импульса силы, действующей на материальную точку за то же время. Конечно, и здесь под силой надо понимать равнодействующую, если на точку действует не одна, а несколько сил.

Задача №3

Тяжелая точка массой m кг, получив начальную скорость υ0 = 24,5 м/сек, поднимается по негладкой плоскости (рис. 174), наклоненной к плоскости горизонта под углом 30°. Сколько времени будет подниматься точка, если коэффициент трения f = 0,577?

Количество движения в теоретической механике
Рис. 174

Решение. Пo заданным силам надо определить время движения точки. Но для решения задачи нет необходимости составлять и интегрировать дифференциальные уравнения движения, а можно воспользоваться теоремой об изменении количества движения. На точку действуют вес G, сила трения Fгр =fG cos 30o и реакция R плоскости. Направим ось Ox по наклонной плоскости вверх. Проекция равнодействующей всех сил на эту ось равна
Количество движения в теоретической механикеКоличество движения в теоретической механике

Если точка двигалась в течение t сек, то проекция импульса силы за это время равна -Gt. Подставляя в уравнение (168) найденное значение Sx, заданное значение υx0 и υx = 0, получим —m 24,5 = —Gt, откуда находим t.
Ответ. t –  2,5 сек.

Задача №4

Материальная точка, масса которой m = 3 кг, двигалась по горизонтальной прямой налево со скоростью 5 м/сек. К ней приложили постоянную силу, направленную вправо. Действие силы прекратилось через 30 сек, и тогда скорость точки оказалась равной 45 м/сек и направленной вправо. Найти величину этой силы.

Решение. Условие задачи дано в физической системе единиц (СИ). По изменению скорости точки надо определить силу, производящую данное движение точки. Таким образом, задача является прямой задачей динамики. Решать ее мы будем, применив теорему об изменении количества движения. Примем горизонтальную прямую, по которой движется точка, за ось Ох, считая направление вправо положительным. Тогда

Sx = F∙30, mυx=3∙45 и mυx0 =—3-5.

Подставляя эти данные в (168), найдем
— F∙30 = + 3∙45 + 3∙5 -+150 кг. м/сек,

откуда определим силу.
Ответ. F = 5 кг∙м сек2 = 5 н.

Производная по времени от суммы проекций количеств движения всех материальных точек системы на какую-либо ось равна сумме проекций всех внешних сил системы на ту же ось:
Количество движения в теоретической механике

Теорема о проекциях количеств движения системы. Теорема о количестве движения находит большое применение при исследовании движения системы материальных точек, так как в этой теореме исключены все внутренние силы системы.

Пусть дана механическая система, состоящая из n материальных точек. Распределив все силы, приложенные к точкам этой системы, на две категории (силы внешние и силы внутренние), напишем дифференциальные уравнения движения точек системы в форме (129) в проекциях на ось абсцисс:

Количество движения в теоретической механике

Сложив отдельно левые и отдельно правые части написанных уравнений, получим

Количество движения в теоретической механике

Но сумма проекций всех внутренних сил системы равна нулю, так как внутренние силы, согласно закону равенства действия и противодействия, попарно равны и противоположно направлены:

Количество движения в теоретической механике

В левой части постоянные mk внесем под знак производной, заменим сумму производных производной от суммы и получим для проекций на, ось абсцисс

Количество движения в теоретической механике     (169)

Мы не накладывали никаких ограничений на направление оси абсцисс, поэтому мы можем сформулировать следующую общую теорему, называемую теоремой о проекциях количеств движения системы материальных точек: производная по времени от суммы проекций количеств движения всех точек системы на какую-либо ось равна сумме проекций всех внешних сил системы на тy же ось.

Равенства (169) справедливы для любой оси; следовательно, их можно записать в векторной форме:

Количество движения в теоретической механике     (169/)

Умножая уравнения (169) на dt и интегрируя, найдем, что изменение суммы проекций количеств движения всех точек системы на какую-либо неподвижную ось за некоторый промежуток времени равно сумме проекций импульсов всех внешних сил системы на ту же ось за то же время:

Количество движения в теоретической механике     (170)

При решении задач это уравнение иногда находит применение, но теорему о проекции количеств движения системы чаще применяют в дифференциальном виде (169), чем в конечном виде (170).

Если сумма проекций всех внешних сил системы на какую-либо ось равна нулю, то сумма проекций количеств движения точек системы на эту ось постоянна

Интеграл количеств движения. В частном случае, если сумма проекций всех внешних сил системы на какую-либо ось, например на ось Ох, равна нулю, то уравнение (169) принимает вид
Количество движения в теоретической механике

откуда, проинтегрировав, получаем
Количество движения в теоретической механике     (171)

Это равенство называют интегралом количества движения системы материальных точек и словами его можно сформулировать так: если сумма проекций всех внешних сил системы на какую-либо ось равна нулю, то сумма проекций количеств движения всех точек системы на эту ось постоянна.

Справедливо и обратное заключение: если сумма проекций количеств движения системы на какую-либо ось постоянна, то сумма проекций всех внешних сил системы на эту ось равна нулю. В самом деле, дифференцируя (171) по времени, найдем, что производная по времени от суммы проекций количеств движения на ось Ox равна нулю и ввиду (169) равна нулю сумма проекций на эту ось всех внешних сил системы.

Если равна нулю сумма проекций всех внешних сил не только на ось Ох, но также и на оси Oy и Oz, то сохраняется не только сумма проекций на оси, но и геометрическая сумма векторов количеств движения точек системы, т. е.
если Количество движения в теоретической механике     (171/)

и обратно, 

если Количество движения в теоретической механике

Такой случай мы можем представить себе в изолированной материальной системе, т. е. в системе, на точки которой не действуют никакие внешние силы. Примером почти полностью изолированной механической системы может служить солнечная система (см. § 36). Количество движения изолированной системы остается неизменным; этот закон называют иногда принципом сохранения количества движения.

Центр масс системы движется как материальная точка, в которой сосредоточена масса всей системы и к которой приложены все внешние силы:
Количество движения в теоретической механике

Теорема о движении центра масс

К теореме о проекциях количеств движения примыкает теорема о движении центра масс. Во многих задачах эти теоремы вполне заменяют друг друга. Уже было показано, что сумму количеств движения всех материальных точек системы можно представить как количество движения одной точки, совпадающей с центром инерции системы, обладающей скоростью центра инерции и массой, равной сумме масс всех точек системы:

Количество движения в теоретической механике

Дифференцируя эти равенства по времени и принимая во внимание теорему (169) о проекциях количеств движения на Ox, Oy и Oz, найдем:

Количество движения в теоретической механике      (172)

Сравнивая эти уравнения с уравнениями (127), можно убедиться, что движение центра масс математически описывается тремя дифференциальными уравнениями, как и движение материальной точки.

Однако с физической стороны имеется некоторое различие между уравнениями (127) и (172). Всякая материальная точка обладает некоторой массой и движется согласно (127) под действием всех приложенных к ней сил. Центр масс является геометрической точкой и может не совпадать ни с одной из материальных частиц системы.

Уравнения (172) говорят о том, что центр масс (инерции, тяжести) движется как материальная точка, которая имеет массу, равную массе всей системы и к которой приложены силы, равные веем внешним силам, действующим на материальные точки данной системы; внутренние силы не изменяют движения центра масс и не могут нарушить его покоя.

Три уравнения (172) движения центра масс в прямоугольной системе координат могут быть заменены одним векторным уравнением

Количество движения в теоретической механике      (172/)

О независимости движения центра масс от внутренних сил. Независимость движения центра масс от действия внутренних сил была установлена Ньютоном. «Центр тяжести системы двух или нескольких тел от взаимодействия тел друг на друга не изменяет ни своего состояния покоя, ни движения», — писал он в «Началах». Теорема о движении центра тяжести (масс) имеет в механике большое значение, а потому необходимо пояснить физическую сущность этой теоремы.

На первый взгляд может показаться, что движение центра масс системы иногда происходит под действием ее внутренних сил. Например, чтобы увеличить скорость парохода, поднимают давление пара, т. е. увеличивают внутренние силы системы. Молодой и здоровый человек с хорошо развитой мускулатурой ног легко обгонит старика с дряблыми мышцами и т. д. и т. п. Но отсюда не следует делать вывод, что центр масс системы передвигается внутренними силами этой системы. В приведенных примерах внутренние силы лишь заставляют точки данной системы воздействовать на окружающие материальные тела, отчего возникают внешние силы, создающие движение центра масс данной системы. Так, человек силой своих мышц (внутренней силой) отталкивается ногами от дороги, отчего в точках соприкосновения подошв с дорогой возникает сила трения (внешняя для человека), направленная в сторону его движения и позволяющая передвигаться всей системе (человеку). Конечно, эта сила зависит от внутренних сил человека, но она является внешней силой, и человек не смог бы идти по поверхности без трения. Ни один силач не может силой своих мышц поднять себя за волосы над Землей. Пароход развивает пары, чтобы быстрее вращать гребной винт и лучше отталкиваться нм от воды. Давление воды на гребной винт является внешней силой для парохода. Никакое давление пара (внутренняя сила) не создало бы движение парохода, если бы не было гребного винта или воды, взаимодействие которых создает силу тяги, являющуюся внешней силой для парохода.

Теоремы о движении центра масс и о количестве движения системы являются основой для расчетов реактивных движений. Ракета для своего полета не нуждается во внешней среде. Газообразные продукты горения с большой скоростью выбрасываются из сопла. Это движение продуктов горения (назовем их пороховыми газами) происходит под действием внутренних сил, а потому не может повлиять па движение центра тяжести всей системы, включающей пороховые газы и корпус ракеты. Если до взрыва ракета была неподвижна, то движение газов так компенсируется движением корпуса ракеты в противоположном направлении, что сумма количеств движения всей системы равна нулю и центр масс всей системы остается неподвижным и после взрыва.

Задача №5

Лодка стоит в неподвижной воде перпендикулярно к берегу, причем расстояние от берега до носа лодки равно 1,6 м, а до кормы 5,2 м. Чтобы пододвинуть лодку к берегу, человек, стоящий на носу лодки, переходит на корму. На каком расстоянии будет нос лодки от берега после перемещения человека, если вес лодки G1 = 100 кГ, нес человека G2= 80 кГ, а сопротивлением воды пренебрегаем?

Решение. Физическая сущность задачи состоит в том, что человек переходит с носа на корму, отчего лодка перемещается в обратном направлении. Перемещение человека на лодке, его вес и вес лодки заданы, требуется определить расстояние, на которое переместится лодка вследствие перемещения человека. Здесь механическое движение человека перелается лодке в качестве механического же движения. В подобных задачах обычно применяют теорему о проекциях количеств движения или аналогичную ей теорему о движении центра масс. Мы покажем применение обеих этих теорем.

При решении почти каждой задачи бывает необходимо уточнить два вопроса: 1) движение какой точки, твердого тела или механической системы надо изучить и 2) какие силы действуют на эту точку, это тело или эту систему. Также необходимо выбрать основные единицы измерения, например единицы СИ, тогда масса лодки m1 = 100 кг, масса человека m2 =  80 кг.

В данной задаче нужно изучить движение механической системы, состоящей из лодки, представляемой се центром инерции, и человека, принимаемого за материальную точку. На точки этой механической системы действуют различные внешние силы (вес лодки, вес человека, архимедова подъемная сила), но все они вертикальны, а нас интересует горизонтальное перемещение лодки, а потому и горизонтальные силы. В системе действуют внутренние силы (сила, с которой человек отталкивается от стланей, идя по лодке, реакция лодки и др.), но внутренние силы не входят в уравнения (169), (172) и несущественны для данной задачи.

Количество движения в теоретической механике
Рис. 175

1-й способ. Применим сначала теорему о проекциях количеств движения системы (169). Построим неподвижную систему координат (рис. 175,а), взяв начало в точке О на берегу и направив ось Ox горизонтально вдоль лодки. Сумма проекций всех внешних сил на Ox равна нулю. Система состоит из двух материальных точек — лодки и человека. Равенство (169) принимает вид

Количество движения в теоретической механике

Если сумма проекций внешних снл равна нулю, то имеет место интеграл количеств движения (171). Действительно, проинтегрировав, получаем

Количество движения в теоретической механике

Постоянную интеграции C1 определим из начальных данных: в начальное мгновение лодка и человек были неподвижны. Таким образом, в начальное мгновение количества движения точек системы и сумма количеств движения равнялись нулю, а потому C1 = 0, т. е.

Количество движения в теоретической механике

Умножая на dt и интегрируя, получим

Количество движения в теоретической механике

В левой части хк означают перемещения точек системы по оси Ох.
В начальное мгновение этих перемещений не было, а потому, определяя C2 из начальных данных, находим, что C2 = O. Раскроем знак суммы, дав индексу k значения 1 и 2 соответственно числу точек системы:

m1x1 + m2x2 = 0,

т. е. сумма произведений масс точек системы на их перемещения по оси Ox равна нулю. Здесь под перемещением По оси Ox мы понимаем проекцию абсолютного перемещения точки на Ох. Предположим, что лодка переместилась влево на величину—х1 (рис. 175, б). Человек в относительном движении передвинулся вправо на длину лодки (3,6 м), но в то же время лодка перенесла его в своем движении влево, следовательно, х2 = 3,6—x1. Подставляя эти данные и величины масс в предыдущее уравнение, находим
— 100x1 + 80 (3,6—x1) = 0.

У студента, не имеющего достаточного навыка в решении задач, может возникнуть сомнение в правильности знака второго члена. Для проверки знака существует удобное правило: во все члены уравнения х1 должно входить с одним и тем же знаком, если конечно, эти члены находятся по одну сторону от знака равенства. В данном уравнении все члены находятся слева; первый член —100x1, следовательно, второй член должен быть +80 (3,6— x1), так как знак при х1 должен и во втором члене быть таким же, как и в первом члене.

Решая это уравнение, находим перемещение лодки:

Количество движения в теоретической механике

2-й способ. Решим ту же задачу, применив теорему о движении центра масс. До начала движения центр масс всей системы был неподвижен —человек пошел вдоль лодки. Сила взаимодействия между человеком и лодкой является внутренней силой системы «лодка с человеком», а потому не может переместить центр масс этой системы. Для решения задачи надо написать выражения абсциссы Xq центра масс системы при двух положениях системы: 1) человек на носу лодки, 2) человек на корме —и приравнять их друг другу, так как общий центр масс системы не переместился.

Определим абсциссу центра масс системы в начальное мгновение (рис. 175, в). Пусть центр массы лодки находится на расстоянии с1 от носа. Тогда его абсцисса x10 = (1,6 + c1) м; х20= 1,6 м. Подставляем в формулу (160):

Количество движения в теоретической механике

Обращаем внимание на то, что при этом способе решения задач величины X1 и X2 являются уже не перемещениями точек, а их координатами.

В конечное мгновение, когда человек перейдет на корму (рис. 175, а), а лодка переместится ближе к берегу, общий центр масс всей системы останется на прежнем месте. При конечном положении лодки нос находится от начала координат на искомом расстоянии х. Тогда в этом положении x1=x+c1 и x2 = x+3,6. Подставляя эти значения в формулу (160), получим

Количество движения в теоретической механике

Приравниваем друг другу оба выражения абсциссы центра масс системы и находим положение лодки:
180  . 1,6= 180 x + 80 . 3,6, откуда х = 0.

Ответ. Лодка подойдет к берегу.

Задача №6

Сидящий в лодке охотник стреляет вперед в горизонтальном направлении. Пренебрегая трением воды, определить скорость лодки после выстрела, если до выстрела она была неподвижна; масса охотника 70 кг, масса лодки 30 кг, масса заряда 40 г и его начальная скорость 300 м/сек.

Решение. Механическое движение заряда передается в качестве механического же движения («отдача») на охотника и лодку. Примем, что механическая система состоит из двух точек: 1) лодка вместе с охотником и 2) заряд. Сила давления пороховых газов является внутренней по отношению к этой системе, давление газа в ружейном стволе во все стороны одинаково и, как было показано, сумма проекций внутренних сил на любую ось равна нулю. Внешних горизонтальных сил в системе нет. Проведя ось Ox горизонтально в направлении выстрела, получаем интеграл количества движения (171):

Количество движения в теоретической механике

В начале выстрела, пока заряд еще не успел приобрести скорость, лодка тоже была неподвижна и, следовательно, C=0. В написанное выражение входят проекции абсолютных скоростей и, раскрывая знак суммы, получим

0,04 (300 — υ2) — 100 υ2 = 0,

где υ2-скорость лодки после выстрела, а (300 — υ2)-абсолютная скорость заряда после выстрела, состоящая из разности скоростей (300 м/сек) заряда но стволу и скорости отдачи (υ2).

Решая это уравнение, находим скорость отдачи.

Ответ. Лодка с охотником движется в сторону, противоположную выстрелу, со скоростью υ2 = 0,12 м/сек.

Задача №7

Вода входит в неподвижный канал (рис. 176) переменного сечения» симметричный относительно вертикальной плоскости, со скоростью υ0=2 м/ceκ под углом α0=90° к горизонту; площадь сечения канала при входе 0,02 м2, скорость воды у выхода из канала υ1 =4 м/сек и составляет угол α1 — 30° с горизонтом. Определить горизонтальную составляющую реакции, которую вода оказывает на стенки канала.

Количество движения в теоретической механике
Рис. 176

Решение. Вода течет по каналу, меняя направление и величину своей скорости. Механическое движение воды не исчезает и не возникает вновь, меняется лишь вектор скорости. Требуется определить горизонтальную составляющую реакции, которую вода оказывает па стенки канала. Правильнее было бы назвать эту активную силу «давлением» воды на стенки канала. Все данные этой задачи относятся к воде, и мы будем определять горизонтальную составляющую реакции, оказываемой стенками канала на воду. Эта сила равна и противоположна искомой силе. Система единиц —СИ.

В плоскости симметрии канала проведем горизонтальную ось Ox и напишем уравнение (170)

Количество движения в теоретической механике

В правой части Количество движения в теоретической механике есть сумма проекций на горизонтальную ось внешних сил, приложенных к системе (к воде). Единственной горизонтальной внешней силой является горизонтальная составляющая равнодействующей реакций стенок, т. е. та сила, которую мы должны определить. Эта сила при установившемся движении воды является постоянной. Поэтому
Количество движения в теоретической механике

За время t в канал πocτyπaeт 0,02 м2 . 2 м/секt ceκ = 0,04t м3 = 40t π, или 40t кг воды: 

Количество движения в теоретической механике

Такое же количество воды покидает канал за то же время. Начальная и конечная скорости даны в условии. Подставляем все эти величины в (170):

Количество движения в теоретической механике

Ответ.  Количество движения в теоретической механике

Знак минус показывает, что по нашему чертежу проекция реакции отрицательна, т. е. направлена влево. Искомая в задаче горизонтальная составляющая давления на стенку имеет обратное направление—вправо. В задачнике II. В. Мещерского ответ приведен в килограммах. Чтобы перевести ньютоны в кГ, надо умножить число ньютонов на 0,102; имеем 138,40,102  = 14,1 кГ.

Давление струи 

Задача №8

Определить давление струи воды на гладкую стенку, если скорость воды υ — 20 м/ceκ, сечение струп σ = 0,005 м2 и струя направлена под углом α – 30° к стенке (рис. 177).

Количество движения в теоретической механике
Рис. 177

Решение. Решим задачу сначала в общем виде. Отложим вдоль струн от стенки небольшой отрезок AB=υτ, где τ—малый промежуток времени. У конца В этого отрезка проведем поперечное сечение струи и рассмотрим движение системы частиц воды, находящихся в данное мгновение между этим сечением и стенкой. Общая масса всех частиц рассматриваемой системы m = Количество движения в теоретической механикеmk=-σγυτ, где γ—масса 1 см3 жидкости. До соприкосновения со стенкой частицы воды имеют общую скорость и, проекция которой на ось Ox (перпендикулярную стенке) υx = υ sin α. После соприкосновения со стенкой частицы движутся вдоль стенки и υx = 0.

На систему действует реакция F стенки, силой тяжести и давлением на выделенную часть струи со стороны следующих частиц струн, внешних по отношению к выделенной системе, пренебрегаем, так как они ври большой и незначительны но сравнению с F. Подставляя эти данные в (170), имеем

Количество движения в теоретической механике

откуда

Количество движения в теоретической механике       (173)

Этой формулой определяется давление нa стенку струи жидкости или сыпучего тела. Подставляя данные, находим ответ задачи.
Ответ. F = 102 кГ.

Ударом называют кратковременное взаимодействие тел, вызывающее за ничтожно малый промежуток времени резкое изменение скоростей их точек

Ударный импульс

Иногда материальные тела, находятся во взаимодействии всего лишь тысячные или даже стотысячные доли секунды, но при этом возникают настолько большие силы, что их импульс за столь малый промежуток времени достирает значительной величины и получается резкое, почти мгновенное изменение скоростей точек этих материальных тел. Такое кратковременное взаимодействие тел называют ударом, возникающие при этом силы называют ударными силами, а импульс ударной силы за время удара — мгновенным импульсом.

Ударные силы во многие тысячи раз превосходят вес ударяющего тела. Так, например, легким ударом молотка можно забить в деревянную стену гвоздь, но нужна громадная сила, чтобы тот же гвоздь вдавить, а не вбить в стену. Пуля, вес которой измеряется граммами, при выстреле пробивает доску, но пуля должна была бы весить многие тонны, чтобы сделать в доске такую же дырку своим весом. Поэтому за время удара пренебрегают весом тел и всеми прочими неударными («конечными») силами, пренебрегают перемещениями тел и считают, что векторы скоростей точек ударяющихся тел изменяются мгновенно.

«Количество движения системы никогда не изменяется от ударов при встрече ее тел» (Ньютон)

Прямой центральный удар двух тел

Пусть два тела движутся поступательно и прямолинейно со скоростями υ1 и υ2, причем центры масс C1 и C2 этих тел движутся по одной прямой, которую мы примем за ось Ох. В некоторое мгновение t первое тело, движущееся с большей скоростью, настигает второе и начинается удар, продолжающийся в течение малого отрезка времени τl. Пусть для каждого тела удар является центральным (т. е. мгновенный импульс проходит через центр масс тела) и прямым (т. е. относительные скорости точек соприкосновения тел перед ударом перпендикулярны к поверхности соприкасающихся тел в точке их соприкосновения). Предположим, что удар является неупругим (т. е. таким, при котором полученные за время удара деформации соударяющихся тел полностью сохраняются к концу удара). При отсутствии упругих сил тела не отталкиваются друг от друга и после удара продолжают двигаться с некоторой общей скоростью и. Определим мгновенный импульс S, действующий на каждое из тел со стороны другого. Для каждого из тел этот импульс является импульсом внешней реакции, и мы его легко определим, написав для каждого из тел уравнение (168′). В данном случае эти уравнения примут следующий вид:

Количество движения в теоретической механике      (174)

где m1 и m2—массы первого и второго тел, a υ1 и υ2— их скорости (выражаясь точнее, проекции их скоростей на прямую удара Ох) перед ударом. Из этих уравнений определим мгновенный импульс:

Количество движения в теоретической механике      (175)

и скорость обоих тел после неупругого удара:

Количество движения в теоретической механике      (176)

Если равенство (176) умножим на m1 +  m2,  то убедимся, что сумма количеств движения обоих тел при ударе не изменилась.

В природе не существует абсолютно неупругих тел и в действительности явление удара не заканчивается к тому мгновению, когда скорости тел становятся равными и. Во время удара тела стремятся восстановить свою первоначальную форму, они отталкиваются друг от друга и отдаляются, имея различные скорости u1 и u2.

Чтобы определить эти скорости и мгновенный импульс, разделим весь процесс удара на две стадии: 1) от начала соприкосновения тел до мгновения, при котором их скорости сравнялись, и 2) от этого мгновения до конца контакта. Удар, при котором полученные за время удара деформации соударяющихся тел частично сохраняются к концу удара, называют не вполне упругим.

Уравнения для первой стадии удара ничем не отличаются от только что полученных, мгновенный импульс определяется по (175) и скорость — по (176). Исходными уравнениями для второй стадии явятся те же уравнения (170), с той лишь разницей, что и будет в них играть роль начальной скорости, а конечными будут u1 и u2. Иным становится мгновенный импульс ударной реакции за эту вторую стадию удара. Обозначим его kS. Физическое значение коэффициента k, зависящего от упругих свойств соударяющихся тел, рассмотрим в дальнейшем. Имеем

Количество движения в теоретической механике      (177)

Из системы уравнений (174) и (177) найдем скорости не вполне упругих тел после удара:

u=u + k (u-υ1) ; u=u + k (u-υ2) ;           (178)

Сложив два уравнения (174), а также два уравнения (177), в правых частях получим нуль. Приравнивая друг другу левые части сумм, получим

m1υ1 + m2υ2 = mlul + m2u2.

Таким образом, количество движения системы и при неупругом ударе не изменилось. Это объясняется тем, что для системы соударяющихся тел ударная сила является внутренней, а потому согласно интегралу количеств движения (171) Количество движения в теоретической механике.

Отношение тангенсов угла падения и угла отражения равно коэффициенту восстановления:
k= tg α : tg β

Коэффициент восстановления

Из тех же уравнений (178) легко получить величину k, называемую коэффициентам восстановления. Имеем

Количество движения в теоретической механике           (179)

В числителе этого равенства мы видим относительную скорость тел после не вполне упругого удара, а в знаменателе—до удара. Величина k всегда положительна, поэтому взято отношение абсолютных величин относительных скоростей. Таким образом, коэффициент восстановления равен отношению модуля относительной скорости центров масс соударяющихся тел после прямого центрального удара к модулю относительной скорости их до удара.

Если маленький шарик ударяется о гладкую плиту под углом падения α≠0 (рис. 178), то, принимая удар за центральный и раскладывая движение по осям координат, заметим, что ударный импульс направлен перпендикулярно к гладкой плите, а потому проекция скорости шарика на гладкую плиту от удара не изменяется, но изменяется проекция скорости на нормаль к поверхности:

υ1 siπ a = u1 sin  kυcos a = u1cos β,

откуда 

Количество движения в теоретической механике           (180)

т. е. отношение тангенса угла падения к тангенсу угла отражения равно коэффициенту восстановления.

Движение точки переменной массы определяется уравнением И. В. Мещерского
Количество движения в теоретической механике

Уравнение движения точки переменной массы

Пусть некоторая материальная точка  M движется относительно неподвижной системы координат хОуz под действием силы Количество движения в теоретической механике. Предположим, что масса m точки M не остается постоянной, а изменяется, являясь, например, функцией времени, координат точки M, длины пройденного точкой пути, но не зависит от скорости точки:

m = m(t, х, у, z, s).

В таком случае дифференциальные уравнения (125—127) не выражают движения точки М, так как в этих уравнениях tn~const. Дифференциальные уравнения, описывающие движения точки переменной массы, выведены И. В. Мещерским. Процесс изменения массы точки (или тела) он рассмотрел как присоединение к ней новых частиц («изменяющих масс») или как отделение от нее изменяющих масс. В случае присоединения изменяющие массы положительны, а в случае отделения—отрицательны.

Присоединение или отбрасывание масс возможно лишь при условии, что их скорости не равны скорости точки М. Поэтому в мгновение, в которое изменяющая масса отрывается от точки М или присоединяется к ней, между ними возникает мгновенное взаимодействие, аналогичное удару, изменяющее количество движения точки M. Однако это взаимодействие, конечно, не изменяет количества движения всей материальной системы, состоящей из точки M и изменяющих масс, так как внутренние силы не могут изменить количества движения системы.

Обозначим через Количество движения в теоретической механике ускорение, получаемое точкой M от присоединения или отбрасывания изменяющих масс, и через Количество движения в теоретической механике — ускорение точки М, от равнодействующей Количество движения в теоретической механике приложенных к ней сил, обусловленных другими материальными телами. Таким, образом, полное ускорение Количество движения в теоретической механике точки, M складывается из двух составляющих:

Количество движения в теоретической механике

Руководствуясь принципом независимости действия сил, абстрагируемся от влияния внешних сил и найдем выражения для проекций на осн координат ускорения Количество движения в теоретической механике сообщаемого точке M изменяющими массами.

Пусть в мгновение t масса точки М равна m и ее абсолютная скорость равна V. Изменяющая масса dm в то же мгновение пусть имеет абсолютную скорость Количество движения в теоретической механике. Через бесконечно малый промежуток времени dt, когда изменяющая масса присоединится к точке М, их общая скорость vιιpn отсутствии внешних сил) станет равной Количество движения в теоретической механике Выразим по (159′) проекции количества движения системы до присоединения к точке M изменяющей массы:

K0x = mυx + dmux

и после присоединения:

Kx = (m + dm) (υx + dυx).

Приравняем согласно (171) эти два выражения друг другу и после элементарных преобразований получим

Количество движения в теоретической механике

Деля на dt, найдем проекцию ускорения на ось абсцисс:

Количество движения в теоретической механике

Умножив это равенство на массу m, найдем проекцию прибавочной силы на ось Ox и аналогично на две другие оси:

Количество движения в теоретической механике

Учитывая, что, кроме прибавочной силы и независимо от нее, на точку M действует сила F, проекции которой обозначим X, Y и Z, получим дифференциальные уравнения движения точки переменной массы (уравнения И. В. Мещерского):

Количество движения в теоретической механике           (181)

Эти равенства справедливы как при dm > 0, так и при dm<0. Они справедливы и для поступательного движения тела, если центр масс этого тела не перемещается в теле значительно от присоединения к телу или отбрасывания изменяющих масс.

Три уравнения Мещерского можно заменить одним уравнением, написанным в векторной форме,

Количество движения в теоретической механике           (181/)

Задача №9

Определить скорость ракеты (точки переменной массы) при ее прямолинейном движении и без действия внешних сил, если относительная скорость выбрасываемых газов Количество движения в теоретической механике постоянна и направлена противоположно скорости ракеты.

Решение. Направив ось Ox по скорости ракеты, напишем первое из уравнений Мещерского применительно к данному частному случаю:

Количество движения в теоретической механике

Разделим переменные:

Количество движения в теоретической механике

Введем некоторые ограничения на изменение массы, а именно предположим, чтo масса m в каждое мгновение пропорциональна значению некоторой функции от времени: m=m0f (t). При t = 0 масса m = m0.

Интегрируя, получаем равенство, которое носит название формулы Циолковского.

Ответ. Количество движения в теоретической механике. Это равенство правильнее называть задачей, а не формулой (см. В. В. Добронравов, H. Н. Никитин и А. П. Дворников, «Курс теоретической механики»).

Горизонтальное движение реактивного самолета

Задача №10

Определить закон движения x=x(t) самолета с жидкостным реактивным двигателем на активном и горизонтальном участке полета, положив, что масса самолета изменяется по линейному закону:

m= m0 (1 —at),

относительная скорость υr отбрасываемых частиц относительно самолета постоянна и аэродинамические силы зависят от квадрата скорости самолета, т. е. считать силу лобового сопротивления

Количество движения в теоретической механике

и подъемную силу

Количество движения в теоретической механике

Решение. Направим ось абсцисс горизонтально (рнс. 179) по скорости самолета, ось ординат перпендикулярно к ней.
Количество движения в теоретической механике
Рис. 179

На самолет по вертикальной оси действуют следующие силы: вес G и подъемная сила Р. При горизонтальном полете самолета они уравновешивают друг друга
Количество движения в теоретической механике

По горизонтальной оси на самолет действуют сила лобового сопротивления, направленная против абсолютной скорости и прибавочная сила, направленная против относительной скорости υr, т. е. по движению самолета.

Движение самолета прямолинейное и горизонтальное, его можно описать одним (первым) из уравнений Мещерского (181). В этой задаче оно принимает вид:

Количество движения в теоретической механике

Определим квадрат скорости из условия равенства вертикальных сил:

Количество движения в теоретической механике

и подставим его в выражение силы лобового сопротивления

Количество движения в теоретической механике

Для определения производной массы по времени, продифференцируем линейный закон изменения массы, заданный в условии задачи

Количество движения в теоретической механике

Из того же закона видно, что

Количество движения в теоретической механике

поэтому 

Количество движения в теоретической механике

После подстановки найденных выражений в уравнение Мещерского и сокращения на m имеем:

Количество движения в теоретической механике

Интегрируя один раз, получим:

Количество движения в теоретической механике

Подставляем начальные данные (при t=0, υx0x), имеем

υ0x = C1

Получаем следующее выражение изменения скорости самолета в зависимости от времени

Количество движения в теоретической механике

Чтобы получить закон движения самолета, надо в левой части этого выражения представить υx как производную от текущей координаты х по времени, разделить переменные и проинтегрировать

Количество движения в теоретической механике

Возьмем отдельно последний интеграл

Количество движения в теоретической механике

Следовательно,

Количество движения в теоретической механике

Определим C2 по начальным данным, положив, что при t = 0 и х = 0, тогда

Количество движения в теоретической механике

Подставив в предыдущее равенство вместо C2 его значение Количество движения в теоретической механике найдем закон, определяющий движение самолета на активном участке пути. Естественно, что в эту формулу проекции входят со своими знаками, например, в рассмотренной задаче проекция относительной скорости υlx отрицательна, а проекция начальной скорости υox положительна.

Ответ. Количество движения в теоретической механике

  • Момент количества движения
  • Мощность и работа силы
  • Потенциальная энергия
  • Обобщенные координаты системы
  • Координатный способ определения движения точки
  • Касательное и нормальное ускорения точки
  • Основные законы динамики
  • Колебания материальной точки

Пример 17. Однородный цилиндр массой и радиусом скатывается без скольжения по наклонной плоскости длиной , составляющей угол с горизонтом (см. рис.). Найти: 1) ускорение поступательного движения центра масс ; 2) величину углового ускорения ; 3) силу трения ; 4) время движения цилиндра по наклонной плоскости; 5) кинетическую энергию цилиндра в конце спуска.

Решение. На цилиндр, совершающий плоское движение, действуют внешние тела: Земля с силой тяжести , наклонная плоскость с силой реакции и силой трения . Заметим, что поскольку в данной задаче цилиндр не проскальзывает, то на него действует сила трения качения.

Выберем систему координат так, как показано на рисунке. Запишем уравнение движения центра масс (4.38) в инерциальной системе отсчета, связанной с поверхностью наклонной плоскости

. (1)

Спроектируем векторное равенство (1) на ось , будем иметь следующее выражение:

(2)

Переходим в неинерциальную систему отсчета, связанную с центром масс цилиндра (точка ); записываем уравнения вращения цилиндра вокруг оси, проходящей через центр масс

,

где – проекции на ось , моментов силы реакции , силы тяжести и силы трения соответственно.

Проекции момента силы реакции и силы тяжести равны нулю, т.к. линии действия этих сил пересекают ось вращения. Проекция момента силы трения равна (см. вставку к рисунку).

Учитывая, что момент инерции относительно оси вращения цилиндра равен и (см. рис.), перепишем последнее соотношение в следующем виде:

. (3)

В данной задаче проскальзывание цилиндра отсутствует, следовательно, точки поверхности цилиндра, соприкасающиеся с поверхностью наклонной плоскости, имеют равную нулю линейную скорость. Это значит, что величина скорости поступательного движения центра масс равна величине скорости вращательного движения этих точек. Следовательно, величина ускорения центра масс равна величине тангенциального ускорения, т.е. . С учетом этого равенства запишем для ускорения центра масс и углового ускорения цилиндра следующее соотношение:

. (4)

Решив систему уравнений (2), (3) и (4), найдем величину ускорения центра масс

. (5)

Величину углового ускорения находим из равенства (4)

.

Из уравнения (3) находим величину вектора силы трения

.

Для определения времени движения цилиндра по наклонной плоскости воспользуемся соотношением . С учетом того, что начальная скорость цилиндра равна нулю, получим выражение для времени движения

.

Кинетическую энергию цилиндра, совершающего плоское движение, определим из соотношения (4.40).Учтем при этом, что и .

. (6)

Скорость центра масс в конце наклонной плоскости найдем из соотношения

. (7)

Из равенства (7) вместо скорости поступательного движения центра масс подставим в выражение (6), получим соотношение для кинетической энергии цилиндра

.

Пример 18*. Однородный диск радиусом раскрутили до угловой скорости и осторожно положили боковой поверхностью на горизонтальную поверхность и предоставили самому себе. Коэффициент трения между цилиндром и плоскостью равен . Найти: 1) время, в течении которого движение цилиндра будет происходить со скольжением; 2) полную работу силы трения.

Решение. Изобразим все силы, с которыми внешние тела действуют на вращающийся диск с начальной угловой скоростью . Направление его вращение показано на рисунке. На диск действуют: Земля с силой тяжести , горизонтальная поверхность с силой реакции и силой трения скольжения .

Если диск, вращающийся с угловой скоростью положить на горизонтальную поверхность, то будет наблюдаться следующий характер движения: под действием силы трения скольжения вращение вокруг оси проходящей через центр масс (точка ), станет равнозамедленным с проскальзыванием, и, кроме того, центр масс цилиндра начнет двигаться равноускоренно с ускорением , направленным так, как показано на рисунке.

Через некоторое время проскальзывание прекратится. В этот момент для точек соприкосновения боковой поверхности цилиндра будет выполняться следующее условие: величина вектора скорости поступательного движения будет равна величине вектора скорости вращательного движения , т.е. .

Если последнее равенство продифференцировать по времени, то получим следующее соотношение

.

Это значит, что в момент прекращения проскальзывания ускорение поступательного движения центра масс равно тангенциальному ускорению точек соприкосновения боковой поверхности цилиндра с горизонтальной поверхностью.

Запишем уравнение поступательного движения центра масс цилиндра

. (1)

Для проекций векторов на оси координат, входящих в равенство (1), получим следующие соотношения:

(2)

Решим систему уравнений (2), учтем при этом, что , получим выражение для ускорения поступательного движения оси вращения

. (3)

Выразим величину скорости поступательного движения центра масс через величину ускорения по формуле, учтем при этом, что начальная скорость поступательного движения равна нулю:

, (4)

где – время проскальзывания цилиндра.

Линии действия силы тяжести и силы реакции проходят через ось вращения, следовательно, моменты этих сил относительно этой оси равны нулю. С учетом этого, запишем уравнения вращения цилиндра вокруг оси, проходящей через центр масс

. (5)

Проекция углового ускорения связана с проекцией угловой скорости следующим соотношением , – время проскальзывании; – проекция угловой скорости в момент окончания проскальзывания.

С учетом того, что, и (см. вставку к рис.), перепишем последнее соотношение в виде .

Последнее соотношение для подставим в равенство (5), получим уравнение

. (6)

Угловая скорость связана со скоростью движения центра масс соотношением

. (7)

С учетом этого выражения равенство (6) примет вид

Окончательно имеем выражение для времени проскальзывания цилиндра

. (8)

В момент прекращения проскальзывания величина скорости центра масс связана с величиной угловой скорости соотношением .

Выразим величину угловой скорости в момент прекращения проскальзывания с величиной начальной угловой скорости , для этого время проскальзывания из уравнения (8) подставим в равенство (7), получим следующее выражение

. (9)

Для вычисления работы силы трения используем теорему об изменении кинетической энергии. Учтем при этом, что сила тяжести и сила реакции работы не совершают, т.к. направления этих сил перпендикулярны перемещению цилиндра.

Запишем выражение для работы силы трения

, (10)

где , конечное и начальное значения кинетической энергии соответственно.

Выразим величину скорости центра масс диска в момент прекращения проскальзывания через угловую скорость, учтем при этом соотношение (10), получим окончательное равенство для работы силы трения

.

[1]АБСОЛЮТНО ТВЕРДОЕ ТЕЛО– модельное понятие классической механики, обозначающее совокупность материальных точек, расстояния между которыми сохраняются в процессе любых движений, совершаемых этим телом.

[2] Расстояние от линии действия вектора импульса материальной точки до оси ).

[3] Аддитивность (от лат. additio — прибавление) — свойство величин, заключающееся в том, что сумма значений величин, соответствующих частям объекта, равна значению величины, соответствующей целому объекту.

[4] ИНЕРТНОСТЬ (инерция) в механике, свойство тела сохранять состояние равномерного прямолинейного движения или покоя, когда действующие на него силы отсутствуют или взаимно уравновешены.

[5] Задача повышенной сложности

[6] Центральная сила– сила, линия действия которой при любом положении тела проходит через одну и ту же точку, называемую центром силы.

[7] Замкнутая система — это система, на которую внешние силы не действуют.

[8] Плоское движение — это такое движение твердого тела, при котором траектории движения всех его точек лежат в параллельных плоскостях.

*Задача повышенной сложности

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Студент — человек, постоянно откладывающий неизбежность. 10812 — | 7381 — или читать все.

91.146.8.87 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Решение:

Закон сохранения энергии

где потенциальная энергия диска на высоте h

кинетическая энергия поступательного движения диска

кинетическая энергия вращательного движения диска

Момент инерции диска

Связь угловой и линейной скоростей

Линейная скорость центра масс диска

Ответ: .

Центр — масса — диск

При очень больших угловых скоростях ( со — оо) у — е, и центр масс диска оказывается на оси вращения. [17]

Устойчивость вала при скорости, большей критической, обусловлена кориолисовым ускорением, которое появляется при перемещении центра масс диска S в радиальном направлении от точки Ох. Тогда точка S начинает двигаться в направлении, перпендикулярном к радиусу, и приходит в конечном итоге в положение по другую сторону от точки О. [18]

Количество движения диска равно количеству движения точки, масса которой равна массе диска, а скорость равна скорости центра масс диска . Задачу решаем в единицах СИ. [19]

Напряжения изгиба, обусловленные действием центробежных сил инерции при вращении вала, можно найти, если известны положения центров масс дисков , закрепленных на валу. [20]

Строят ех и eft и делят расстояние между концами этих векторов на k частей, пропорционально расстояниям между центрами масс дисков . [22]

Из этих формул видно, что первоначально выбранное направление угловой скорости не совпадает с действительным, так же как и направление скорости центра масс диска . [23]

Диск движется без проскальзывания по наклонной плоскости. Центр масс диска находится на расстоянии с от геометрического центра. Записать лагранжиан, найти частоту линейных колебаний в окрестности положения равновесия. [24]

Однородный диск радиуса а и массы m катится без скольжения по горизонтальной пдС Сности. У с — координаты центра масс диска , 0, ф, Ф — углы Эйлера, 2) в координатах х, у, в, ф, р, где х, у — координаты точки контакта диска с плоскостью, t Ф — углы Эйлера ( см. задачу 50.11); 3) в квазикоординатах р, q, r, являющихся проекциями вектора мгновенной угловой скорости вращения диска на главные осл центрального эллипсоида инерции; Л, С — главные центральные моменты инерции диска. [25]

Полученные значения скоростей с1 и ш постоянны и зависят лишь от расположения масс системы. Следовательно, после начала движения жука центр масс диска движется с постоянной по величине скоростью, а его угловая скорость также постоянна. [26]

Однородный круглый диск массы М эксцентрично насажен на ось г, перпендикулярную его плоскости. Радиус диска равен г, эксцентриситет ОС з, где С — центр масс диска . [27]

Однородный круглый диск массы ЛТ эксцентрично насажен на ось г, перпендикулярную его плоскости. Радиус диска равен г, эксцентриситет ОС к, где С — центр масс диска . Оси координат показаны кг риеукке. [28]

Однородный круглый диск массы М эксцентрично насажен на ось z, перпендикулярную его плоскости. Радиус диска равен г, эксцентриситет ОС а, где С — центр масс диска . Вычислить осевые Jx, Ju, ] г и центробежные Jxy, Jxi, Jyz моменты инерции диска. Оси координат показаны на рисунке. [29]

В статье [29] задача о качении по абсолютно шероховатой горизонтальной плоскости тяжелого диска, несущего маховик, ось вращения которого перпендикулярна плоскости диска и проходит через его центр масс ( рис. 11), сведена к анализу гипергеометрических квадратур. Неголономная механическая система диск маховик имеет четыре степени свободы и является гиростатом, положение которого однозначно определяется шестью обобщенными координатами: ф, , ц — углами Эйлера между трехгранником, жестко связанным с главными центральными осями инерции диска, и неподвижным трехгранником OX Y Z, 7 — углом поворота маховика относительно диска вокруг оси Cz, x, у — координатами проекции центра масс диска на плоскость OX Y, по которой катится диск. [30]

Примеры решения задач

Пример
1.
Найти
момент инерции тонкого однородного
диска массой
и радиусаотносительно: а) оси симметрии,
перпендикулярной к плоскости диска; б)
оси, совпадающей с диаметром диска.

Р
е ш е н и е. а)Выберем
на диске цилиндрический слой радиуса
и шириной(см.
рис. 3а). Так как все элементы цилиндрического
слоя находятся на одном расстоянии
от центра кольца, его момент инерции
равен

(14)

где
– масса кольца, которую можно найти,
определив поверхностную плотность
материала дискаи умножив ее на площадь поверхности
кольцат.е.

Подставляя
это значение в (14) интегрируя пов пределах от 0 до,
найдем момент инерции диска относительно
оси симметрии

(15)

б)
Для нахождения момента инерции диска
относительно диаметра, например оси
воспользуемся соотношением (6). Проведем
три взаимно перпендикулярные осипересекающиеся в центре диска (рис. 3б).
Очевидно, что,
тогда из уравнения (6) следует

Подставляя
в это выражение значение
из уравнения (15), найдем момент инерции
диска относительно диаметра

Пример
2.
Найти
момент инерции однородного шара массы
и радиусаотносительно оси, совпадающей с центром
шара.

Ре ш е н и е. Вычисление момента инерции
шара прямым методом, т.е. с использованием
уравнения (1) довольно трудоемкая
математическая задача, поэтому для
нахождения этого момента инерции
воспользуемся соотношением (5). Проведем
три взаимно перпендикулярные осипересекающиеся в центре шара (см. рис.
4). Очевидно, что

поэтому
соотношение (5) перепишем в виде

(16)

где
– искомый момент инерции,– момент инерции шара относительно
центра шара.

Для
нахождения момента инерции
выберем тонкий сферический слой радиусаи толщинойцентр
которого совпадает с центром шара (на
рис. 4 он выделен цветом). Все элементы
этого слоя находятся на одинаковом
расстоянии от центра шара, поэтому его
момент инерции относительно центра
шара равен

.
(17)

Объемная
плотность шара равна
,
умножая ее на объем тонкого сферического
слоянайдем массу сферического слоя

Подставляя
это выражение в (17) и интегрируя в пределах
от 0 до
,
найдем момент инерции шара относительно
центра

С учетом этого из
уравнения (16) находим искомый момент
инерции шара

Пример
3.
Однородный
цилиндр радиуса
раскрутили вокруг его оси до угловой
скоростии поместили затем в угол (рис.5) Коэффициент
трения между стенками угла и цилиндром
равенСколько оборотов сделает цилиндр до
остановки?

Р
е ш е н и е. Расставим силы, действующие
на цилиндр. Запишем уравнение, описывающее
выражение цилиндра относительно его
оси

(18)

где
– момент инерции цилиндра относительно
этой оси. Знак “–” в левой части этого
уравнения обусловлен тем, что при
замедленном движении модуль углового
ускоренияТак как нам необходимо найти число
оборотов, которое сделает цилиндр до
остановки, исключим из уравнения (18)
время. Для этого умножим и разделим
левую часть уравнения (18) на

где
– угловая скорость вращения цилиндра
в некоторый момент времени. После
преобразований получим

.
(19)

Прежде
чем решать это уравнение, найдем выражения
для сил трения. Так как центр цилиндра
покоится,

Запишем
это уравнение в проекциях на оси
и(см. рис. 5)

Решая
эту систему уравнений, учитывая, что
аполучим
выражения для сил трения

Подставляя эти
выражения в уравнение (19) и интегрируя
левую часть этого уравнения в пределах
от
до 0, а правую часть в пределах от 0 до,
найдем число оборотов,
которое сделает цилиндр до остановки

Пример
4.
Однородный
шар скатывается без скольжения по
наклонной плоскости, составляющей угол
с горизонтом. Найти ускорениецентра шара и кинетическую энергию шара
через времяпосле начала движения.

Р е ш е н и е. Решим
задачу двумя способами.

а) Шар совершает
плоское движение. Свяжем подвижную
систему отсчета с центром шара. Эта
система движется поступательно
относительно наклонной плоскости, а
шар в этой системе вращается вокруг
оси, проходящей через его центр. Расставим
силы, действующие на шар в
процессе движения (см. рис.6). Запишем
теорему о движении центра масс в проекции
на ось
(см.
рис.6)

(20)

Уравнение
вращательного движения шара вокруг
оси, проходящей через центр масс имеет
вид

(21)

где
– угловое ускорение шара,– момент инерции шара относительно оси
вращения. Решая совместно уравнения
(20) и (21), найдем ускорение центра шараи его угловое ускорение

(22)

Используя формулу
(13) для кинетической энергии тела,
совершающего плоское движение, и
учитывая, что в интересующий нас момент
времени
и(т.к.ипостоянные), найдем кинетическую энергию
шара через времяпосле начала движения

б) Так как шар
катится без проскальзывания, точка
соприкосновения шара
с наклонной плоскостью имеет скорость
равную нулю. Поэтому прямая, перпендикулярная
плоскости рисунка и проходящая через
точкуявляется мгновенной осью вращения.
Относительно этой оси шар совершает
вращательное движение, поэтому для
описания движения достаточно записать
уравнение (12) в виде

(23)

где
– момент инерции шара относительно
мгновенной оси вращения. Согласно
теореме Штейнера момент инерцииравен

Подставляя это
выражение в уравнение (23), находим
ускорение центра шара
и его угловое ускорение(см. уравнения (22)).

Кинетическая
энергия шара, в этом случае, определяется
только вращательным движением

Заметим, что при
любом способе решения, кинетическую
энергию шара можно найти из закона
сохранения энергии (сила трения работы
не совершает, т.к. эта сила – сила трения
покоя). Пусть за время
высота центра шара изменилась на(см. рис.6), тогда

(24)

где
– расстояние, пройденное центром шара
за времяПодставляя
в (24) выражение дляи,
находим кинетическую энергию шара

Пример
5.
Однородный
стержень длины
может вращаться вокруг горизонтальной
оси, перпендикулярной к стержню и
проходящей через один из его концов
(рис. 7). Систему равномерно вращают с
угловой скоростьювокруг вертикальной оси. Пренебрегая
трением, найти уголмежду стержнем и вертикалью.

Р е ш е н и е. Решим
задачу двумя способами. Первое решение
приведем в инерциальной системе отсчета,
т.е. в системе, в которой стержень
вращается. Второе решение – в неинерциальной
системе отсчета, жестко связанной со
стержнем.

а) Система отсчета,
в которой будем решать задачу, на рис.
7 не показана. Решение задачи относительно
вертикальной оси вращения не даст
желаемого результата, т.к. моменты сил,
действующих на стержень (сила тяжести
и сила реакции в точке
),
относительно этой оси равны нулю, и
величина момента импульса остается
постоянной.

Поэтому
будем решать задачу относительно точки
подвеса стержня. Напомним, что уравнение
моментов относительно точки имеет вид

откуда видно, что
направление изменения момента импульса
совпадает по направлению с направлением
момента силдействующих на стержень, поэтому в
дальнейшем это уравнение будем записывать
для модулейи

(25)

Момент силы реакции
в точке
равен нулю, т.к. плечо этой силы равно
нулю. Направление момента силы тяжести
показано на рис.7, а величина равна

(26)

Найдем величину
и направление момента импульса
стержня относительно точкиДля этого выделим на стержне небольшой
участок длинойи массойположение которого относительно точкизададим радиус-вектором(см.
рис. 7). Обозначим величину момента
импульса этого участка какТак как стержень вращается вокруг
вертикальной оси, так как показано на
рисунке, скоростьэтого участка будет направлена за
плоскость рисунка, поэтому как следует
из определения момента импульса

,

он будет направлен
перпендикулярно стержню, как показано
на рис. 7. Очевидно, что направления всех
моментов импульса остальных участков
стержня будут иметь такое же направление,
поэтому результирующий момент импульса
будет также перпендикулярен стержню.
Учитывая, что векторы
ивзаимно перпендикулярны, величинаравна

Интегрируя это
уравнение

найдем величину
момента импульса стержня относительно
точки

Момент
импульса поворачивается вместе со
стержнем, и за время
повернется на некоторый угол,
получив приращение(см. рис.8).
Найдем величину этого приращения

или

.
(27)

Подставляя уравнение
(26) и (27) в уравнением моментов (25), получим

где
.
Преобразуем это уравнение к виду

.
(28)

Если величина

уравнение (28) имеет
одно решение
,
и это положение устойчивое, т.е. стержень
будет занимать вертикальное положение
и будет вращаться вокруг собственной
оси.

Если
то уравнение (28) будет иметь два решение

и
,

причем можно
показать, что первое решение перестает
быть устойчивым, и стержень отклонится
на угол, определяемый вторым решением.

б) Решим теперь
задачу в неинерциальной системе отсчета,
жестко связанной со стержнем. В этой
системе отсчета на стержень, кроме сил
взаимодействия действует центробежная
сила инерции. Так как стержень находится
в равновесии, сумма моментов сил,
действующих на стержень, должна равняться
нулю, т.е.

где
– величина момента силы тяжести,– величина момента центробежной силы
инерции относительно точкиВеличина момента силы тяжести определяется
уравнением (26).
Для нахождения момента центробежной
силы инерции воспользуемся рис. 7, считая,
что стержень покоится.

На выделенный
участок стержня действует центробежная
сила инерции

величина момента
которой, относительно точки
равна

Интегрируя это
выражение по всей длине стержня, получим

.

Подставляя
это выражение и соотношение (26) в уравнение
моментов (25), получим уравнение

,

в точности
совпадающее с уравнением (28).

Надо заметить,
что решение этой задачи в неинерциальной
системе отсчета много проще, чем в
инерциальной.

Пример
6.
Однородная
тонкая квадратная пластинка массы
может свободно вращаться вокруг
неподвижной вертикальной оси, совпадающей
с одной из ее сторон. В центр пластины
по нормали к ней упруго ударяется шарик
массылетевший со скоростьюНайти величину скорости шарикасразу после удара.

Р
е ш е н и е. Система “пластина-шарик”
незамкнута, так как для удержания оси
пластины в неподвижном состоянии к ней
необходимо приложить внешние силу.
Однако надо заметить, что момент этих
внешних сил относительно оси равны
нулю, т.к. они приложены непосредственно
к оси.

Для
решения задачи воспользуемся законами
сохранения энергии (удар упругий) и
законом сохранения момента импульса
(сумма момента внешних сил относительно
оси равен нулю). Будем считать, что длина
стороны пластины равна
и шарик после удара будет лететь в
прежнем направлении, тогда

,

где
– момент инерции пластины относительно
оси,– угловая скорость, с которой пластина
будет вращаться после удара вокруг оси.

Для
простоты решения этой системы перепишем
ее в виде

(29)

Разделив первое
уравнение не второе, получим

(30)

Решая
совместно уравнения (29) и(30) и учитывая,
что момент инерции пластины относительно
оси, совпадающей с одной из ее сторон
равен
(докажите это самостоятельно), найдем
скорость шарика после удара

Заметим,
что если
,
скорость шарика после удара становится
отрицательной. Это означает, что пришарик полетит в обратную сторону.

Пример
7.
Однородный
диск радиуса
и массылежит на гладкой горизонтальной
поверхности. На боковую поверхность
диска плотно намотана нить, к свободному
концукоторой приложили постоянную горизонтальную
силуПосле начала движения диска точкапереместилась на расстояниеНайти угловую скорость диска к этому
моменту времени.

Р
е ш е н и е. Под действием силы
диск будет совершать плоское движение.
Свяжем подвижную систему отсчета с
центром масс диска. Величину ускорения
центра масснайдем из второго закона Ньютона,
записанного в проекции на направление
движения

.
(31)

В
системе отсчета, связанной с центром
масс, диск вращается с угловым ускорением
,
которое найдем из уравнения вращательного
движения диска

(32)

где
– момент инерции диска, относительно
оси вращения.

Найдем
величины скорости
центра масс диска и угловой скорости
его вращения к моменту времени,
когда точка приложения силысовершит перемещениеТак как в начальный момент времени диск
покоился, а величины ускоренийине меняются с течением времени (см.
уравнения (31) и (32)), получим

Исключая
из этих уравнений время
найдем связь между скоростью центра
масс и угловой скоростью вращения диска

(33)

Запишем теорему
об изменении кинетической энергии для
диска

(34)

где
– работа всех сил, действующих на диск.
Силы тяжести и сила реакции опоры работу
на совершают, работу совершает только
постоянная силаПо определению работа постоянной силы
равна произведению модуля силы наперемещение
точки приложения силы
,
таким образом

.
(35)

Подставляя
выражения (33) и (35) в уравнение (34), найдем
величину угловой скорости диска к
моменту времени, когда точка приложения
силы совершит перемещение

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Содержание:

  1. Динамика механической системы
  2. Геометрия масс
  3. Механическая система. Центр масс механической системы
  4. Порядок решения задач на определение центра масс механической системы
  5. Примеры решения задач на тему: Определение центра масс механической системы
  6. Моменты инерции твердого тела относительно оси
  7. Моменты инерции некоторых однородных тел
  8. Примеры решения задач на тему: Моменты инерции твердого тела относительно оси
  9. Теорема о движении центра масс механической системы
  10. Закон сохранения движения центра масс
  11. Порядок решения задач на применение теоремы о движении центра масс
  12. Примеры решения задач на тему: Теорема о движении центра масс механической системы
  13. Теорема об изменении количества движения точки и механической системы
  14. Импульс силы
  15. Теорема об изменении количества движения точки и системы
  16. Закон сохранения количества движения системы
  17. Порядок решения задач на применение теоремы об изменении количества движения точки и механической системы
  18. Примеры решения задач на тему: Теорема об изменении количества движения точки и механической системы
  19. Теорема об изменении момента количества движения точки и механической системы
  20. Дифференциальное уравнение вращательного движения тела вокруг неподвижной оси
  21. Порядок решения задач на применение теоремы об изменении момента количества движения точки и механической системы
  22. Примеры решения задач на тему: Теорема об изменении момента количества движения точки и механической системы
  23. Теорема об изменении кинетической энергии механической системы
  24. Кинетическая энергия механической системы
  25. Определение кинетической энергии твердого тела в различных случаях его движения
  26. Порядок решения задач на использование теоремы об изменении кинетической энергии механической системы
  27. Примеры решения задач на тему: Теорема об изменении кинетической энергии механической системы

Динамика механической системы – изучает движение совокупности материальных точек и твердых тел, объединяемых общими законами.

На странице -> решение задач по теоретической механике собраны решения задач и заданий с решёнными примерами по всем темам теоретической механики.

Динамика механической системы

В предыдущей главе рассматривались задачи, связанные с движением материальной точки, которая находится под действием приложенных к ней сил. Однако часто приходится встречаться с такими случаями, когда движение одной точки невозможно рассматривать изолированно от движения других материальных точек. Это заставляет нас перейти к изучению движения совокупности материальных точек, или механических систем.

В механике под механической системой материальных точек или тел имеют в виду такую их совокупность, в которой положение или движение каждой точки (или тела) зависит от положения или движения всех других.

Совокупность тел, между которыми отсутствуют силы взаимодействия и движение которых никаким образом не связано друг с другом, механическую систему не создают. Механические системы бывают свободными и несвободными.

Система материальных точек, движение которых не ограничено никакими связями, а определяется только действующими на эти точки силами, называется системой свободных точек.

Система материальных точек, движение которых ограничивается наложенными на точки связями, называется системой несвободных точек.

Решение задач динамики механической системы базируется на теоремах динамики и некоторых принципах, которые будут рассмотрены в данной главе.

Геометрия масс

Геометрия точки масс, в просторечии известная как точки масс , является проблемой геометрии – метод решения , который применяет физический принцип центра масс к геометрическим задачам, включающим треугольники и пересекающиеся чевианы . Все задачи, которые могут быть решены с использованием геометрии материальных точек, также могут быть решены с использованием аналогичных треугольников, векторов или соотношений площадей, но многие студенты предпочитают использовать массовые точки.

Механическая система. Центр масс механической системы

В механике под механической системой подразумевают совокупность взаимодействующих между собой материальных точек или тел.

Частным случаем механической системы является абсолютно твердое тело.

Массой механической системы называется сумма масс всех точек, входящих в систему:

Динамика механической системы

где Динамика механической системы – масса материальной точки с номером Динамика механической системы,

Динамика механической системы – число всех точек системы.

Центром масс (центром инерции) механической системы называется точка Динамика механической системы (рис.5.1), радиус-вектор Динамика механической системы которой определяется по формуле:

Динамика механической системы

где Динамика механической системы – масса системы материальных точек;

Динамика механической системы – радиус-вектор точки с массой Динамика механической системы.

Декартовы координаты центра масс системы материальных точек определяются по зависимостям:

Динамика механической системы

Здесь Динамика механической системы – координаты Динамика механической системы-ой материальной точки.

Динамика механической системы

Для твердого тела центр масс совпадает с центром тяжести.

Порядок решения задач на определение центра масс механической системы

Решение задач, в которых необходимо определить положение центра масс и уравнение его траектории, рекомендуется проводить в следующей последовательности:

Выбрать систему координат.

Записать координаты центров тяжести каждой из масс системы, выразив их в виде функций времени:

Динамика механической системы

Определить координаты центра масс системы по формулам (5.1), при этом Динамика механической системы будут функциями времени, то есть, полученные выражения будут параметрическими уравнениями движения центра масс.

Для нахождения уравнений траектории центра масс надо с последних выражений (пункт 3) исключить время.

Примеры решения задач на тему: Определение центра масс механической системы

Задача № 1

Определить положение центра масс центробежного регулятора, изображенного на рис.5.2, если вес каждого из шаров Динамика механической системы и Динамика механической системы равен Динамика механической системы, вес муфты Динамика механической системы равен Динамика механической системы. Пули Динамика механической системы и Динамика механической системы  считать материальными точками. Массой стержней пренебречь.

Решение. Система координат, относительно которой необходимо определить положение центра масс, изображена на рис.5.2.

Для определения положения центра масс системы надо определить его координаты по формулам (5.1):

Динамика механической системы

где Динамика механической системы

Динамика механической системы – координаты центра масс пуль Динамика механической системыДинамика механической системы и муфты Динамика механической системы.

Следовательно,

Динамика механической системы

Находим координаты центров масс:

пули Динамика механической системыДинамика механической системы

пули Динамика механической системыДинамика механической системы

муфты Динамика механической системыДинамика механической системы

Тогда: 

Динамика механической системы

поскольку

Динамика механической системы

Динамика механической системы

Ответ: Динамика механической системы

Задача № 2

Найти уравнение движения центра масс шарнирного параллелограмма Динамика механической системы а также уравнение траектории его центра масс при вращении кривошипа Динамика механической системы с постоянной угловой скоростью Динамика механической системы. Звенья параллелограмма – однородные стержни (рис.5.3), и Динамика механической системы

Динамика механической системы

Решение. Начало системы координат свяжем с шарниром Динамика механической системы кривошипа Динамика механической системы. Ось Динамика механической системы направим справа по линии Динамика механической системы а ось Динамика механической системы – перпендикулярно линии Динамика механической системы.

Поскольку звенья 1,2,3 параллелограмма однородны, то центры масс их лежат посередине звеньев (точки Динамика механической системы).

Из размеров звеньев вытекает: Динамика механической системы

Определим координаты центров масс звеньев механизма как функции угла поворота Динамика механической системы (рис.5.3):

Динамика механической системы

Для определения координат центра масс шарнирного параллелограмма Динамика механической системы воспользуемся зависимостью (5.1):

Динамика механической системы

Динамика механической системы

Для определения уравнения траектории центра масс (точки Динамика механической системы) исключим параметр Динамика механической системы из уравнений (1) и (2). С этой целью выполним следующие преобразования:

Динамика механической системы

Сложим, соответственно, левые и правые части этих уравнений:

Динамика механической системы

Таким образом, траекторией центра масс шарнирного параллелограмма является окружность:

с радиусом, равным Динамика механической системы, с центром в точке Динамика механической системы с координатами Динамика механической системы

Ответ: Динамика механической системы Динамика механической системы

Задача № 3

Определить траекторию центра масс механизма эллипсографа (рис.5.4), который состоит из муфт Динамика механической системы и Динамика механической системы весом Динамика механической системы каждая, кривошипа Динамика механической системы весом Динамика механической системы и линейки Динамика механической системы весом Динамика механической системы, если Динамика механической системы

Динамика механической системы

Считать, что линейка и кривошип есть однородные стержни, а муфты – точечные массы.

Решение. Механизм состоит из 4 подвижных звеньев. Для удобства решения задачи пронумеруем звенья соответственно рис.5.4.

Система координат, относительно которой будет определяться траектория центра масс механизма показана на рисунке.

Сначала определим координаты центров масс всех звеньев механизма:

Динамика механической системы

Для определения координат центра масс механизма эллипсографа воспользуемся формулой (5.1):

Динамика механической системы

Следовательно, координаты центра масс эллипсографа имеют значения:

Динамика механической системы

Для нахождения уравнения траектории центра масс в явном виде необходимо из этих уравнений исключить угол Динамика механической системы. Решив оба уравнения относительно Динамика механической системы и Динамика механической системы, возводя их затем к квадрату и сложив, получим:

Динамика механической системы

Траекторией центра масс является окружность с центром в точке Динамика механической системы и радиусом Динамика механической системы, который равен:

Динамика механической системы

Ответ: Динамика механической системы

Задача № 4

Определить зависимость от угла поворота кривошипа Динамика механической системы координат центра масс кривошипно-ползунного механизма, что изображено на рис.5.5. Длина кривошипа Динамика механической системы, его вес Динамика механической системы, длина шатуна Динамика механической системы, его вес Динамика механической системы, вес ползуна Динамика механической системы.

Решение. Выберем систему координат Динамика механической системы как показано на рис.5.5. Рассмотрим механизм в произвольном положении, которое определяется углом Динамика механической системы (для любого положения Динамика механической системы, так как Динамика механической системы).

Применяя формулу (5.1), получим:

Динамика механической системы

где Динамика механической системы – координаты центров тяжести тел, составляющих систему,

Динамика механической системы – масса всей системы.

С рис.5.5 находим:

Динамика механической системы

Масса всей системы в данном случае равна:

Динамика механической системы

Подставляя в выражения (1) и (2) значения координат центров масс тел механической системы и величину массы системы Динамика механической системы, получим:

Динамика механической системы

Ответ: Динамика механической системы

Задача № 5

Определить уравнение траектории центра масс кулисного механизма (рис.5.6), если вес кривошипа Динамика механической системы равен Динамика механической системы, вес ползуна Динамика механической системы равен Динамика механической системы, а вес кулисы и штанги Динамика механической системы равен Динамика механической системы. Кривошип, который вращается с постоянной угловой скоростью Динамика механической системы, считать тонким однородным стержнем, а ползун Динамика механической системы – точечной массой. Центр тяжести кулисы и штанги расположен в точке Динамика механической системы, причем Динамика механической системы. При расчетах принять:

Динамика механической системы

Будем считать, что в начальный момент ползун Динамика механической системы занимал крайнее правое положение.

Решение. Выберем оси декартовых координат, как показано на рисунке, где положение кулисного механизма соответствует моменту времени Динамика механической системы. Так как кривошип вращается равномерно, то его угол поворота равен Динамика механической системы

Для определения положения центра масс системы Динамика механической системы необходимо найти его координаты Динамика механической системы и Динамика механической системы по формуле (5.1).

Поскольку механическая система состоит из трех тел – кривошипа Динамика механической системы, ползуна Динамика механической системы и кулисы со штангой Динамика механической системы, то:

Динамика механической системы

Индекс 1 соответствует кривошипу, индекс 2 – ползуну Динамика механической системы, индекс 3 – кулисе со штангой.

Динамика механической системы

Из рисунка видно:

Динамика механической системы

Подставим значения Динамика механической системы в формулы для определения Динамика механической системы и Динамика механической системы.

Динамика механической системы

Исключим время Динамика механической системы в уравнениях, которые определяют движение центра масс.

Для этого решим оба уравнения относительно Динамика механической системы и Динамика механической системы:

Динамика механической системы

Возведем эти уравнения к квадрату и добавим:

Динамика механической системы

Таким образом, траекторией центра масс кулисного механизма является эллипс с полуосями Динамика механической системы и Динамика механической системы

Центр эллипса лежит на оси Динамика механической системы и отдален от начала координат Динамика механической системы вправо на расстояние Динамика механической системы

Ответ: Динамика механической системы

Моменты инерции твердого тела относительно оси

Влияние собственных свойств тела на вращательное движение значительно сложнее, чем в поступательном движении.

Также как масса тела является мерой инертности тела при его поступательном движении, так и момент инерции тела относительно данной оси является мерой инертности тела при его вращательном движении.

Как мера инертности тела момент инерции входит во все формулы вращательного движения. Не зная момента инерции тела, не умея его определить, нельзя решать задачи, которые связаны с вращательным или сложным движением тела, частью которого является вращательное движение.

Момент инерции тела (системы) относительно оси, например Динамика механической системы, обозначим Динамика механической системы (индекс указывает на ось, относительно которой определяется момент инерции).

Моментом инерции тела относительно оси, например Динамика механической системы, называется скалярная величина, равная сумме произведений масс точек тела на квадраты их расстояний к оси:

Динамика механической системы

Если тело сплошное, то под Динамика механической системы необходимо понимать массу элементарной частицы тела Динамика механической системы, тогда момент инерции будет выражаться интегралом:

Динамика механической системы

где Динамика механической системы – расстояние доли Динамика механической системы от оси.

Этот интеграл берется по всей массе тела. Очевидно, что величина момента инерции зависит от размеров и формы тела , а также от закона распределения массы в теле.

Момент инерции измеряется в системе СИ – в Динамика механической системы, в технической системе – в Динамика механической системы.

Для тел правильной геометрической формы определение моментов инерции делается с помощью интегрального вычисления. Если тело имеет неправильную форму, то момент инерции его определяется либо приблизительно, путем разбития тела на несколько тел, которые имеют правильную геометрическую форму, либо экспериментально.

Для однородного тела, при плотности Динамика механической системы:

Динамика механической системы

где интеграл берется по всему объему тела.

Для однородной материальной поверхности:

Динамика механической системы

где Динамика механической системы – масса единицы плоскости поверхности и интеграл берется по всей плоскости поверхности.

Для однородной материальной линии:

Динамика механической системы

где Динамика механической системы – масса единицы длины линии. Интеграл берется по длине Динамика механической системы.

Для одной материальной точки, которая находится на расстоянии Динамика механической системы от оси, момент инерции равен:

Динамика механической системы

Иногда при определении момента инерции тела пользуются понятием радиуса инерции. Радиусом инерции тела относительно оси, например Динамика механической системы, называется линейная величина Динамика механической системы, определяемая равенством:

Динамика механической системы

где Динамика механической системы – масса тела.

Следовательно, радиус инерции определяет расстояние от оси Динамика механической системы к точке, в которой необходимо сосредоточить всю массу Динамика механической системы тела, чтобы момент инерции точки относительно этой оси равнялся моменту инерции тела.

Момент инерции системы относительно начала координат равен

Динамика механической системы

Моменты инерции относительно координатных осей (осевые моменты) выражаются зависимостями:

Динамика механической системы

Существует простая зависимость между моментами инерции тела относительно параллельных осей, одна из которых проходит через его центр масс (теорема Гюйгенса-Штейнера).

Момент инерции тела относительно любой оси равен моменту инерции тела относительно оси, проходящей через центр масс тела параллельно данной оси, плюс произведение массы тела на квадрат расстояния между осями:

Динамика механической системы

где Динамика механической системы – момент инерции тела относительно оси, которая проходит через центр масс и параллельна данной;

Динамика механической системы – момент инерции тела относительно данной оси;

Динамика механической системы – расстояние между осями.

Из выражения (5.4) вытекает, что наименьшим момент инерции тела будет относительно той оси, которая проходит через центр его масс.

Моменты инерции некоторых однородных тел

Форма тела. Схема тела. Момент инерции.
Тонкий прямолинейный стержень Динамика механической системы Динамика механической системы
-„- Динамика механической системы Динамика механической системы
Круглая пластинка малой толщины Динамика механической системы Динамика механической системы
Кольцо (материальная окружность) Динамика механической системы Динамика механической системы
Круглый цилиндр Динамика механической системы Динамика механической системы
Прямоугольный параллелепипед Динамика механической системы Динамика механической системы
Полый шар со стенками малой толщины Динамика механической системы Динамика механической системы
Шар  Динамика механической системы Динамика механической системы

Примеры решения задач на тему: Моменты инерции твердого тела относительно оси

Задача №1

Маятник, изображенный на рис. 5.7, состоит из тонкого однородного стержня длиной Динамика механической системы и массой Динамика механической системы и круглого однородного диска с радиусом Динамика механической системы и массой Динамика механической системы

Динамика механической системы

Определить момент инерции Динамика механической системы относительно оси его вращения Динамика механической системы (ось Динамика механической системы направлена перпендикулярно плоскости рисунка).

Решение. Маятник состоит из двух тел: стержня и диска, поэтому

Динамика механической системы

где Динамика механической системы и Динамика механической системы моменты инерции относительно оси Динамика механической системы стержня и диска, соответственно.

Момент инерции стержня равен (см. 5.5):

Динамика механической системы

Момент инерции диска найдем по формуле (5.4):

Динамика механической системы

где Динамика механической системы – момент инерции диска относительно оси, которая проходит параллельно оси Динамика механической системы через его центр масс, точку Динамика механической системы, а расстояние от центра масс к оси Динамика механической системыДинамика механической системы

Итак

Динамика механической системы

Пользуясь выражениями для моментов инерции стержня (2) и диска (3), найдем момент инерции маятника относительно оси Динамика механической системы:

Динамика механической системы

После подстановки в выражение (4) числовых данных, получим:

Динамика механической системы

Ответ: Динамика механической системы

Задача №2.

Определить момент инерции Динамика механической системы стального вала радиуса Динамика механической системы см и массой Динамика механической системы относительно его образующей. Вал считать однородным сплошным цилиндром (рис.5.8).

Динамика механической системы

Решение. Для определения момента инерции стального вала относительно оси Динамика механической системы, надо воспользоваться формой Гюйгенса-Штейнера

Динамика механической системы

где Динамика механической системы – момент инерции относительно оси Динамика механической системы, которая проходит через центр масс тела.,

Динамика механической системы – масса вала,

Динамика механической системы – расстояние между осями, равное радиусу вала.

Динамика механической системы

Тогда

Динамика механической системы

Ответ: Динамика механической системы

Задача № 3

Определить осевые моменты инерции Динамика механической системы и Динамика механической системы изображенной на рис.5.9 однородной прямоугольной пластинки весом Динамика механической системы.

Динамика механической системы

Решение. Определим момент инерции пластинки относительно оси Динамика механической системы. Для этого выделим на расстоянии Динамика механической системы полоску шириной Динамика механической системы.

Момент инерции этой тонкой полоски относительно оси Динамика механической системы равен:

Динамика механической системы

где Динамика механической системы – масса полоски.

Масса полоски равна:

Динамика механической системы

где Динамика механической системы – площадь полоски;

Динамика механической системы– масса единицы площади поверхности пластинки.

Тогда:

Динамика механической системы

а момент инерции всей пластинки будет равен сумме моментов инерции всех полосок, на которые можно разбить пластинку:

Динамика механической системы

При предельном переходе, то есть, когда Динамика механической системы

Динамика механической системы

Итак, 

Динамика механической системы

Вычислим массу пластинки:

Динамика механической системы

Таким образом

Динамика механической системы

Момент инерции пластинки относительно оси Динамика механической системы находим аналогичным путем и получим:

Динамика механической системы

Ответ: Динамика механической системы

Задача №4

Определить момент инерции относительно оси Динамика механической системы Динамика механической системы однородного прямоугольного параллелепипеда весом Динамика механической системы (рис.5.10).

Решение. Выделим элементарный параллелепипед со сторонами основания Динамика механической системы и высотой Динамика механической системы Расстояние элементарного параллелепипеда от осей Динамика механической системы и Динамика механической системы равно Динамика механической системы и Динамика механической системы соответственно.

Момент инерции элементарного параллелепипеда относительно оси Динамика механической системы равен:

Динамика механической системы

где: Динамика механической системы – масса элементарного параллелепипеда, равна:

Динамика механической системы

Динамика механической системы

Тогда, Динамика механической системы

а момент инерции всего параллелепипеда

Динамика механической системы

При предельном переходе, то есть при Динамика механической системы то сумма, которая стоит справа, переходит в двойной интеграл:

Динамика механической системы

Вычислим двойной интеграл:

Динамика механической системы

Масса параллелепипеда:

Динамика механической системы

Следовательно,

Динамика механической системы

Ответ: Динамика механической системы

Задача №5

Определить момент инерции относительно оси Динамика механической системы тонкой однородной параболической пластинки (рис.5.11) массой Динамика механической системы. Предельная прямая пластинки параллельна оси Динамика механической системы и удалена от нее на расстояние Динамика механической системы. Уравнение параболы, которая ограничивает пластинку, имеет вид Динамика механической системы

Динамика механической системы

Решение. Проведем на пластинке (рис.5.11) две прямые, параллельные оси Динамика механической системы и удаленные от нее на расстоянии Динамика механической системы и Динамика механической системы

Вычислим момент инерции относительно оси Динамика механической системы элементарной полоски, которая ограничена этими прямыми и параболическим контуром пластинки (заштрихована на рисунке):

Динамика механической системы

где Динамика механической системы – элементарная масса плоскости, которая равна:

Динамика механической системы

Здесь Динамика механической системы – плотность пластинки,

Динамика механической системы – площадь пластинки.

Итак,

Динамика механической системы

Из уравнения Динамика механической системы вытекает Динамика механической системы

Таким образом

Динамика механической системы

Момент инерции пластинки относительно оси Динамика механической системы равен:

Динамика механической системы

Масса пластинки Динамика механической системы

где площадь пластинки Динамика механической системы

Тогда 

Динамика механической системы

Следовательно,

Динамика механической системы

Ответ: Динамика механической системы

Задача №6

Определить для тонкого равнобедренного треугольника Динамика механической системы, основание которого равно Динамика механической системы, высота Динамика механической системы и масса Динамика механической системы (рис.5.12), его моменты инерции относительно основания и относительно высоты.

Динамика механической системы

Решение. С серединой Динамика механической системы основания равнобедренного треугольника свяжем начало системы координат Динамика механической системы; ось Динамика механической системы проведем по основанию Динамика механической системы, а ось Динамика механической системы – перпендикулярно  основанию.

Для определения момента инерции треугольника относительно основания (относительно оси Динамика механической системы) выделим на расстоянии Динамика механической системы элементарную полоску шириной Динамика механической системы.

Момент инерции этой полоски относительно оси Динамика механической системы составит:

Динамика механической системы

где Динамика механической системы, масса полоски длиной Динамика механической системы, равна:

Динамика механической системы

Тогда момент инерции элементарной полоски относительно основания будет равен:

Динамика механической системы

Найдем зависимость между координатой Динамика механической системы и длиной полоски Динамика механической системы. Из сходства треугольников Динамика механической системы и Динамика механической системы (рис.5.12) следует:

Динамика механической системыили Динамика механической системы

откуда

Динамика механической системы

Подставив (2) у (1’), получим:

Динамика механической системы

а момент инерции треугольника Динамика механической системы относительно основания определится как

Динамика механической системы

или

Динамика механической системы

В интеграле (3) границы координаты Динамика механической системы меняются от Динамика механической системы к Динамика механической системы.

Высчитаем интеграл (3):

Динамика механической системы

Выразим момент инерции Динамика механической системы через массу Динамика механической системы треугольника Динамика механической системы:

Динамика механической системы

Преобразуем выражение (4):

Динамика механической системы

или

Динамика механической системы

Перейдем к определению момента инерции треугольника Динамика механической системы относительно его высоты Динамика механической системы.

Поскольку у треугольника Динамика механической системы высота Динамика механической системы является осью симметрии, то достаточно определить момент инерции относительно этой оси для прямоугольного треугольника Динамика механической системы, тогда

Динамика механической системы

где Динамика механической системы – момент инерции треугольника Динамика механической системы;

Динамика механической системы – момент инерции треугольника Динамика механической системы.

Расчетная схема для определения момента инерции Динамика механической системы приведена на рис.5.13.

Динамика механической системы

Выделим элементарную полоску на расстоянии Динамика механической системы от оси Динамика механической системы, ширина полоски – Динамика механической системы, длина – Динамика механической системы

Определим момент инерции этой полоски относительно оси Динамика механической системы:

Динамика механической системы

где Динамика механической системы – масса элементарной полоски.

Определим зависимость между длиной полоски Динамика механической системы и координатой Динамика механической системы. Из сходства треугольников Динамика механической системы и Динамика механической системы получается:

Динамика механической системы или Динамика механической системы

откуда

Динамика механической системы

Подставив (6) у (5), получим:

Динамика механической системы

Момент инерции треугольника Динамика механической системы относительно оси Динамика механической системы (относительно высоты Динамика механической системы), равен:

Динамика механической системы

или

Динамика механической системы

Определим интеграл (7):

Динамика механической системы

Окончательно,

Динамика механической системы

Тогда, момент инерции треугольника Динамика механической системы относительно высоты Динамика механической системы будет равен:

Динамика механической системы

Ответ: Динамика механической системы

Задачи, которые рекомендуются для самостоятельной работы: 34.9, 34.12, 34.16 [2].

Теорема о движении центра масс механической системы

Силы, действующие на механическую систему, можно условно поделить на внешние и внутренние.

Силы, которые действуют на точки данной механической системы со стороны точек или тел, не входящих в эту систему, называются внешними.

Силы, действующие на точки механической системы со стороны точек данной системы, называются внутренними.

Внешние силы обозначаются верхним индексом Динамика механической системы, внутренние – Динамика механической системы: Динамика механической системы -внешняя сила, Динамика механической системы – внутренняя сила.

Внутренние силы обладают следующими свойствами:

а) геометрическая сумма (главный вектор) внутренних сил равна нулю:

Динамика механической системы

б) геометрическая сумма моментов (главный момент) всех внутренних сил относительно любого центра Динамика механической системы или оси равна нулю:

Динамика механической системы

Динамика механической системы

Теорема о движении центра масс механической системы формулируется следующим образом:

Произведение массы системы на ускорение ее центра масс равно геометрической сумме всех внешних сил, действующих на систему.

Динамика механической системы

где Динамика механической системы – масса системы;

Динамика механической системы – ускорение центра масс;

Динамика механической системы – сумма внешних сил, которые действуют на систему.

Из сравнения приведенной выше формулы со вторым законом динамики, который, как известно, записан для материальной точки:

Динамика механической системы

можно сделать следующий вывод:

Центр масс механической системы движется как материальная точка, в которой сосредоточено массу всей системы и к которой приложены те же внешние силы, действующие на систему.

Теорема о движении центра масс системы, если ее записать в проекциях на оси декартовой системы координат, имеет вид:

Динамика механической системы

где Динамика механической системы – координаты центра масс механической системы.

Из приведенных уравнений следует, что внутренние силы непосредственно не влияют на движение центра масс. Теорема позволяет исключить из рассмотрения все ранее неизвестные внутренние силы.

Задачи динамики поступательного движения твердого тела решаются с помощью теоремы о движении центра масс системы материальных точек.

Действительно, применив эту теорему, мы определим уравнение траектории, скорость и ускорение центра тяжести твердого тела. При поступательном движении твердого тела траектории всех его точек одинаковы, одинаковы и их скорости и ускорения.

Закон сохранения движения центра масс

Из теоремы о движении центра масс вытекает несколько следствий:

а) если геометрическая сумма всех внешних сил, действующих на систему, равна нулю, то центр масс механической системы находится в покое или движется равномерно и прямолинейно.

Пусть Динамика механической системы, тогда 

Динамика механической системы или Динамика механической системы, поэтому Динамика механической системы

Если изначально центр масс был в покое, то он и останется в покое. Если же начальная скорость не равна нулю, то центр масс движется прямолинейно и равномерно с этой скоростью;

б) если геометрическая сумма внешних сил, действующих на систему, не равна нулю, но сумма их проекций на какую-нибудь ось (например, ось Динамика механической системы) равна нулю, то центр масс системы вдоль этой оси или не движется, или движется равномерно.

Если Динамика механической системы, то:

Динамика механической системы или Динамика механической системы, поэтому Динамика механической системы

Если при этом равна нулю начальная скорость, то есть Динамика механической системы, то Динамика механической системы, то есть Динамика механической системы

Таким образом видим, что в этом случае координата центра масс Динамика механической системы механической системы во время ее движения остается неизменной.

При Динамика механической системы проекция центра масс на ось Динамика механической системы движется равномерно.

Все эти результаты выражают законы сохранения движения центра масс системы.

Порядок решения задач на применение теоремы о движении центра масс

Рекомендуется такая последовательность решения задач:

Изобразить на рисунке все внешние силы, действующие на систему;

Выбрать систему координат;

Записать теорему о движении центра масс в векторной форме;

Спроектировать это векторное уравнение на оси координат;

Высчитать суммы проекций всех внешних сил на оси координат и подставить их в проекции уравнения движения;

Решить полученные уравнения и определить искомые величины.

Примеры решения задач на тему: Теорема о движении центра масс механической системы

Задача № 1

Определить главный вектор внешних сил, действующих на колесо весом Динамика механической системы, которое скатывается без скольжения с наклонной плоскости, если его центр масс Динамика механической системы движется по закону Динамика механической системы (рис.6.1).

Динамика механической системы

Решение. Покажем внешние силы, которые действуют на колесо: силу тяжести Динамика механической системы и реакцию поверхности Динамика механической системы, которые проходят через центр масс колеса Динамика механической системы.

Запишем теорему о движении центра масс в векторной форме:

Динамика механической системы

Выбираем систему координат Динамика механической системы и спроектируем уравнение (1) на оси Динамика механической системы и Динамика механической системы:

Динамика механической системы

Поскольку Динамика механической системы. то Динамика механической системы и Динамика механической системы. То есть, главный вектор внешних сил является параллельным оси Динамика механической системы:

Динамика механической системы

Найдем проекцию ускорения центра масс на ось Динамика механической системы:

Динамика механической системы

Итак, 

Динамика механической системы

Ответ: Динамика механической системы

Задача №2

Колесо весом Динамика механической системы и радиусом Динамика механической системы катится со скольжением по прямолинейной горизонтальной рейке в результате действия постоянной силы Динамика механической системы, которая приложена к его центру тяжести Динамика механической системы (рис.6.2).

Динамика механической системы

Определить скорость центра масс колеса, если в начальный момент оно находилось в покое. Коэффициент трения скольжения равен Динамика механической системы.

Решение. На колесо действуют внешние силы: Динамика механической системы – сила тяжести колеса, Динамика механической системы – движущая сила, Динамика механической системы – нормальная реакция рейки, Динамика механической системы – сила трения скольжения, которая направлена вдоль рельса в сторону, противоположную силе Динамика механической системы.

Запишем теорему о движении центра масс колеса в векторной форме:

Динамика механической системы

где Динамика механической системы – ускорение центра масс колеса.

Спроектируем это уравнение на оси координат Динамика механической системы:

Динамика механической системы

Во время движения колеса Динамика механической системы Итак Динамика механической системы из второго уравнения (1) получаем:

Динамика механической системы

Поскольку при качении колеса со скольжением сила трения достигает своего максимального значения, то

Динамика механической системы

Подставим (3) в первое из уравнений (1) и получим:

Динамика механической системы

Поскольку 

Динамика механической системы

то

Динамика механической системы

Согласно начальным условиям при Динамика механической системы с тех пор находим, что произвольная постоянная Динамика механической системы

Итак, закон изменения скорости центра масс колеса Динамика механической системы имеет вид:

Динамика механической системы

Ответ: Динамика механической системы

Задача №3

На однородную призму Динамика механической системы, которая лежит на горизонтальной плоскости, положили однородную призму Динамика механической системы (рис.6.3,а), поперечные сечения призм – прямоугольные треугольники, вес призмы Динамика механической системы втрое больше веса призмы Динамика механической системы. Необходимые размеры показаны на рисунке.

Определить длину Динамика механической системы, на которую передвинется призма Динамика механической системы, когда призма Динамика механической системы, спускаясь по поверхности призмы Динамика механической системы, дойдет к горизонтальной плоскости. Предположить, что все поверхности, которые соприкасаются, идеально гладкие.

Решение. Рассмотрим движение механической системы, состоящей из 2-х призм Динамика механической системы и Динамика механической системы. Призма Динамика механической системы, спускаясь по призме Динамика механической системы справа, как будто выжимает ее, отодвигает налево (рис.6.3, б).

Для решения этой задачи применим теорему о движении центра масс.

На систему действуют внешние силы: тяжести Динамика механической системы призмы Динамика механической системы, тяжести Динамика механической системы призмы Динамика механической системы, нормальная реакция плоскости Динамика механической системы (рис.6.3). Внешняя сила трения призм по идеально гладкой поверхности равна нулю.

Таким образом, все внешние силы системы вертикальны. Внутренние силы системы (давление призмы Динамика механической системы на призму Динамика механической системы, реакция на это давление, а также силы трения между призмами Динамика механической системы и Динамика механической системы), нас не интересуют.

Введем систему координат Динамика механической системы, ось Динамика механической системы направим по горизонтали справа и запишем теорему о движении центра масс системы в проекции на ось Динамика механической системы:

Динамика механической системы

Поскольку внешние силы перпендикулярны оси Динамика механической системы, то

Динамика механической системы

Тогда

Динамика механической системы

где Динамика механической системы – постоянная интегрирования.

В начальный момент времени система находилась в состоянии покоя, то есть скорость центра масс Динамика механической системы Итак, Динамика механической системы

Из этого следует, что Динамика механической системы, то есть, абсцисса центра масс, независимо от перемещения призм, остается постоянной.

Динамика механической системы

Запишем выражение для определения координаты центра масс в начале движения:

Динамика механической системы

где Динамика механической системы – абсцисса центра масс призмы Динамика механической системы,

Динамика механической системы – абсцисса центра масс призмы Динамика механической системы.

Выражение для определения координаты центра масс системы, когда призма Динамика механической системы опускается по боковой грани призмы Динамика механической системы к горизонтальной плоскости:

Динамика механической системы

где Динамика механической системы – новое значение абсциссы центра масс призмы Динамика механической системы,

Динамика механической системы – новое значение абсциссы центра масс призмы Динамика механической системы.

Поскольку Динамика механической системы, то 

Динамика механической системы

или 

Динамика механической системы

Перепишем это уравнение следующим образом:

Динамика механической системы

Найдем перемещение центров масс призм Динамика механической системы и Динамика механической системы:

Динамика механической системы

Присутствие слагаемого (Динамика механической системы) в последнем уравнении учитывает перемещение призмы Динамика механической системы вместе с призмой Динамика механической системы слева на величину Динамика механической системы.

Подставим значение перемещений в уравнение (1):

Динамика механической системы.

Решим это уравнение относительно Динамика механической системы, имея в виду, что Динамика механической системы:

Динамика механической системы

Ответ: Динамика механической системы

Задача №4

Три груза (рис.6.4), весом Динамика механической системы соединенные невесомой нитью, которая не растягивается, и которая перекинута через неподвижные блоки Динамика механической системы и Динамика механической системы. Во время опускания груза 1 вниз груз 2 перемещается по верхнему основанию четырехугольной усеченной пирамиды Динамика механической системы весом Динамика механической системы справа, а груз 3 поднимается по боковой грани Динамика механической системы вверх. Пренебрегая трением между срезанной пирамидой Динамика механической системы и полом, определить перемещение Динамика механической системы усеченной пирамиды Динамика механической системы относительно пола, если груз Динамика механической системы опустится на Динамика механической системы

Решение. Изобразим все внешние силы, которые приложены к материальной системе, состоящей из пирамиды и трех грузов (рис.6.4). Внешними силами являются: Динамика механической системы – сила тяжести пирамиды; Динамика механической системы – силы тяжести грузов; Динамика механической системы – нормальная реакций

Динамика механической системы

горизонтальной плоскости. Направим ось Динамика механической системы по горизонтали справа и запишем теорему о движении центра масс системы материальных точек в проекции на эту ось:

Динамика механической системы

Поскольку все внешние силы перпендикулярны оси Динамика механической системы, то Динамика механической системы

Следовательно, Динамика механической системы

тогда

Динамика механической системы

В начальный момент времени система была в состоянии покоя, то есть Динамика механической системы, поэтому Динамика механической системы

Поскольку

Динамика механической системы

то

Динамика механической системы

Таким образом, абсцисса центра масс системы не зависит от перемещений грузов, входящих в систему, и остается неизменной относительно неподвижной системы координат Динамика механической системы.

Запишем выражение для определения Динамика механической системы для начального момента времени, когда грузы находились в состоянии покоя:

Динамика механической системы

где Динамика механической системы – абсциссы центров масс пирамиды Динамика механической системы и грузов 1,2 и 3.

Если груз 1 опустится на величину Динамика механической системы при неподвижной пирамиде, то координата Динамика механической системы при этом не изменится. Тогда груз 2 переместится вправо на величину Динамика механической системы и координата его центра масс будет равна Динамика механической системы. Груз 3 тоже подвинется по наклонной поверхности Динамика механической системы на величину Динамика механической системы, при этом по направлению оси Динамика механической системы его положение изменится на величину Динамика механической системы и координата центра масс будет Динамика механической системы. То есть, относительно пирамиды центр масс системы изменит свое положение, но не изменит его относительно неподвижной системы координат, поскольку должен выполняться закон сохранения движения центра масс. И тогда пирамида должна переместиться налево на некоторую величину Динамика механической системы.

Грузы 1,2 и 3 вместе с пирамидой также переместятся влево на расстояние Динамика механической системы, и новые координаты всех центров масс будут равны:

Динамика механической системы

Запишем выражение для определения положения абсциссы центра масс для нового положения системы:

Динамика механической системы

Поскольку Динамика механической системы то 

Динамика механической системы

После приведения подобных получим:

Динамика механической системы

или

Динамика механической системы

Окончательно

Динамика механической системы

После подстановки числовых величин, получим:

Динамика механической системы

Ответ: Динамика механической системы

Задача № 5

Электрический двигатель весом Динамика механической системы с горизонтальным валом без всяких креплений установлен на гладком горизонтальном фундаменте.

На валу электродвигателя (рис.6.5) под прямым углом закреплен одним концом однородный стержень Динамика механической системы длиной Динамика механической системы и весом Динамика механической системы, на второй конец стержня насажен точечный груз Динамика механической системы весом Динамика механической системы; угловая скорость вала равна Динамика механической системы.

Определить:

Закон горизонтального движения электродвигателя;

Угловую скорость вала электродвигателя, при которой электродвигатель будет «подскакивать» над фундаментом;

Наибольшее горизонтальное усилие Динамика механической системы, которое действует на болты, если ими закреплен корпус электродвигателя на фундаменте.

Решение. Будем рассматривать электромотор, стержень и груз как одну механическую систему. Внешними силами, которые действуют на эту систему, являются: сила тяжести электродвигателя Динамика механической системы, сила тяжести стержня Динамика механической системы, сила тяжести груза Динамика механической системы, а также реакции фундамента Динамика механической системы и Динамика механической системы. Все эти силы вертикальны. 

Динамика механической системы

Начало неподвижной системы координат возьмем в точке Динамика механической системы, соответствующей положению центра вала электродвигателя, когда стержень направлен вертикально вверх (рис.6.5, а).

Поскольку проекция на ось Динамика механической системы главного вектора действующих на систему внешних сил равна нулю, то дифференциальное уравнение движения центра масс системы вдоль оси Динамика механической системы имеет вид:

Динамика механической системы

где Динамика механической системы – масса системы.

В нашем случае Динамика механической системы или

Динамика механической системы

Тогда дифференциальное уравнение движения центра масс (1) приводится к виду:

Динамика механической системы

откуда Динамика механической системы

Предполагая, что в начальный момент скорость центра масс системы равна нулю, то есть, при пуске электродвигателя он был неподвижным, получим Динамика механической системы

Следовательно, Динамика механической системы, то есть, центр масс системы не перемещается вдоль оси Динамика механической системы.

Поскольку в начальный момент времени центр масс системы находится на оси Динамика механической системы (то есть, Динамика механической системы), то и в любой момент времени Динамика механической системы

При вращении стержня координаты центров масс электрического двигателя, стержня и груза Динамика механической системы будут варьироваться.

Предположим, что в некоторый момент времени Динамика механической системы координата центра масс мотора станет равной Динамика механической системы, тогда координаты центров масс стержня и груза Динамика механической системы будут равны Динамика механической системы и Динамика механической системы (рис.6.5,b).

Поскольку все время Динамика механической системы, то

Динамика механической системы

где Динамика механической системы На рисунке 6.5,b показан момент, когда координата Динамика механической системы отрицательна.

Тогда

Динамика механической системы

откуда 

Динамика механической системы

 и, следовательно:

Динамика механической системы

Таким образом, центр электродвигателя совершает гармонические колебания вдоль оси Динамика механической системы с амплитудой, равной:

Динамика механической системы

и периодом

Динамика механической системы

Определим угловую скорость вала, при которой электродвигатель будет «подскакивать» над фундаментом.

Для этого составим дифференциальное уравнение движения центра масс системы вдоль оси Динамика механической системы:

Динамика механической системы

или 

Динамика механической системы

где Динамика механической системы – суммарная реакция фундамента.

Значение Динамика механической системы найдем из выражения для координаты центра масс:

Динамика механической системы

поскольку

Динамика механической системы

Последнее уравнение перепишем в виде:

Динамика механической системы

Возьмем из обеих частей равенства вторую производную по времени

Динамика механической системы

Из уравнений (2) и (3) вытекает, что

Динамика механической системы

итак,

Динамика механической системы

Минимальное значение реакции фундамента будет при Динамика механической системы:

Динамика механической системы

Если Динамика механической системы, то это значит, что электромотор не прижимается к фундаменту. Итак, искомое значение угловой скорости, при которой электродвигатель начинает “подскакивать” над фундаментом, найдем из условия

Динамика механической системы

откуда

Динамика механической системы

В завершение определим наибольшее горизонтальное усилие Динамика механической системы, которое действует на болты, если ими будет закреплен корпус электродвигателя на фундаменте.

На рис.6.5 штрих-пунктирными линиями показаны оси болтов и горизонтальные реакции болтов Динамика механической системы и Динамика механической системы.

В этом случае дифференциальное уравнение движения центра масс системы вдоль оси Динамика механической системы будет:

Динамика механической системы

Значение Динамика механической системы найдем по формуле:

Динамика механической системы

или 

Динамика механической системы

Тогда

Динамика механической системы

При этом уравнение (4) принимает вид:

Динамика механической системы

Из последнего уравнения выходит:

Динамика механической системы

Таким образом, максимальное горизонтальное усилие, действующее на болты, будет при Динамика механической системы:

Динамика механической системы

Ответ: 

Динамика механической системы

Задачи, которые рекомендуются для самостоятельной работы: 35.1; 35.6; 35.10; 35.20 [2].

Теорема об изменении количества движения точки и механической системы

Теорема об изменении количества движения (импульса) системы — одна из общих теорем динамики, является следствием законов Ньютона. Связывает количество движения с импульсом внешних сил, действующих на тела, составляющие систему.

Импульс силы

Для характеристики действия силы за некоторый промежуток времени вводится понятие импульса силы.

Если сила Динамика механической системы – постоянная, то импульс силы Динамика механической системы равен

Динамика механической системы

Направление импульса силы Динамика механической системы совпадает с направлением Динамика механической системы.

Единица измерения импульса в системе СИ – Динамика механической системы, в системе МкГс – Динамика механической системы.

Если сила Динамика механической системы переменная, то импульс силы за конечный промежуток времени Динамика механической системы определяется как интеграл:

Динамика механической системы

Импульс силы – сложная физическая величина, которая одновременно учитывает влияние модуля, направления и времени действия силы на изменение состояния движения тела.

Модуль импульса силы можно определить через его проекции на оси координат:

Динамика механической системы

где Динамика механической системы – проекции силы;

Динамика механической системы – проекции импульса на оси координат.

Углы между вектором Динамика механической системы и осями координат определяются из следующих соотношений:

Динамика механической системы

Теорема об изменении количества движения точки и системы

Одной из мер движения точки является количество ее движения.

Количеством движения точки называется вектор Динамика механической системы, который равен произведению массы Динамика механической системы точки на ее скорость Динамика механической системы и направлен по вектору скорости:

Динамика механической системы.

Понятие количества движения было введено в механику Декартом и положено в основу механики Ньютоном.

Единица измерения количества движения в системе СИ – Динамика механической системы, в системе МкГс – Динамика механической системы.

Если спроектировать вектор количества движения на оси координат, то ее проекции определяются следующим образом:

Динамика механической системы

Теорема об изменении количества движения точки в дифференциальной форме имеет вид:

Динамика механической системы

Производная по времени от количества движения материальной точки равна геометрической сумме всех сил, действующих на эту точку.

Теорема об изменении количества движения точки в интегральной форме:

Динамика механической системы

Изменение количества движения точки за некоторый промежуток времени равно геометрической сумме импульсов всех сил, которые приложены к точке.

Векторному уравнению (7.1) соответствуют три уравнения в проекциях на оси координат:

Динамика механической системы

Большинство практических задач решается с использованием выражения (7.2).

Количеством движения механической системы называется векторная величина Динамика механической системы, равная геометрической сумме (главному вектору) количеств движения всех точек этой системы.

Динамика механической системы

Найти Динамика механической системы можно путем построения многоугольника количеств движения всех точек системы (рис.7.1).

Замыкающая сторона векторного многоугольника будет представлять собой вектор Динамика механической системы.

Величина Динамика механической системы может быть какой угодно, даже равняться нулю, когда многоугольник, построенный из векторов Динамика механической системы, оказывается замкнутым.

Динамика механической системы

Формулу (7.3) можно записать в виде:

Динамика механической системы

где Динамика механической системы – масса всей системы;

Динамика механической системы – скорость центра масс системы.

Из этой формулы следует, что количество движения системы равно нулю, когда скорость центра масс равна нулю. Например, если тело вращается вокруг неподвижной оси, которая проходит через его центр масс, то количество движения тела равно нулю.

В случае, когда колесо катится, вектор Динамика механической системы характеризует только поступательную часть плоского движения колеса.

Теорема об изменении количества движения системы в дифференциальной форме выразится формулой:

Динамика механической системы

где Динамика механической системы – главный вектор всех внешних сил, которые действуют на механическую систему.

Производная по времени от количества движения механической системы равна геометрической сумме всех действующих на точки системы внешних сил.

В проекциях на оси координат уравнение (7.5) соответствует уравнениям:

Динамика механической системы

В интегральной форме теорема об изменении количества движения системы имеет вид:

Динамика механической системы

где Динамика механической системы – количество движения системы в начальный момент времени.

Динамика механической системы – количество движения системы в конечный момент времени.

Изменение количества движения механической системы за некоторый промежуток времени равно геометрической сумме импульсов внешних сил, которые действуют на систему за тот же промежуток времени.

Векторному уравнению (7.7) соответствуют три уравнения в проекциях на оси координат:

Динамика механической системы

Практическая ценность теоремы заключается в том, что она позволяет исключить из рассматривания неизвестные внутренние силы.

Закон сохранения количества движения системы

Выводы из теоремы об изменении количества движения системы, которые еще имеют название законов сохранения количества движения:

1. Если главный вектор внешних сил, действующих на систему, равен нулю, то вектор количества движения системы не меняется:

если Динамика механической системы

то Динамика механической системы и Динамика механической системы

2. Если сумма проекций внешних сил на какую-либо ось, например Динамика механической системы, равна нулю, то проекция количества движения системы на эту ось сохраняется постоянной:

если Динамика механической системы

то Динамика механической системы и Динамика механической системы

Эти результаты выражают законы сохранения количества движения системы. Из них вытекает, что внутренние силы не могут изменить количество движения системы.

Порядок решения задач на применение теоремы об изменении количества движения точки и механической системы

Для материальной точки:

Изобразить на рисунке все силы, приложенные к материальной точке, то есть активные силы и реакции связей.

Выбрать систему координат.

Записать теорему об изменении количества движения точки в векторной форме.

Спроектировать это векторное уравнение на оси выбранной системы координат.

Решить полученные уравнения и определить искомые величины.

Для механической системы:

Изобразить на рисунке все внешние силы.

Выбрать систему координат.

Записать теорему об изменении количества движения системы в векторной форме.

Спроектировать это векторное уравнение на оси выбранной системы координат.

Решить полученные уравнения и определить искомые величины.

Примеры решения задач на тему: Теорема об изменении количества движения точки и механической системы

Задача № 1

Железнодорожный поезд движется по горизонтальному и прямолинейному участку пути (рис.7.2). Во время торможения до полной остановки развивается сила сопротивления, равная Динамика механической системы веса поезда. В момент начала торможения скорость Динамика механической системы поезда составляла 72 км/ч.

Динамика механической системы

Определить время Динамика механической системы и путь Динамика механической системы торможения.

Решение. Изобразим силы, действующие на поезд во время торможения: сила тяжести поезда Динамика механической системы, нормальная реакция пути Динамика механической системы, сила сопротивления Динамика механической системы, которая по величине равна Динамика механической системы

Выберем систему координат. Поскольку движение прямолинейное и горизонтальное, достаточно рассмотреть движение по направлению оси Динамика механической системы.

Запишем теорему об изменении количества движения поезда (рассматривая его как материальную точку) в интегральной форме:

Динамика механической системы

где Динамика механической системы – масса поезда,

Динамика механической системы – конечная и начальная скорость поезда,

Динамика механической системы – сумма импульсов сил Динамика механической системы, Динамика механической системыДинамика механической системы которые действуют на поезд во время торможения.

Спроектируем векторное уравнение (1) на ось Динамика механической системы:

Динамика механической системы

Проекции импульсов сил Динамика механической системы и Динамика механической системы на ось Динамика механической системы равны нулю, поскольку векторы Динамика механической системы и Динамика механической системы  перпендикулярны оси.

Сила сопротивления Динамика механической системы во время торможения по величине не изменяется, следовательно, ее импульс равен:

Динамика механической системы

Скорость в конце участка торможения равна нулю, то есть Динамика механической системы

Окончательно, уравнение импульсов (2) в проекции на ось Динамика механической системы приобретет вид:

Динамика механической системы

или 

Динамика механической системы

откуда

Динамика механической системы

С учетом числовых значений величин Динамика механической системы и Динамика механической системы имеем:

Динамика механической системы

Путь торможения определим из формулы для равнопеременного движения:

Динамика механической системы

В этом случае ускорение поезда определяется из формулы:

Динамика механической системы

то есть, 

Динамика механической системы

Тогда

Динамика механической системы

Ответ: Динамика механической системы

Задача № 2

По шероховатой наклонной плоскости, которая составляет с горизонтом угол Динамика механической системы, спускается тяжелое тело без начальной скорости.

Определить время Динамика механической системы, за которое тело пройдет путь длиной Динамика механической системы, если коэффициент трения Динамика механической системы и Динамика механической системы.

Решение. Во время движения на тело действуют сила тяжести тела Динамика механической системы, нормальная реакция поверхности Динамика механической системы и сила трения Динамика механической системы, которая направлена в сторону, противоположную движению(рис.7.3).

Динамика механической системы

Направим ось Динамика механической системы вдоль наклонной поверхности вниз и запишем теорему об изменении количества движения в векторной форме:

Динамика механической системы

Спроектируем ровность (1) на ось Динамика механической системы:

Динамика механической системы

Проекция импульса нормальной реакции Динамика механической системы на ось Динамика механической системы равна нулю, поскольку сила Динамика механической системы перпендикулярна Динамика механической системы.

Учитывая, что во время движения сила тяжести Динамика механической системы и сила трения Динамика механической системы не меняются , то

Динамика механической системы

Кроме того

Динамика механической системы

Итак, уравнение импульса (2) примет вид:

Динамика механической системы

Вычислим силу трения:

Динамика механической системы

Тогда уравнение (3) примет вид:

Динамика механической системы

или Динамика механической системы

откуда

Динамика механической системы

Поскольку

Динамика механической системы

то

Динамика механической системы

Используя полученную зависимость, сначала подсчитаем ускорение тела, а после этого – время движения.

Поскольку

Динамика механической системы

то

Динамика механической системы и Динамика механической системы

Из формулы Динамика механической системы, учитывая, что при Динамика механической системы получим Динамика механической системы

Из этой формулы находим время движения Динамика механической системы:

Динамика механической системы

Ответ: Динамика механической системы

Задача № 3

На полигоне пушка, которая наклонена под углом Динамика механической системы к горизонту, делает выстрел в мишень. Сила тяжести ствола пушки – Динамика механической системы Динамика механической системы Сила тяжести снаряда равна Динамика механической системы Скорость снаряда у дульного среза Динамика механической системы

Определить скорость Динамика механической системы свободного отката ствола пушки в момент вылета снаряда.

Решение. В задаче рассматривается движение материальной системы, состоящей из ствола и снаряда (рис.7.4).

Динамика механической системы

На систему действуют внешние силы: тяжести ствола Динамика механической системы и тяжести снаряда Динамика механической системы. Внутренние силы определяются давлением пороховых газов Динамика механической системы. Эти силы необходимо исключить из рассмотрения, согласно теореме о количестве движения механической системы.

Применим теорему об изменении количества движения системы:

Динамика механической системы

где Динамика механической системы – количество движения системы в конечный момент времени;

Динамика механической системы – количество движения системы в начальный момент времени;

Динамика механической системы – сумма импульсов всех внешних сил (Динамика механической системыДинамика механической системы).

Ось Динамика механической системы направим перпендикулярно векторам внешних сил Динамика механической системы и Динамика механической системы.

Спроектируем уравнение (1) на ось Динамика механической системы:

Динамика механической системы

Поскольку проекции сил Динамика механической системы и Динамика механической системы на ось Динамика механической системы равны нулю, то и проекции импульсов Динамика механической системы и Динамика механической системы также равны нулю. Итак:

Динамика механической системы или Динамика механической системы

Таким образом, проекция количества движения системы на ось Динамика механической системы в конечный момент времени равна проекции количества движения системы в начальный момент времени.

В начальный момент времени (до выстрела) снаряд и ствол были неподвижны, следовательно, их количества движения равнялись нулю и

Динамика механической системы

В момент вылета снаряда проекция количества движения системы на ось равна:

Динамика механической системы

или

Динамика механической системы

Поскольку

Динамика механической системы

то

Динамика механической системы

откуда

Динамика механической системы и Динамика механической системы

С учетом числовых значений:

Динамика механической системы

Знак минус показывает, что скорость ствола направлена в сторону, противоположную скорости снаряда.

Ответ: Динамика механической системы

Задача № 4

Буксирный пароход весом Динамика механической системы набрал скорость Динамика механической системы, после чего натянулся буксирный канат, и баржа весом Динамика механической системы двинулась вслед за пароходом.

Определить общую скорость парохода и баржи Динамика механической системы, считая, что движущая сила и сила сопротивления воды уравновешиваются, то есть, (Динамика механической системыДинамика механической системыдв = Динамика механической системысоп (Динамика механической системы).

Решение. Для определения скорости Динамика механической системы применим теорему об изменении количества движения системы.

На систему, которая состоит из парохода и баржи, действуют внешние силы: силы тяжести Динамика механической системы и Динамика механической системы, силы выталкивания Динамика механической системы и Динамика механической системы, которые приложены к баржи и буксиру, а также движущая сила Динамика механической системыдв и сила сопротивления воды Динамика механической системысоп (рис.7.5).

Динамика механической системы

Внутренняя сила – натяжение буксирного каната Динамика механической системы – неизвестна.

Ось Динамика механической системы направим горизонтально, вправо.

Запишем теорему об изменении количества движения данной системы в интегральной форме:

Динамика механической системы

где Динамика механической системы – количество движения системы баржа-буксир в тот момент времени, когда они начинают двигаться с одинаковой скоростью;

Динамика механической системы – количество движения этой системы в начальный момент времени;

Динамика механической системы – сумма импульсов всех внешних сил.

Спроектируем уравнение (1) на ось Динамика механической системы:

Динамика механической системы

Поскольку по условиям Динамика механической системыдв = Динамика механической системысоп, а направлены они в разные стороны, то

Динамика механической системы

Кроме того, проекции на ось Динамика механической системы сил тяжести парохода и баржи, а также выталкивающих сил Динамика механической системы и Динамика механической системы, равны нулю. Следовательно, проекции импульсов этих сил на ось Динамика механической системы тоже равны нулю. Таким образом уравнение проекций принимает вид:

Динамика механической системы или Динамика механической системы

Подсчитаем количество движения парохода и баржи в начальный момент времени, когда скорость парохода равна Динамика механической системы, а скорость баржи Динамика механической системы.

Динамика механической системы

Совместимое движение парохода и баржи происходит с одинаковой скоростью Динамика механической системы, поэтому количество движения системы в это время

Динамика механической системы

Поскольку

Динамика механической системы

то Динамика механической системы

Отсюда имеем

Динамика механической системы

Ответ: Динамика механической системы

Задача № 5

Механическая система состоит из грузов 1 и 2 массами Динамика механической системы и Динамика механической системы соответственно, а также прямоугольной вертикальной плиты 3 массой Динамика механической системы которая движется вдоль горизонтальных направляющих( рис.7.6). В момент времени Динамика механической системы, когда скорость плиты Динамика механической системы груз под действием внутренних сил начинают двигаться по желобам плиты. Груз 1 движется по дуге окружности с радиусом Динамика механической системы по закону Динамика механической системы, где Динамика механической системы выражено в радианах, Динамика механической системы – в секундах (ось, от которой ведется положительное направление отсчета угла Динамика механической системы показано на рисунке). Груз 2 движется от точки Динамика механической системы прямолинейно по закону Динамика механической системы, где Динамика механической системы выражено в метрах, Динамика механической системы – в секундах (на рисунке груз 2 изображен в положении положительного отсчета координаты Динамика механической системы), угол Динамика механической системы.

Определить зависимость Динамика механической системы, то есть, скорость движения плиты как функцию времени, считая грузы материальными точками и пренебрегая всеми силами сопротивления движения.

Решение. Рассмотрим механическую систему в произвольном положении (рис.7.6).

Изобразим все внешние силы, действующие на систему: силы тяжести Динамика механической системыДинамика механической системыДинамика механической системы и реакцию направляющей Динамика механической системы.

Проведем координатные оси Динамика механической системы так, чтобы ось Динамика механической системы проходила через точку Динамика механической системы, где находится центр масс плиты Динамика механической системы в начальный момент времени Динамика механической системы

Определим Динамика механической системы с помощью теоремы об изменении количества движения Динамика механической системы механической системы в проекции на ось Динамика механической системы.

Поскольку все внешние силы, действующие на систему, вертикальны, то Динамика механической системы и, согласно (7.10), имеем: 

Динамика механической системы или Динамика механической системы,                (1)

где Динамика механической системы – проекция количества движения системы в момент времени Динамика механической системы

Динамика механической системы– проекция количества движения системы в произвольный момент времени Динамика механической системы.

Определим количества движения Динамика механической системы и Динамика механической системы:

Динамика механической системы

где Динамика механической системы

Выразим координаты Динамика механической системы и Динамика механической системы через координату Динамика механической системы.

С рис.7.6 видно, что в произвольный момент времени абсцисса первого груза

Динамика механической системы

а абсцисса второго груза

Динамика механической системы

Тогда

Динамика механической системы

Динамика механической системы

Подставляя полученные выражения для Динамика механической системы и Динамика механической системы в (3), получим:

Динамика механической системы

Поскольку Динамика механической системы то 

Динамика механической системы

В соответствии с (1), выражения (2) и (4) равны, то есть:

Динамика механической системы

Отсюда окончательно получим: 

Динамика механической системы

Ответ: Динамика механической системы

Задачи, которые рекомендуются для самостоятельной работы: 28.3; 28.7; 36.9; 36.11; 36.16 [2].

Теорема об изменении момента количества движения точки и механической системы

Наряду с количеством движения, как векторной меры поступательного движения, для вращательного движения можно ввести момент количества движения.

Для материальной точки массой Динамика механической системы, которая имеет скорость Динамика механической системы, момент количества движения Динамика механической системы относительно любого центра Динамика механической системы определяется из выражения (рис.8.1):

Динамика механической системы

Динамика механической системы

Вектор момента количества движения прикладывается в точке Динамика механической системы, относительно которой он вычисляется. Если спроектировать обе части уравнения (8.1) на оси декартовой системы координат, получим моменты количества движения точки относительно осей координат:

Динамика механической системы

Кинетическим моментом Динамика механической системы или главным моментом количества движения механической системы относительно данного центра называется вектор, равный геометрической сумме моментов количеств движения всех материальных точек системы относительно этого же центра:

Динамика механической системы

Подобно тому, как количество движения системы является характеристикой поступательного движения, кинетический момент является характеристикой вращательного движения системы.

Кинетический момент твердого тела, которое вращается относительно оси Динамика механической системы с угловой скоростью Динамика механической системы, равной произведению угловой скорости тела на его момент инерции относительно оси вращения:

Динамика механической системы

Производная по времени от момента количества движения точки, взятого относительно любого неподвижного центра Динамика механической системы равна моменту силы, действующей на эту точку, относительно того же центра:

Динамика механической системы

Спроектировав это уравнение на оси координат, получим:

Динамика механической системы

Если рассматривать движение системы, на которую действуют внешние Динамика механической системы и внутренние силы Динамика механической системы, то производная по времени от кинетического момента механической системы относительно некоторого центра равна геометрической сумме моментов всех внешних сил относительно того же центра:

Динамика механической системы

Проектируя обе части уравнения на неподвижные оси Динамика механической системы и учитывая, что проекция вектора, который изображает момент силы относительно точки на ось, равна моменту силы относительно этой оси, получим:

Динамика механической системы

Теорема об изменении кинетического момента позволяет изучать вращательное движение твердого тела вокруг оси и точки, или вращательную часть движения тела в общем случае движения свободного твердого тела.

Практическая ценность теоремы заключается еще и в том, что она позволяет при изучении движения системы исключить из рассмотрения неизвестные внутренние силы.

Из теорем об изменении кинетического момента системы (8.7)-(8.8) вытекают важные выводы:

Если сумма моментов относительно центра Динамика механической системы всех внешних сил, действующих на систему, равна нулю, то кинетический момент системы Динамика механической системы относительно той же точки является постоянным по величине и направлению, то есть,

если Динамика механической системы, то Динамика механической системы и Динамика механической системы

Если сумма моментов всех внешних сил, действующих на систему, относительно некоторой оси, например Динамика механической системы, равна нулю, то проекция кинетического момента на эту же ось является постоянной по величине, то есть,

если Динамика механической системы. то Динамика механической системы и Динамика механической системы

Дифференциальное уравнение вращательного движения тела вокруг неподвижной оси

Кинетический момент тела относительно оси вращения по уравнению (8.4) , если ось Динамика механической системы является осью вращения тела, равен:

Динамика механической системы

Следовательно, 

Динамика механической системы

Сумма моментов внешних сил Динамика механической системы относительно оси вращения называется вращательным моментом и обозначается

Динамика механической системы

Таким образом, дифференциальное уравнение вращательного движения тела имеет вид:

Динамика механической системы

Из (8.9) следует, что произведение момента инерции тела относительно оси вращения на угловое ускорение тела равно вращательному моменту

Динамика механической системы

Это уравнение позволяет решать следующие задачи:

– если заданы уравнения вращения тела Динамика механической системы и его момент инерции Динамика механической системы, то можно определить вращательный момент:

Динамика механической системы

– если заданы внешние силы, приложенные к телу, начальные условия вращения Динамика механической системы и Динамика механической системы, момент инерции Динамика механической системы тела, то можно найти уравнение вращения тела Динамика механической системы:

Динамика механической системы

– определить момент инерции тела Динамика механической системы относительно оси вращения, если известны величины Динамика механической системы и Динамика механической системы:

Динамика механической системы

Из уравнения Динамика механической системы вытекают отдельные случаи:

1. Если Динамика механической системы, то Динамика механической системы, а если Динамика механической системы, то и Динамика механической системы. В этом случае тело вращается равномерно.

2. Если Динамика механической системы, то Динамика механической системы, а если Динамика механической системы то и Динамика механической системы. Итак, твердое тело вращается равнопеременно. 

Порядок решения задач на применение теоремы об изменении момента количества движения точки и механической системы

Задачи, которые относятся к этой теме, можно разделить на следующие четыре основных типа:

Вычисление кинетического момента.

Изучение движения конкретной точки механической системы, если эта точка участвует во вращательном движении системы.

Изучение вращательного движения твердого тела.

Изучение движения механической системы, в которую входят тела, совершающие как поступательные, так и вращательные движения.

Задачи первого типа могут быть решены с помощью общих формул (8.4), (8.5).

Порядок решения задач второго типа может быть следующим:

  • Выбрать систему координат.
  • Изобразить все внешние силы, приложенные к материальной точке; в случае произвольной точки к этим силам добавить реакции внешних связей.
  • Записать в скалярной форме выражение теоремы об изменении момента количества движения точки.
  • Высчитать сумму моментов сил, которые приложены к материальной точке.
  • Определить количество движения материальной точки и его момент относительно осей.
  • Подставить данные пунктов 4 и 5 в уравнения (8.6) теоремы об изменении момента количества движения материальной точки.
  • Решить, в соответствии с условием, прямую или обратную задачу динамики точки.

При решении задач третьего типа сохранять рекомендации первых двух пунктов, а далее делать следующим образом:

  • Записать дифференциальное уравнение вращательного движения тела вокруг неподвижной оси (8.9).
  • Динамика механической системы
  • Определить момент инерции твердого тела относительно неподвижной оси.
  • Подсчитать сумму моментов всех внешних сил относительно оси вращения.
  • Величины, полученные в п. п. 4 и 5, подставить в уравнение (8.9).
  • Записать начальные условия.
  • Решить уравнение п. 6 в зависимости от условия, как прямую или обратную задачу.

При решении задач четвертого типа необходимо предварительно расчленить заданную систему на отдельные твердые тела, и к каждому из них, в зависимости от характера движения, применить одну из теорем: об изменении количества движения – в случае поступательного движения тел расчлененной системы; об изменении кинетического момента – при наличии тел, которые совершают вращательные движения.

Примеры решения задач на тему: Теорема об изменении момента количества движения точки и механической системы

Задача №1

Однородный круглый диск весом Динамика механической системы и с радиусом Динамика механической системы катится без скольжения по горизонтальной плоскости, делая вокруг собственной оси 60 об/мин (рис.8.2).

Динамика механической системы

Определить главный момент количеств движения диска Динамика механической системы  относительно оси Динамика механической системы, которая проходит через центр диска перпендикулярно плоскости движения.

Решение. Главный момент количеств движения системы (кинетический момент) относительно оси вращения равен (8.6):

Динамика механической системы

где Динамика механической системы – момент инерции тела относительно оси вращения,

Динамика механической системы – угловая скорость вращения.

В данном случае кинетический момент относительно оси, проходящей через центр диска Динамика механической системы, равен:

Динамика механической системы

Динамика механической системы

Ответ: Динамика механической системы

Задача №2

Во время вращения барабана 1 весом Динамика механической системы и радиусом Динамика механической системы вокруг неподвижной оси Динамика механической системы на его боковую поверхность наматывается невесомая и нерастяжимая нить, что вызывает движение груза 2 весом Динамика механической системы, который скользит по неподвижной гладкой горизонтальной плоскости (рис.8.3).

Динамика механической системы

Определить главный момент количества движения (кинетический момент) системы относительно оси Динамика механической системы и выразить его как зависимость от угловой скорости. Барабан считать однородным круглым цилиндром. Ось Динамика механической системы направлена перпендикулярно рисунку.

Решение. В состав механической системы входят два твердых тела: барабан 1 и груз 2.

Следовательно, кинетический момент системы равен:

Динамика механической системы

где Динамика механической системы – кинетический момент барабана;

Динамика механической системы – кинетический момент груза относительно неподвижной оси Динамика механической системы.

Кинетический момент барабана равен (8.5):

Динамика механической системы

где

Динамика механической системы

тогда

Динамика механической системы

Главный момент количества движения груза, который движется поступательно, определяется как момент количества движения материальной точки, то есть:

Динамика механической системы

поскольку

Динамика механической системы

то

Динамика механической системы

Окончательно

Динамика механической системы

Ответ: Динамика механической системы

Задача №3

Шарик Динамика механической системы, который находится в сосуде с жидкостью и прикреплен к концу стержня Динамика механической системы длиной Динамика механической системы, приводится в вращение вокруг вертикальной оси Динамика механической системы с начальной угловой скоростью Динамика механической системы (рис.8.4, а). Сила сопротивления жидкости пропорциональна угловой скорости вращения Динамика механической системы: Динамика механической системы, где Динамика механической системы – масса шарика, Динамика механической системы – коэффициент пропорциональности.

Динамика механической системы

Определить, через какой промежуток времени Динамика механической системы угловая скорость вращения станет вдвое меньше начальной, а также число оборотов Динамика механической системы, которое сделает стержень с шариком за этот промежуток времени. Массу шарика считать сосредоточенной в ее центре, массой стержня пренебречь.

Решение. Ось Динамика механической системы направим вдоль оси вращения Динамика механической системы и покажем силы, действующие на вал с шариком: силу сопротивления Динамика механической системы, которая направлена в сторону, противоположную вращению (рис.8.4, б), силу тяжести шарика Динамика механической системы, реакции Динамика механической системы подшипника Динамика механической системы и Динамика механической системы подпятника Динамика механической системы.

Все силы указаны на рисунках, направления сил Динамика механической системы и Динамика механической системы изображены произвольно.

Запишем дифференциальное уравнение вращательного движения шарика относительно оси Динамика механической системы:

Динамика механической системы

где момент инерции шарика

Динамика механической системы

Поскольку момент силы тяжести Динамика механической системы относительно оси Динамика механической системы равен нулю ( Динамика механической системы параллельна оси Динамика механической системы), то вращательный момент Динамика механической системы равен моменту силы сопротивления Динамика механической системы относительно оси Динамика механической системы (как известно, момент силы сопротивления всегда отрицательный):

Динамика механической системы

Следовательно, дифференциальное уравнение вращательного движения имеет вид:

Динамика механической системы

или

Динамика механической системы

Разделим переменные и проинтегрируем:

Динамика механической системы

Произвольную постоянную Динамика механической системы определим по начальным условиям: при Динамика механической системы.

Динамика механической системы

Следовательно,

Динамика механической системы

Высчитаем, через какой промежуток времени Динамика механической системы угловая скорость вращения станет вдвое меньше начальной, то есть, Динамика механической системы.

Динамика механической системы

Откуда:

Динамика механической системы

Для определения числа оборотов, которые сделает стержень с шариком за промежуток времени Динамика механической системы, необходимо найти зависимость угла поворота Динамика механической системы от времени Динамика механической системы:

Динамика механической системы

Следовательно,

Динамика механической системы

Разделим переменные и проинтегрируем это дифференциальное уравнение:

Динамика механической системы

Произвольную постоянную Динамика механической системы определим по начальным условиям: при Динамика механической системы.

Динамика механической системы

Итак закон изменения угла поворота Динамика механической системы по времени имеет вид:

Динамика механической системы

или

Динамика механической системы

При Динамика механической системы, угол поворота Динамика механической системы равен

Динамика механической системы

Поскольку за 1 оборот шарик обернется на Динамика механической системы, то количество оборотов Динамика механической системы составит

Динамика механической системы

Ответ: Динамика механической системы

Задача №4

Для определения момента трения в цапфах, на вал насажен маховик весом Динамика механической системы, радиус инерции маховика Динамика механической системы Маховику придана угловая скорость, соответствующая Динамика механической системы об/мин. Без внешнего воздействия на него, он остановился через Динамика механической системы мин.

Определить момент трения Динамика механической системы, считая его постоянным.

Решение. Направим ось Динамика механической системы вдоль неподвижной оси вращения. Изобразим на рис.8.5 внешние нагрузки, действующие на вал и маховик: силу тяжести маховика Динамика механической системы, реакции опор Динамика механической системы и Динамика механической системы  и момент сил трения Динамика механической системы.

Запишем теорему об изменении кинетического момента относительно оси вращения:

Динамика механической системы

Поскольку мы рассматриваем вращение твердого тела, то 

Динамика механической системы

Найдем вращательный момент внешних сил относительно оси вращения Динамика механической системы, если учтем, что момент сил Динамика механической системы, Динамика механической системы и Динамика механической системы относительно оси Динамика механической системы равны нулю, поскольку эти силы пересекают ось. Следовательно, вращательный момент равен моменту сил трения и направлен в сторону, противоположную вращению маховика.

Таким образом

Динамика механической системы

Высчитаем величины, которые входят в это уравнение:

Динамика механической системы

где Динамика механической системы – угловая скорость маховика в момент остановки, Динамика механической системы,

Динамика механической системы – угловая скорость в начальный момент времени.

Поскольку Динамика механической системы то Динамика механической системы

С учетом значений Динамика механической системы и Динамика механической системы получим:

Динамика механической системы

Ответ: Динамика механической системы

Задача №5

Однородный цилиндр (рис.8.6) радиусом Динамика механической системы вращается вокруг своей геометрической оси Динамика механической системы угловой скоростью Динамика механической системы.

Динамика механической системы

Определить, как изменится угловая скорость Динамика механической системы цилиндра, если ось вращения перейдет в положение Динамика механической системы, которое совпадает с образующей цилиндра?

Решение. На цилиндр действует сила тяжести Динамика механической системы, которая направлена вертикально вниз.

Запишем теорему об изменении кинетического момента цилиндра:

Динамика механической системы

где Динамика механической системы – момент инерции цилиндра,

Динамика механической системы – сумма моментов внешних сил относительно оси вращения.

Поскольку сила Динамика механической системы параллельна оси вращения, то

Динамика механической системы и Динамика механической системы

Итак, Динамика механической системы, тогда

Динамика механической системы

где Динамика механической системы – момент инерции цилиндра относительно оси Динамика механической системы,

Динамика механической системы – момент инерции цилиндра относительно оси Динамика механической системы,

По теореме Гюйгенса-Штейнера

Динамика механической системы

где Динамика механической системы – масса цилиндра.

Из формулы (1) получим:

Динамика механической системы

Вычислим Динамика механической системыи Динамика механической системы:

Динамика механической системы

Следовательно,

Динамика механической системы

Угловая скорость уменьшилась в три раза, поскольку в три раза увеличился момент инерции.

Ответ: Динамика механической системы

Задача №6

Молотильный барабан начинает вращаться из состояния покоя (Динамика механической системы) под действием постоянного момента Динамика механической системы

Определить, пренебрегая трением, частоту вращения барабана после того, как он начнет вращаться и сделает Динамика механической системы оборотов (рис.8.7), зная, что момент инерции барабана относительно оси вращения Динамика механической системы

Динамика механической системы

Решение. Для определения угловой скорости барабана воспользуемся формулой:

Динамика механической системы

где Динамика механической системы – начальная угловая скорость вращения,

Динамика механической системы – конечная угловая скорость вращения,

Динамика механической системы – угол, на который поворачивается барабан.

Из (1) вытекает:

Динамика механической системы где Динамика механической системы

Следовательно,

Динамика механической системы

Таким образом, для определения угловой скорости необходимо знать угловое ускорение Динамика механической системы.

Для определения Динамика механической системы воспользуемся теоремой об изменении кинетического момента:

Динамика механической системы

где Динамика механической системы – сумма моментов всех внешних сил относительно оси вращения.

На барабан действуют следующие внешние нагрузки: Динамика механической системы – сила тяжести барабана; Динамика механической системы,
Динамика механической системы – реакции подшипников Динамика механической системы и Динамика механической системы; Динамика механической системы – вращательный момент.

С учетом действующих сил уравнение (2) будет иметь вид:

Динамика механической системы

При этом Динамика механической системы, поскольку силы Динамика механической системыДинамика механической системы и 
Динамика механической системы пересекают ось Динамика механической системы и моментов не образуют. Итак,

Динамика механической системы

Тогда,

Динамика механической системы

Ответ: Динамика механической системы

Задача №7

Груз весом Динамика механической системы подвешен на канате, который навитый на цилиндрический барабан, ось вращения которого горизонтальна (рис.8.8).

Динамика механической системы

Определить угловое ускорение барабана Динамика механической системы во время опускания груза Динамика механической системы, пренебрегая весом каната, сопротивлением воздуха, трением в подшипниках. Барабан считать однородным цилиндром весом Динамика механической системы и радиусом Динамика механической системы

Решение. Для определения углового ускорения Динамика механической системы барабана будем рассматривать движение системы, в которую включим следующие тела: барабан весом Динамика механической системы, груз весом Динамика механической системы и канат, натяжение которого заранее неизвестно.

Если применить теорему об изменении кинетического момента системы относительно оси, то натяжение каната, являющегося внутренней силой, в уравнение не войдет.

Относительно оси, которая проходит через точку Динамика механической системы, эта теорема имеет вид:

Динамика механической системы

На систему действуют следующие внешние силы: Динамика механической системы – вес груза, Динамика механической системы – вес барабана, Динамика механической системы – реакция опоры Динамика механической системы.

Силы Динамика механической системы и Динамика механической системы не создают моментов относительно оси Динамика механической системы, потому что они ее пересекают. Только сила Динамика механической системы создает момент относительно оси Динамика механической системы, который равен:

Динамика механической системы

Итак,

Динамика механической системы

Определим кинетический момент системы относительно оси вращения Динамика механической системы:

Динамика механической системы

где Динамика механической системы – кинетический момент барабана,

Динамика механической системы – кинетический момент груза.

Динамика механической системы

где Динамика механической системы – момент инерции барабана относительно оси вращения Динамика механической системы;

Динамика механической системы

поскольку Динамика механической системы

Тогда кинетический момент системы равен:

Динамика механической системы

Подставим полученные результаты в уравнение (1):

Динамика механической системы

Знак момента силы Динамика механической системы взят положительным, поскольку направление вращения барабана совпадает с направлением момента силы Динамика механической системы.

Решаем уравнение (2) и определяем угловое ускорение Динамика механической системы.

Выносим из под знака дифференциала в левой части уравнения (2) постоянные величины:

Динамика механической системы

или

Динамика механической системы

С учетом числовых значений угловое ускорение Динамика механической системы равно:

Динамика механической системы

Ответ: Динамика механической системы

Теорема об изменении кинетической энергии механической системы

Теорема о кинетической энергии системы — одна из общих теорем динамики, является следствием законов Ньютона. Связывает кинетическую энергию механической системы с работой сил, действующих на тела, составляющие систему.

Кинетическая энергия механической системы

Кинетической энергией Динамика механической системы материальной точки называется скалярная положительная величина, равная половине произведения массы точки на квадрат ее скорости:

Динамика механической системы

Кинетической энергией Динамика механической системы механической системы называется арифметическая сумма кинетических энергий всех точек механической системы:

Динамика механической системы

Кинетическая энергия системы не зависит от направлений скоростей точек.

Кинетическая энергия может равняться нулю, если скорости всех точек системы равны нулю.

Кинетическая энергия системы характеризует и поступательное, и вращательное движения системы. Поэтому теоремой об изменении кинетической энергии особенно часто пользуются при решении задач.

Единицей кинетической энергии в системе СИ является Джоуль (Дж).

Определение кинетической энергии твердого тела в различных случаях его движения

Поступательное движение твердого тела:

При поступательном движении твердого тела скорости всех его точек (в том числе скорость Динамика механической системы центра масс тела) в каждый момент времени равны между собой; то есть, для любой точки Динамика механической системы. Итак

Динамика механической системы

Кинетическая энергия твердого тела при поступательном движении равна половине произведения массы тела Динамика механической системы на квадрат скорости его центра масс.

Вращательное движение твердого тела:

Скорость любой точки твердого тела, которое вращается с угловой скоростью Динамика механической системы, равна

Динамика механической системы

где Динамика механической системы – расстояние от точки к оси вращения.

Тогда кинетическая энергия тела определяется согласно зависимости:

Динамика механической системы

Поскольку

Динамика механической системы

то

Динамика механической системы

Следовательно кинетическая энергия тела при вращательном движении равна половине произведения момента инерции тела относительно оси вращения на квадрат угловой скорости тела.

Плоскопараллельное движение твердого тела:

При плоскопараллельном движении скорости всех точек тела в каждый момент времени распределены так, будто тело вращается вокруг оси, которая перпендикулярна плоскости движения и которая проходит через мгновенный центр скоростей Динамика механической системы.

В этом случае кинетическую энергию тела можно определить по формуле:

Динамика механической системы

где Динамика механической системы – момент инерции тела относительно оси, которая проходит через мгновенный центр скоростей.

Поскольку (согласно теореме Штейнера-Гюйгенса)

Динамика механической системы

где Динамика механической системы – момент инерции относительно оси, которая проходит через центр масс тела и параллельна мгновенной оси вращения, то

Динамика механической системы

Поскольку Динамика механической системы, то окончательно

Динамика механической системы

Таким образом, 

в случае плоскопараллельного движения тела кинетическая энергия состоит из кинетических энергий поступательного движения вместе со скоростью центра масс и вращательного движения вокруг оси, которая проходит через центр масс перпендикулярно плоскости движения.

Теорема об изменении кинетической энергии механической системы:

Дифференциальная форма:

Дифференциал кинетической энергии механической системы равен сумме элементарных работ всех внешних и внутренних сил, действующих на систему:

Динамика механической системы

Производная по времени от кинетической энергии механической системы равна сумме мощностей всех внешних и внутренних сил, действующих на систему:

Динамика механической системы

Интегральная форма:

Изменение кинетической энергии механической системы при конечном перемещении ее из положения (1) в положение (2) равно сумме работ на этом перемещении всех внешних и внутренних сил, действующих на эту систему

Динамика механической системы

Если механическая система неизменна, то сумма работ внутренних сил равна нулю и теорема запишется так:

Динамика механической системы

Порядок решения задач на использование теоремы об изменении кинетической энергии механической системы

Решение задач с помощью теоремы об изменении кинетической энергии в интегральной форме рекомендуется проводить в следующей последовательности:

а) изобразить на рисунке все внешние силы системы;

б) высчитать сумму работ всех внешних сил на перемещении точек системы;

в) вычислить кинетическую энергию системы материальных точек в начальном и конечном ее состояниях;

г ) пользуясь результатами подсчетов по пунктам б) и в) записать теорему об изменении кинетической энергии механической системы и определить искомую величину.

Примеры решения задач на тему: Теорема об изменении кинетической энергии механической системы

Задача № 1

Механизм эллипсографа (рис.10.1) состоит из ползунов Динамика механической системы и Динамика механической системы весом Динамика механической системы каждый, кривошипа Динамика механической системы весом Динамика механической системы, и линейки Динамика механической системы весом Динамика механической системы. Кривошип Динамика механической системы вращается вокруг неподвижной оси Динамика механической системы, которая перпендикулярна плоскости чертежа с угловой скоростью Динамика механической системы.

Определить кинетическую энергию механизма эллипсографа, полагая, что линейка Динамика механической системы и кривошип Динамика механической системы – однородные тонкие стержни, а ползуны Динамика механической системы и Динамика механической системы – материальные точки, а также, что Динамика механической системы

Динамика механической системы

Решение. Заданная механическая система состоит из четырех тел: кривошипа 1 и линейки 2, ползунов 3 и 4.

Кинетическая энергия всей системы равна:

Динамика механической системы

где Динамика механической системы – кинетическая энергия кривошипа 1,

Динамика механической системы – кинетическая энергия линейки 2,

Динамика механической системы – кинетическая энергия ползунов 3 и 4.

Кривошип Динамика механической системы совершает вращательное движение вокруг неподвижной оси Динамика механической системы, которая перпендикулярна оси рисунка. В этом случае кинетическая энергия тела равна

Динамика механической системы

Тогда

Динамика механической системы

Линейка 2 движется плоскопараллельно. Ее кинетическая энергия равна

Динамика механической системы

где Динамика механической системы – скорость точки С, которая является центром масс линейки 2,

Динамика механической системы – угловая скорость линейки 2,

Динамика механической системы – момент инерции линейки относительно оси Динамика механической системы, которая проходит через центр масс линейки Динамика механической системы.

Для определения угловой скорости Динамика механической системы линейки 2 используем понятие мгновенного центра скоростей. Как известно, мгновенный центр скоростей находится на пересечении перпендикуляров к скоростям двух точек тела, движущихся плоскопараллельно. Тогда в нашем случае он будет расположен в точке Динамика механической системы, и скорость точки Динамика механической системы определится:

Динамика механической системы

С другой стороны, точка Динамика механической системы принадлежит звену 1, и ее скорость равна

Динамика механической системы

Тогда, учитывая, что Динамика механической системы получим:

Динамика механической системы

Момент инерции линейки относительно оси Динамика механической системы равен:

Динамика механической системы

С учетом полученных значений Динамика механической системы кинетическая энергия линейки 2 равна:

Динамика механической системы

Подсчитаем кинетическую энергию ползунов 3 и 4, которые двигаются поступательно:

Динамика механической системы.

Скорости точек Динамика механической системы можно определить, учитывая положение мгновенного центра скоростей линейки 2:

Динамика механической системы

Тогда

Динамика механической системы

Подставляя найденные выражения (2), (4), (5) в (1), получим:

Динамика механической системы

Ответ: Динамика механической системы

Задача № 2

На рисунке 10.2 изображен подъемный механизм лебедки. Груз Динамика механической системы весом Динамика механической системы поднимается с помощью невесомого и нерастяжимого троса, который переброшен через блок Динамика механической системыи намотан на барабан Динамика механической системы радиусом Динамика механической системы и весом Динамика механической системы. К барабану приложен вращательный момент, который пропорционален квадрату угла поворота Динамика механической системы барабану: 

Динамика механической системы

где Динамика механической системы – постоянный коэффициент.

Динамика механической системы

Определить скорость груза Динамика механической системы в момент, когда он поднимется на высоту Динамика механической системы. Массу барабана Динамика механической системы считать равномерно распределенной вдоль его обода. Блок Динамика механической системы – сплошной диск весом Динамика механической системы. В начальный момент система находилась в покое.

Решение. Изобразим на рисунке все внешние силы, действующие на барабан Динамика механической системы, блок Динамика механической системы и груз Динамика механической системы: силы тяжести Динамика механической системыДинамика механической системыДинамика механической системы; вращательный момент, а также реакции шарниров Динамика механической системы и Динамика механической системы. Внутренней силой является натяжение троса Динамика механической системы.

Запишем теорему об изменении кинетической энергии системы:

Динамика механической системы

где Динамика механической системы – кинетическая энергия системы в конечном положении;

Динамика механической системы – кинетическая энергия системы в исходном положении;

Динамика механической системы – сумма работ всех внешних сил на перемещении Динамика механической системы;

Динамика механической системы – сумма работ всех внутренних сил на перемещении Динамика механической системы.

Поскольку в начальный момент времени система находилась в состоянии покоя, то

Динамика механической системы

В связи с тем, что трос не растягивается и при движении системы находится в натянутом состоянии, сумма работ внутренних сил системы равна нулю, следовательно

Динамика механической системы

При поднятии груза Динамика механической системы на высоту Динамика механической системы сумма работ равна:

Динамика механической системы

Поскольку точки приложения сил Динамика механической системы и Динамика механической системы – неподвижны, то

Динамика механической системы

Работа силы Динамика механической системы равна:

Динамика механической системы

Работа вращательного момента в случае, когда он не меняется

Динамика механической системы

где Динамика механической системы – угол поворота тела под действием момента.

Поскольку в нашем случае вращательный момент меняется, то его работа определится следующим образом:

Динамика механической системы

Определим угол Динамика механической системы, на который вернулся барабан Динамика механической системы при подъеме груза Динамика механической системы на высоту Динамика механической системы:

Динамика механической системы

Следовательно,

Динамика механической системы

Таким образом,

Динамика механической системы

Перейдем к подсчету кинетической энергии системы в конечном положении:

Динамика механической системы

где Динамика механической системы – кинетическая энергия груза Динамика механической системы;

Динамика механической системы – кинетическая энергия диска Динамика механической системы;

Динамика механической системы – кинетическая энергия барабана Динамика механической системы.

Груз Динамика механической системы движется поступательно и его кинетическая энергия равна:

Динамика механической системы

Диск Динамика механической системы совершает вращательное движение, его кинетическая энергия определяется из выражения:

где Динамика механической системы – момент инерции диска относительно оси вращения;

Динамика механической системы – угловая скорость диска.

Поскольку диск Динамика механической системы– сплошной, то Динамика механической системы равен:

Динамика механической системы

где Динамика механической системы – радиус диска.

Поскольку линейная скорость обода диска равна скорости груза, угловая скорость вращения Динамика механической системы:

Динамика механической системы

Итак,

Динамика механической системы

Кинетическая энергия барабана Динамика механической системы, поскольку он совершает вращательное движение, равна:

Динамика механической системы

Поскольку масса барабана Динамика механической системы распределена по ободу, то:

Динамика механической системы

Угловую скорость барабана высчитаем из условия равенства линейных скоростей на ободах диска и барабана:

Динамика механической системы

Откуда

Динамика механической системы

Таким образом

Динамика механической системы

Кинетическая энергия системы в конечном положении равна

Динамика механической системы

Итак, теорема об изменении кинетической энергии системы имеет вид:

Динамика механической системы

Решая это уравнение относительно Динамика механической системы, находим скорость груза Динамика механической системы после того, как он пройдет путь Динамика механической системы:

Динамика механической системы

Ответ:  Динамика механической системы

Задача № 3

Груз Динамика механической системы (рис.10.3) весом Динамика механической системы, опускаясь вниз с помощью перекинутого через неподвижный блок Динамика механической системы невесомого и нерастяжимого троса, поднимает вверх груз Динамика механической системы весом Динамика механической системы, который закреплен к оси подвижного блока Динамика механической системы. Блоки Динамика механической системы и Динамика механической системы считать однородными сплошными дисками весом Динамика механической системы каждый.

Динамика механической системы

Определить скорость груза Динамика механической системы в момент, когда он опустится на высоту Динамика механической системы. Скольжением на ободах блоков и силами сопротивления пренебречь.

В начальный момент система находилась в состоянии покоя.

Решение. Изобразим внешние силы, которые действуют на систему: силы тяжести Динамика механической системы;  реакцию шарнира Динамика механической системы и реакцию в точке Динамика механической системы – Динамика механической системы. Внутренней силой является натяжение троса Динамика механической системы.

Запишем теорему об изменении кинетической энергии системы:

Динамика механической системы

В начальный момент времени система находилась в покое, следовательно, Динамика механической системы. Работа внутренней силы натяжения троса, равна нулю. Итак,

Динамика механической системы

Сумма работ внешних сил при перемещении системы в конечное положение составляет:

Динамика механической системы

Работа сил Динамика механической системы равна нулю, поскольку точки приложения сил 3 Динамика механической системы неподвижны.

Итак,

Динамика механической системы

Работа силы Динамика механической системы при опускании груза Динамика механической системы на высоту Динамика механической системы равна:

Динамика механической системы

Работу силы тяжести Динамика механической системы блока Динамика механической системы определим следующим образом. При опускании груза Динамика механической системы на высоту Динамика механической системы точка Динамика механической системы блока Динамика механической системы поднимается вверх на расстояние Динамика механической системы, которая равна Динамика механической системы, а центр блока Динамика механической системы на величину Динамика механической системы, так как точка Динамика механической системы – мгновенный центр скоростей блока Динамика механической системы.

Таким образом,

Динамика механической системы

Груз Динамика механической системы поднимается вверх так же на величину Динамика механической системы. Тогда работа силы тяжести груза Динамика механической системы будет равна:

Динамика механической системы

Итак, 

Динамика механической системы

Вычислим кинетическую энергию системы в конечном положении:

Динамика механической системы

Груз Динамика механической системы перемещается поступательно и его кинетическая энергия равна

Динамика механической системы

где Динамика механической системы – скорость груза Динамика механической системы в конце перемещения.

Блок Динамика механической системы осуществляет плоскопараллельное движение. В этом случае:

Динамика механической системы

Кинетическая энергия поступательного движения блока Динамика механической системы равна:

Динамика механической системы

Поскольку точка Динамика механической системы – мгновенный центр скоростей блока Динамика механической системы, а скорость точки Динамика механической системы равна скорости груза Динамика механической системы, то скорость вращения блока Динамика механической системы:

Динамика механической системы

Тогда

Динамика механической системы

Таким образом,

Динамика механической системы

Кинетическая энергия вращательного движения блока Динамика механической системы определяется из равенства:

Динамика механической системы

где Динамика механической системы – момент инерции блока Динамика механической системы относительно оси, которая проходит через центр масс Динамика механической системы. Блок Динамика механической системы – сплошной однородный диск, поэтому

Динамика механической системы

Тогда

Динамика механической системы

Таким образом, кинетическая энергия блока Динамика механической системы равна:

Динамика механической системы

Блок Динамика механической системы совершает вращательное движение и его кинетическая энергия:

Динамика механической системы

то есть

Динамика механической системы

Груз Динамика механической системы совершает поступательное движение со скоростью точки Динамика механической системы то есть со скоростью Динамика механической системы. Поэтому 

Динамика механической системы

Следовательно, кинетическая энергия системы Динамика механической системы в конечном положении:

Динамика механической системы

Таким образом, теорема об изменении кинетической энергии системы имеет вид:

Динамика механической системы

Находим скорость груза Динамика механической системы, решая это уравнение относительно Динамика механической системы:

Динамика механической системы

Ответ: Динамика механической системы

Задача № 4

Прямоугольная пластинка Динамика механической системы (рис.10.4) со сторонами Динамика механической системы и Динамика механической системы, и весом Динамика механической системы вращается вокруг вертикальной оси Динамика механической системы с начальной угловой скоростью Динамика механической системы. Каждый элемент пластинки несет при этом сопротивление воздуха, направление которого перпендикулярно плоскости пластинки, а величина пропорциональна площади элемента и квадрату его скорости. Коэффициент пропорциональности равен Динамика механической системы.

Динамика механической системы

Определить, сколько оборотов сделает пластинка к тому мгновению, когда ее угловая скорость станет вдвое меньше начальной?

Решение. Поскольку силы сопротивления, приложенные к пластинке, не постоянные, а зависят от скорости, то для решения задачи воспользуемся теоремой об изменении кинетической энергии системы в дифференциальной форме:

Динамика механической системы

Высчитаем дифференциал кинетической энергии пластинки. Поскольку пластинка вращается вокруг неподвижной оси, то ее кинетическая энергия равна:

Динамика механической системы

откуда:

Динамика механической системы

где Динамика механической системы – момент инерции пластинки относительно оси Динамика механической системы.

Перейдем к определению суммы элементарных работ внешних сил, которые действуют на пластинку. Это такие силы (рис.10.4):

– сила тяжести пластинки Динамика механической системы;

– реакции в опорах Динамика механической системы и Динамика механической системы: Динамика механической системы и Динамика механической системы;

– сила сопротивления воздуха Динамика механической системы.

Итак,

Динамика механической системы

где Динамика механической системы – элементарная работа силы тяжести пластинки;

Динамика механической системы – элементарные работы реакций подшипников;

Динамика механической системы – элементарная работа силы сопротивления Динамика механической системы.

Работы реакций Динамика механической системы и Динамика механической системы равны нулю, ибо точки их приложения неподвижны. Работа силы тяжести Динамика механической системы тоже равна нулю в связи с тем, что высота центра тяжести пластинки не меняется.

Таким образом,

Динамика механической системы

Для вычета работы сил сопротивления воспользуемся формулой для работы сил, которые приложены к вращающемуся твердому телу:

Динамика механической системы

где Динамика механической системы – сумма моментов всех приложенных к телу сил относительно оси вращения;

Динамика механической системы – элементарный угол поворота.

Чтобы определить Динамика механической системы, разобьем пластинку на элементарные прямоугольники со сторонами Динамика механической системы и Динамика механической системы. Тогда сила сопротивления, приложенная к элементарному прямоугольнику, будет равняться:

Динамика механической системы

и

Динамика механической системы

Следовательно,

Динамика механической системы

или

Динамика механической системы

и

Динамика механической системы.

Таким образом, уравнение (1) принимает вид:

Динамика механической системы

Разделим переменные и проинтегрируем:

Динамика механической системы

Момент инерции пластинки составляет:

Динамика механической системы

Тогда

Динамика механической системы

Откуда находим:

Динамика механической системы

Число оборотов Динамика механической системы составляет:

Динамика механической системы

Ответ: Динамика механической системы

Услуги по теоретической механике:

  1. Заказать теоретическую механику
  2. Помощь по теоретической механике
  3. Заказать контрольную работу по теоретической механике

Учебные лекции:

  1. Статика
  2. Система сходящихся сил
  3. Момент силы
  4. Пара сил
  5. Произвольная система сил
  6. Плоская произвольная система сил
  7. Трение
  8. Расчет ферм
  9. Расчет усилий в стержнях фермы
  10. Пространственная система сил
  11. Произвольная пространственная система сил
  12. Плоская система сходящихся сил
  13. Пространственная система сходящихся сил
  14. Равновесие тела под действием пространственной системы сил
  15. Естественный способ задания движения точки
  16. Центр параллельных сил
  17. Параллельные силы
  18. Система произвольно расположенных сил
  19. Сосредоточенные силы и распределенные нагрузки
  20. Кинематика
  21. Кинематика твердого тела
  22. Движения твердого тела
  23. Динамика материальной точки
  24. Динамика плоского движения твердого тела
  25. Динамика относительного движения материальной точки
  26. Динамика твердого тела
  27. Кинематика простейших движений твердого тела
  28. Общее уравнение динамики
  29. Работа и мощность силы
  30. Обратная задача динамики
  31. Поступательное и вращательное движение твердого тела
  32. Плоскопараллельное (плоское) движение твёрдого тела
  33. Сферическое движение твёрдого тела
  34. Движение свободного твердого тела
  35. Сложное движение твердого тела
  36. Сложное движение точки
  37. Плоское движение тела
  38. Статика твердого тела
  39. Равновесие составной конструкции
  40. Равновесие с учетом сил трения
  41. Центр масс
  42. Колебания материальной точки
  43. Относительное движение материальной точки
  44. Статические инварианты
  45. Дифференциальные уравнения движения точки под действием центральной силы и их анализ
  46. Динамика системы материальных точек
  47. Общие теоремы динамики
  48. Теорема об изменении кинетической энергии
  49. Теорема о конечном перемещении плоской фигуры
  50. Потенциальное силовое поле
  51. Метод кинетостатики
  52. Вращения твердого тела вокруг неподвижной точки

Добавить комментарий