Как найти шину данных

Содержание

  1. Как проверить шину видеокарты
  2. Как определить тип шины видеокарты?
  3. Как узнать на какой частоте работает видеокарта?
  4. Как влияет разрядность шины памяти видеокарты?
  5. Как узнать GDDR видеокарты?
  6. Что такое разрядность шины памяти видеокарты?
  7. Как узнать все характеристики своей видеокарты?
  8. Как узнать архитектуру видеокарты Nvidia?
  9. Что такое разрядность шины?
  10. Какой самый важный параметр в видеокарте?
  11. Что такое разрядность шины данных?
  12. Как узнать какой DDR на материнке?
  13. Как узнать видеокарта DDR3 или ddr5 видео?
  14. Как узнать какой DDR поддерживает материнская плата?
  15. Что такое шина памяти?
  16. Как узнать шину видеокарты
  17. Определяем параметры видеокарты
  18. Просмотр характеристик видеокарты
  19. Способ 1: софт
  20. Способ 2: средства Windows
  21. Способ 3: сайт производителя
  22. Пропускная способность памяти видеокарты и ее зависимость от «битности»
  23. Ширина шины или сколько бит «нужно»
  24. Пропускная способность памяти
  25. Как выбрать видеокарту
  26. Описание
  27. Как выбрать видеокарту для игр
  28. Как выбрать видеокарту для простых задач
  29. Заключение
  30. Шина памяти – оптимальное значение? Разрядность шины памяти видеокарты
  31. Разрядность шины или битность: что это и на что влияет в видеокарте?
  32. Понятие разрядности
  33. Как узнать разрядность
  34. Можно ли повысить эту характеристику

Как проверить шину видеокарты

Как определить тип шины видеокарты?

Как узнать на какой частоте работает видеокарта?

Частота процессора видеокарты – это показатель справа возле верхней полоски. Показателем возле нижней полоски является частота работы видеопамяти графической карты.

Как влияет разрядность шины памяти видеокарты?

Ширина шины является важным параметром в производительности видеокарты. Измеряется в битах. Большая битность шины памяти позволяет передавать большее количество информации в единицу времени из видеопамяти в графический процессор и обратно, что обеспечивает большую производительность видеокарты.

Как узнать GDDR видеокарты?

Современные видеокарты в большинстве своем могут похвастаться емкой графической памятью. Определить количество и тип видеопамяти карты можно инструментами Windows — например, средством диагностики DirectX. Для этого откройте меню «Пуск» и в поле «Выполнить» введите команду «dxdiag.exe».

Что такое разрядность шины памяти видеокарты?

64, 128, 256, 512, 1024, 2048, 4096 bit. Шина памяти видеокарты – это канал соединяющий память и графический процессор видеокарты. От ширины шины памяти зависит, сколько данных обработает видеокарта за единицу времени.

Как узнать все характеристики своей видеокарты?

Пожалуй, это самый простой и быстрый способ определить свою видеокарту.

  1. На рабочем столе кликните правой кнопкой и выберите «Разрешение экрана».
  2. В разделе «Дополнительные параметры» откройте вкладку «Адаптер». На этой странице и указана вся информация о видеокарте.

Как узнать архитектуру видеокарты Nvidia?

Воспользуйтесь опцией «Диагностический отчет» (Diagnostic report) утилиты RivaTuner. В разделе «NVIDIA specific display adapter information» Вы увидите искомое. Убедитесь, что вы используете последнюю версию программы. Также можно воспользоваться утилитой GPU-Z.

Что такое разрядность шины?

Разрядность (битность) в информатике — количество разрядов (битов) электронного (в частности, периферийного) устройства или шины, одновременно обрабатываемых этим устройством или передаваемых этой шиной.

Какой самый важный параметр в видеокарте?

Ширина шины — количество памяти, измеряющаяся в битах, которую видеокарта передает за 1 такт. Достаточно важный параметр при выборе видеокарты. Видеопамять — самая важная характеристика видеокарты. Видеопамять бывает нескольких типов, а именно: DDR, DDR2, DDR3, GDDR5.

Что такое разрядность шины данных?

шина данных является двунаправленной. Разрядность шины данных определяется разрядностью процессора, т. е. количеством двоичных разрядов, которые процессор обрабатывает за один такт.

Как узнать какой DDR на материнке?

В общем, первая цифра после букв PC указывает на поколение DDR, если этой цифры нет, то это простой DDR первого поколения. В некоторых случаях на модулях оперативной памяти указывается не название модуля, а тип оперативной памяти и его эффективная частота. Например, на модуле может быть написано DDR3 1600.

Как узнать видеокарта DDR3 или ddr5 видео?

Открываем АИДУ, нажимаем на пункт «Отображение». Это меню будет находиться в левой части окна программы. В выпадающем списке характеристик нажимаем на кнопку «Графический процессор». После этого в главном окне программы появятся все характеристики вашей видеокарты, тип видеопамяти в том числе.

Как узнать какой DDR поддерживает материнская плата?

Получить информацию о типе оперативной памяти (DDR1, DDR2 и т. д) и максимальных частотах можно на официальном сайте производителя материнской платы и процессора. Объем оперативной памяти не должен превышать максимальный объем указанный в характеристиках материнской платы и процессора.

Что такое шина памяти?

Сама по себе шина – это канал, соединяющий память и графический процессор видеокарты. А от ширины шины зависит количество данных, которое может быть передано графическому процессору и обратно в память за единицу времени. Соответственно, чем больше ширина шины видеопамяти, тем лучше.

Как узнать шину видеокарты

Определяем параметры видеокарты


Необходимость просмотра характеристик неизбежно возникает при покупке новой или бывшей в употреблении видеокарты. Эта информация поможет нам понять, не обманывает ли нас продавец, а также позволит определить, какие задачи способен решать графический ускоритель.

Просмотр характеристик видеокарты

Параметры видеокарты можно узнать несколькими способами, каждый из которых мы подробно и рассмотрим ниже. Процесс того, как посмотреть параметры видеокарты в Windows 10, 8 или 7 практически идентичен, поэтому инструкция подойдет пользователям всех этих операционных систем.

Способ 1: софт

В природе существует большое количество программ, способных считывать информацию о системе. Многие из них являются универсальными, а некоторые «заточены» под работу с определенным оборудованием.

Данная утилита предназначена для работы исключительно с видеокартами. В главном окне программы мы можем увидеть большую часть интересующей нас информации: название модели, объем и частоты памяти и графического процессора, и пр.


AIDA64.

AIDA64 является одним из представителей универсального софта. В разделе «Компьютер», в ветке «Суммарная информация» можно посмотреть название видеоадаптера и объем видеопамяти,

а если зайти в раздел «Отображение» и перейти к пункту «Графический процессор», то программа выдаст более подробную информацию. Кроме того, и другие пункты этого раздела содержат данные о свойствах графики.

Способ 2: средства Windows

Системные утилиты Windows в состоянии отображать информацию о графическом адаптере, но в сжатом виде. Мы можем получить данные о модели, объеме памяти и версии драйвера.

    Средство диагностики DirectX.
    Доступ к данной утилите можно получить из меню «Выполнить», набрав команду dxdiag.


На вкладке «Экран» содержится краткая информация о видеокарте.

    Еще одна функция, встроенная в операционную систему. Вызывается она с рабочего стола нажатием правой кнопки мыши. В контекстном меню Проводника следует выбрать пункт «Разрешение экрана».


Далее необходимо перейти по ссылке «Дополнительные параметры».


В открывшемся окне свойств, на вкладке «Адаптер», мы можем посмотреть некоторые характеристики видеокарты.

Способ 3: сайт производителя

К этому способу прибегают в том случае, если показания программного обеспечения не внушают доверия либо была запланирована покупка и возникла необходимость в точном определении параметров видеокарты. Информацию, полученную на сайте, можно считать эталонной и ее можно сравнить с той, которую нам выдал софт.

Для поиска данных о модели графического адаптера достаточно набрать его название в поисковой системе, а затем в выдаче выбрать страницу на официальном сайте.

Страница с характеристиками:

Поиск характеристик видеокарт NVIDIA:

Для просмотра информации о параметрах ГПУ необходимо перейти на вкладку «Спецификации».

Способы, приведенные выше, помогут узнать параметры адаптера, установленного в компьютере. Использовать данные методы лучше всего в комплексе, то есть, все сразу – это позволит получить наиболее достоверную информацию о видеокарте.

Отблагодарите автора, поделитесь статьей в социальных сетях.

Пропускная способность памяти видеокарты и ее зависимость от «битности»

Мы продолжаем серию статей по разбору основных характеристик видеокарты, и на очереди у нас: пропускная способность памяти, а также прямо влияющий на неё показатель – ширина шины памяти видеокарты.

Ширина шины или сколько бит «нужно»

Ширина шины памяти – важнейший параметр, который косвенно влияет на общую производительность видеокарты. Сама по себе шина – это канал, соединяющий память и графический процессор видеокарты. А от ширины шины зависит количество данных, которое может быть передано графическому процессору и обратно в память за единицу времени. Соответственно, чем больше ширина шины видеопамяти, тем лучше. Рост производительности особенно заметен в требовательных играх, которые подкреплены утяжелением в виде максимального сглаживания и анизотропной фильтрации .

Теперь, давайте рассмотрим несколько популярных классов «битности» шин памяти:

64 бита — довольно популярный класс видеокарт бюджетного сегмента рынка. Видеокарты с такой шиной позиционируются для «облагораживания» бюджетных систем (но и то, там зачастую царят интегрированные решения), а также домашних ПК с нетребовательными задачами к графической производительности системы. Особенно смешно смотрятся такие видеокарты с большим объёмом видеопамяти на борту.

128 бит – средний класс. Изредка, можно увидеть в бюджетных видеокартах, и очень часто в видеокартах middle-сегмента. Зачастую, такие видеокарты пригодны для полноценных домашних систем, с довольно широкими игровыми задачами, но часть игр всё равно будет «неподъёмной» для данного класса.

256 и 384 бит – топовый класс. Зачастую, «идёт» в сочетании с отменными частотными показателями, как памяти, так и ядра, безусловно, – это максимальная игровая производительность для всего и сразу.

Но, хотелось бы подчеркнуть, что данная классификация является очень и очень условной, потому что нельзя оценивать видеокарту по одной лишь ширине шины памяти. К тому же, сама по себе «битность», влияет на производительность лишь с жёсткой зависимостью от частоты видеопамяти. Эти два параметра рассчитывают пропускную способность памяти видеокарты (ПСП).

Поэтому, чтобы уверенно говорить относительно оптимальной величины шины, нужно рассматривать всё в комплексе, то есть, саму ПСП. Чем мы сейчас и займёмся.

Пропускная способность памяти

Как уже говорилось выше, данный показатель зависит от двух параметров: частоты памяти и ширины шины.
С помощью нехитрой формулы можно найти пропускную способность памяти, к примеру, какой-нибудь из видюшек на чипе Radeon HD 7970.
Возьмем модель с эффективной частотой памяти 6000 МГц и шириной шины 384 бита (48 байт если перевести). ПСП= эффективная частота памяти х ширину шины памяти = 6000 х 48 = 288 Гбайт/с. Величину ПСП также можно посмотреть с помощью специальных программ, к примеру, GPU-z.

Также, предлагаю ознакомиться с довольно интересной шкалой актуальности ПСП современных видеокарт. Конечно, тут тоже всё очень неоднозначно — ведь «не одной лишь ПСП живём», но всё же, вполне логичную зависимость можно отследить:

Какая же ширина шины оптимальна? Ответ на данный вопрос для каждого случая будет отличаться. Во-первых, нужно отталкиваться от задач, которые будут выполняться с помощью будущей системки. Во-вторых, необходимо помнить про баланс в параметрах видеокарты. Поэтому для определенной конфигурации, должна быть подобрана видеокарта с определенной шириной шины и другими показателями. И зависят они от задач и только от них.

ПСП на пару с шириной шины, не сделают «погоды», если видюшка укомплектована слабым графическим процессором , с плохими частотными показателями. GPU просто не сможет «переваривать» те объёмы данных, которые буду поступать по более быстрой шине.

Поэтому, как итог, можно еще раз смело напомнить: баланс и еще раз баланс!

Как выбрать видеокарту

Несомненно, видеокарта является одним из наиболее важных компонентов современного компьютера. Если для офисной машины или простого компьютера, предназначенного для решения домашних задач, производительность и характеристики видеокарты не имеют критического значения, то для геймерских систем именно видеокарта очень часто становится слабым звеном и к ее выбору нужно отнестись ответственно.

Описание

Будь Вы обычный нетребовательный пользователь или заядлый геймер Вам будет интересно узнать, как выбрать видеокарту. Привычная аксиома: самая дорогая карта – лучшая производительность в данном случае не работает. Цена не является основным определителем качества карты и ее характеристик. Можно грамотно выбрать видеокарту для своей системы и она будет опережать по производительности более дорогие варианты. Почему так получается, мы разберем дальше.

Условно все видеокарты можно разделить на три типа:

  • Интегрированные
  • Дискретные
  • Внешние

Внешние видеокарты чаще всего подключаются к компьютеру нестандартным способом и предназначены для расширения возможностей маломощных мобильных компьютеров (ноутбуки, нетбуки).

Интегрированные видеокарты изначально встраиваются в процессор (современные модели) или в материнскую плату (актуально для старых моделей, или для серверных материнских плат) и замене не подлежат. Подобный вариант идеально подходит для решения нетребовательных офисных задач.

Дискретные видеокарты фактически являются отдельной платой, которая может быть установлена в подходящий слот материнской платы. Такую карту можно заменить, а система на ее основе может быть модернизирована без особых усилий путем установки новой дискретной видеокарты. Именно о них мы и будем говорить в нашем руководстве о том, как выбрать видеокарту.

Как выбрать видеокарту для игр

Цена игровой видеокарты может варьироваться в достаточно больших диапазонах. Обилие моделей и характеристик на рынке видеокарт могут запутать даже опытного пользователя ПК, который решил обновить свою машину. Поэтому мы подробно рассмотрим те базовые характеристики и параметры, которые жизненно необходимы для высокой производительности Вашей видеокарты.

  • Объем видеопамяти. Эта характеристика определяет объем собственной памяти видеокарты. Измеряется в ГБ. Сейчас чаще всего выпускаются видеокарты с объемом памяти от 3ГБ до 8ГБ. Реже можно встретить видеокарты с объемом собственной памяти в 6ГБ, 11ГБ, 12ГБ, и даже 16ГБ. Обращаем Ваше внимание на то, что больший объем памяти позволяет хранить больший объем информации (текстуры, вершины, промежуточные элементы) именно в самой карте, а не в оперативной памяти компьютера (доступ к ней более медленный). Для геймерской карты будет оптимальным объем от 4ГБ и более. Именно по объему видеопамяти очень многие ошибочно оценивают мощность видеокарты в целом, чем иногда пользуются производители. Так создаются слабые по параметрам видеокарты с большим объемом памяти, который реально не обеспечивает оптимального быстродействия из-за слабости других компонентов карты.
  • Тип памяти. Сегодня в продаже можно найти видеокарты с типом памяти GDDR5, GDDR5X, GDDR6 и HBM2. От типа памяти зависит скорость обработки данных (чтение, запись). Графическому процессору видеокарты для оптимальной работы необходим не только достаточный объем видеопамяти, но и высокая скорость чтения/записи информации. Лучшим вариантом станет выбор видеокарты с типом памяти GDDR6 или HBM2.
  • Разрядность шины памяти. С помощью шины памяти графический процессор обменивается данными с памятью. Высокий уровень пропускной способности шины позволяет передавать больше информации за один такт времени. Измеряется параметр в битах. Для игровой видеокарты, чем выше разрядность шины, тем лучше.
  • Частота графического процессора и памяти. Перед тем как выбрать видеокарту, обязательно удостоверьтесь в оптимальных значениях этих параметров. Эти характеристики одни из самых важных и они в наиболее высокой степени будут влиять на производительность карты. Измеряются они в МГц, чем выше параметр, тем лучше.
  • Разрешение. Отвечает за максимальное количество пикселей, выводимое на экран (например, 1920×1080 пикселей). Если у Вас монитор с высоким разрешением обязательно проверьте, чтобы желаемая видеокарта его поддерживала.
  • Версия Shader Model. Этот параметр переводится как версия шейдеров. В определенном смысле можно сравнить с прошивкой у смартфона. Новые видеокарты отличаются от старых более высокой версией шейдеров. Сменить версию шейдеров никак нельзя. С увеличением качества графики в современных играх растет и требование к версии шейдеров. Именно по этой причине на старых видеокартах часто не запускаются новые игры. Обозначается данный параметр числом (например, 4.0 или 5.0). Решая, какую видеокарту выбрать, не забудьте проверить шейдеры.
  • Пропускная способность памяти. Интересная характеристика, которая зависит от частоты памяти видеокарты и разрядности шины памяти. Очень часто пользователи забывают обратить на нее внимание. Измеряется в Гб/с, имеет обозначение ПСП. Если пропускная способность памяти не указана в характеристиках карты, то можно ее рассчитать самостоятельно. ПСП = частота памяти х разрядность шины памяти. Для игровой видеокарты параметр ПСП должен быть больше 70-75 Гб/с.
  • Версия DirectX. Современные игры используют более высокую версию DirectX. Для запуска игр, в которых применяются наиболее современные технологии и для просмотра наиболее качественного изображения Вашей видеокарте потребуется поддержка DirectX 12.
  • Разъемы. Перед тем, как выбрать видеокарту нужно обязательно обратить внимание на наличие и тип разъемов. Наиболее распространенные разъемы на сегодняшний день это HDMI, DisplayPort и D-Sub (VGA). Первые два из них цифровые, поэтому рекомендуется наличие на видеокарте хотя бы одного из разъемов HDMI или DisplayPort.
  • Интерфейс видеокарты. Простыми словами интерфейс видеокарты это слот, через который она подключается к материнской плате. Жизненно необходимо, чтобы материнская плата была совместима с выбранной видеокартой. В противном случае Вы просто не сможете подключить карту к плате. Современные видеокарты выпускаются с интерфейсом PCI-Express x16, который подразделяется на версии (1.0, 2.0, 3.0). Более современный интерфейс обеспечит максимально продуктивную работу видеокарты.
  • Система охлаждения и питание. Видеокарта является одним из самых энергопотребяемых компонентов компьютера. Каждая видеокарта имеет такую характеристику как потребляемая мощность, указывается она в Вт. Обязательно подберите подходящий по мощности блок питания, иначе видеокарта не будет включаться. Если у Вас уже собран компьютер, и Вы обновляете только видеокарту, тогда следите, чтобы потребляемая мощность не превышала возможностей блока питания. Система охлаждения видеокарты должна быть тихой и эффективной. Бывает активная (радиатор + кулеры) и пассивная (только радиатор). Второй вариант отличается бесшумностью, но меньшей производительностью. Для мощных игровых карт предпочтение отдается только активным системам охлаждения, вплоть до водяного охлаждения.
  • SLI и CrossFire. За этими интересными названиями кроется серьезная возможность создания систем повышенной мощности на базе нескольких видеокарт. Для совместной работы нескольких карт требуется специальный мостик-переходник, с помощью которого видеокарты соединяются между собой. Для реализации такой возможности и материнская плата и видеокарты должны поддерживать эту технологию (SLI у видеокарт NVidia и CrossFire у видеокарт AMD).Математическая логика подсказывает, что две или три видеокарты будут потреблять больше мощности, чем одна. Об этом следует помнить при построении таких систем. Но вопреки ожиданиям производительность двух видеокарт в режиме SLI или CrossFire не будет превышать производительность одной карты в два раза.

Разобравшись во всех описанных нами характеристиках, Вы сможете уверенно решить, какую видеокарту выбрать. Напомним, что особенно стоит обратить внимание на первые четыре характеристики:

  • Объем видеопамяти
  • Тип памяти
  • Разрядность шины памяти
  • Частота графического процессора и памяти

Как выбрать видеокарту для простых задач

Если Вас интересует простая видеокарта для офисного компьютера или для домашней машины (например, для серфинга в сети и работы с нетребовательными приложениями), то учитывать и подбирать все описанные характеристики Вам совсем не обязательно. В большинстве случаев, Вам хватит мощности встроенной видеокарты в процессор или материнскую плату, и выбирать дискретный видеоадаптер есть смысл только при отсутствии интегрированного решения. В таком случае, обратите внимание, что материнская плата должна поддерживать интерфейс видеокарты, а так же посмотрите, какими разъемами для видео оснащен ваш монитор. Затем, ориентируясь на эти характеристики, подберите бюджетную недорогую карту и ее производительности с лихвой хватит для несложной работы.

Заключение

Мы подробно разобрали вопрос о том, как выбрать видеокарту и какие характеристики в большей степени влияют на общую производительность видеокарты. Также мы познакомили Вас с полезным скриптом в котором собраны наиболее производительные видеокарты на конец 2014 года.

Шина памяти – оптимальное значение? Разрядность шины памяти видеокарты

Характеристики видеокарт. Что такое шина памяти видеоадаптера. На что влияет ширина шины видеокарты – 128bit, 256bit, 384bit, с какой разрядностью шины памяти выбрать видеокарту. Максим: — Доброго времени суток, Denker. Интересует шина памяти видеокарты .

Почитал Вашу переписку с «нуждающимися» и позавидовал Вашему терпению и самообладанию. Надеюсь, и меня вытерпите. Моему компьютеру, как и любому смертному, пришла пора уходить на покой. Менять комплектующие всё сразу не получается, начать хочу с видеокарты, под будущую покупку материнки с процессором и памятью (если БП потребуется). Три дня лажу по Яндекс Маркету, смотрю разные видеокарты, оцениваю характеристики и чем дальше, тем голова квадратнее.

Позвонил другу, посоветоваться с ним, шарит вроде в компьютерах, но толком ничего сказать не может. У него видеокарта 9600GT 512Mb шина памяти 256bit. Залез я на сайт Nvidia, сравнил характеристики его видеоадаптера с теми, что глядел на Яндексе и ужаснулся! Разрядность шины памяти у него 256bit, а у кучи видеокарт, которые сейчас в продаже, шина памяти как и у меня – 128bit!

А ведь у него видеокарта тоже, мягко говоря, не новая! Я-то думал, прогресс вперед идет, а получается что разрядность шины видеопамяти у многих новых видеокарт такие же, как и у моей 4-х летней? Это производитель нас дурит немного, получается? Повышая одни параметры, другие оставляет на прежнем уровне? Понятно, что есть и с 256-битной шиной памяти видеоадаптеры и с 320-битной. Но они и стоят подороже. Вот и сломал я голову уже. Что ж выбрать — шину памяти, частоту, или объём памяти может в 2048 mb?

Вот пример — видеокарта Sparkle GeForce GTX 550 Ti 900Mhz, разрядность шины памяти 192bit, стоит примерно 4000 рублей. MSI GeForce GTS 450 783Mhz, ZOTAC GeForce GTS 450 875Mhz при 128bit стоят примерно столько же. ASUS GeForce GTS 450 594Mhz немногим дешевле и тоже шина памяти 128bit.

В чем подвох? В производителе? А есть карта Leadtek GeForce 9800 GT 550Mhz, вообще разрядность шины видеопамяти на 256bit и тоже с 1Гб памяти, так может она лучше, хоть и древняя? Вот и хочу я узнать – имеет смысл выбор видеоадаптера по шине памяти, либо какой параметр при выборе видеокарты все-таки определяющий (кроме денег конечно), и какую видеокарту лучше купить примерно за 4000 рублей.

Тут всех интересует, не будет ли процессор «мешать» видеокарте, а я взять в толк не могу, как в описанных мной видеокартах 128bit шина памяти уживается с частотой под 900Mhz, если у 9800 GT при частоте 550 разрядность шины памяти 256bit? Прошу прощения за длиннющее письмо. Но вот давит меня жаба 6-7 тыс. за видеокарту отдавать, да и жена не поймет.

Домашний компьютер:
Материнка: GA-M56S-S3 socket AM2
Процессор: Athlon 64 x2 5200+
Видеокарта: GeForce 8600GTS 256Mb шина 128bit
Память – 2 GB DDR2 800
Винты – 2 шт. на 250 и 320Gb

Серьезный вопрос, по этой теме, думаю, можно защищать диссертацию, НО. Назло инженерам компаний мы не будем залазить в дебри научного прогресса, а поищем ответ на поверхности. Для тех, кто использует шину как медицинский термин, поясню — что такое шина памяти видеокарты, а там уж глядишь выйдем на понимание термина разрядность шины памяти, с чем едят и сколько нужно 384bit, 256bit или 128bit хватит. Итак.

Шина памяти видеокарты – это магистраль, связывающая графический процессор и память видеокарт. Шиной памяти обеспечивается транспортировка данных (двухсторонний обмен) между GPU и памятью. Объем передаваемой информации за один такт называется пропускной способностью шины или разрядностью шины памяти видеокарты.

В общем, все предельно просто — чем шире обеспечивается канал шиной, тем больше информации для расчетов доступно графическому процессору, за единицу времени. НО. Это с одной стороны и эта информация о шинах памяти многих заводит в заблуждение, так как продавцы, пользуясь случаем продать старье, очень редко открывают вторую сторону медали.

А именно – для того чтоб полноценно использовать предоставленную разрядность шины памяти нужен достаточно мощный GPU, чтоб увеличенная шина видеокарты использовалась на полную, а не являлась ценовым довеском. Это же касается и объема видеопамяти, избыточная память важна для CrossFireX и SLI систем.

У современных видеокарт шина памяти является следствием борьбы инженеров с тремя составляющими – мощность GPU + быстродействие видеопамяти + ценовое позиционирование графического ускорителя. Другими словами — разрядность шины памяти именно такая, какая нужна для оптимальной цены и производительности видеокарт.

Используя ваш пример с видеокартами — GeForce GTS 450 шина памяти 128bit и GeForce GTX 550 Ti шина видеокарты 192bit – расширим представление, добавив количество вычислительных блоков GPU и значения номинальных частот адаптеров. GTS450 = 192/32/16 — 783/1566/3600MHz и GTX550Ti = 192/32/24 — 900/1800/4100MHz, как вы видите 550Ti чуть мощней, чуть быстрей и обеспечивается большей разрядностью канала шины памяти. Дальше больше и шире, как следствие видеокарту GeForce 450, точнее ее процессор, можно считать пороговым значением для 128bit шины памяти.

К вопросу о производителе – маркетологи внесли немалый вклад в раздутие понятия разрядности шины. И порой доходило до смешного – выставляли шину памяти чуть ли не основной характеристикой видеокарты. Я же вам говорю следующее – не обязательно что-то делать больше в два раза, чтоб оно работало эффективней – можно ведь усовершенствовать технологию. А также, говорю — нет шине памяти 256bit GeForce 9800GT – видеокарта устарела.

И мой совет потребителю — покупая видеокарту по цене ниже 100$, обязательно уточняйте разрядность шины памяти, производитель может срезать этот параметр для удешевления продукции. Покупая видеоадаптер дороже 100$, прежде всего, смотрите на тесты производительности референсного образца видеокарты (номинал от Nvidia или AMD ATI). Это важнее – сравнение видеокарт тесты 2014. Шина памяти будет равна оптимальному значению, случаи искусственного урезания сведены к нулю.

Основной упор в выборе видеокарты делайте на соотношение цены/производительности, учитывайте частоту, объем памяти по отношению к номиналу, возможность разгона либо заводской разгон. Разрядность шины памяти не оставляйте без внимания (мало ли что), но и не предавайте особого значения. И главное не забывайте покупку видео карты увязывать с покупкой процессора. Что важнее процессор или видеокарта.

При копировании материала ссылка на сайт обязательна!

С наилучшими $ пожеланиями
Denker.

Разрядность шины или битность: что это и на что влияет в видеокарте?

Приветствую, дорогие друзья! А вы уже читали публикацию о том, из чего состоит современная видеокарта для ПК? Если еще нет, советую незамедлительно ознакомиться для более глубокого понимания сегодняшней темы.

Вероятно, вы уже слышали о таком параметре, как разрядность шины памяти на видеокарте, что это такое, на что влияет, как узнать или посмотреть и можно ли ее как-нибудь изменить, вы узнаете из этой статьи.

Понятие разрядности

Вероятно, вы уже знаете, как устроена видеокарта, поэтому сильно углубляться в эту тематику я не буду. Графический процессор и видеопамять – отдельные блоки, каждый из которых выполняет свою задачу. Для обмена данных они связаны между собой специальной шиной. Естественно, как любая электроника, у этого компонента есть определенные ограничения.

В этом случае производительность видеокарты в целом, ограничена пропускной способностью канала, или битностью. Чаще всего в продаже можно найти графические ускорители со следующей производительностью:

  • Бюджетные – 64 бит;
  • Среднего класса – 128, 192 или 256 бит;
  • Топовые – 256 бит или 512 бит.

От разрядности, как и от некоторых прочих показателей, зависит конечная стоимость видеокарты. При прочих равных параметрах модель с большей битностью обойдется дороже, однако и производительность ее будут выше.

Можно компенсировать недостаток пропускной способности повышением частоты ядра и видеопамяти, для чего придется использовать более качественные компоненты. В итоге цена будет все равно выше.

Такое решение впервые применила компания AMD в линейке Radeon HD 5xxx (вероятно, вы о них слышали и раньше), которые на момент выпуска, продемонстрировали очень неплохие результаты.

Хочу также отметить, что по производительности видеокарта с памятью DDR5 и шириной канала 128 бит, не уступает устройству с шириной канала 256 бит, где используется память DDR3.

Самыми популярными сегодня являются карты среднего класса, с шириной канала 128 бит и 192 – их больше всего представлено на рынке. И да, можно собрать средний по параметрам игровой компьютер и на такой видеокарте, если на эту затею не хочется тратить слишком много денег.

Как узнать разрядность

Этот параметр указан в спецификации на видеокарту, которую всегда можно найти на сайте производителя. Кроме того, характеристику указывают в интернет-магазинах, да и на ценнике в оффлайновом магазине обычно тоже.

Если же вы хотите узнать разрядность, которая уже используется на вашем компьютере, самый простой способ – установить бесплатную утилиту GPU‑Z. Интересующую характеристику можно найти во вкладке «Видеокарта», напротив пункта «Ширина шины».

Учитывайте, что программа не предназначена для разгона или проведения тестов – она только определяет заводские характеристики устройства.

Можно ли повысить эту характеристику

Увы, нет. Ширина шины – фиксированная величина, которая зависит от конструкции графического ускорителя. Но это совсем не означает, что нельзя разогнать по другим параметрам – многие модели поддерживают повышение частоты ядра и видеопамяти.

Для чего это делать? Рано или поздно наступает момент, когда видеокарта, которая прекрасно запускала любимые игры и необходимые программы, не вытягивает очередную новинку игропрома.

Вот, собственно, и все на эту тему. Теперь вы знаете, что значит понятие разрядности шины и за что отвечает эта характеристика. Тем, кто всерьез заинтересовался видеокартами. Также советую почитать статьи моего блога «Техпроцесс: его влияние и что это такое» и «Дискретная карта в ПК и что это такое».

А тем, кто уже направляется в магазин, с целью приобретения нового девайса, советую обратить внимание на Asus PCI-Ex GeForce GTX 1060 Dual 3GB (DUAL-GTX1060-O3G), с помощью которой можно комфортно поиграть во все современные игры.

Спасибо за внимание и до следующих встреч, друзья! Не забудьте поделиться этой публикацией в социальных сетях и подписаться на новостную рассылку.

Источник

Содержание

  • 1 Как узнать частоту материнской платы
    • 1.1 Аппаратные факторы производительности:
    • 1.2 Ядра
    • 1.3 Частоты процессора, памяти и шин материнской платы
    • 1.4 Кэши
    • 1.5 Оперативная память
    • 1.6 Графическая подсистема
    • 1.7 Подсистема накопителей
    • 1.8 Программные факторы производительности:
    • 1.9 Способы определения оперативной памяти совместимой с материнской платой
  • 2 Основные шины компьютера
    • 2.1 Что такое шина компьютера
    • 2.2 Виды системных шин
    • 2.3 Шина ISA
    • 2.4 Шина MCA
    • 2.5 Шина EISA
    • 2.6 Шина VESA
    • 2.7 Шина PCI
    • 2.8 Шина AGP
    • 2.9 PCI-Express
    • 2.10 PC Card
    • 2.11 Шина SCSI
    • 2.12 Шина USB
    • 2.13 Выводы
  • 3 Как правильно выбрать планшетный компьютер
    • 3.1 Для чего он нужен?
    • 3.2 Цель покупки
    • 3.3 Важные параметры
    • 3.4 ОС
    • 3.5 IOS
    • 3.6 Android
    • 3.7 Windows
    • 3.8 Корпус
    • 3.9 Тип матрицы
    • 3.10 Память
    • 3.11 Как выбрать планшетный компьютер
  • 4 CPU-Z CPUID – Если нужно узнать характеристики процессора и не только
    • 4.1 CPU
    • 4.2 CACHES
    • 4.3 MAINBOARD
    • 4.4  MEMORY
    • 4.5 SPD
    • 4.6 GRAPHICS
    • 4.7 ABOUT
  • 5 Факторы и настройки производительности компьютера | Компьютерная служба

Как узнать частоту материнской платы

Как узнать какая шина на материнской плате

Многие пользователи задаются вопросом, что в наибольшей степени влияет на производительность компьютера?

Оказывается, однозначного ответа на этот вопрос дать нельзя.

Компьютер – это набор подсистем (памяти, вычислительная, графическая, хранения), взаимодействующих друг с другом через материнскую плату и драйверы устройств.

При неправильной настройке подсистем они не обеспечивают максимальную производительность, которую могли бы выдать.

Комплексная производительность складывается из программных и аппаратных настроек и особенностей. Перечислим их.

Аппаратные факторы производительности:

  1. Количество ядер процессора – 1, 2, 3 или 4
  2. Частота процессора и частота системной шины (FSB) процессора – 533, 667, 800, 1066, 1333 или 1600 МГц
  3. Объем и количество кэш-памяти процессора (CPU) – 256, 512 Кбайт; 1, 2, 3, 4, 6, 12 Мбайт.
  4. Совпадение частоты системной шины CPU и материнской платы
  5. Частота оперативной памяти (RAM) и частота шины памяти материнской платы – DDR2-667, 800, 1066
  6. Объем оперативной памяти – 512 и более Мбайт
  7. Используемый на материнской плате чипсет (Intel, VIA, SIS, nVidia, ATI/AMD)
  8. Используемая графическая подсистема – встроенная в материнскую плату или дискретная (внешняя видеокарта со своей видеопамятью и графическим процессором)
  9. Тип интерфейса винчестера (HDD) – параллельный IDE или последовательные SATA и SATA-2
  10. Кэш винчестера – 8, 16 или 32 МБ.

Увеличение перечисленных технических характеристик всегда увеличивает производительность.

Ядра

На данный момент большинство выпускаемые процессоров имеют как минимум 2 ядра (кроме AMD Sempron, Athlon 64 и Intel Celeron D, Celeron 4xx).

Количество ядер актуально в задачах 3D-рендеринга или кодирования видео, а также в программах, код которых оптимизирован под многопоточность нескольких ядер.

В остальных случаях (например, в офисных и интернет-задачах) они бесполезны.

Четыре ядра имеют процессоры Intel Core 2 Extreme и Core 2 Quad со следующими маркировками: QX9xxx, Q9xxx, Q8xxx, QX6xxx; AMD Phenom X3 – 3 ядра;

AMD Phenom X4 – 4 ядра.

Надо помнить, что количество ядер значительно увеличивает энергопотребление CPU и повышает требования по питанию к материнской плате и блоку питания!

А вот поколение и архитектура ядра сильно влияют на производительность любого процессора. К примеру, если взять двухядерные Intel Pentium D и Core 2 Duo с одинаковой частой, системной шиной и кэш-памятью, то Core 2 Duo несомненно выиграет.

Частоты процессора, памяти и шин материнской платы

Также очень важно, чтобы совпадение частот различных комплектующих.
Скажем, если ваша материнская плата поддерживает частоту шины памяти 800 МГц, а установлен модуль памяти DDR2-677, то частота модуля памяти будет снижать производительность.

В то же время, если материнская плата не поддерживает частоту 800 МГц, а в то время как установлен модуль DDR2-800, то он работать будет, но на меньшей частоте.

Кэши

Кэш памяти процессора в первую очередь сказывается при работе с CAD-системами, большими базами данных и графикой.

Кэш — это память с большей скоростью доступа, предназначенная для ускорения обращения к данным, содержащимся постоянно в памяти с меньшей скоростью доступа (далее «основная память»).

Кэширование применяется ЦПУ, жёсткими дисками, браузерами и веб-серверами.

Когда CPU обращается к данным, прежде всего исследуется кэш. Если в кэше найдена запись с идентификатором, совпадающим с идентификатором затребованного элемента данных, то используются элементы данных в кэше. Такой случай называется попаданием кэша.

Если в кэше не найдено записей, содержащих затребованный элемент данных, то он читается из основной памяти в кэш, и становятся доступным для последующих обращений. Такой случай называется промахом кэша.

Процент обращений к кэшу, когда в нём найден результат, называется уровнем попаданий или коэффициентом попаданий в кэш.
Процент попаданий в кэш у процессоров Intel выше.

Все CPU отличаются количеством кэшей (до 3) и их объемом. Самый быстрый кэш – первого уровня (L1), самый медленный – третьего (L3). Кэш L3 имеют только процессоры AMD Phenom Так что очень важно, чтобы именно кэш L1 имел большой объем.

Мы протестировали зависимость производительности от объема кэш-памяти.

Если вы сравните результаты 3D-шутеров Prey и Quake 4, являющих типичными игровыми приложениями, разница в производительности между 1 и 4 Мбайт примерно такова, как между процессорами с разницей по частоте 200 МГц.

То же самое касается тестов кодирования видео для кодеков DivX 6.6 и XviD 1.1.2, а также архиватора WinRAR 3.7. Однако, такие интенсивно нагружающие CPU приложения, как 3DStudio Max 8, Lame MP3 Encoder или H.

264 Encoder V2 от MainConcept не слишком сильно выигрывают от увеличения размера кэша.

Напомним, что кэш L2 гораздо больше влияет на производительность CPU Intel Core 2, чем AMD Athlon 64 X2 или Phenom, так как у Intel кэш L2 общий для всех ядер, а у AMD отдельный для каждого ядра! В этом плане, Phenom оптимальнее работают с кэшем.

Оперативная память

Как уже было сказано, оперативная память характеризуется частотой и объемом. В то же время сейчас выпускается 2 типа памяти DDR2 и DDR3, которые различаются архитектурной, производительностью, частотой и напряжением питания – то есть всем!
Частота модуля памяти должна совпадать с частотой самого модуля.

Объем оперативной памяти также влияет на производительность операционной системы и на ресурсоемкие приложения. Расчеты просты – ОС Windows XP занимает в оперативной памяти после загрузки 300-350 МБ. Если в автозагрузке находятся дополнительные программы, то они также загружают RAM.

То есть свободных остается 150-200 МБ. Туда могут поместиться только легкие офисные приложения. Для комфортной работы с AutoCAD, графическими приложениями, 3DMax, кодированием и графикой требуется не менее 1 ГБ оперативной памяти. Если же используется Windows Vista – то не менее 2 ГБ.

Графическая подсистема

Часто в офисных компьютерах используются матерински платы, имеющие встроенную графику. Материнские платы на таких чипсетах (G31, G45, AMD 770G и т.д.

) имеют букву G в маркировке.

Такие встроенные видеокарты используются часть RAM для видеопамяти, тем самым уменьшая объем доступного для пользователя пространства RAM.

Соответственно, для увеличения производительности встроенную видеокарту надо отключать в BIOS материнской платы, а в слот PCI-Express устанавливать внешнюю (дискретную) видеокарту. Все видеокарты различаются графическим чипсетом, частотой работы его конвейеров, количеством конвейеров, частотой видеопамяти, разрядностью шины видеопамяти.

Подсистема накопителей

Производительность накопителей очень сильно сказывается при обращении к большим объемам данных – видео, аудио, а также при открытии большого количества маленьких файлов.

Из технических характеристик, влияющих на скорость доступа к файлам надо отметить Тип интерфейса винчестера (HDD) – параллельный IDE или последовательные SATA и SATA-2 и кэш винчестера – 8, 16 или 32 МБ. На данный момент рекомендуется устанавливать винчестеры только с интерфейсом SATA-2, имеющим наибольшую пропускную способность и с наибольшим кэшем.

Программные факторы производительности:

  1. Количество установленных программ
  2. Фрагментация файловой системы
  3. Ошибки файловой системы, bad-секторы
  4. Фрагментация реестра ОС
  5. Ошибки реестра ОС
  6. Размер файла подкачки (объем виртуальной памяти)
  7. Включенные элементы визуализации графического интерфейса ОС
  8. Программы и службы Windows, загружающие в автозагрузке

Это далеко не полный список, но именно эти особенности ОС Windows могут сильно тормозить её работу.
Но об этих характеристиках, настройках и параметрах мы поговорим в следующей статье.

Источник:

Способы определения оперативной памяти совместимой с материнской платой

Ранее мы писали о преимуществах и недостатках планок DDR 3 и DDR 4, сравнивая два типа оперативной памяти. Сегодня предлагаем ознакомиться с советами, которые касаются способов корректного выбора модулей ОЗУ под определённую модель материнской платы.

Источник: https://novpedkolledg2.ru/lajfhak/kak-uznat-chastotu-materinskoj-platy.html

Основные шины компьютера

Компьютер состоит из множества различных компонентов, это центральный процессор, память, жесткий диск, а также огромное количество дополнительных и внешних устройств, таких как экран, мышка клавиатура, подключаемые флешки и так далее. Всем этим должен управлять процессор, передавать и получать данные, отправлять сигналы, изменять состояние.

Для реализации этого взаимодействия все устройства компьютера связаны между собой и с процессором через шины.

Шина — это общий путь, по которому информация передается от одного компонента к другому.

В этой статье мы рассмотрим основные шины компьютера, их типы, а также для соединения каких устройств они используются и зачем это нужно.

Что такое шина компьютера

Как я уже сказал — шина — это устройство, которое позволяет связать между собой несколько компонентов компьютера. Но к одной шине могут быть подключены несколько устройств и у каждой шины есть свой набор слотов для подключения кабелей или карт.

Фактически, шина — это набор электрических проводов, собранных в пучок, среди них есть провода питания, а также сигнальные провода для передачи данных. Шины также могут быть сделаны не в виде внешних проводов, а вмонтированы в схему материнской платы.

По способу передачи данных шины делятся на последовательные и параллельные. Последовательные шины передают данные по одному проводнику, один бит за один раз, в параллельных шинах передача данных разделена между несколькими проводниками и поэтому можно передать большее количество данных.

Виды системных шин

Все шины компьютера можно разделить за их предназначением на несколько типов. Вот они:

  • Шины данных — все шины, которые используются для передачи данных между процессором компьютера и периферией. Для передачи могут использоваться как последовательный, так и параллельный методы, можно передавать от одного до восьми бит за один раз. По размеру данных, которые можно передать за один раз такие шины делятся на 8, 16, 32 и даже 64 битные;
  • Адресные шины — связаны с определенными участками процессора и позволяют записывать и читать данные из оперативной памяти;
  • Шины питания — эти шины питают электричеством различные, подключенные к ним устройства;
  • Шина таймера — эта шина передает системный тактовый сигнал для синхронизации периферийных устройств, подключенных к компьютеру;
  • Шина расширений — позволяет подключать дополнительные компоненты, такие как звуковые или ТВ карты;

В то же время, все шины можно разделить на два типа.

Это системные шины или внутренние шины компьютера, с помощью которых процессор соединяется с основными компонентами компьютера на материнской плате, такими как память.

Второй вид — это шины ввода/вывода, которые предназначены для подключения различных периферийных устройств. Эти шины подключаются к системной шине через мост, который реализован в виде микросхем процессора.

Также к шинам ввода/вывода подключается шина расширений. Именно к этим шинам подключаются такие компоненты компьютера, как сетевая карта, видеокарта, звуковая карта, жесткий диск и другие и их мы более подробно рассмотрим в этой статье.

Вот наиболее распространенные типы шин в компьютере для расширений:

  • ISA — Industry Standard Architecture;
  • EISA — Extended Industry Standard Architecture;
  • MCA — Micro Channel Architecture;
  • VESA — Video Electronics Standards Association;
  • PCI — Peripheral Component Interconnect;
  • PCI-E — Peripheral Component Interconnect Express;
  • PCMCIA — Personal Computer Memory Card Industry Association (также известна как PC bus);
  • AGP — Accelerated Graphics Port;
  • SCSI — Small Computer Systems Interface.

А теперь давайте более подробно разберем все эти шины персональных компьютеров.

Шина ISA

Раньше это был наиболее распространенный тип шины расширения. Он был разработан компанией IBM для использования в компьютере IBM PC-XT. Эта шина имела разрядность 8 бит. Это значит что можно было передавать 8 бит или один байт за один раз. Шина работала с тактовой частотой 4,77 МГц.

Для процессора 80286 на базе IBM PC-AT была сделана модификация конструкции шины, и теперь она могла передавать 16 бит данных за раз. Иногда 16 битную версию шины ISA называют AT.

Из других усовершенствований этой шины можно отметить использование 24 адресных линий, что позволяло адресовать 16 мегабайт памяти.

Эта шина имела обратную совместимость с 8 битным вариантом, поэтому здесь можно было использовать все старые карты.

Первая версия шины работала на частоте процессора — 4,77 МГц, во второй реализации частота была увеличена до 8 МГц.

Шина MCA

Компания IBM разработала эту шину в качестве замены для ISA, для компьютера PS/2, который вышел в 1987 году.

Шина получила еще больше усовершенствований по сравнению с ISA.

Например, была увеличена частота до 10 МГц, а это привело к увеличению скорости, а также шина могла передавать 16 или 32 бит данных за раз.

Также была добавлена технология Bus Mastering. На плате каждого расширения помещался мини-процессор, эти процессоры контролировали большую часть процессов передачи данных освобождая ресурсы основного процессора.

Одним из преимуществ этой шины было то, что подключаемые устройства имели свое программное обеспечение, а это значит что требовалось минимальное вмешательство пользователя для настройки.

Шина MCA уже не поддерживала карты ISA и IBM решила брать деньги от других производителей за использование этой технологии, это сделало ее непопулярной с сейчас она нигде не используется.

Шина EISA

Эта шина была разработана группой производителей в качестве альтернативы для MCA.

Шина была приспособлена для передачи данных по 32 битному каналу с возможностью доступа к 4 Гб памяти.

Подобно MCA для каждой карты использовался микропроцессор, и была возможность установить драйвера с помощью диска. Но шина все еще работала на частоте 8 МГц для поддержки карт ISA.

Слоты EISA в два раза глубже чем ISA, если вставляется карта ISA, то она использует только верхний ряд разъемов, а EISA использует все разъемы. Карты EISA были дорогими и использовались обычно на серверах.

Шина VESA

Шина VESA была разработана для стандартизации способов передачи видеосигнала и решить проблему попыток каждого производителя придумать свою шину.

Шина VESA имеет 32 битный канал передачи данных и может работать на частоте 25 и 33 МГц. Она работала на той же тактовой частоте, что и центральный процессор.

Но это стало проблемой, частота процессора увеличивается и должна была расти скорость видеокарт, а чем быстрее периферийные устройства, тем они дороже.

Из-за этой проблемы шина VESA со временем была заменена на PCI.

Слоты VESA имели дополнительные наборы разъемов, а поэтому сами карты были крупными. Тем не менее сохранялась совместимость с ISA.

Шина PCI

Peripheral Component Interconnect (PCI) — это самая новая разработка в области шин расширений.

Она является текущем стандартом для карт расширений персональных компьютеров. Intel разработала эту технологию в 1993 году для процессора Pentium.

С помощью этой шины соединяется процессор с памятью и другими периферийными устройствами.

PCI поддерживает передачу 32 и 64 разрядных данных, количество передаваемых данных равно разрядности процессора, 32 битный процессор будет использовать 32 битную шину, а 64 битный — 64 битную. Работает шина на частоте 33 МГц.

В PCI можно использовать технологию Plug and Play (PnP). Все карты PCI поддерживают PnP. Это значит, что пользователь может подключить новую карту, включить компьютер и она будет автоматически распознана и настроена.

Также тут поддерживается управление шиной, есть некоторые возможности обработки данных, поэтому процессор тратит меньше времени на их обработку. Большинство PCI карт работают на напряжении 5 Вольт, но есть карты, которым нужно 3 Вольта.

Шина AGP

Необходимость передачи видео высокого качества с большой скоростью привела к разработке AGP. Accelerated Graphics Port (AGP) подключается к процессору и работает со скоростью шины процессора. Это значит, что видеосигналы будут намного быстрее передаваться на видеокарту для обработки.

AGP использует оперативную память компьютера для хранения 3D изображений. По сути, это дает видеокарте неограниченный объем видеопамяти. Чтобы ускорить передачу данных Intel разработала AGP как прямой путь передачи данных в память. Диапазон скоростей передачи — 264 Мбит до 1,5 Гбит.

PCI-Express

Это модифицированная версия стандарта PCI, которая вышла в 2002 году. Особенность этой шины в том что вместо параллельного подключения всех устройств к шине используется подключение точка-точка, между двумя устройствами. Таких подключений может быть до 16.

Это дает максимальную скорость передачи данных. Также новый стандарт поддерживает горячую замену устройств во время работы компьютера.

PC Card

Шина Personal Computer Memory Card Industry Association (PCICIA) была создана для стандартизации шин передачи данных в портативных компьютерах.

Шина SCSI

Шина SCSI была разработана М. Шугартом и стандартизирована в 1986 году.

Эта шина используется для подключения различных устройств для хранения данных, таких как жесткие диски, DVD приводы и так далее, а также принтеры и сканеры.

Целью этого стандарта было обеспечить единый интерфейс для управления всеми запоминающими устройствами на максимальной скорости.

Шина USB

Это стандарт внешней шины, который поддерживает скорость передачи данных до 12 Мбит/сек.

Один порт USB (Universal Serial Bus) позволяет подключить до 127 периферийных устройств, таких как мыши, модемы, клавиатуры, и другие устройства USB. Также поддерживается горячее удаление и вставка оборудования.

На данный момент существуют такие внешние шины компьютера USB, это USB 1.0, USB 2.0, USB 3.0, USB 3.1 и USB Type-C.

USB 1.0 был выпущен в 1996 году и поддерживал скорость передачи данных до 1,5 Мбит/сек. Стандарт USB 1.1 уже поддерживал скорость 12 Мбит/сек для таких устройств, как жесткие диски.

https://www.youtube.com/watch?v=0tlSeVm—g0

Более новая спецификация — USB 2.0 появилась в 2002 году. Скорость передачи данных выросла до 480 Мбит/сек, а это в 40 раз быстрее чем раньше.

USB 3.0 появился в 2008 году и поднял стандарт скорости еще выше, теперь данные могут передаваться со скоростью 5 Гбит/сек.

Также было увеличено количество устройств, которые можно питать от одного порта. USB 3.1 был выпущен в 2013 и тут уже поддерживалась скорость до 10 Гбит/с.

Также для этой версии был разработан компактный разъем Type-C, к которому коннектор может подключаться любой стороной.

Выводы

В этой статье мы рассмотрели основные шины компьютера, историю их развития, назначение шин компьютера, их типы и виды. Надеюсь эта статья была для вас полезной и вы узнали много нового.

На завершение небольшое видео про шины и интерфейсы компьютера:

Источник: https://losst.ru/osnovnye-shiny-kompyutera

Как правильно выбрать планшетный компьютер

В эру современных технологий трудно удивить кого-то наличием планшета. Это компактное устройство, способное заменить и телефон, и целый компьютер. На многих гаджетах есть опция звонка, достаточно только вставить SIM-карту.

Помимо этого, через него можно выйти в интернет, прибор поддерживает опции 4G, 3G, Wi-Fi. Как же найти среди всего разнообразия, представленного на рынке сейчас, идеальное устройство? Рассмотрим детальнее, как выбрать планшет.

У каждого пользователи свои индивидуальные критерии для выбора планшета

Для чего он нужен?

Такие приборы, как планшет, сегодня есть даже у самых маленьких юзеров. Обычно их покупают ради развлечений, но иногда устройство способно выручить в работе. Среди основных возможностей выделяют следующее:

  • просмотр фото;
  • чтение книг;
  • набор документации при помощи различных приложений;
  • интернет-сёрфинг;
  • сканирование файлов посредством интегрированной камеры;
  • различные игры;
  • просмотр фильмов, роликов;
  • использование для прослушивания и создания музыки;
  • общение в соцсетях, e-mail.

К планшетам выпускаются и дополнительные «помощники», есть даже компактные клавиатуры. Основная масса юзеров пользуется встроенной в прибор виртуальной раскладкой.

Цель покупки

Как правильно выбрать планшет сегодня? Важно понять, для чего вы его собрались использовать.

Чтобы играть в игры и развлекаться, понадобится оборудование с хорошим железом.

Такой планшет обойдётся дороже, нежели бюджетная модель, но зато у вас будет компактный мини-компьютер, который не уступает ничем высокопроизводительным ПК.

Большинство людей покупает такие устройства для чтения материалов и просмотра фильмов. Если задача состоит в этом, есть смысл посмотреть в сторону более дешёвых моделей.

Важные параметры

Если хотите с комфортом пользоваться гаджетом, подбирайте максимально широкое разрешение и диагональ.

Конечно же, дороже стоят приборы с большой диагональю, но такие параметры подарят отличную детализацию.

Для фильмов подойдёт изделие с диагональю 10 дюймов (получить сантиметры можно, умножив это число на 2,54), для чтения и игр ребёнка будет достаточно и 7-дюймового гаджета.

Для соотношения сторон есть два варианта — почти квадратные и узкие устройства. Первые считаются универсальными, вторые разработаны для просмотра видео (16:9). Для 9,7-дюймовых решений стандартным разрешением считается 1024*768, для приборов с диагональю 7″ — 1026*600.

Чтобы получить контрастную, чёткую картинку, специалисты рекомендуют выбирать более высокое разрешение. Идеальный вариант — Full HD или вовсе 2560*1600, от которого нельзя будет оторвать взгляд!

ОС

Места на пьедестале среди ОС для планшетов делят сразу три компании — Microsoft, Apple, Google.

IOS

Приборы, работающие под контролем этой системы, занимают 30 процентов всего рынка. Её создателям, Apple, удалось стать первыми, кто представил планшеты миру. Продукция этого предприятия в современном мире пользуется невероятным спросом.

Их планшеты содержат стандартный пакет утилит: заметки, календарь, браузер, контакты, почта и тому подобное. Оборудование отличается быстротой и эффективностью работы.

ОС для этих изделий является уникальной, она используется только для продукции Apple.

Android

Google в противовес «яблочной» платформе разработал Anroid, на таких планшетах есть все приложения от именитого гиганта: , Gmail, Google Talk, Maps, Search и многое другое.

Из магазина от Google можно скачать тысячи бесплатных и платных утилит. Система работает добросовестно, бережёт энергию и не заставляет пользователя нервничать из-за каких-либо торможений.

Гибкость и быстрота — вот главные плюсы планшетов с Android. Почти 60% юзеров выбирают их!

Windows

Microsoft замыкает тройку лидеров, планшетами этой фирмы пользуется 10 процентов людей. Каждый из вас найдёт здесь широкий выбор полезных утилит.

Windows 8, уже знакомый каждому, радует своим плиточным интерфейсом. Воспользовавшись этим устройством, можно работать и в любимом Photoshop, и в пакете Office.

Прибор оптимально подойдёт для тех, кто хочет пользоваться рабочим ПК за пределами дома.

Корпус

Оборудование выпускается сегодня в корпусах из металла и пластика. С деловым костюмом лучше сочетается планшет, выпущенный в металлическом корпусе.

Он красивый, строгий и элегантный, добавляет своему владельцу уверенности и статуса. Минусом подобных изделий является вес, а также риск выскользнуть из рук.

Помимо всего этого, металлические планшеты хуже ловят Wi-Fi-сигнал (допустимое расстояние от роутера снижается).

Пластиковые изделия отлично «цепляются» за ладонь, поэтому уронить их сложнее.

Это явное преимущество, но есть и недочёты: во время долгого использования оборудование сильнее нагревается (пластиковые компоненты проводят тепло хуже, чем металл).

И если уже прибор упал на пол, существует высокий риск его окончательной потери — вряд ли пластиковый корпус защитит планшет от трещин.

Предприятие Samsung, к примеру, предлагает пользователям планшеты в корпусах из пластика, имитирующего кожу. Такое стильное решение порадует многих!

Продукция Apple не содержит пластика вообще, все элементы изготовлены из высококачественного алюминия. Китайские аналоги стилистически схожие, но выпускаются по более выгодным ценам. Вспомним о таких брендах, как Mystery, PRESTIGIO, SUPRA и т. п.

У Sony тоже есть интересная особенность — их планшеты оснащены защитой от влаги и пыли. Такими выносливыми, тонкими изделиями не может похвастаться никто. Параметрам Sony позавидует любой гаджет на планете!

С цветовой палитрой у каждого производителя всё хорошо. На рынке можно сейчас встретить устройство в любом исполнении.

Тип матрицы

Чтобы понять, как выбрать планшет, важно изучить все компоненты, из которых он создан. Матрица — важнейшая деталь любого гаджета. Существует три типа матрицы, в зависимости от которых подбирают устройство: MVA, IPS, TN+FILM.

Плюсом IPS является отсутствие дефектов фокусировки, угол обзора большой. Экран не мерцает на таких устройствах. Они используют больше энергии, а также стоят дороже.

TN+FILM матрицы могут похвастаться разумной ценой при среднем угле обзора, однако при яркой освещённости на экране тяжело увидеть что-либо. Такие устройства дают одну из худших цветопередач.

Матрицы MVA — отличный середняк. Это сочетание высокой чёткости, хорошей цветопередачи при угле обзора до 160 градусов. Если верить заявленным параметрам, то время отклика на таких экранах среднее.

Если на некоторых дешёвых моделях посмотреть внимательно вдоль экрана, можно увидеть неровную поверхность. Это важно знать, если вы собрались наклеить на устройство защитную плёнку (держаться она на подобном приборе будет из рук вон плохо).

Если подобие стекла или пластик ровные, это значит, что представленное оборудование отличается хорошей износостойкостью, клеить какую-либо плёнку на него не понадобится.

Помните, что недорогие модели служат максимум до 1,5 лет, не советуем покупать для дешёвых планшетов плёнку — деньги на ветер.

Память

Память в таких устройствах делится на два вида: физическая и оперативная. Если хочется закачать множество видеороликов, выбирайте планшеты с высокими показателями физической памяти. Сегодня есть варианты от 16 до 64 Гб. Многие приборы также могут иметь разъём для microSD карты.

Если говорить о RAM, то отметим, что скорость работы гаджета зависит именно от него. Минимум сегодня — 1 гигабайт, иначе вы не сможете даже запустить браузер.

Процессор для любителей игр должен быть двухъядерным, частота от 1,5 ГГц. Если вам нужен гаджет для просмотра роликов, эти показатели могут быть поскромнее.

Источник: http://NastroyVse.ru/devices/tablet/kak-pravilno-vybrat-planshet.html

Как выбрать планшетный компьютер

Вопрос выбора планшетного компьютера актуален как никогда. Современные планшеты позволяют работать, учиться и отдыхать. Ассортимент готовой продукции поражает воображение даже самого искушенного покупателя.

Сотни моделей, представленные на станицах интернет-магазинов, позволяют полностью перекрыть всевозможные потребности пользователя.

В рамках этой статьи мы постараемся наиболее емко ответить на вопрос о том, как правильно выбрать современный планшет под определенные задачи и бюджет.

Во-первых, необходимо акцентировать внимание на диагонали экрана. В широкой продаже представлены следующие размеры 7»,7.85’’,7.9’’, 8’’,8.9’’, 9’’,9.6’’,9.7’’,10’’10.1’’10.8’’,11.6’’.
Семи или восьми дюймовый планшетный компьютер выигрывает в плане обеспечения повышенной мобильности.

Начиная с 9.7’’ процесс чтения текста с экрана становится более приятным и щадящим для глаз. Широкоформатные планшеты с диагональю 10.1 и более дюймов хороши для использования дома. Их можно смело рекомендовать тем, кто желает комфортного просмотра качественного онлайн-видео и фильмов.

Во-вторых, доступ в Интернет – самая необходимая опция для любого планшета. Основная часть функциональности любого планшета раскрывается через интернет. Современные планшеты подключаются к сети тремя способа, а именно:

Wi-Fi – это самый старый и распространенный вариант подключение к сети. Таким способом можно выйти в глобальную сеть практически с любого планшета.

Основной недостаток Wi-Fi кроется в сильной привязке к зоне действия вашего домашнего Wi-Fi-маршрутизатора.

Чтобы преодолеть это ограничение необходимо наличие модуля 3G или 4G LTE.

Мобильный 3G интернет работает практически везде, поэтому вам больше не придется волноваться и задумываться о том, находитесь ли вы в зоне действия вашего домашнего роутера или нет. Наличие поддержки 4G не всегда оправдано. Итоговая стоимость планшетного компьютера будет сильно завышена, да и зона покрытия 4G сейчас не такая хорошая.

Источник: https://ichudoru.com/kak-uznat-kakaya-shina-na-materinskoy-plate/

CPU-Z CPUID – Если нужно узнать характеристики процессора и не только

Знать какие точные характеристики скрывает ваш центральный процессор, его частоту, количество ядер, маркировку, да и просто банально название, крайне полезно для общего развития и демонстрации знаний при выборе или замене этого устройства. В этом деле нам то и поможет маленькая программка под названием CPU-Z. Помимо определения типа процессора и его маркировки, она отображает различное множество других не менее важных характеристик процессора.

Итак, при запуске программы после непродолжительного сбора данных об установленных на компьютер вычислительных компонентах вы попадаете сразу на вкладку CPU, где отображаются все сведения о вашем процессоре. Пойдем по порядку.

CPU

  • Name – наименование модели процессора.
  • Code name – кодовое имя процессора. Техническое наименование, которое не используется маркетологами для продажи на рынке.
  • Package – показывает тип socket’а или гнезда для подключения к материнской плате.
  • Technology – нормы технологического процесса по которым был сделан процессор.
  • Core Voltage – показывает напряжение процессора.
  • Specification – строка выдающая полное название вашего процессора.
  • Family, Model, Stepping – определяет ядро и ревизию ядра процессора.
  • Ext. Family, Ext.model, Revision – определяет дополнительные регистры и ревизию ядра процессора.
  • Instructions – отображает набор инструкций, которые поддерживает процессор (SSE, SSE2, SSE 3, MMX, EM64T и другие)

Далее идут отображения данных тактовых частот процессора, шины:

  • Core Speed – тактовая частота центрального процессора, которая обновляется в реальном времени.
  • Multiplier – показывает множитель процессора.
  • Bus Speed – частота шины процессора.
  • Rated FSB – эффективная частота центрального процессора.

Тут же радом отображается информация о кэш-памяти процессора:

  • L1 Data – кэш-память первого уровня.
  • Level 2 – кэш-память второго уровня.
  • Level 3 – кэш-память третьего уровня.

Нижняя строчка, где находится меню Selection – позволяет выбрать процессор, для отображения его характеристик. Так же здесь показано количество ядер(Cores) процессора и количество потоков(Threads).

В этой программе помимо основных характеристик процессора можно более подробно посмотреть данные кэш-памяти процессора во вкладке Caches.

CACHES

Обычно тут отображается полный размер кэш-памяти Size – в Кб или Мб, а также строка Descriptor – которая отображает характеристики кэш-памяти, ассоциативность и объем линии кэша.

Помимо сведений о процессоре можно посмотреть информацию о вашей системной плате во вкладке Mainboard.

MAINBOARD

  • Manufacturer – производитель системной платы.
  • Model – номер модели материнской платы и ее ревизия.
  • Chipset – наименование производителя, тип модели и ревизия чипсета.
  • South bridge — название производителя, модели и ревизия южного моста.
  • LPCIO – мультиввод-вывод.

Далее идет техническая информация о компоненте BIOS:

  • Brand – наименование компании производителя BIOS.
  • Date – дата выпуска BIOS.

В группе Graphic Interface представлена информация о типе графической шины:

  • Version – версия порта (PCI, PCI-Express или AGP).
  • Transfer Rate – режим шины.
  • Max supported – режим шины поддерживаемый на максимальном уровне.
  • Sideband – дополнительная опция AGP шины.

Еще одна не менее интересная вкладка это Memory – сведения об установленной на ваш компьютер оперативной памяти.

 MEMORY

  • Type – тип или вид памяти (DDR, DDR2, DDR3).
  • Size – количество установленной оперативной памяти на компьютере в мегабайтах.
  • Channels # — показывает режим работы памяти, двухканальный или одноканальный.
  • DC mode – режимы при работе двухканального доступа.
  • NB Frequency – показывает частоту контроллера оперативной памяти.

Далее идут параметры тайминга оперативной памяти, которые показывают время выполнения определенного действия:

  • Frequency – реальная частота оперативной памяти.
  • FSB:DRAM – отображает соотношение частоты оперативной памяти и системной шины.
  • CAS# Latency (CL) – задержка чтения данных.
  • RAS# to CAS# Delay (tRCD) – минимальный промежуток времени между подачей сигнала на выбор строки и сигнала на выбор столбца.
  • RAS# Precharge (tRP) – скорость, предварительного заряда банка.
  • Cycle Time (tRAS) – наименьшее время активности строки.
  • Bank Cycle Time (tRC) – минимальное время между активацией строк одного банка.
  • Command Rate (CR) – отображает время, которое необходимо для декодирования команд и адресов.
  • DRAM Idle Timer – показывает количество тактов, если к страницы памяти не было обращений, принудительно закрывая и перезаряжая ее.
  • Total CAS# (tRDRAM) – тайминг, памяти RDRAM.
  • Row to Column (tRCD)  — ещё тайминг памяти RDRAM.

Так же помимо основных сведений об оперативной памяти, во вкладке SPD можно посмотреть характеристики отдельно взятого слота памяти.

Где будет отображаться техническая информация об установленной в определенный слот оперативной памяти.

Такие данные как размер в мегабайтах, ее частота, производитель, тип и другая полезная информация, которая касается определенного слота, куда установлена конкретная планка памяти.

SPD

Предпоследняя вкладка под названием Graphics тоже может оказаться полезной. В ней отображается информация об установленной на вашем компьютере графической карте.

GRAPHICS

  • Name – наименование графического адаптера.
  • Code name – кодовое имя чипа видео карты.
  • Technology – нормы технологического процесса по которым выполнен чип.
  • Revision – ревизия ядра GPU.
  • Core – отображает частоту GPU.
  • Shaders – частота шейдеров.
  • Memory – показывает частоту видеопамяти.
  • Size – размер видеопамяти.
  • Type – тип оперативной памяти видеокарты (DDR, DDR2,3,4,5)
  • Bus width – пропускная способность шины памяти.

И последняя вкладка, отображающая сведения об авторе программы и ее версии About. В ней помимо этого можно сохранить ваши технические характеристики в виде отчета в формате TXT или HTML.

ABOUT

Как видите, эта программа показывает достаточно большое и полное количество технических характеристик вашего персонального компьютера.

И хоть она и призвана отображать данные только о вашем центральном процессоре, но также ей можно воспользоваться для просмотра таких характеристик как оперативная память, материнская плата, графический адаптер.

И как говорится эта программа, которая Must have – что значит должна быть.

Рубрики: Программы

cpu-z, процессор, характеристики

Источник: https://www.white-windows.ru/cpu-z-cpuid-if-know-features/

Факторы и настройки производительности компьютера | Компьютерная служба

Многие пользователи задаются вопросом, что в наибольшей степени влияет на производительность компьютера?

Оказывается, однозначного ответа на этот вопрос дать нельзя.

Компьютер – это набор подсистем (памяти, вычислительная, графическая, хранения), взаимодействующих друг с другом через материнскую плату и драйверы устройств.

При неправильной настройке подсистем они не обеспечивают максимальную производительность, которую могли бы выдать.

Комплексная производительность складывается из программных и аппаратных настроек и особенностей.Перечислим их.

Это продолжение “Цифровая электроника для начинающих”

В предыдущей главе я рассказывал про цифровую электронику и общее устройство микроконтроллера (МК). А также, что  он состоит из процессора, устройств ввода-вывода (УВВ) и устройства памяти. Но я практически ничего не сказал о том, как они общаются между собой. А это весьма важная тема, в которую я и посвящу тебя в этот раз. 

Шины и разряды

Как ты уже знаешь, вся информация в цифровой технике стараниями инженеров и математиков представляется в виде двоичных чисел, которые записываются с помощью всего двух цифр: “0” и “1”. Обычное десятичное число “3” в двоичной записи будет выглядеть как “11”, т.е. 310 = 112. Нижние индексы указывают в какой системе счисления записано число, т.е. 10 – десятичная, а 2 – двоичная. Одна цифра в двоичном числе называется разрядом. У разрядов есть старшинство. Самый правый разряд называется младшим, а самый левый – старшим. Старшинство разряда растет справа налево:

Двоичное число, состоящее из 8 разрядов называется 8-ми разрядным, из 16 – шестнадцатиразрядным и т.д. Разрядность двоичного числа имеет самое прямое отношение к взаимодействию между процессором, памятью и устройствами ввода-вывода.

Дело в том, что в твоем МК бегают такие же двоичные числа. Они ходят от памяти к процессору, от процессора назад к памяти или УВВ, а от последних к процессору. Бегают они естественно по проводам (в МК эти шины спрятаны внутри микросхемы). Каждый провод в определённый момент времени может передавать только один разряд со значением “0” или “1”. Поэтому, чтобы передать, к примеру, 8-ми разрядное число от процессора к памяти или назад понадобится минимум 8 таких поводов.

Несколько таких проводов, объединенных вместе называются шиной. Шины бывают нескольких видов: шина адреса, шина данных и шина управления. По шине адреса бегают числа, которые обозначают адрес ячейки памяти или устройства ввода-вывода, откуда ты хочешь получить или куда хочешь записать данные. А сами данные будут передаваться уже по шине данных. Это похоже на почтовую посылку. У посылки есть адрес и есть содержание. Так вот в микропроцессорной системе, каковой МК также является, адрес и данные передаются по разным путям, именуемым шинами.

Сколько проводов должно быть в шине?

Это напрямую зависит от конструкции процессора. Процессор может иметь 32-разрядную шину данных и 16-ти разрядное АЛУ. Такие случаи в истории процессоров и МК встречаются многократно. Поэтому разрядность процессора не определяет 100% разрядность шин данных и шин адреса. Всё зависит от конкретной конструкции.

На что влияет разрядность шины адреса

Самым главным, на что она влияет, является количество адресов, которые можно по ней передавать. Например, в 4-разрядной системе это будет всего 24 = 16 адресов, в 64-разрядной числов сдресов будет уже 264=18 446 744 073 709 551 616. Таким образом, чем выше разрядность шины адреса, тем к больше объем памяти и больше устройств ввода-вывода, с которыми может работать процессор. Это важно.

На что влияет разрядность шины данных

Её разрядность определяет сколько данных процессор может считать за один раз. Чем выше разрядность, тем больше данных можно считывать за один раз. Её разрядность, как и разрядность шины адреса целиком определяется конструкцией конкретного процессора или МК. Но при этом всегда кратна восьми. Связано это с тем, что практически во всех устройствах памяти минимальной единицей информации является байт, т.е. двоичное число из 8-ми разрядов.

Зачем было нужно вводить ещё одно название: байт? Оно служит для обозначения количества информации. Если количество разрядов говорит просто о длине двоичного числа, то битность говорит о количестве информации, которую это число несет. Считается, что один разряд двоичного числа может передавать 1 бит информации. При этом биты группируются в байты, килобайты, мегабайты, гигабайты, терабайты и т.д.

Кстати, 1 байт = 8 бит, 1 килобайт = 1024 байтам, 1 мегабайт = 1024 килобайтам и т.д. Почему именно 1024? Все это связано с тем, что размер памяти всегда кратен степени двойки: 23 = 8, 210=1024. В свою очередь кратность двойке была выбрана благодаря тому, что она упрощает техническую реализацию устройств памяти. Устройство памяти представляет.

Алгоритм работы микроконтроллера

Давай теперь попробуем посмотреть как взаимодействует процессор с памятью и разберёмся зачем нужна шина управления. Любой процессор помимо выполнения арифметических и логических команд умеет делать ещё несколько важных операций: чтение из ячейки памяти, запись в ячейку памяти, чтение из порта ВВ, запись в порт ВВ:

  • чтение из ячейки памяти
  • запись в ячейку памяти
  • чтение из порта ВВ
  • запись в порта ВВ 

Для того, чтобы указывать какую из этих операций производить используется шина управления. По этой шине от процессора к памяти или портам ввода-вывода передаются сигналы:

RD (read)  сигнал на чтение
WR (write) сигнал на запись
MREQ (memory request) запрос обращения к памяти
IORQ (input/output request) запрос обращения к портам в/в
READY сигнал готовности
RESET сигнал сброса

Когда процессору требуется обратиться к памяти он выставляет на шине управления сигнал MREQ, при этом будет выставлен одновременно с ним сигнал RD/WR. Если процессор будет писать в память, то выставляется сигнал WR, если чтение – RD. Тоже самое происходит, если процессор обращается к портам ввода-вывода.

А вот сигнал READY нужен для того, чтобы сообщить процессору, что чтение/запись завершены. Всё довольно просто. Если тебя одолевают вопросы почему несмотря на то, что и память и порты ввода-вывода, через которые подключены внешние устройства, не конфликтуют, то разгадка будет довольно простой. В каждый момент времени процессор обращается только к одному конкретному устройству: либо памяти, либо через порты к портам ввода-вывода. И шина управления обеспечивает правильное разделение доступа.

Все описанное – упрощенная модель микропроцессорной системы, каковой является и персональный компьютер, и микроконтроллер.

Теперь вырисовывается уточнение к алгоритму работу микроконтроллера, который я описывал в прошлой главе. Когда ты подаёшь питание на МК, то он выставляет сигнал на шине управления MREQ, RD, а на шине адреса адрес, по которому в ячейке памяти программ должна находиться первая команда его программы (чаще всего это нулевой адрес памяти программ). Затем МК её выполнит и в зависимости от этой и последующих команд на шине управления, адреса и данных будут появляться соответствующие сигналы и данные.

Подведу итоги:

  1. Процессор, память и порты ввода-вывода общаются между собой с помощью шин. 
  2. Основные шины бывают нескольких видов: шина данных, шина адреса, шина управления
  3. Разрядность шины адреса и шины данных определяется конструкцией процессора

Теперь ты продвинулся ещё на шаг в понимании  того, как работает цифровая техника и в частности микропроцессорные системы. В следующий раз мы продвинемся еще на шаг к нашей цели — пониманию как устроен мир электроники

/blog/shinyi/
Ты познакомишься с механизмом взаимодействия процессора с памятью и устройствами ввода-вывода. Узнаешь, что такое разрядность процессора и на что она влияет.
2016-12-28
2017-02-22
шина данных, шина адреса, шина управления

To add to what some have said, the entire nature of the question “How can I find my computer’s address bus width and data bus size?” Tells me it’s coming from old computer science textbooks.. I don’t know to what extent it applies in modern systems or systems over the last 20 years.

Some people answering aren’t familiar with where the question is coming from, so i’ll address that. To directly address your question though all I can say is i’m not sure how much the concept of a data bus and address bus applies.. it must apply in some way You can look up about “word size” which is a very ambiguous term I mention it a bit at the end.

For those that don’t grasp the question, the question assumes a model where you have a memory bus, a data bus, and a control bus.

 CPU<---address bus--------->main memory(RAM)
 CPU<---data bus------------>main memory(RAM)  

And I don’t recall how the control bus and IO come into play well enough to do my own diagram but here with a picture myself, but here is a picture.. A book from the late 90s may have had this and probably in early 2000s and maybe even 2010 onwards.. and now it’s 2020.. but this looks like where your question is coming from.. info I saw in late 90s, early 2000s.. that is probably still out there / still taught. And was old school even for the late 90s.

enter image description here

and here

enter image description here

Does this still apply in modern architecture, probably not.

and

enter image description here

Here mentions a Harvard model and a Von Neumann Architecture https://www.polytechnichub.com/difference-harvard-architecture-von-neumann-architecture/

And you can have DMA https://tspradeepkumar.wordpress.com/2008/07/15/direct-memory-access/

If I were a bit more knowledgable I could show you how these architectures have evolved to whatever it is we have today! Then identify the address bus and data bus, or their equivalents! That’d be really how to answer the question and answer it well. All I can say is modern systemse might be more complex than that kind of architecture.

There is a horrible term called “word size” that is really ambiguous.. and may address your question somewhat.. Is “word size” referring to the size of the data bus, or the size of CPU registers, who knows.. but if it refers to the data bus, you’re in luck and if it refers to the cpu general purpose register sizes, they that might not be far off the data bus size.

Modern processors, including embedded systems, usually have a word size of 8, 16, 24, 32, or 64 bits

I’ve had similar questions in the past, it’s not easy to find answers but hopefully this info helps on your quest.

A lot of the time, info is only given in domains.. and when practical and so people that design CPUs know the truth, and others get some kind of “working model”. (e.g. techies often have fundamental misconceptions about web servers that they only find out they had, if they get the chance to program one). CPU manufacturers might produce some “white paper” or lots of detail about it but it may need a strong electronics background to really understand.

There is a kind of disconnect between what is in computer science textbooks, and whatever the truth is about what modern architecture is, and I haven’t seen that bridge covered in a book, though it was years ago when I looked. When people would speak about the things in more detail, they’d give examples from the Intel 8086 and Intel 8088! (which are from the late 1970s) https://en.wikipedia.org/wiki/Intel_8088 ” the 8088 had an eight-bit external data bus instead of the 16-bit bus of the 8086″

Разрядность шины данных определяется разрядностью процессора, т. е. количеством двоичных разрядов, которые процессор обрабатывает за один такт. Разрядность процессоров постоянно увеличивалась по мере развития компьютерной техники.

Что означает разрядность шины данных?

Разрядность (битность) в информатике — количество разрядов (битов) электронного (в частности, периферийного) устройства или шины, одновременно обрабатываемых этим устройством или передаваемых этой шиной. Примеры: разрядность процессора (разрядность его машинного слова) разрядность шины данных

Какая шина является двунаправленной?

Шина данных всегда двунаправленная, так как предполагает передачу информации в обоих направлениях. Наиболее часто встречающийся тип выходного каскада для линий этой шины — выход с тремя состояниями. Обычно шина данных имеет 8, 16, 32 или 64 разряда.

Как вычислить разрядность?

Посмотреть разрядность системы через «Сведения о системе»:

  1. Нажмите на клавиатуре сочетание клавиш Windows+R, и в появившемся окне «Выполнить» введите команду msinfo32;
  2. В открывшемся окне в меню «Сведения о системе» можно найти пункт «Тип», где отображается разрядность операционной системы.

Чем больше разрядность шины данных тем?

Между шиной адреса и шиной данных есть эмпирическое соотношение: чем больше процессор должен адресовать памяти (т. е. чем больше разрядность шины адреса), тем быстрее они должны поступать в процессор. Следовательно, тем шире шина данных.

Какая шина лучше для видеокарты?

В современных видеокартах встречается ширина шины памяти 64, 128, 256, 512 бит. Оптимальным вариантом считается 256 бит.

Как данные передаются между процессором и оперативной памятью компьютера?

Перемещение информации между оперативной памятью и процессором и между оперативной памятью и портами происходит по системе соединений, которая называются шиной данных. Для увеличения скорости передачи биты информации передаются одновременно по нескольким линиям шины. Количество линий называется разрядностью шины.

Как определить разрядность системы Windows 10?

Поиск информации об операционной системе в Windows 10

  1. Нажмите кнопку Пуск , выберите Параметры > Система > Сведения о системе . …
  2. В разделе Характеристики устройства > Тип системы указана версия Windows (32- или 64-разрядная).

Какую битность выбрать?

О том что целесообразно ставить ОС исходя из количества оперативной памяти. Например если у вас стоит 3ГБ оперативки или меньше, вам лучше поставить 32 битную систему, а если у вас более 3ГБ, лучше 64 битку. … По мнению нашего сервиса на такие компьютеры лучше ставить 32 битные системы и не более 4ГБ оперативной памяти.

Что лучше 128 бит или 256?

Разрядность шины имеет большое значение, 256 разрядная память быстрее 128 в 2 раза. Но в данном случае разниться и тип памяти GDD3 и 5. GDDR5 быстрее и более экономична в плане электропотребления. Шина памяти видеокарты – это канал соединяющий память и графический процессор видеокарты.

Что важнее для игр в видеокарте частота ядра или памяти?

От характеристик частоты зависит производительность работы видео чипа, чем частота выше, тем мощнее будет видеокарта. … Память с 256-битной шиной, работающая на тактовой частоте 800МГц, будет иметь большую пропускную способность по сравнению с 128-битной шиной памяти, которая работает на частоте 1000МГц.

Как работает шина данных?

Шина данных предназначена для пересылки кодов обрабатываемых данных, а также машинных кодов команд между устройствами ЭВМ. По шине данных передается информация в микропроцессор и из него. Шина адреса несет адрес (номер) той ячейки памяти или того порта ввода-вывода, который взаимодействует с микропроцессором.

Добавить комментарий