Как найти среднюю дельту физика

Содержание:

При измерении разных физических величин мы получаем их числовые значения с определенной точностью. Например, при определении размеров листа бумаги (длины, ширины) мы можем указать их с точностью до миллиметра; размеры стола – с  точностью до сантиметра, размеры дома, стадиона – с точностью до метра.

Нет необходимости указывать размеры стола с точностью до миллиметра, а размеры стадиона с точностью до сантиметра или миллиметра. Мы сами в каждой ситуации, опыте и эксперименте определяем, с какой точностью нам нужны данные физические величины. Однако очень важно оценивать, насколько точно мы определяем физическую величину, какую ошибку (погрешность) в ее измерении допускаем.

При измерении мы не можем определить истинное значение измеряемой величины, а только пределы, в которых она находится.

Пример:

Измерим ширину стола рулеткой с сантиметровыми и миллиметровыми делениями на ней (рис. 5.1). Значение наименьшего деления шкалы называют ценой деления и обозначают буквой С. Видно, что цена деления рулетки С = 1 мм (или 0,1 см).

Совместим нулевое деление рулетки с краем стола и посмотрим, с каким значением 
шкалы линейки совпадает второй край стола  (рис. 5.1). Видно, что ширина стола составляет чуть больше 70 см и 6 мм, или 706 мм. Но результат наших измерений мы запишем с точностью до 1 мм, то есть L = 706 мм.

Точность измерений и погрешности в физике - определение и формулы с примерами

Абсолютная погрешность измерения ∆ (ДЕЛЬТА)

Из рис. 5.1 видно, что мы допускаем определенную погрешность и определить ее «на глаз» достаточно трудно. Эта погрешность составляет не более половины цены деления шкалы рулетки. Эту погрешность называют погрешностью измерения и помечают ∆L («дельта эль»). В данном эксперименте ее можно записать
Точность измерений и погрешности в физике - определение и формулы с примерами

Сам результат измерения принято записывать таким образом: ширина стола L = (706,0 ± 0,5) мм, читают: 706 плюс-минус 0,5 мм. Эти 0,5 мм в нашем примере называют абсолютной погрешностью. Значения измеряемой величины (706,0 мм) и абсолютной погрешности (0,5 мм) должны иметь одинаковое количество цифр после запятой, то есть нельзя записывать 706 мм ± 0,5 мм.  

Такая запись результата измерения означает, что истинное значение измеряемой величины находится между 705,5 мм и 706,5 мм, то есть 705,5 мм ≤ L ≤ 706,5 мм.

Относительная погрешность измерения ε (ЭПСИЛОН)

Иногда важно знать, какую часть составляет наша погрешность от значения 
измеряемой величины. Для этого разделим 0,5 мм на 706 мм. В результате получим: Точность измерений и погрешности в физике - определение и формулы с примерами.  То есть наша ошибка составляет 0,0007 долю ширины стола, или 0,0007 · 100% = 0,07%. Это свидетельствует о достаточно высокой точности измерения. Эту погрешность называют относительной и обозначают греческой буквой  (эпсилон): 

Точность измерений и погрешности в физике - определение и формулы с примерами     (5.1)

Относительная погрешность измерения свидетельствует о качестве измерения. Если длина какогото предмета равна 5 мм, а точность измерения –  плюс-минус 0,5 мм, то относительная погрешность будет составлять уже 10%.

Стандартная запись результата измерений и выводы

Таким образом, абсолютная погрешность в примере 5.1. составляет ∆L = 0,5 мм, а результат измерений следует записать в стандартном виде: L = (706,0 Точность измерений и погрешности в физике - определение и формулы с примерами 0,5) мм – Опыт выполнен с относительной погрешностью 0,0007 или 0,07%.

На точность измерения влияет много факторов, в частности:

  1. При совмещении края стола с делением шкалы рулетки мы неминуемо допускаем погрешность, поскольку делаем это «на глаз» – смотреть можно под разными углами.
  2. Не вполне ровно установили рулетку.
  3. Наша рулетка является копией эталона и может несколько отличаться от оригинала.

Все это необходимо учитывать при проведении измерений.

Итоги:

  • Измерения в физике всегда неточны, и надо знать пределы погрешности измерений, чтобы понимать, насколько можно доверять результатам.
  • Абсолютную погрешность измерения можно определить как половину цены деления шкалы измерительного прибора. 
  • Относительная погрешность есть частное от деления абсолютной погрешности на значение измеряемой величины:  Точность измерений и погрешности в физике - определение и формулы с примерами и указывает на качество измерения. Ее можно выразить в процентах.

Измерительные приборы

Устройства, с помощью которых измеряют физические величины, называют измерительными приборами.

Простейший и хорошо известный вам измерительный прибор — линейка с делениями. На ее примере вы видите, что у измерительного прибора есть шкала, на которой нанесены деления, причем возле некоторых делений написано соответствующее значение физической величины. Так, значения длины в сантиметрах нанесены на линейке возле каждого десятого деления (рис. 3.11). Значения же, соответствующие «промежуточным» делениям шкалы, можно найти с помощью простого подсчета.

Точность измерений и погрешности в физике - определение и формулы с примерами

Разность значений физической величины, которые соответствуютближайшим делениям шкалы, называют ценой деления прибора. Ёе находят так: берут ближайшие деления, возле которых написаны значения величины, и делят разность этих значений на количество промежутков между делениями, расположенными между ними.

Например, ближайшие сантиметровые деления на линейке разделены на десять промежутков. Значит, цена деления линейки равна 0,1 см = 1 мм.

Как определяют единицы длины и времени

В старину мерами длины служили большей частью размеры человеческого тела и его частей. Дело в том, что собственное тело очень удобно как «измерительный прибор», так как оно всегда «рядом». И вдобавок «человек есть мера всех вещей»: мы считаем предмет большим или малым, сравнивая его с собой.

Так, длину куска ткани измеряли «локтями», а мелкие предметы — «дюймами» (это слово происходит от голландского слова, которое означает «большой палец»).

Однако человеческое тело в качестве измерительного прибора имеет существенный недостаток: размеры тела и его частей у разных людей заметно отличаются. Поэтому ученые решили определить единицу длины однозначно и точно. Международным соглашением было принято, что один метр равен пути, который проходит свет в вакууме за 1/299792458 с. А секунду определяют с помощью атомных часов, которые сегодня являются самыми точными.

Можно ли расстояние измерять годами

Именно так и измеряют очень большие расстояния — например, расстояния между звездами! Но при этом речь идет не о годах как промежутках времени, а о «световых годах». А один световой год — это расстояние, которое проходит свет за один земной год. По нашим земным меркам это очень большое расстояние — чтобы убедиться в этом, попробуйте выразить его в километрах! А теперь вообразите себе, что расстояние от Солнца до ближайшей к нему звезды составляет больше четырех световых лет! И по астрономическим масштабам это совсем небольшое расстояние: ведь с помощью современных телескопов астрономы тщательно изучают звезды, расстояние до которых составляет много тысяч световых лет!

Что надо знать об измерительных приборах

Приступая к измерениям, необходимо, прежде всего, подобрать приборы. Что надо знать об измерительных приборах?

Минимальное (нижний предел) и максимальное (верхний предел) значения шкалы прибора — это пределы измерения. Чаще всего предел измерения один, но может быть и два. Например, линейка имеет один предел — верхний. У линейки на рисунке 32 он равен 25 см. У термометра на рисунке 33 два предела: верхний предел измерения температуры равен +50 °С; нижний -40 °С.

Точность измерений и погрешности в физике - определение и формулы с примерами

На рисунке 34 изображены три линейки с одинаковыми верхними пределами (25 см). По эти линейки измеряют длину с различной точностью. Наиболее точные результаты измерений дает линейка 7, наименее точные — линейка 3. Что же такое точность измерений и от чего она зависит? Для ответа на эти вопросы рассмотрим сначала понятие цена деления шкалы прибора.

Точность измерений и погрешности в физике - определение и формулы с примерами

Цена деления — это значение наименьшего деления шкалы прибора.

Как определить цену деления шкалы? Для этого необходимо:

  1. выбрать на шкале линейки два соседних значения, например 3 см и 4 см;
  2. подсчитать число делений (не штрихов!) между этими значениями; например, на линейке 1 (см. рис. 34) число делений между значениями 3 см и 4 см равно 10;
  3. вычесть из большего значения меньшее (4 см – 3 см = 1 см) и результат разделить на число делений.

Полученное значение и будет ценой деления шкалы прибора. Обозначим ее буквой С.

  • Для линейки 1: Точность измерений и погрешности в физике - определение и формулы с примерами
  • Для линейки 2: Точность измерений и погрешности в физике - определение и формулы с примерами
  • Для линейки 3: Точность измерений и погрешности в физике - определение и формулы с примерами

Точно так же можно определить и цену деления шкалы мензурок 1 и 2 (рис. 35). Цена деления шкалы мензурки 1:

Точность измерений и погрешности в физике - определение и формулы с примерами

Цена деления шкалы мензурки 2: 

Точность измерений и погрешности в физике - определение и формулы с примерами

Точность измерений и погрешности в физике - определение и формулы с примерами

А какими линейкой и мензуркой можно измерить точнее?

Измерим один и тот же объем мензуркой 1 и мензуркой 2. Но показаниям шкал в мензурке 1 объем воды V = 35 мл; в мензурке 2 — V = 37 мл.

Понятно, что точнее измерен объем воды мензуркой 2, цена деления которой меньше Точность измерений и погрешности в физике - определение и формулы с примерами Значит, чем меньше цена деления шкалы, тем точнее можно измерить данным прибором. Говорят: мензуркой 1 мы измерили объем с точностью до 5 мл (сравните с ценой деления шкалы Точность измерений и погрешности в физике - определение и формулы с примерами), мензуркой 2 – с точностью до 1 мл (сравните с ценой деления Точность измерений и погрешности в физике - определение и формулы с примерами). Точность измерения температуры термометрами 1 и 2 (рис. 36) определите самостоятельно.

Точность измерений и погрешности в физике - определение и формулы с примерами

Итак, любым прибором, имеющим шкалу, измерить физическую величину можно с точностью, не превышающей цены деления шкалы.

Линейкой 1 (см. рис. 34) можно измерить длину с точностью до 1 мм. Точность измерения длины линейками 2 и 3 определите самостоятельно.

Главные выводы:

  1. Верхний и нижний пределы измерения — это максимальное и минимальное значения шкалы прибора.
  2. Цена деления шкалы равна значению наименьшего деления шкалы.
  3. Чем меньше цена деления шкалы, тем точнее будут проведены измерения данным прибором.

Для любознательных:

В истории науки есть немало случаев, когда повышение точности измерений давало толчок к новым открытиям. Более точные измерения плотности азота, выделенного из воздуха, позволили в 1894 г. открыть новый инертный газ — аргон. Повышение точности измерений плотности воды привело к открытию в 1932 г. одной из разновидностей тяжелых атомов водорода — дейтерия. Позже дейтерий вошел в состав ядерного горючего. Оценить расстояния до звезд и создать их точные каталоги ученые смогли благодаря повышению точности при измерении положения ярких звезд на небе.

  • Заказать решение задач по физике

Пример решения задачи

Для измерения величины угла используют транспортир. Определите: 1) цену деления каждой шкалы транспортира, изображенного на рисунке 38; 2) значение угла BАС, используя каждую шкалу; укажите точность измерения угла ВАС в каждом случае.

Точность измерений и погрешности в физике - определение и формулы с примерами

Решение:

1) Цена деления нижней шкалы:

Точность измерений и погрешности в физике - определение и формулы с примерами

Цена деления средней шкалы: 

Точность измерений и погрешности в физике - определение и формулы с примерами

Цена деления верхней шкалы:

2) Определенный но нижней шкале с точностью до 10° Точность измерений и погрешности в физике - определение и формулы с примерами определенный по средней шкале с точностью до 5° Точность измерений и погрешности в физике - определение и формулы с примерами определенный по верхней шкале с точностью до 1° Точность измерений и погрешности в физике - определение и формулы с примерами

  • Определение площади и объема
  • Связь физики с другими науками
  • Макромир, мегамир и микромир в физике
  • Пространство и время
  • Как зарождалась физика 
  • Единая физическая картина мира
  • Физика и научно-технический прогресс
  • Физические величины и их единицы измерения

Как вычислить дельту

Греческой буквой Δ в науке принято обозначать разность между конечным и начальным значениями некой величины. Например, Δt – разность температур в начале и конце реакции или время, за которое выполнена работа. В некоторых случаях четвертую букву греческого алфавита заменяют прописной или строчной латинской d. Но латиницей в данном случае необходимо пользоваться осторожно, поскольку этой же буквой обозначаются и другие понятия.

Как вычислить дельту

Вам понадобится

  • – измерительные приборы;
  • – калькулятор.

Инструкция

Чтобы узнать, на сколько изменилась та или иная величина, нужно в первую очередь узнать начальное и конечное значение. Если речь идет о практической задаче, нужные параметры можно измерить. Нужный вам параметр можно в принципе назвать любой буквой, но лучше использовать принятые в науке обозначения. Допустим, вам нужно найти, насколько изменился объем вещества при нагревании. Результат первого измерения запишите как V1

Проведите второе измерение. Например, после того, как закончите нагревать объект. Определите его объем и обозначьте его как V2. Вычислите дельту по формуле ΔV = V2-V1. Может получиться так, что второй результат будет меньше первого. Посчитайте модуль числа так же, как и в любом другом случае, и поставьте знак «-». Не забудьте, что оба измерения должны быть в одних и тех же единицах. Если нужно, переведите их.

Нередки задачи, когда необходимо вычислить дельту между фактическим и средним значением. Например, вам дана точка, которая поменяла свои координаты по двум осям. Обозначьте координаты как x1,x2, x3 и т. д. Найдите среднее значение. Затем вычислите разницу между полученным результатом и значением каждой координаты.

Если вам нужно вычислить приращение функции f(x), определите ее значение в жестко заданной точке — пусть это будет, например, х0. Чтобы вычислить дельту, вам необходимо сравнить значение функции в этой точке с ее же значением в любой другой точке по заданной оси. Для этого вычтите значение функции в точке х1 из ее же значения в точке х0. Это и будет Δf. Чтобы найти приращение аргумента, определите его значения в заданных точках и вычислите разность.

Буквой Δ обозначают и абсолютную погрешность. Она тоже представляет собой разность. За начальное и конечное значение принимаются истинное и приближенное значения. Величина дельты в данном случае соответствует классу точности прибора.

Войти на сайт

или

Забыли пароль?
Еще не зарегистрированы?

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.


Загрузить PDF


Загрузить PDF

Ускорение характеризует быстроту изменения скорости как по величине, так и по направлению. Можно найти среднее ускорение, чтобы определить среднюю быстроту изменения скорости тела в течение определенного периода времени. Возможно, вы не знаете, как вычислить ускорение (так как это неповседневная задача), но с правильным подходом это не составит труда.

  1. Изображение с названием Find Average Acceleration Step 1

    1

    Определение ускорения. Ускорение — это быстрота увеличения или уменьшения скорости,[1]
    или просто быстрота изменения скорости с течением времени.[2]
    Ускорение — векторная величина, имеющая направление (включите его в ответ).

    • Обычно, если тело ускоряется при движении «вправо», «вверх» или «вперед», то ускорение имеет положительное (+) значение.
    • Если тело ускоряется при движении «влево», «вниз» или «назад», то ускорение имеет отрицательное (+) значение.
  2. Изображение с названием Find Average Acceleration Step 2

    2

    Запишите определение ускорения в виде формулы. Как упоминалось выше, ускорение — это быстрота изменения скорости с течением времени.[3]
    Есть два способа записать это определение в виде формулы:

    • aср = Δv/Δt (символ дельта «Δ» означает «изменение»).
    • aср = (vк – vн)/(tк – tн), где vк — конечная скорость, vн — начальная скорость.
  3. Изображение с названием Find Average Acceleration Step 3

    3

    Найдите начальную и конечную скорости тела. Например, автомобиль, начинающий движение (вправо) со стоянки, имеет начальную скорость 0 м/с, а конечную скорость 500 м/с.[4]

    • Движение вправо описывается положительными значениями, поэтому далее мы не будем указывать направление движения.
    • Если автомобиль начинает движение вперед, а заканчивает его движением назад, конечная скорость имеет отрицательное значение.
  4. Изображение с названием Find Average Acceleration Step 4

    4

    Обратите внимание на изменение времени. Например, автомобилю может понадобиться 10 секунд, чтобы достичь конечной скорости. В этом случае tк = 10 с, а tн = 0 с.[5]

    • Убедитесь, что скорость и время даются в соответствующих единицах измерения. Например, если скорость дана в км/ч, то время должно измеряться в часах.
  5. Изображение с названием Find Average Acceleration Step 5

    5

    Подставьте данные вам значения скорости и времени в формулу для вычисления среднего ускорения. В нашем примере:

    • aср = (500 м/с – 0 м/с)/(10с – 0с)
    • aср = (500 м/с)/(10с)
    • aср = 50 м/с / с, то есть 50 м/с2.
  6. Изображение с названием Find Average Acceleration Step 6

    6

    Интерпретация результата. Среднее ускорение задает среднюю быстроту изменения скорости в течение определенного промежутка времени.[6]
    В приведенном выше примере машина в среднем ускорялась на 50 м/с за каждую секунду. Запомните: параметры движения могут быть разными, но среднее ускорение будет таким же, только если изменение скорости и изменение времени не меняются:

    • Автомобиль может начать движение со скоростью 0 м/с и разогнаться за 10 секунд до 500 м/с.
    • Автомобиль может начать движение со скоростью 0 м/с и разогнаться до 900 м/с, а затем сбросить скорость до 500 м/с за 10 секунд.
    • Автомобиль может начать движение со скоростью 0 м/с, стоять на месте в течение 9 секунд, а затем за 1 секунду разогнаться до 500 м/с.

    Реклама

  1. Изображение с названием Find Average Acceleration Step 7

    1

    Определение положительной и отрицательной скорости. Скорость имеет направление (так как это векторная величина), но указывать его, например, как «вверх» или «на север», весьма утомительно. Вместо этого в большинстве задач предполагается, что тело движется вдоль прямой линии. При движении в одном направлении скорость тела положительна, а при движении в противоположном направлении скорость тела отрицательна.[7]

    • Например, синий поезд движется на восток со скоростью 500 м/с. Красный поезд движется на запад с такой же скоростью, но так как он движется в противоположном направлении, его скорость записывается так: -500 м/с.
  2. Изображение с названием Find Average Acceleration Step 8

    2

    Используйте определение ускорения, чтобы определить его знак (+ или -). Ускорение — быстрота изменения скорости с течением времени. Если вы не знаете, какой знак написать у значения ускорения, найдите изменение скорости:

    • vконечная – vначальная = + или – ?
  3. Изображение с названием Find Average Acceleration Step 9

    3

    Ускорение в разных направлениях. Например, синий и красный поезда движутся в противоположных направлениях со скоростью 5 м/с. Представьте это движение на числовой прямой; синий поезд движется со скоростью 5 м/с в положительном направлении числовой прямой (то есть вправо), а красный поезд движется со скоростью -5 м/с в отрицательном направлении числовой прямой (то есть влево). Если каждый поезд увеличивает скорость на 2 м/с (в направлении его движения), то какой знак имеет ускорение?[8]
    Давайте проверим:

    • Синий поезд движется в положительном направлении, поэтому его скорость с 5 м/с возрастает до 7 м/с. Конечная скорость равна 7 – 5 = +2. Поскольку изменение скорости положительно, то и ускорение положительно.
    • Красный поезд движется в отрицательном направлении и увеличивает скорость с -5 м/с до -7 м/с. Конечная скорость равна -7 – (-5) = -7 + 5 = -2 м/с. Поскольку изменение скорости отрицательно, то и ускорение отрицательно.
  4. Изображение с названием Find Average Acceleration Step 10

    4

    Замедление.[9]
    Например, самолет летит со скоростью 500 км/ч, а затем замедляется до 400 км/ч. Хотя самолет движется в положительном направлении, его ускорение отрицательно, так как он замедляется (то есть уменьшает скорость). Это можно проверить через вычисления: 400 – 500 = -100, то есть изменение скорости отрицательно, поэтому и ускорение отрицательно.[10]

    • С другой стороны, если вертолет движется со скоростью -100 км/ч и разгоняется до -50 км/ч, то его ускорение положительно, потому что изменение скорости положительно: -50 – (-100) = 50 (хотя такого изменения скорости было недостаточно, чтобы изменить направление движения вертолета).

    Реклама

Советы

Ускорение и скорость — векторные величины, которые задаются как значением, так и направлением. Величины, задающиеся только значением, называются скалярными (например, длина).[11]

Реклама

Об этой статье

Эту страницу просматривали 46 639 раз.

Была ли эта статья полезной?

Перейти к содержанию

На чтение 3 мин Просмотров 3к.

Содержание

  1. Что ты хочешь узнать?
  2. Ответ
  3. Ответ
  4. Как найти дельта l в физике формула
  5. Использование [ править | править код ]

Что ты хочешь узнать?

Ответ

дельта это погрешность

  • Комментарии
  • Отметить нарушение

Ответ

приставка дельта означает изменение чего-либо . Например : если вначале скорость была 10 , а потом увеличилась до 15 , то дельта скорости будет равна 15-10

Как найти дельта l в физике формула

Автор Ѐасим задал вопрос в разделе Домашние задания

Формула вычисления дельта L по физике и получил лучший ответ

Ответ от Анастасия Терентьева[гуру]
как правило, дельта в физике чаще всего (а может даже и всегда) обозначает изменение чего – либо. L насколько я помню это длина. Значит дельта L обозначает изменение длины, и находится по формуле: L2 – L1

Буква греческого алфавита дельта
Δδ
ΐ Α Β Γ Δ Ε Ζ Η Θ
ΰ α β γ δ ε ζ η θ

Характеристики

Название
Δ: greek capital letter delta
δ: greek small letter delta

Юникод
Δ: U+0394
δ: U+03B4

HTML-код
Δ‎:

  • Δ или
  • Δ
    δ‎:
  • δ или
  • δ
  • UTF-16
    Δ‎: 0x394
    δ‎: 0x3B4

  • URL-код
  • Δ: %CE%94
    δ: %CE%B4

    Мнемоника
    Δ: Δ
    δ: δ

    Δ , δ (название: де́льта, греч. δέλτα ) — 4-я буква греческого алфавита. В системе греческой алфавитной записи чисел имеет числовое значение 4. Происходит от финикийской буквы — делт, название которой означало «дверь» или «вход в палатку». От буквы дельта произошли латинская буква D и кириллическая Д. В древнегреческом языке дельта произносилась как взрывной [ d ], в современном греческом произносится как [ ð ] (английское th в слове this).

    Использование [ править | править код ]

    Прописная буква Δ используется как символ для обозначения:

    • изменения или различия между значениями переменных (например, температуры: ΔT), обычно конечного;
    • дифференциальногооператора Лапласа;
    • любой из дельта-частиц в физике элементарных частиц;
    • в электронике существует ΔΣ-модуляция;
    • 4-й квадры в соционике;
    • Плотность заряжания во внутренней баллистике.

    Строчная буква δ используется как символ для обозначения:

    • малого изменения значения переменной, точнее — обозначение неполного дифференциала (или вариации), в отличие от полного, обычно обозначаемого латинской буквой d;
    • символа Кронекера в точных науках;
    • G-дельта-множество;
    • дельта-функции Дирака в математике;
    • отклонения в инженерной механике;
    • коэффициент общей полноты (в судостроении)
    • в астрономии
    • четвёртая по яркостизвезда в созвездии;
    • одна из двух небесных координат — склонение
  • химический сдвиг (ядерный магнитный резонанс).
  • удаления при читке корректуры (используется ещё с классических времён).
  • толщина (в физике) [источник не указан 60 дней] .
  • Также с греческой буквой сходны другие символы, употребляемые в математике:

    Как найти дельта S и дельта t , если просто s = 0, 58м ; 0, 21м ; 0, 07м t = 0.

    5с ; 0, 3с ; 0, 1с и напишите пжл формулу.

    Вы перешли к вопросу Как найти дельта S и дельта t , если просто s = 0, 58м ; 0, 21м ; 0, 07м t = 0?. Он относится к категории Физика,
    для 5 – 9 классов. Здесь размещен ответ по заданным параметрам. Если этот
    вариант ответа не полностью вас удовлетворяет, то с помощью автоматического
    умного поиска можно найти другие вопросы по этой же теме, в категории
    Физика. В случае если ответы на похожие вопросы не раскрывают в полном
    объеме необходимую информацию, то воспользуйтесь кнопкой в верхней части
    сайта и сформулируйте свой вопрос иначе. Также на этой странице вы сможете
    ознакомиться с вариантами ответов пользователей.

    Добавить комментарий