Как найти угол если знаешь косинус угла

Найти угол, зная косинус угла: примеры решения

Автор статьи

Евгений Николаевич Беляев

Эксперт по предмету «Математика»

Задать вопрос автору статьи

Имея на руках значение косинуса угла, выяснить угол, которому он принадлежит, совсем не сложно.

Существует специальная тригонометрическая функция, которой можно воспользоваться для этого и называется она арккосинусом (записывается как $arccos$).

Замечание 1

Для того чтобы воспользоваться ей и узнать значение угла, можно применить специальную расширенную таблицу со значениями углов и соответствующих им тригонометрических функций. Эта таблица называется таблицей Брадиса.

Также наиболее часто встречающиеся значения углов и соответствующих им синусов-косинусов собраны в небольшую таблицу внизу:

Зная косинус или синус, найти угол. Автор24 — интернет-биржа студенческих работ

Рисунок 1. Зная косинус или синус, найти угол. Автор24 — интернет-биржа студенческих работ

Логотип baranka

Сдай на права пока
учишься в ВУЗе

Вся теория в удобном приложении. Выбери инструктора и начни заниматься!

Получить скидку 3 000 ₽

Но есть и другой, более современный вариант нахождения угла по значению косинуса: достаточно включить режим Scientific (Научный) и найти кнопку переключения функций на калькуляторе.

В Windows 10 она обозначается стрелкой как показано на рисунке. При её нажатии кнопка $sin$ поменяется на $sin^{-1}$, а $cos$ на $cos^{-1}$. Теперь для того чтобы узнать значение угла по косинусу — просто набираете значение функции и жмёте кнопку $cos^{-1}$. Не забудьте выбрать нужную единицу измерения — градусы или радианы.

Как узнать угол, зная косинус угла. Автор24 — интернет-биржа студенческих работ

Рисунок 2. Как узнать угол, зная косинус угла. Автор24 — интернет-биржа студенческих работ

Пример 1

Найдите, чему равен $arccos 0,456$.

Решение:

Воспользуемся калькулятором в Научном режиме, на рисунке представлен калькулятор Mac OC, кнопка переключения между $sin$ и $sin^{-1}$ обведена красным:

Как по косинусу угла найти угол. Автор24 — интернет-биржа студенческих работ

Рисунок 3. Как по косинусу угла найти угол. Автор24 — интернет-биржа студенческих работ

После нажатия кнопки мы получили значение $α = 27,129°$.

Пример 2

Определите, чему равен угол, если известен его косинус, и он равен $0,95$.

Решение:

Воспользуемся вновь калькулятором и получим, что $α = 18,19°$.

Находи статьи и создавай свой список литературы по ГОСТу

Поиск по теме

Дата последнего обновления статьи: 07.05.2023

Арккосинус(y = arccos(x)) – это обратная тригонометрическая функция к косинусу x = cos(y). Область определения -1 ≤ x ≤ 1 и множество значений 0 ≤ y ≤ π.

arccos(1) = 0° arccos(-0.5) = 120° arccos(-0.5) = 240°
arccos(0.9998476952) = 1° arccos(-0.5150380749) = 121° arccos(-0.4848096202) = 241°
arccos(0.999390827) = 2° arccos(-0.5299192642) = 122° arccos(-0.4694715628) = 242°
arccos(0.9986295348) = 3° arccos(-0.544639035) = 123° arccos(-0.4539904997) = 243°
arccos(0.9975640503) = 4° arccos(-0.5591929035) = 124° arccos(-0.4383711468) = 244°
arccos(0.9961946981) = 5° arccos(-0.5735764364) = 125° arccos(-0.4226182617) = 245°
arccos(0.9945218954) = 6° arccos(-0.5877852523) = 126° arccos(-0.4067366431) = 246°
arccos(0.9925461516) = 7° arccos(-0.6018150232) = 127° arccos(-0.3907311285) = 247°
arccos(0.9902680687) = 8° arccos(-0.6156614753) = 128° arccos(-0.3746065934) = 248°
arccos(0.9876883406) = 9° arccos(-0.629320391) = 129° arccos(-0.3583679495) = 249°
arccos(0.984807753) = 10° arccos(-0.6427876097) = 130° arccos(-0.3420201433) = 250°
arccos(0.9816271834) = 11° arccos(-0.656059029) = 131° arccos(-0.3255681545) = 251°
arccos(0.9781476007) = 12° arccos(-0.6691306064) = 132° arccos(-0.3090169944) = 252°
arccos(0.9743700648) = 13° arccos(-0.6819983601) = 133° arccos(-0.2923717047) = 253°
arccos(0.9702957263) = 14° arccos(-0.6946583705) = 134° arccos(-0.2756373558) = 254°
arccos(0.9659258263) = 15° arccos(-0.7071067812) = 135° arccos(-0.2588190451) = 255°
arccos(0.9612616959) = 16° arccos(-0.7193398003) = 136° arccos(-0.2419218956) = 256°
arccos(0.956304756) = 17° arccos(-0.7313537016) = 137° arccos(-0.2249510543) = 257°
arccos(0.9510565163) = 18° arccos(-0.7431448255) = 138° arccos(-0.2079116908) = 258°
arccos(0.9455185756) = 19° arccos(-0.7547095802) = 139° arccos(-0.1908089954) = 259°
arccos(0.9396926208) = 20° arccos(-0.7660444431) = 140° arccos(-0.1736481777) = 260°
arccos(0.9335804265) = 21° arccos(-0.7771459615) = 141° arccos(-0.156434465) = 261°
arccos(0.9271838546) = 22° arccos(-0.7880107536) = 142° arccos(-0.139173101) = 262°
arccos(0.9205048535) = 23° arccos(-0.79863551) = 143° arccos(-0.1218693434) = 263°
arccos(0.9135454576) = 24° arccos(-0.8090169944) = 144° arccos(-0.1045284633) = 264°
arccos(0.906307787) = 25° arccos(-0.8191520443) = 145° arccos(-0.08715574275) = 265°
arccos(0.8987940463) = 26° arccos(-0.8290375726) = 146° arccos(-0.06975647374) = 266°
arccos(0.8910065242) = 27° arccos(-0.8386705679) = 147° arccos(-0.05233595624) = 267°
arccos(0.8829475929) = 28° arccos(-0.8480480962) = 148° arccos(-0.0348994967) = 268°
arccos(0.8746197071) = 29° arccos(-0.8571673007) = 149° arccos(-0.01745240644) = 269°
arccos(0.8660254038) = 30° arccos(-0.8660254038) = 150° arccos(0) = 270°
arccos(0.8571673007) = 31° arccos(-0.8746197071) = 151° arccos(0.01745240644) = 271°
arccos(0.8480480962) = 32° arccos(-0.8829475929) = 152° arccos(0.0348994967) = 272°
arccos(0.8386705679) = 33° arccos(-0.8910065242) = 153° arccos(0.05233595624) = 273°
arccos(0.8290375726) = 34° arccos(-0.8987940463) = 154° arccos(0.06975647374) = 274°
arccos(0.8191520443) = 35° arccos(-0.906307787) = 155° arccos(0.08715574275) = 275°
arccos(0.8090169944) = 36° arccos(-0.9135454576) = 156° arccos(0.1045284633) = 276°
arccos(0.79863551) = 37° arccos(-0.9205048535) = 157° arccos(0.1218693434) = 277°
arccos(0.7880107536) = 38° arccos(-0.9271838546) = 158° arccos(0.139173101) = 278°
arccos(0.7771459615) = 39° arccos(-0.9335804265) = 159° arccos(0.156434465) = 279°
arccos(0.7660444431) = 40° arccos(-0.9396926208) = 160° arccos(0.1736481777) = 280°
arccos(0.7547095802) = 41° arccos(-0.9455185756) = 161° arccos(0.1908089954) = 281°
arccos(0.7431448255) = 42° arccos(-0.9510565163) = 162° arccos(0.2079116908) = 282°
arccos(0.7313537016) = 43° arccos(-0.956304756) = 163° arccos(0.2249510543) = 283°
arccos(0.7193398003) = 44° arccos(-0.9612616959) = 164° arccos(0.2419218956) = 284°
arccos(0.7071067812) = 45° arccos(-0.9659258263) = 165° arccos(0.2588190451) = 285°
arccos(0.6946583705) = 46° arccos(-0.9702957263) = 166° arccos(0.2756373558) = 286°
arccos(0.6819983601) = 47° arccos(-0.9743700648) = 167° arccos(0.2923717047) = 287°
arccos(0.6691306064) = 48° arccos(-0.9781476007) = 168° arccos(0.3090169944) = 288°
arccos(0.656059029) = 49° arccos(-0.9816271834) = 169° arccos(0.3255681545) = 289°
arccos(0.6427876097) = 50° arccos(-0.984807753) = 170° arccos(0.3420201433) = 290°
arccos(0.629320391) = 51° arccos(-0.9876883406) = 171° arccos(0.3583679495) = 291°
arccos(0.6156614753) = 52° arccos(-0.9902680687) = 172° arccos(0.3746065934) = 292°
arccos(0.6018150232) = 53° arccos(-0.9925461516) = 173° arccos(0.3907311285) = 293°
arccos(0.5877852523) = 54° arccos(-0.9945218954) = 174° arccos(0.4067366431) = 294°
arccos(0.5735764364) = 55° arccos(-0.9961946981) = 175° arccos(0.4226182617) = 295°
arccos(0.5591929035) = 56° arccos(-0.9975640503) = 176° arccos(0.4383711468) = 296°
arccos(0.544639035) = 57° arccos(-0.9986295348) = 177° arccos(0.4539904997) = 297°
arccos(0.5299192642) = 58° arccos(-0.999390827) = 178° arccos(0.4694715628) = 298°
arccos(0.5150380749) = 59° arccos(-0.9998476952) = 179° arccos(0.4848096202) = 299°
arccos(0.5) = 60° arccos(-1) = 180° arccos(0.5) = 300°
arccos(0.4848096202) = 61° arccos(-0.9998476952) = 181° arccos(0.5150380749) = 301°
arccos(0.4694715628) = 62° arccos(-0.999390827) = 182° arccos(0.5299192642) = 302°
arccos(0.4539904997) = 63° arccos(-0.9986295348) = 183° arccos(0.544639035) = 303°
arccos(0.4383711468) = 64° arccos(-0.9975640503) = 184° arccos(0.5591929035) = 304°
arccos(0.4226182617) = 65° arccos(-0.9961946981) = 185° arccos(0.5735764364) = 305°
arccos(0.4067366431) = 66° arccos(-0.9945218954) = 186° arccos(0.5877852523) = 306°
arccos(0.3907311285) = 67° arccos(-0.9925461516) = 187° arccos(0.6018150232) = 307°
arccos(0.3746065934) = 68° arccos(-0.9902680687) = 188° arccos(0.6156614753) = 308°
arccos(0.3583679495) = 69° arccos(-0.9876883406) = 189° arccos(0.629320391) = 309°
arccos(0.3420201433) = 70° arccos(-0.984807753) = 190° arccos(0.6427876097) = 310°
arccos(0.3255681545) = 71° arccos(-0.9816271834) = 191° arccos(0.656059029) = 311°
arccos(0.3090169944) = 72° arccos(-0.9781476007) = 192° arccos(0.6691306064) = 312°
arccos(0.2923717047) = 73° arccos(-0.9743700648) = 193° arccos(0.6819983601) = 313°
arccos(0.2756373558) = 74° arccos(-0.9702957263) = 194° arccos(0.6946583705) = 314°
arccos(0.2588190451) = 75° arccos(-0.9659258263) = 195° arccos(0.7071067812) = 315°
arccos(0.2419218956) = 76° arccos(-0.9612616959) = 196° arccos(0.7193398003) = 316°
arccos(0.2249510543) = 77° arccos(-0.956304756) = 197° arccos(0.7313537016) = 317°
arccos(0.2079116908) = 78° arccos(-0.9510565163) = 198° arccos(0.7431448255) = 318°
arccos(0.1908089954) = 79° arccos(-0.9455185756) = 199° arccos(0.7547095802) = 319°
arccos(0.1736481777) = 80° arccos(-0.9396926208) = 200° arccos(0.7660444431) = 320°
arccos(0.156434465) = 81° arccos(-0.9335804265) = 201° arccos(0.7771459615) = 321°
arccos(0.139173101) = 82° arccos(-0.9271838546) = 202° arccos(0.7880107536) = 322°
arccos(0.1218693434) = 83° arccos(-0.9205048535) = 203° arccos(0.79863551) = 323°
arccos(0.1045284633) = 84° arccos(-0.9135454576) = 204° arccos(0.8090169944) = 324°
arccos(0.08715574275) = 85° arccos(-0.906307787) = 205° arccos(0.8191520443) = 325°
arccos(0.06975647374) = 86° arccos(-0.8987940463) = 206° arccos(0.8290375726) = 326°
arccos(0.05233595624) = 87° arccos(-0.8910065242) = 207° arccos(0.8386705679) = 327°
arccos(0.0348994967) = 88° arccos(-0.8829475929) = 208° arccos(0.8480480962) = 328°
arccos(0.01745240644) = 89° arccos(-0.8746197071) = 209° arccos(0.8571673007) = 329°
arccos(0) = 90° arccos(-0.8660254038) = 210° arccos(0.8660254038) = 330°
arccos(-0.01745240644) = 91° arccos(-0.8571673007) = 211° arccos(0.8746197071) = 331°
arccos(-0.0348994967) = 92° arccos(-0.8480480962) = 212° arccos(0.8829475929) = 332°
arccos(-0.05233595624) = 93° arccos(-0.8386705679) = 213° arccos(0.8910065242) = 333°
arccos(-0.06975647374) = 94° arccos(-0.8290375726) = 214° arccos(0.8987940463) = 334°
arccos(-0.08715574275) = 95° arccos(-0.8191520443) = 215° arccos(0.906307787) = 335°
arccos(-0.1045284633) = 96° arccos(-0.8090169944) = 216° arccos(0.9135454576) = 336°
arccos(-0.1218693434) = 97° arccos(-0.79863551) = 217° arccos(0.9205048535) = 337°
arccos(-0.139173101) = 98° arccos(-0.7880107536) = 218° arccos(0.9271838546) = 338°
arccos(-0.156434465) = 99° arccos(-0.7771459615) = 219° arccos(0.9335804265) = 339°
arccos(-0.1736481777) = 100° arccos(-0.7660444431) = 220° arccos(0.9396926208) = 340°
arccos(-0.1908089954) = 101° arccos(-0.7547095802) = 221° arccos(0.9455185756) = 341°
arccos(-0.2079116908) = 102° arccos(-0.7431448255) = 222° arccos(0.9510565163) = 342°
arccos(-0.2249510543) = 103° arccos(-0.7313537016) = 223° arccos(0.956304756) = 343°
arccos(-0.2419218956) = 104° arccos(-0.7193398003) = 224° arccos(0.9612616959) = 344°
arccos(-0.2588190451) = 105° arccos(-0.7071067812) = 225° arccos(0.9659258263) = 345°
arccos(-0.2756373558) = 106° arccos(-0.6946583705) = 226° arccos(0.9702957263) = 346°
arccos(-0.2923717047) = 107° arccos(-0.6819983601) = 227° arccos(0.9743700648) = 347°
arccos(-0.3090169944) = 108° arccos(-0.6691306064) = 228° arccos(0.9781476007) = 348°
arccos(-0.3255681545) = 109° arccos(-0.656059029) = 229° arccos(0.9816271834) = 349°
arccos(-0.3420201433) = 110° arccos(-0.6427876097) = 230° arccos(0.984807753) = 350°
arccos(-0.3583679495) = 111° arccos(-0.629320391) = 231° arccos(0.9876883406) = 351°
arccos(-0.3746065934) = 112° arccos(-0.6156614753) = 232° arccos(0.9902680687) = 352°
arccos(-0.3907311285) = 113° arccos(-0.6018150232) = 233° arccos(0.9925461516) = 353°
arccos(-0.4067366431) = 114° arccos(-0.5877852523) = 234° arccos(0.9945218954) = 354°
arccos(-0.4226182617) = 115° arccos(-0.5735764364) = 235° arccos(0.9961946981) = 355°
arccos(-0.4383711468) = 116° arccos(-0.5591929035) = 236° arccos(0.9975640503) = 356°
arccos(-0.4539904997) = 117° arccos(-0.544639035) = 237° arccos(0.9986295348) = 357°
arccos(-0.4694715628) = 118° arccos(-0.5299192642) = 238° arccos(0.999390827) = 358°
arccos(-0.4848096202) = 119° arccos(-0.5150380749) = 239° arccos(0.9998476952) = 359°

Как найти угол, если знаешь и синус, и косинус?

МатематикаШколаГеометрия

Владислав Крутиков

22 января 2020  · 5,1 K

ОтветитьУточнить

Mat Mекалль985

22 янв 2020

По знакам синуса и косинуса определяешь, в какой четверти (0-90-180-270-360 градусов) наш угол.  Затем, можно хоть арксинус от синуса, хоть арккосинус от косинуса брать (калькулятор, или таблицы).  И “разместить” результат в уже найденную четверть.  Разумеется угол+_360*i.

4,8 K

Комментировать ответ…Комментировать…

Вы знаете ответ на этот вопрос?

Поделитесь своим опытом и знаниями

Войти и ответить на вопрос

Как найти угол,зная синус либо косинус этого угла?



Знаток

(334),
закрыт



14 лет назад

Наталья

Гений

(53571)


14 лет назад

Для нахождения угла по его синусу, косинусу и т. д. используются так называемые аркфункции: арксинус, арккосинус и т. д. Их обозначают arcsin a, arccos a и т. д.
На Вашем калькуляторе над кнопками с синусом и косинусом есть надписи: sin в степени -1 и cos в степени -1.Это создатели калькулятора так кратко обозначили аркфункции. Чтобы ими воспользоваться, надо набрать число ( например, 0,4965), нажать клавишу SHIFT или 2nd, а затем клавишу, над которой написано cos в степени -1 и равно. У Вас получится угол, косинус которого равен 0,4965.

Понятно?

Sleeper

Знаток

(267)


5 лет назад

Здравствуйте! Я тоже столкнулся с аналогичной проблемой ( учусь программированию языку MQL4), и вот Европа вся сидит на радианах, а нам углы подавай. Вот, я зашел в справочник и там ка-раз все функции в радианах, я сделал свои функции перевода углов в радианы и радианы в углы (они очень просты и не какой сложности), и вот только что написал как по катету и гипотенузе находить косинус, и теперь мне надо найти по косинусу угол, то есть, зная катет и гипотенузу я буду знать угол и наоборот. И хочу использовать в своих расчетах функцию арккосинус которая вернет мне радиану и которую я своей (ранее созданной функцией), переведу в угол. Вот, по ходу и все. Логика понятна?! До свидание. Извините: и совсем не знаю зачем она Вам?! И выпалил, как из пушки – весь свой негатив на Европу. Да будет так – они нам не товарищи. А так я только что был на каком-то сайте и там забиваешь значения и он тебе выводит ответ. Сайты где-то в самом начале поисковиков.

Дмитрий Маштаков

Ученик

(182)


2 года назад

Тут вопрос точности – зная только косинус угла, вы не сможете уверенно вычислить угол, если этот угол маленький. Также и знание синуса вряд ли поможет, если угол близок к 90 градусам. Но если вы знаете одновременно и синус и косинус угла, то
Вот подпрограмма, которая сделает это –

Public Function Usc() As Integer ‘
Dim A As Single, U As Integer
If Abs(Caa) > Abs(Saa) Then
A = Atn(Saa / Caa) * 57.29578
If Caa < 0 Then If Saa > 0 Then A = 180 + A Else A = A – 180
Else: A = Atn(Caa / Saa) * 57.29578
If Saa < 0 Then A = -90 – A Else A = 90 – A
End If: U = A
Usc = U
End Function
‘========
здесь Caa и Saa – косинус и синус, а U это искомое значение угла.

Gras Deus

Профи

(658)


7 месяцев назад

Челу на 2 сообщения выше: хошь прикол? Sin(x)² + Cos(x)² = 1 а знаешь, что это значит? Правильно, это очень простое уравнение, решение которого можно вбить даже в просто компьютер

Содержание

  1. Как найти косинус на калькуляторе
  2. Нахождение косинусного соотношения
  3. Использование коэффициента косинуса для определения угла
  4. подсказки
  5. Как найти угол, используя синус, тангенс и косинус
  6. Как найти котангенс на графическом калькуляторе
  7. Как построить график и найти решение на калькуляторе
  8. Найти угол, зная косинус угла: примеры решения
  9. Таблица косинусов, найти значения угла косинусов
  10. Таблица косинусов от 0° — 360°

Как найти косинус на калькуляторе

Использование косинуса в калькуляторе экономит много времени по сравнению с поиском в таблице, что люди делали до калькулятора. Косинус происходит от части математики, называемой тригонометрия, которая имеет дело с отношениями между сторонами и углами в прямоугольных треугольниках. Косинус определенно имеет дело с отношением между одним из непрямых углов, его смежной стороной и гипотенузой.

Нахождение косинусного соотношения

Проверьте режим калькулятора. На научных калькуляторах это отображается на экране. Для построения графиков калькуляторов нажмите «Режим». Если вы используете градусы (как правило, если вы находитесь в геометрии), калькулятор должен быть установлен в градусах или «градус». Если вы используете радианы (предкалькуляция или тригонометрия), для него следует установить радианы или «радианы».

Нажмите кнопку «Cos», расположенную в центре калькулятора. «Cos» — это сокращение от косинуса. Ваш калькулятор должен отображать «cos (.»

Введите меру угла, для которого вы хотите узнать коэффициент косинуса. Например, 45 градусов.

Закройте скобки, нажав «).»

Нажмите клавишу ввода. Калькулятор должен отображать ваш коэффициент косинуса в десятичном виде. В этом примере вы должны увидеть 0, 7071.

Использование коэффициента косинуса для определения угла

Проверьте режим калькулятора. На научных калькуляторах это отображается на экране. Для построения графиков калькуляторов нажмите «Режим». Если вы используете градусы (как правило, если вы находитесь в геометрии), калькулятор должен быть установлен в градусах или «градус». Если вы используете радианы (предкалькуляция или тригонометрия), для него следует установить радианы или «радианы».

Нажмите кнопку «2nd», а затем нажмите «Cos». Ваш калькулятор должен отображать «cos» с отрицательным 1 для показателя степени и открытых скобок.

Введите коэффициент косинуса. Это длина соседней стороны, деленная на длину гипотенузы. Например, используйте 1/2. Нажмите клавишу «1», клавишу деления, а затем клавишу «2».

Нажмите Ввод.» Калькулятор покажет угол для вашего косинуса. В этом примере калькулятор должен отображать 60 градусов.

подсказки

При вводе угла он не должен быть больше 90 градусов, поскольку углы не соответствуют теореме о треугольной сумме углов. При вводе коэффициента косинуса у вас никогда не должно быть неправильной доли, потому что гипотенуза будет больше по определению и находится в знаменателе.

Как найти угол, используя синус, тангенс и косинус

Функции синуса, косинуса и тангенса часто должны использоваться для решения угловых задач в алгебраических, геометрических и тригонометрических тестах. Как правило, одному дается длина двух сторон прямоугольного треугольника и предлагается найти меру одного или всех углов в треугольнике. Расчет угла требует, чтобы вы использовали либо .

Как найти котангенс на графическом калькуляторе

В тригонометрии котангенс является обратной величиной касательной. Формула для определения касательной — это противоположная сторона, разделенная на соседнюю сторону треугольника. Итак, поскольку котангенс является обратным, то формулой для определения котангенса является смежная сторона, разделенная на противоположную сторону .

Как построить график и найти решение на калькуляторе

Графические калькуляторы — это один из способов помочь студентам понять взаимосвязь между графиками и решением ряда уравнений. Ключом к пониманию этой взаимосвязи является знание того, что решение уравнений является точкой пересечения графиков отдельных уравнений. Нахождение точки пересечения .

Источник

Найти угол, зная косинус угла: примеры решения

Евгений Николаевич Беляев

Эксперт по предмету «Математика»

С нами работают 108 689 преподавателей из 185 областей знаний. Мы публикуем только качественные материалы

Имея на руках значение косинуса угла, выяснить угол, которому он принадлежит, совсем не сложно.

Существует специальная тригонометрическая функция, которой можно воспользоваться для этого и называется она арккосинусом (записывается как $arccos$).

Для того чтобы воспользоваться ей и узнать значение угла, можно применить специальную расширенную таблицу со значениями углов и соответствующих им тригонометрических функций. Эта таблица называется таблицей Брадиса.

Также наиболее часто встречающиеся значения углов и соответствующих им синусов-косинусов собраны в небольшую таблицу внизу:

Рисунок 1. Зная косинус или синус, найти угол. Автор24 — интернет-биржа студенческих работ

Но есть и другой, более современный вариант нахождения угла по значению косинуса: достаточно включить режим Scientific (Научный) и найти кнопку переключения функций на калькуляторе.

В Windows 10 она обозначается стрелкой как показано на рисунке. При её нажатии кнопка $sin$ поменяется на $sin^<-1>$, а $cos$ на $cos^<-1>$. Теперь для того чтобы узнать значение угла по косинусу — просто набираете значение функции и жмёте кнопку $cos^<-1>$. Не забудьте выбрать нужную единицу измерения — градусы или радианы.

Рисунок 2. Как узнать угол, зная косинус угла. Автор24 — интернет-биржа студенческих работ

Найдите, чему равен $arccos 0,456$.

Решение:

Воспользуемся калькулятором в Научном режиме, на рисунке представлен калькулятор Mac OC, кнопка переключения между $sin$ и $sin^<-1>$ обведена красным:

Рисунок 3. Как по косинусу угла найти угол. Автор24 — интернет-биржа студенческих работ

После нажатия кнопки мы получили значение $α = 27,129°$.

Определите, чему равен угол, если известен его косинус, и он равен $0,95$.

Решение:

Воспользуемся вновь калькулятором и получим, что $α = 18,19°$.

  • Telegram
  • Whatsapp
  • Вконтакте
  • Одноклассники
  • Email

Евгений Николаевич Беляев

Эксперт по предмету «Математика»

С нами работают 108 689 преподавателей из 185 областей знаний. Мы публикуем только качественные материалы

Эксперты на Автор24 помогут сделать любую учебную работу!

Эксперты на Автор24 помогут сделать любую учебную работу!

Источник

Таблица косинусов, найти значения угла косинусов

Косинус угла представляет собой одну из тригонометрических функций. Является соотношением ближнего к углу прямоугольного треугольника катета к гипотенузе. Записывается следующим образом: cos (А) = АС/АВ, где АС – ближний катет угла (А), АВ – гипотенуза.

Зачем необходимо производить такие сложные на первый взгляд вычисления? Еще с древних времен известна аксиома: знаю угол – знаю его тригонометрическую функцию. Соответственно, если известен cos любого угла, в таблице Брадиса можно найти этот угол. И наоборот – зная угол, не сложно вычислить косинус. Отсюда можно найти следующие данные: длина катетов и гипотенузы.

Эти данные используются не только в голых математических вычислениях. Невозможно составить даже элементарный план местности, не зная тригонометрических функций. Посредством онлайн калькулятора можно облегчить задачу и получать требуемые данные за доли секунды.

Таблица косинусов от 0° — 360°

Cos(1°) 0.9998
Cos(2°) 0.9994
Cos(3°) 0.9986
Cos(4°) 0.9976
Cos(5°) 0.9962
Cos(6°) 0.9945
Cos(7°) 0.9925
Cos(8°) 0.9903
Cos(9°) 0.9877
Cos(10°) 0.9848
Cos(11°) 0.9816
Cos(12°) 0.9781
Cos(13°) 0.9744
Cos(14°) 0.9703
Cos(15°) 0.9659
Cos(16°) 0.9613
Cos(17°) 0.9563
Cos(18°) 0.9511
Cos(19°) 0.9455
Cos(20°) 0.9397
Cos(21°) 0.9336
Cos(22°) 0.9272
Cos(23°) 0.9205
Cos(24°) 0.9135
Cos(25°) 0.9063
Cos(26°) 0.8988
Cos(27°) 0.891
Cos(28°) 0.8829
Cos(29°) 0.8746
Cos(30°) 0.866
Cos(31°) 0.8572
Cos(32°) 0.848
Cos(33°) 0.8387
Cos(34°) 0.829
Cos(35°) 0.8192
Cos(36°) 0.809
Cos(37°) 0.7986
Cos(38°) 0.788
Cos(39°) 0.7771
Cos(40°) 0.766
Cos(41°) 0.7547
Cos(42°) 0.7431
Cos(43°) 0.7314
Cos(44°) 0.7193
Cos(45°) 0.7071
Cos(46°) 0.6947
Cos(47°) 0.682
Cos(48°) 0.6691
Cos(49°) 0.6561
Cos(50°) 0.6428
Cos(51°) 0.6293
Cos(52°) 0.6157
Cos(53°) 0.6018
Cos(54°) 0.5878
Cos(55°) 0.5736
Cos(56°) 0.5592
Cos(57°) 0.5446
Cos(58°) 0.5299
Cos(59°) 0.515
Cos(60°) 0.5
Cos(61°) 0.4848
Cos(62°) 0.4695
Cos(63°) 0.454
Cos(64°) 0.4384
Cos(65°) 0.4226
Cos(66°) 0.4067
Cos(67°) 0.3907
Cos(68°) 0.3746
Cos(69°) 0.3584
Cos(70°) 0.342
Cos(71°) 0.3256
Cos(72°) 0.309
Cos(73°) 0.2924
Cos(74°) 0.2756
Cos(75°) 0.2588
Cos(76°) 0.2419
Cos(77°) 0.225
Cos(78°) 0.2079
Cos(79°) 0.1908
Cos(80°) 0.1736
Cos(81°) 0.1564
Cos(82°) 0.1392
Cos(83°) 0.1219
Cos(84°) 0.1045
Cos(85°) 0.0872
Cos(86°) 0.0698
Cos(87°) 0.0523
Cos(88°) 0.0349
Cos(89°) 0.0175
Cos(90°) 0
Cos(91°) -0.0175
Cos(92°) -0.0349
Cos(93°) -0.0523
Cos(94°) -0.0698
Cos(95°) -0.0872
Cos(96°) -0.1045
Cos(97°) -0.1219
Cos(98°) -0.1392
Cos(99°) -0.1564
Cos(100°) -0.1736
Cos(101°) -0.1908
Cos(102°) -0.2079
Cos(103°) -0.225
Cos(104°) -0.2419
Cos(105°) -0.2588
Cos(106°) -0.2756
Cos(107°) -0.2924
Cos(108°) -0.309
Cos(109°) -0.3256
Cos(110°) -0.342
Cos(111°) -0.3584
Cos(112°) -0.3746
Cos(113°) -0.3907
Cos(114°) -0.4067
Cos(115°) -0.4226
Cos(116°) -0.4384
Cos(117°) -0.454
Cos(118°) -0.4695
Cos(119°) -0.4848
Cos(120°) -0.5
Cos(121°) -0.515
Cos(122°) -0.5299
Cos(123°) -0.5446
Cos(124°) -0.5592
Cos(125°) -0.5736
Cos(126°) -0.5878
Cos(127°) -0.6018
Cos(128°) -0.6157
Cos(129°) -0.6293
Cos(130°) -0.6428
Cos(131°) -0.6561
Cos(132°) -0.6691
Cos(133°) -0.682
Cos(134°) -0.6947
Cos(135°) -0.7071
Cos(136°) -0.7193
Cos(137°) -0.7314
Cos(138°) -0.7431
Cos(139°) -0.7547
Cos(140°) -0.766
Cos(141°) -0.7771
Cos(142°) -0.788
Cos(143°) -0.7986
Cos(144°) -0.809
Cos(145°) -0.8192
Cos(146°) -0.829
Cos(147°) -0.8387
Cos(148°) -0.848
Cos(149°) -0.8572
Cos(150°) -0.866
Cos(151°) -0.8746
Cos(152°) -0.8829
Cos(153°) -0.891
Cos(154°) -0.8988
Cos(155°) -0.9063
Cos(156°) -0.9135
Cos(157°) -0.9205
Cos(158°) -0.9272
Cos(159°) -0.9336
Cos(160°) -0.9397
Cos(161°) -0.9455
Cos(162°) -0.9511
Cos(163°) -0.9563
Cos(164°) -0.9613
Cos(165°) -0.9659
Cos(166°) -0.9703
Cos(167°) -0.9744
Cos(168°) -0.9781
Cos(169°) -0.9816
Cos(170°) -0.9848
Cos(171°) -0.9877
Cos(172°) -0.9903
Cos(173°) -0.9925
Cos(174°) -0.9945
Cos(175°) -0.9962
Cos(176°) -0.9976
Cos(177°) -0.9986
Cos(178°) -0.9994
Cos(179°) -0.9998
Cos(180°) -1
Cos(181°) -0.9998
Cos(182°) -0.9994
Cos(183°) -0.9986
Cos(184°) -0.9976
Cos(185°) -0.9962
Cos(186°) -0.9945
Cos(187°) -0.9925
Cos(188°) -0.9903
Cos(189°) -0.9877
Cos(190°) -0.9848
Cos(191°) -0.9816
Cos(192°) -0.9781
Cos(193°) -0.9744
Cos(194°) -0.9703
Cos(195°) -0.9659
Cos(196°) -0.9613
Cos(197°) -0.9563
Cos(198°) -0.9511
Cos(199°) -0.9455
Cos(200°) -0.9397
Cos(201°) -0.9336
Cos(202°) -0.9272
Cos(203°) -0.9205
Cos(204°) -0.9135
Cos(205°) -0.9063
Cos(206°) -0.8988
Cos(207°) -0.891
Cos(208°) -0.8829
Cos(209°) -0.8746
Cos(210°) -0.866
Cos(211°) -0.8572
Cos(212°) -0.848
Cos(213°) -0.8387
Cos(214°) -0.829
Cos(215°) -0.8192
Cos(216°) -0.809
Cos(217°) -0.7986
Cos(218°) -0.788
Cos(219°) -0.7771
Cos(220°) -0.766
Cos(221°) -0.7547
Cos(222°) -0.7431
Cos(223°) -0.7314
Cos(224°) -0.7193
Cos(225°) -0.7071
Cos(226°) -0.6947
Cos(227°) -0.682
Cos(228°) -0.6691
Cos(229°) -0.6561
Cos(230°) -0.6428
Cos(231°) -0.6293
Cos(232°) -0.6157
Cos(233°) -0.6018
Cos(234°) -0.5878
Cos(235°) -0.5736
Cos(236°) -0.5592
Cos(237°) -0.5446
Cos(238°) -0.5299
Cos(239°) -0.515
Cos(240°) -0.5
Cos(241°) -0.4848
Cos(242°) -0.4695
Cos(243°) -0.454
Cos(244°) -0.4384
Cos(245°) -0.4226
Cos(246°) -0.4067
Cos(247°) -0.3907
Cos(248°) -0.3746
Cos(249°) -0.3584
Cos(250°) -0.342
Cos(251°) -0.3256
Cos(252°) -0.309
Cos(253°) -0.2924
Cos(254°) -0.2756
Cos(255°) -0.2588
Cos(256°) -0.2419
Cos(257°) -0.225
Cos(258°) -0.2079
Cos(259°) -0.1908
Cos(260°) -0.1736
Cos(261°) -0.1564
Cos(262°) -0.1392
Cos(263°) -0.1219
Cos(264°) -0.1045
Cos(265°) -0.0872
Cos(266°) -0.0698
Cos(267°) -0.0523
Cos(268°) -0.0349
Cos(269°) -0.0175
Cos(270°) -0
Cos(271°) 0.0175
Cos(272°) 0.0349
Cos(273°) 0.0523
Cos(274°) 0.0698
Cos(275°) 0.0872
Cos(276°) 0.1045
Cos(277°) 0.1219
Cos(278°) 0.1392
Cos(279°) 0.1564
Cos(280°) 0.1736
Cos(281°) 0.1908
Cos(282°) 0.2079
Cos(283°) 0.225
Cos(284°) 0.2419
Cos(285°) 0.2588
Cos(286°) 0.2756
Cos(287°) 0.2924
Cos(288°) 0.309
Cos(289°) 0.3256
Cos(290°) 0.342
Cos(291°) 0.3584
Cos(292°) 0.3746
Cos(293°) 0.3907
Cos(294°) 0.4067
Cos(295°) 0.4226
Cos(296°) 0.4384
Cos(297°) 0.454
Cos(298°) 0.4695
Cos(299°) 0.4848
Cos(300°) 0.5
Cos(301°) 0.515
Cos(302°) 0.5299
Cos(303°) 0.5446
Cos(304°) 0.5592
Cos(305°) 0.5736
Cos(306°) 0.5878
Cos(307°) 0.6018
Cos(308°) 0.6157
Cos(309°) 0.6293
Cos(310°) 0.6428
Cos(311°) 0.6561
Cos(312°) 0.6691
Cos(313°) 0.682
Cos(314°) 0.6947
Cos(315°) 0.7071
Cos(316°) 0.7193
Cos(317°) 0.7314
Cos(318°) 0.7431
Cos(319°) 0.7547
Cos(320°) 0.766
Cos(321°) 0.7771
Cos(322°) 0.788
Cos(323°) 0.7986
Cos(324°) 0.809
Cos(325°) 0.8192
Cos(326°) 0.829
Cos(327°) 0.8387
Cos(328°) 0.848
Cos(329°) 0.8572
Cos(330°) 0.866
Cos(331°) 0.8746
Cos(332°) 0.8829
Cos(333°) 0.891
Cos(334°) 0.8988
Cos(335°) 0.9063
Cos(336°) 0.9135
Cos(337°) 0.9205
Cos(338°) 0.9272
Cos(339°) 0.9336
Cos(340°) 0.9397
Cos(341°) 0.9455
Cos(342°) 0.9511
Cos(343°) 0.9563
Cos(344°) 0.9613
Cos(345°) 0.9659
Cos(346°) 0.9703
Cos(347°) 0.9744
Cos(348°) 0.9781
Cos(349°) 0.9816
Cos(350°) 0.9848
Cos(351°) 0.9877
Cos(352°) 0.9903
Cos(353°) 0.9925
Cos(354°) 0.9945
Cos(355°) 0.9962
Cos(356°) 0.9976
Cos(357°) 0.9986
Cos(358°) 0.9994
Cos(359°) 0.9998
Cos(360°) 1

Пожалуйста напишите с чем связна такая низкая оценка:

Источник

Добавить комментарий