Найдите точку минимума функции как решать

Минимумом называют точку на функции, в которой значение функции меньше, чем в соседних точках.

Максимумом называют точку на функции, в которой значение функции больше, чем в соседних точках.

Также можно сказать, что в этих точках меняется направление движения функции: если функция перестает падать и начинает расти – это точка минимума, наоборот – максимума.

на графике функции отмечены локальные минимумы и максимумы

Минимумы и максимумы вместе именуют экстремумами функции.

Иными словами, все пять точек, выделенных на графике выше, являются экстремумами.

В точках экстремумов (т.е. максимумов и минимумов) производная
равна нулю.

Благодаря этому найти эти точки не составляет проблем, даже если у вас нет графика функции.

Внимание! Когда пишут экстремумы или максимумы/минимумы имеют в виду значение функции т.е. (y). Когда пишут точки экстремумов или точки максимумов/минимумов имеют в виду иксы в которых достигаются максимумы/минимумы. Например, на рисунке выше, (-5) точка минимума (или точка экстремума), а (1) – минимум (или экстремум).

Как найти точки экстремумов функции по графику производной (7 задание ЕГЭ)?

Давайте вместе найдем количество точек экстремума функции по графику производной на примере:

найдите количество точек экстремумов функции

У нас дан график производная — значит ищем в каких точках на графике производная равна нулю. Очевидно, это точки (-13), (-11), (-9),(-7) и (3). Количество точек экстремума функции – (5).

Внимание! Если дан график производной функции, а нужно найти точки экстремумов функции, мы не считаем максимумы и минимумы производной! Мы считаем точки, в которых производная функции обращается в ноль (т.е. пересекает ось (x)).

на графике функции отмечены локальные минимумы и максимумы         график производной и отмеченные на ней точки минимумов и максимумов функции

Как найти точки максимумов или минимумов функции по графику производной (7 задание ЕГЭ)?

Чтобы ответить на этот вопрос, нужно вспомнить еще два важных правил:

– Производная положительна там, где функция возрастает.
– Производная отрицательна там, где функция убывает.

С помощью этих правил давайте найдем на графике производной точки минимума и максимума функции.

найдите количество точек экстремумов функции

Понятно, что минимумы и максимумы надо искать среди точек экстремумов, т.е. среди (-13), (-11), (-9),(-7) и (3).

Чтобы проще было решать задачу расставим на рисунке сначала знаки плюс и минус, обозначающие знак производной. Потом стрелки – обозначающие возрастание, убывания функции.

по графику производной определить минимумы и максимумы функции

Начнем с (-13): до (-13) производная положительна т.е. функция растет, после – производная отрицательна т.е. функция падает. Если это представить, то становится ясно, что (-13) – точка максимума.

(-11): производная сначала положительна, а потом отрицательна, значит функция возрастает, а потом убывает. Опять попробуйте это мысленно нарисовать и вам станет очевидно, что (-11) – это минимум.

(- 9): функция возрастает, а потом убывает – максимум.

(-7): минимум.

(3): максимум.

Все вышесказанное можно обобщить следующими выводами:

– Функция имеет максимум там, где производная равна нулю и меняет знак с плюса на минус.
– Функция имеет минимум там, где производная равна нулю и меняет знак с минуса на плюс.

Как найти точки максимумов и минимумов если известна формула функции (12 задание ЕГЭ)?

Чтобы ответить на этот вопрос, нужно делать все то же, что и в предыдущем пункте: находить где производная положительна, где отрицательна и где равна нулю. Чтобы было понятнее напишу алгоритм с примером решения:

  1. Найдите производную функции (f'(x)). 
  2. Найдите корни уравнения (f'(x)=0). 
  3. Нарисуйте ось (x) и отметьте на ней точки полученные в пункте 2, изобразите дугами промежутки, на которые разбивается ось. Подпишите над осью (f'(x)), а под осью (f(x)).
  4. Определите знак производной в каждом промежутке (методом интервалов). 
  5. Поставьте знак производной в каждом промежутке (над осью), а стрелкой укажите возрастание (↗) или убывание (↘) функции (под осью). 
  6. Определите, как изменился знак производной при переходе через точки, полученные в пункте 2:
    – если (f’(x)) изменила знак с «(+)» на «(-)», то (x_1) – точка максимума;
    – если (f’(x)) изменила знак с «(-)» на «(+)», то (x_3) – точка минимума;
    – если (f’(x)) не изменила знак, то (x_2) – может быть точкой перегиба.

нахождение минимума и максимума

Всё! Точки максимумов и минимумов найдены.

Изображая на оси точки в которых производная равна нулю – масштаб можно не учитывать. Поведение функции можно показать так, как это сделано на рисунке ниже. Так будет очевиднее где максимум, а где минимум.

схематичное изображение функции

Пример(ЕГЭ). Найдите точку максимума функции (y=3x^5-20x^3-54).
Решение:
1. Найдем производную функции: (y’=15x^4-60x^2).
2. Приравняем её к нулю и решим уравнение:

(15x^4-60x^2=0)      (|:15)
(x^4-4x^2=0)
(x^2 (x^2-4)=0)
(x=0)       (x^2-4=0)
               (x=±2)

3. – 6. Нанесем точки на числовую ось и определим, как меняется знак производной и как движется функция:

поиск минимумов и максимумов

Теперь очевидно, что точкой максимума является (-2).

Ответ. (-2).

Смотрите также:
Связь функции и её производной | 7 задача ЕГЭ
Разбор задач на поиск экстремумов, минимумов и максимумов

Скачать статью

Задание 11 первой части Профильного ЕГЭ по математике — это нахождение точек максимума и минимума функции, а также наибольших и наименьших значений функции с помощью производной.

Вот какие типы задач могут встретиться в этом задании:

Нахождение точек максимума и минимума функций

Исследование сложных функций

Нахождение наибольших и наименьших значений функций на отрезке

Нахождение точек максимума и минимума функций

1. Найдите точку максимума функции displaystyle y=-{{x^2+289}over{x}}.

Найдем производную функции.

Приравняем производную к нулю. Получим:

x^2=289Leftrightarrow left[ begin{array}{c}  x=17, hfill \ x=-17. end{array} right.

Исследуем знаки производной.

В точке x = 17 производная y меняет знак с «плюса» на «минус». Значит, x= 17 — точка максимума функции y(x).

Ответ: 17.

2. Найдите точку минимума функции y=2x^2-5x+lnx-3.

Найдем производную функции.

y{

Приравняем производную к нулю.

4x-5+{{1}over{x}}=0Leftrightarrow 4x^2-5x+1=0Leftrightarrow left[ begin{array}{c}  x=1, \ x={{1}over{4}}. end{array} right.

Определим знаки производной.

В точке x = 1 производная y меняет знак с «минуса» на «плюс». Значит, x= 1 — точка минимума функции y(x).

Ответ: 1.

Исследование сложных функций

3. Найдите точку максимума функции y=2^{5-8x-x^2}.

Перед нами сложная функция y=2^{5-8x-x^2}. Возможно, вы знаете формулы производной сложной функции. Но вообще-то их изучают на первом курсе вуза, поэтому мы решим задачу более простым способом.

Так как функция y=2^t монотонно возрастает, точка максимума функции y=2^{5-8x-x^2} будет при том же x_0, что и точка максимума функции tleft(xright)=5-8x-x^2. А ее найти легко.

t^{

t^{ при x=-4. В точке x = -4 производная {{ t}}^{{ меняет знак с «плюса» на «минус». Значит, x= - 4 — точка максимума функции { t}left({ x}right).

Заметим, что точку максимума функции tleft(xright)=5-8x-x^2 можно найти и без производной.

Графиком функции tleft(xright) является парабола ветвями вниз, и наибольшее значение tleft(xright) достигается в вершине параболы, то есть при x=-frac{8}{2}=-4.

Ответ: – 4.

4. Найдите абсциссу точки максимума функции y=sqrt{4-4x-x^2}.

Напомним, что абсцисса — это координата по X.

Снова сложная функция. Применяем тот же прием, что и в предыдущей задаче.

Так как функция y=sqrt{z} монотонно возрастает, точка максимума функции y=sqrt{4-4x-x^2} является и точкой максимума функции tleft(xright)=4-4x-x^2.

Это вершина квадратичной параболы tleft(xright)=4-4x-x^2;x_0=frac{-4}{2}=-2.

Нахождение наибольших и наименьших значений функций на отрезке

5. Найдите наибольшее значение функции y=x^3+2x^2-4x+4 на отрезке [-2;0].

Мы помним, что наибольшее значение функции на отрезке может достигаться либо в точке максимума, либо на конце отрезка. Эти случаи показаны на рисунке.

Будем искать точку максимума функции y=x^3+2x^2-4x+4 с помощью производной. Найдем производную и приравняем ее к нулю.

y

y

{3x}^2+4x-4=0;

D=64;x=frac{-4pm 8}{6};x_1=frac{2}{3},x_2=-2.

Найдем знаки производной.

В точке x = - 2 производная равна нулю и меняет знак с “+” на “-“. Значит, x = – 2 — точка максимума функции y(x). Поскольку при xin [-2;0] функция y(x) убывает, y_{max}left(xright)=yleft(-2right)=12. В этой задаче значение функции на концах отрезка искать не нужно.

Ответ: 12.

6. Найдите наименьшее значение функции y={4x}^2-10x+2lnx-5 на отрезке [0,3;3].

Найдем производную функции y={4x}^2-10x+2lnx-5 и приравняем ее к нулю.

y при x_1=1,x_2=frac{1}{4}.

Найдем знаки производной.

Точка x_1=1 — точка минимума функции yleft(xright). Точка x_2=frac{1}{4} не лежит на отрезке [0,3;1]. Поэтому

 и  Значит, наименьшее значение функции на отрезке left[0,3;1right] достигается при x=1. Найдем это значение.

y_{min}left(xright)=yleft(1right)=4-10-5=-11.

Ответ: -11.

7. Найдите наименьшее значение функции y=9x-{ln left(9xright)}+3 на отрезке left[frac{1}{18};frac{5}{18}right].

Иногда перед тем, как взять производную, формулу функции полезно упростить.

y=9x-{ln left(9xright)}+3=9x-{ln 9-{ln x}}+3.

Мы применили формулу для логарифма произведения. y при x=frac{1}{9}.

Если  то  Если , то 

Значит, x=frac{1}{9} — точка минимума функции y(x). В этой точке и достигается наименьшее значение функции на отрезке left[frac{1}{18};frac{5}{18}right].

y_{min}left(xright)=yleft(frac{1}{2}right)=1+3=4.

Ответ: 4.

8. Найдите наибольшее значение функции y(x)=14x-7tgx-3,5pi +11 на отрезке left[-frac{pi }{3};frac{pi }{3}right].

Найдем производную функции y(x)=14x-7tgx-3,5pi +11. y

Приравняем производную к нулю: 14-frac{7}{{cos}^2x}=0.

{cos}^2x=frac{1}{2}.

{cos}^2x=pm frac{1}{sqrt{2}}=pm frac{sqrt{2}}{2}. Поскольку xin left[-frac{pi }{3};frac{pi }{3}right], y если x=pm frac{pi }{4}.

Найдем знаки производной на отрезке left[-frac{pi }{3};frac{pi }{3}right].

При x=frac{pi }{4} знак производной меняется с «плюса» на «минус». Значит, x=frac{pi }{4} — точка максимума функции y(x).

Мы нашли точку максимума, но это еще не все. Сравним значения функции в точке максимума и на конце отрезка, то есть при x=-frac{pi }{3} и x =frac{pi }{4}.

yleft(frac{pi }{4}right)=-7+11=4;

Мы нашли, что y_{max}left(xright)=yleft(frac{pi }{4}right)=-7+11=4.

Заметим, что если вам попадется такая задача в первой части ЕГЭ по математике, то находить значение функции при -frac{pi }{3} не обязательно. Как мы видим, это значение — число иррациональное. А в первой части ЕГЭ по математике ответом может быть только целое число или конечная десятичная дробь.

Ответ: 4.

9. Найдите наименьшее значение функции y=e^{2x}-{8e}^x+9 на отрезке [0;2].

Снова сложная функция. Запишем полезные формулы:

{{(e}^{-x})}^{

{left(e^{cx}right)}^{

{(e}^{x+a})

Найдем производную функции y=e^{2x}-{8e}^x+9.

y

y если e^x=4. Тогда x=ln4.

 При x=ln4 знак производной меняется с «минуса» на «плюс». Значит, x=ln4 — точка минимума функции y(x). yleft(ln4right)=4^2-8cdot 4+9=16-32+9=-7.

Ответ: -7.

10. Найдите наибольшее значение функции y=12cosx+6sqrt{3}x-2sqrt{3}pi +6 на отрезке left[0;frac{pi }{2}.right]

Как всегда, возьмем производную функции и приравняем ее к нулю.

y

y 12sinx=6sqrt{3};

sinx=frac{sqrt{3}}{2}.

По условию, xin left[0;frac{pi }{2}right]. На этом отрезке условие sinx=frac{sqrt{3}}{2} выполняется только для x=frac{pi }{3}. Найдем знаки производной слева и справа от точки x=frac{pi }{3}.

В точке x_0=frac{pi }{3} производная функции меняет знак с «плюса» на «минус». Значит, точка x_0=frac{pi }{3} — точка максимума функции y(x). Других точек экстремума на отрезке left[0;frac{pi }{2}right] функция не имеет, и наибольшее значение функции { y=12cosx+6}sqrt{{ 3}}{ }{ x}{ -}{ 2}sqrt{{ 3}}{ }pi { +6} на отрезке left[{ 0};frac{pi }{{ 2}}right] достигается при { x=}frac{pi }{{ 3}}.

y_{max}left(xright)=yleft(frac{pi }{3}right)=12.

Ответ: 12.

11.Найдите наименьшее значение функции y=16x-6sinx+6 на отрезке left[0;frac{pi }{2}right].

Найдем производную функции и приравняем ее к нулю.  — нет решений.

Что это значит? Производная функции y=16x-6sinx+6 не равна нулю ни в какой точке. Это значит, что знак производной в любой точке одинаков, а функция не имеет экстремумов и является монотонной.

Поскольку cosxle 1, получим, что  для всех x, и функция yleft(xright)=16x-6sinx+6 монотонно возрастает при xin left[0;frac{pi }{2}right].

Значит, наименьшее свое значение функция принимает в левом конце отрезка left[{ 0};frac{pi }{{ 2}}right], то есть при x=0.

y_{min}left(xright)=yleft(0right)=6.

Ответ: 6

Благодарим за то, что пользуйтесь нашими статьями.
Информация на странице «Задание 11 Профильного ЕГЭ по математике» подготовлена нашими авторами специально, чтобы помочь вам в освоении предмета и подготовке к ЕГЭ и ОГЭ.
Чтобы успешно сдать необходимые и поступить в ВУЗ или техникум нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими материалами из данного раздела.

Публикация обновлена:
08.05.2023

было в ЕГЭ

в условии
в решении
в тексте к заданию
в атрибутах

Категория

Атрибут

Всего: 229    1–20 | 21–40 | 41–60 | 61–80 …

Добавить в вариант

Найдите точку минимума функции y= левая круглая скобка x плюс 16 правая круглая скобка e в степени левая круглая скобка x минус 16 правая круглая скобка .


Найдите точку минимума функции y= левая круглая скобка x плюс 11 правая круглая скобка e в степени левая круглая скобка x минус 11 правая круглая скобка .


Найдите точку минимума функции y= левая круглая скобка 3 минус x правая круглая скобка e в степени левая круглая скобка 3 минус x правая круглая скобка .


Найдите наименьшее значение функции y=3x минус натуральный логарифм левая круглая скобка x плюс 3 правая круглая скобка в кубе на отрезке [−2,5; 0].


Найдите наименьшее значение функции y=4x минус 4 натуральный логарифм левая круглая скобка x плюс 7 правая круглая скобка плюс 6 на отрезке  левая квадратная скобка минус 6,5;0 правая квадратная скобка .


Найдите наименьшее значение функции y=9x минус натуральный логарифм левая круглая скобка 9x правая круглая скобка плюс 3 на отрезке  левая квадратная скобка дробь: числитель: 1, знаменатель: 18 конец дроби ; дробь: числитель: 5, знаменатель: 18 конец дроби правая квадратная скобка .


Найдите наименьшее значение функции y=3x в квадрате минус 10x плюс 4 натуральный логарифм x плюс 11 на отрезке  левая квадратная скобка дробь: числитель: 10, знаменатель: 11 конец дроби ; дробь: числитель: 12, знаменатель: 11 конец дроби правая квадратная скобка .


Найдите точку минимума функции y= левая круглая скобка x в квадрате минус 17x плюс 17 правая круглая скобка e в степени левая круглая скобка x минус 17 правая круглая скобка .


Найдите точку минимума функции y= левая круглая скобка x минус 2 правая круглая скобка в квадрате e в степени левая круглая скобка x минус 5 правая круглая скобка .


Найдите точку минимума функции y=4x минус натуральный логарифм левая круглая скобка x плюс 11 правая круглая скобка плюс 12.


Найдите точку минимума функции y=4x минус натуральный логарифм левая круглая скобка x плюс 8 правая круглая скобка плюс 12.





На рисунке изображен график функции y=f(x), определенной на интервале (−3; 9). Найдите количество точек, в которых касательная к графику функции параллельна прямой y  =  12 или совпадает с ней.



Найдите наименьшее значение функции y=3 плюс дробь: числитель: 5 Пи , знаменатель: 4 конец дроби минус 5x минус 5 корень из: начало аргумента: 2 конец аргумента косинус x на отрезке  левая квадратная скобка 0; дробь: числитель: Пи , знаменатель: 2 конец дроби правая квадратная скобка .


Найдите точку минимума функции y= левая круглая скобка x плюс 16 правая круглая скобка e в степени левая круглая скобка x минус 16 правая круглая скобка .


Найдите точку минимума функции y= левая круглая скобка 3 минус x правая круглая скобка e в степени левая круглая скобка 3 минус x правая круглая скобка .


Найдите наименьшее значение функции y=3x минус натуральный логарифм левая круглая скобка x плюс 3 правая круглая скобка в кубе на отрезке [−2,5; 0].

Всего: 229    1–20 | 21–40 | 41–60 | 61–80 …

В (11) задании ЕГЭ нужно уметь находить точки минимума и максимума функции, определять наибольшее и наименьшее значения функции на отрезке.

За правильное выполнение задания даётся (1) первичный балл.

Пример:

найди точку минимума функции

y=(x+5)2(x−1)+7

.

Алгоритм выполнения задания

1. Определи тип задания:

  • найди точку максимума (минимума);
  • найди точку максимума (минимума) на отрезке;
  • найди максимальное (минимальное) значение функции;
  • найди максимальное (минимальное) значение функции на отрезке.

2. Вычисли производную (f’(x)).

3. Реши уравнение (f’(x)=0).

4. Выполни действия в соответствии с типом задания, сделай вывод.

5. Запиши в ответе значение, которое требуется найти. 

Как решить задание из примера?

1. В задании нужно найти точку максимума.
 

2. Производная функции:
 

y′=2(x+5)(x−1)+x+52=(x+5)(2x−2+x+5)=3(x+5)(x+1).
 

3. Приравняем производную к нулю и найдём корни уравнения:
 

4. Найдём промежутки возрастания и убывания функции (рис. (1)). В точке (-1) функция меняет знак с минуса на плюс, значит, это точка минимума. 

ось1.png

Рис. (1). Промежутки возрастания и убывания функции

5. Запишем ответ (непосредственно в самом задании — без точки в конце).

Ответ: (-1).

Обрати внимание!

В заданиях «Как на ЕГЭ» ответы записывай в виде целого числа или десятичной дроби без пробелов и точки в конце.

Если получилась обыкновенная дробь и её нельзя перевести в конечную десятичную дробь — ищи ошибку в решении!

Источники:

Рис. 1. Промежутки возрастания и убывания функции. © ЯКласс.

Аналогичные рассуждения, если функция убывает: значение функции в следующей точке будет меньше, чем в предыдущей, значит производная будет отрицательной.

Итак, если производная положительна на промежутке, то это значит, что функция на этом промежутке возрастает. На рисунке 1 такие участки показаны зеленым. А если производная отрицательна, то функция убывает, на рисунке 1 участки показаны синим:

$$f^{/}(x)>0 leftrightarrow f(x) Uparrow ;$$
$$f^{/}(x)<0 leftrightarrow f(x) Downarrow ;$$

Кроме этого, производная от функции может быть равна нулю. Функция в той точке, где производная равна нулю, будет принимать наибольшее или наименьшее значение в окрестности этой точки. На графике нашей функции (Рис. 1) эти точки выглядят как «холмы» и «впадины».

Обратите внимание, что «холмов» и «впадин» на графике может быть бесконечно много, какие-то из этих «холмов» будут выше, какие-то ниже. Производная равна нулю во всех таких точках. И значения функции во всех таких точках я называю наибольшими и наименьшими, хотя на самом деле это локальные наибольшие и наименьшие значения.

Кстати, ТОЧКАМИ минимума или максимума называют координаты «холмов» и «впадин» по оси (x). Еще их называют точками экстремума функции: это общее название для минимумов и максимумов. Поэтому, когда вас просят найти точки экстремума, это значит найти координаты по оси (x) и минимумов, и максимумов.

В точке (x=-2) будет минимум функции. Точка (x=-3) из знаменателя, поэтому на рисунке она выколотая: ее мы не рассматриваем.

Чтобы определить наименьшее значение, подставим в исходную функцию найденную точку минимума и концы отрезка (xin[-2,5;0]):
$$y(-2)=3x—ln(x+3)^3=3*(-2)-ln(-2+3)^3=-6-0=-6;$$
$$y(-2,5)=3x—ln(x+3)^3=3*(-2,5)-ln(-2,5+3)^3=-7,5-ln(0,5)^3;$$
$$y(0)=3x—ln(x+3)^3=3*0-ln(0+3)^3=ln(3)^3;$$

Обратите внимание, что значение функции в точках ((-2,5)) и ((0)) получились “плохие”: мы не можем посчитать значения таких логарифмов без калькулятора. Поэтому, если возникает такая ситуация, то мы просто отбрасываем эти значения, ведь в заданиях ЕГЭ в первой части не может быть иррациональных значений. Такая маленькая хитрость. Но будьте внимательны, может быть, иррациональные значения у вас получаются, потому что где-то ошибка.

Кстати, подставлять в этом примере границы отрезка необязательно еще и по другой причине: на промежутке ([-2,5;-2)) функция убывает, а на промежутке ((-2;0]] возрастает. Минимальное значение на указанном промежутке может быть только в точке минимума.

Ответ: (-6.)

Пример 21
Найдите наименьшее значение функции (y=x*sqrt{x}-9x+25) на интервале ([1;50].)

Производную от данной функции можно посчитать, воспользовавшись формулой производной от произведения ((f(x)*g(x))^{/}=(f(x))^{/}*g(x)+f(x)*(g(x))^{/}:)
$$y^{/}=(x*sqrt{x}-9x+25)^{/}=(xsqrt{x})^{/}-(9x)^{/}+25^{/}=x^{/}*sqrt{x}+x*(sqrt{x})^{/}-9=$$
$$=1*sqrt{x}+x*frac{1}{2sqrt{x}}-9=sqrt{x}+frac{sqrt{x}*sqrt{x}}{2sqrt{x}}-9=sqrt{x}+frac{1}{2}*sqrt{x}-9=frac{3}{2}*sqrt{x}-9;$$
Есть другой вариант взятия производной, на мой взгляд, он легче. Для это мы представим квадратный корень в виде степени:
$$sqrt{x}=x^{frac{1}{2}};$$
$$y^{/}=(x*sqrt{x}-9x+25)^{/}=(x*x^{frac{1}{2}}-9x+25)^{/}=(x^{frac{3}{2}-9x+25)^{/}=frac{3}[2}*x^{frac{1}{2}}-9=frac{3}{2}*sqrt{x}-9;$$

Приравниваем производную к нулю и находим корни уравнения на указанном интервале:
$$frac{3}{2}*sqrt{x}-9=0;$$
$$sqrt{x}=9*frac{2}{3};$$
$$sqrt{x}=6;$$
$$x=36;$$
На числовой прямой определяем знаки производной и промежутки возрастания и убывания функции:

Добавить комментарий