Как найти корни если дискриминант меньше 0

Как решить квадратное уравнение

Квадратное уравнение ax^2+bx+c=0 – алгебраическое уравнение, общего вида.

Где x – неизвестное.

a,b,c – коэффициенты, где a ne 0.

Для решения квадратного уравнения общего вида, необходимо найти корни x_{1,2}.

Дискриминант

Для того чтобы найти дискриминант, воспользуемся формулой D = b^2 — 4ac.

D > 0

При условии, что дискриминант больше нуля, корня 2, вычисляются они по формуле:

x_{1,2}=frac{-b pm sqrt{D}}{2a}

D = 0

Если дискриминант равен нулю, корень один, вычисляется по формуле:

x_1=x_2=- frac{b}{2a}

D < 0

Если дискриминант меньше нуля, делается вывод, что корней нет.

Пример 1

Например у нас следующие параметры:

a = 4;

b = 9;

c = 2.

Уравнение выглядит следующим образом:

4x^2 + 9x + 2 = 0

Дискриминант больше нуля

Находим дискриминант по формуле:

D = b^2 — 4ac = 9^2 — 4 times 4 times 2 = 49 – дискриминант больше нуля, ищем по первому варианту.

Находим x1

x_1 = frac{-b + sqrt{D}}{2a} = frac{-9 + sqrt{49}}{2 times 4} = -0.25

Находим x2

x_2 = frac{-b — sqrt{D}}{2a} = frac{-9 — sqrt{49}}{2 times 4} = -2

Пример 2

Уравнение со следующими параметрами:

a = 3;

b = 6;

c = 3.

Уравнение выглядит следующим образом:

3x^2 + 6x + 3 = 0

Дискриминант равен 0

Находим по формуле:

D = b^2 — 4ac = 6^2 — 4 times 3 times 3 = 0 – дискриминант равен нулю, ищем по второму варианту.

Находим X

x_1 = x_2 = — frac{b}{2a} = — frac{6}{2 times 3} = -1

Дискриминант меньше нуля

Если дискриминант меньше нуля, то искомые корни являются комплексными.

нет оценок

Категории

НаукаМатематикаАлгебра

Читайте также

  • Найти X пропорционально
  • Площадь ромба
  • ГНОМ ГНОМ СКАЛА
  • ДОМ ВОДА ДАЧА
  • Периметр треугольника
  • Объем шара
  • Площадь треугольника по основанию и высоте
  • Процентное отношение двух чисел
  • Объем цилиндра
  • Спряжение глагола “to obey” (Английский язык)
  • Спряжение глагола “to transpose” (Английский язык)
  • Спряжение глагола “to equate” (Английский язык)

Комментарии

Похоже, вы используете блокировщик рекламы. Наш сайт существует и развивается
только за счет дохода от рекламы.

Пожалуйста, добавьте нас в исключения блокировщика.

На главную страницу
На главную страницу

на главную

Дискриминант
квадратного уравнения

Поддержать сайтспасибо

Мы уже разобрали,
как решать квадратные уравнения.
Теперь давайте более подробно рассмотрим, что называют
дискриминантом квадратного уравнения
.

Вернемся к нашей формуле для нахожденя корней квадратного уравнения.

Запомните!
!

Выражение «b2 − 4ac», которое находится под корнем,
принято называть дискриминантом и обозначать буквой «D».

По-другому, через дискриминант формулу нахождения корней квадратного уравнения можно записать так:


x1;2 =
, где «D = b2 − 4ac»

По одной из версий термин «Дискриминант» произошел от латинского discriminantis, что означает «отличающий» или «различающий».

В зависимости от знака «D» (дискриминанта)
квадратное уравнение может иметь два, один или ни одного корня. Рассмотрим все три случая.

I случай
D > 0
(дискриминант больше нуля)


2x2 + 5x −7 = 0

D = b2 − 4ac
D = 52 − 4 · 2 · (−7)
D = 25 + 56
D = 81
D > 0


x1;2 =

x1;2 =

x1;2 =

x1 =

x2 =

x1 =

x2 =

x1 = 1

x2 = −3

x1 = 1

x2 = −3

Ответ: x1 = 1;
x2 = −3

Вывод: когда «D > 0» в квадратном уравнении два корня.


II случай
D = 0
(дискриминант равен нулю)


16x2 − 8x + 1 = 0

D = b2 − 4ac
D = (−8)2 − 4 · 16 · 1
D = 64 − 64

D = 0

x1;2 =

x1;2 =

x1;2 =

x =

x =

Ответ: x =

Вывод: когда «D = 0» в квадратном уравнении один корень.


III случай
D < 0
(дискриминант меньше нуля)


9x2 − 6x + 2 = 0

D = b2 − 4ac
D = (−6)2 − 4 · 9 · 2
D = 36 − 72
D = −36
D < 0

x1;2 =

x1;2 =

Ответ: нет действительных корней

Вывод: когда «D < 0» в квадратном уравнении нет корней.


Ваши комментарии

Важно!
Галка

Чтобы оставить комментарий, вам нужно войти на наш сайт при помощи

«ВКонтакте».

Пришелец пожимает плечами

Оставить комментарий:


Дискриминант

Дискриминантом квадратного трехчлена называют выражение (b^<2>-4ac), где (a, b) и (c) – коэффициенты данного трехчлена.

Например, для трехчлена (3x^2+2x-7), дискриминант будет равен (2^2-4cdot3cdot(-7)=4+84=88). А для трехчлена (x^2-5x+11), он будет равен ((-5)^2-4cdot1cdot11=25-44=-19).

Дискриминант обозначается буквой (D) и часто используется при решении квадратных уравнений . Также по значению дискриминанта можно понять, как примерно выглядит график квадратичной функции (см. ниже).

Дискриминант и корни квадратного уравнения

Значение дискриминанта показывает количество корней квадратного уравнения:
– если (D) положителен – уравнение будет иметь два корня;
– если (D) равен нулю – только один корень;
– если (D) отрицателен – корней нет.

Это не надо учить, к такому выводу несложно прийти, просто зная, что квадратный корень из дискриминанта (то есть, (sqrt) входит в формулу для вычисления корней квадратного уравнения: (x_<1>=) (frac<-b+sqrt><2a>) и (x_<2>=) (frac<-b-sqrt><2a>) . Давайте рассмотрим каждый случай подробнее.

Если дискриминант положителен

В этом случае корень из него – это некоторое положительное число, а значит (x_<1>) и (x_<2>) будут различны по значению, ведь в первой формуле (sqrt) прибавляется, а во второй – вычитается. И мы имеем два разных корня.

Пример: Найдите корни уравнения (x^2+2x-3=0)
Решение:

Вычисляем дискриминант по формуле (D=b^2-4ac)

Найдем корни уравнения

Получили два различных корня из-за разных знаков перед (sqrt)

На графике квадратичной функции положительный дискриминант будет означать пересечение функции с осью икс ровно в двух точках – корнях уравнения. И это логично. Вдумайтесь – если уравнение (x^2+2x-3=0) имеет корни (x_<1>=1) и (x_<1>=-3), значит при подстановке (1) и (-3) вместо икса, левая часть станет нулем. А значит, если те же самые единицу и минус тройку подставить в функцию (y=x^2+2x-3) получим (y=0). То есть, функция (y=x^2+2x-3) проходит через точки ((1;0)) и ((-3;0)) (подробнее смотри статью Как построить график функции ).

Если дискриминант равен нулю

А сколько корней будет, если дискриминант равен нулю? Давайте рассуждать.

Формулы корней выглядят так: (x_<1>=) (frac<-b+sqrt><2a>) и (x_<2>=) (frac<-b-sqrt><2a>) . И если дискриминант – ноль, то и корень из него тоже ноль. Тогда получается:

То есть, значения корней уравнения будут совпадать, потому что прибавление или вычитание нуля ничего не меняет.

Пример: Найдите корни уравнения (x^2-4x+4=0)
Решение:

Вычисляем дискриминант по формуле (D=b^2-4ac)

Находим корни уравнения

Получили два одинаковых корня, поэтому нет смысла писать их по отдельности – записываем как один.

На графике квадратичной функции нулевой дискриминант означает одну точку пересечения функции с осью икс. Все аналогично изложенному выше: два корня – две точки пересечения, один корень – одна. В частности, функция (y=x^2-4x+4) будет выглядеть вот так:

Если дискриминант отрицателен

В этом случае корень из дискриминанта извлечь нельзя (т.к. квадратный корень из отрицательного числа – невычислим), а значит и корни квадратного уравнения мы вычислить не можем.

Пример: Найдите корни уравнения (x^2+x+3=0)
Решение

Вычисляем дискриминант по формуле (D=b^2-4ac)

Находим корни уравнения

Оба корня содержат невычислимое выражение (sqrt<-11>), значит, и сами не вычислимы

То есть, отсутствие корней у квадратного уравнения с отрицательным дискриминантом – не чья-то случайная придумка. Это не потому что «в учебнике так написано», а действительно правда: невозможно найти такое число, чтоб при подстановке его вместо икса в выражение (x^2+x+3) получился ноль.

Матхак: заметим, что если вы решаете обычное квадратное уравнение или неравенство и получаете отрицательный дискриминант, стоит проверить решение еще раз, так как это не частая ситуация в школьном курсе математики.

Ну, а на графиках все просто: нет корней – нет точек пересечения с осью икс!

Квадратные неравенства

Чтобы решить квадратные неравенства вспомним, что такое квадратичная функция?
Квадратичная функция – это функция записанная формулой : y=ax 2 +bx+c, где x – независимая переменная, a, b и c – некоторые числа, при этом a≠0.
Графиком квадратичной функции является парабола.

В зависимости от значения a ветви графика направлены вверх или вниз:

  • если a>0, то ветви параболы направлены вверх;
  • если a 2 +bx+c=0

Квадратные неравенства имеют вид.

ax 2 +bx+c>0
ax 2 +bx+c 2 +bx+c≥0
ax 2 +bx+c≤0

Чтобы начать решать квадратные неравенства, необходимо знать как решаются квадратные уравнения?
А также для графического метода решения неравенства, необходимо знать алгоритм построения квадратичной функции или параболы?

Как решать квадратные неравенства?

Решение квадратных неравенств рассмотрим на примерах. Для начала разберем случаи, когда у квадратного уравнения дискриминант меньше нуля (нет корней).

Пример:

Дискриминант меньше нуля —236, следовательно у уравнения нет корней, а это значит, что весь график параболы находится выше оси х, потому что а=3>0 (ветви параболы смотрят вверх)

Можно проверить себя взяв любое число с числовой прямой, например число 1. Подставить число 1 вместо переменой х в неравенство 3x 2 +2x+20>0.

Получили верное неравенство 25>0, следовательно так как у нас нет корней уравнения нам подойдут все точки числовой прямой.

Пример:

Рассмотрим этот же пример со знаком неравенства меньше 0

3x 2 +2x+20 2 +2x+20=0

Дискриминант меньше нуля —236, следовательно у уравнения нет корней, значит парабола не пересекает ось x. Весь график параболы находится выше оси х, потому что а=3>0.

А знак уравнения меньше 2 +2x+20 2 +2•1+20 2 +x-2 2 +x-2=0

Дискриминант больше нуля, следовательно у уравнения два корня, значит парабола пересекает ось x в точка x=1 и x=-2. Ветви параболы смотрят вверх, потому что а=1>0.

Знак уравнения меньше 2 +x-2 2 +(-3)-2 2 +(0)-2 2 +(2)-2 2 +x-2>0

Дискриминант больше нуля, следовательно у уравнения два корня, значит парабола пересекает ось x в точка x=1 и x=-2. Ветви параболы смотрят вверх, потому что а=1>0.

Знак уравнения больше >0. Нам в ответ необходимо записать часть параболы, которая находится выше оси x. Визуально графически можно оценить по картинке, нам подходят интервалы (-∞;-2) и (1;+∞).

Также можно решить методом интервалов. Ось x делится на три участка.

Первый участок (-∞;-2). На этом участке можно взять любое число меньше -2, например возьмем число -3 и подставим в неравенство x 2 +x-2 2 +(-3)-2>0

Получили верное неравенство 4>0, следовательно этот интервал (-∞; 2) подходит.

Второй участок (-2; 1). На этом участке можно взять число 0.

Получили неверное неравенство -2>0, следовательно этот интервал (-2; 1) не подходит.

Третий участок (1; +∞). На этом участке возьмем число 2.

Получили верное неравенство 4>0, следовательно этот интервал (1; +∞) подходит.

Дискриминант квадратного уравнения

Дискриминант квадратного уравнения — это выражение, находящееся под корнем в формуле нахождения корней квадратного уравнения. Дискриминант обозначается латинской буквой D.

Вид уравнения Формула корней Формула
дискриминанта
ax 2 + bx + c = 0 b 2 – 4ac
ax 2 + 2kx + c = 0 k 2 – ac
x 2 + px + q = 0
p 2 – 4q

Все формулы нахождения корней квадратных уравнений можно записать короче с помощью дискриминанта:

Вид уравнения Формула
ax 2 + bx + c = 0 , где D = b 2 – 4ac
ax 2 + 2kx + c = 0 , где D = k 2 – ac
x 2 + px + q = 0 , где D =
, где D = p 2 – 4q

Дискриминант позволяет определить, имеет ли уравнение корни и сколько их, не решая само уравнение:

  1. Если дискриминант больше нуля, то уравнение имеет два корня.
  2. Если дискриминант равен нулю, то уравнение имеет один корень.
  3. Если дискриминант меньше нуля, то уравнение не имеет корней.

Несмотря на то, что есть несколько формул дискриминанта, чаще всего используют первую:

так как она относится к формуле:

,

которая является универсальной формулой нахождения корней квадратного уравнения. Данная формула подходит даже для неполных квадратных уравнений.

Решение квадратных уравнений через дискриминант

Для решения квадратного уравнения по формуле можно сначала вычислить дискриминант и сравнить его с нулём. В зависимости от результата, либо искать корни по формуле, либо сделать вывод, что корней нет.

Пример 1. Решить уравнение:

Определим, чему равны коэффициенты:

D = b 2 – 4ac = (-4) 2 – 4 · 3 · 2 = 16 – 24 = -8,

Определим, чему равны коэффициенты:

D = b 2 – 4ac = (-6) 2 – 4 · 1 · 9 = 36 – 36 = 0,

Уравнение имеет всего один корень:

Определим, чему равны коэффициенты:

D = b 2 – 4ac = (-4) 2 – 4 · 1 · (-5) = 16 + 20 = 36,

[spoiler title=”источники:”]

http://tutomath.ru/9-klass/kvadratnie-neravenstva.html

http://izamorfix.ru/matematika/algebra/diskriminant.html

[/spoiler]

Надеюсь, изучив данную статью, вы научитесь находить корни полного квадратного уравнения.

С помощью дискриминанта решаются только полные квадратные уравнения, для решения неполных квадратных уравнений используют другие методы, которые вы найдете в статье “Решение неполных квадратных уравнений”.

Какие же квадратные уравнения называются полными? Это уравнения вида ах2 + b x + c = 0, где коэффициенты a, b и с не равны нулю. Итак, чтобы решить полное квадратное уравнение, надо вычислить дискриминант D.

D = b2 – 4ас .

В зависимости от того какое значение имеет дискриминант, мы и запишем ответ.

Если дискриминант отрицательное число (D < 0),то корней нет.

Если же дискриминант равен нулю, то х = (-b)/2a. Когда дискриминант положительное число (D > 0),

тогда х1 = (-b – √D)/2a ,  и  х2 = (-b + √D)/2a .

Например. Решить уравнение х2 – 4х + 4= 0.

D = 42 – 4 · 4 = 0

x = (- (-4))/2 = 2

Ответ: 2.

Решить уравнение 2х2 + х + 3 = 0.

D = 12 – 4 · 2 · 3 = – 23

Ответ: корней нет.

Решить уравнение 2х2 + 5х – 7 = 0.

D = 52 – 4 · 2 · (–7) = 81

х1 = (-5 – √81)/(2·2)= (-5 – 9)/4= – 3,5

х2 = (-5 + √81)/(2·2) = (-5 + 9)/4=1

Ответ: – 3,5 ; 1.

Итак представим решение полных квадратных уравнений схемой на рисунке1. 

По этим формулам можно решать любое полное квадратное уравнение.undefined Нужно только внимательно следить за тем, чтобы уравнение было записано многочленом стандартного вида

ах2 + bx + c, иначе можно допустить ошибку. Например, в записи уравнения х + 3 + 2х2 = 0, ошибочно можно решить, что

а = 1, b = 3 и с = 2. Тогда

D = 32 – 4 · 1 · 2 = 1 и тогда уравнение имеет два корня. А это неверно. (Смотри решение примера 2 выше).

Поэтому, если уравнение записано не многочленом стандартного вида, вначале полное квадратное уравнение надо записать многочленом стандартного вида (на первом месте должен стоять одночлен с наибольшим показателем степени, то есть ах2, затем с меньшим  – bx, а затем свободный член с.

При решении приведенного квадратного уравнения и квадратного уравнения с четным коэффициентом при втором слагаемом можно использовать и другие формулы. Давайте познакомимся и с этими формулами. Если в полном квадратном уравнении при втором слагаемом коэффициент будет четным (b = 2k), то можно решать уравнение по формулам приведенным на схеме рисунка 2. 

Полное квадратное уравнение называется приведенным, если коэффициент при х2 равен единице и уравнение примет вид х2 + px + q = 0. Такое уравнение может быть дано для решения, либо получается делением всех коэффициентов уравнение на коэффициент а, стоящий при х2.

На рисунке 3 приведена схема решения приведенных квадратныхundefined уравнений. Рассмотрим на примере применение рассмотренных в данной статье формул.

Пример. Решить уравнение

3х2 + 6х – 6 = 0.

Давайте решим это уравнение применяя формулы приведенные на схеме рисунка 1.

D = 62 – 4 · 3 · (– 6) = 36 + 72 = 108

√D = √108 = √(36 · 3) = 6√3

х1 = (-6 – 6√3 )/(2 · 3) = (6 ( -1- √(3)))/6 = –1 – √3

х2 = (-6 + 6√3 )/(2 · 3) = (6 ( -1+ √(3)))/6 = –1 + √3

Ответ: –1 – √3; –1 + √3

Можно заметить, что коэффициент при х в этом уравнении четное число, то есть b = 6 или b = 2k , откуда k = 3. Тогда попробуем решить уравнение по формулам , приведенным на схеме рисунка D= 32 – 3 · (– 6) = 9 + 18 = 27

√(D1) = √27 = √(9 · 3) = 3√3

х= (-3 – 3√3)/3 = (3 (-1 – √(3)))/3 = – 1 – √3

х2 = (-3 + 3√3)/3 = (3 (-1 + √(3)))/3 = – 1 + √3

Ответ: –1 – √3; –1 + √3. Заметив, что все коэффициенты в этом квадратном уравнении делятся на 3 и выполнив деление, получим приведенное квадратное уравнение x2 + 2х – 2 = 0 Решим это уравнение, используя формулы для приведенного квадратного undefinedуравнения рисунок 3.

D2 = 22 – 4 · (– 2) = 4 + 8 = 12

√(D2) = √12 = √(4 · 3) = 2√3

х1= (-2 – 2√3)/2 = (2 (-1 – √(3)))/2 = – 1 – √3

х2= (-2 + 2√3)/2 = (2 (-1+ √(3)))/2 = – 1 + √3

Ответ: –1 – √3; –1 + √3.

Как видим, при решении этого уравнения по различным формулам мы получили один и тот же ответ. Поэтому хорошо усвоив формулы приведенные на схеме рисунка 1 , вы всегда сможете решить любое полное квадратное уравнение.

© blog.tutoronline.ru,
при полном или частичном копировании материала ссылка на первоисточник обязательна.

Квадратные уравнения

Квадратным называется уравнение, содержащее переменную во второй степени.

В общем виде оно выглядит следующим образом:

(ax^{2} + bx + c = 0,) где (a neq 0, b, c) – некоторые числа.

ДИСКРИМИНАНТ:

Корни уравнения можно определить с помощью дискриминанта (D = b^{2} – 4ac) по формулам:

(leftlbrack begin{matrix} \ x_{1} = frac{- b + sqrt{D} }{2a} \ \ x_{1} = frac{- b – sqrt{D} }{2a} \ \ end{matrix} right. )

– Если дискриминант больше нуля – уравнение имеет два корня.

– Если дискриминант равен нулю – уравнение имеет один корень.

– Если дискриминант меньше нуля – корней нет.

Пример №1:

(x^{2} = 6x – 5)

  • Способ 1:

1. Преобразуем уравнение к стандартному виду, перенеся все слагаемые в левую часть:

(x^{2} – 6x + 5 = 0)

2. Определим дискриминант полученного уравнения:

(D = 6^{2} – 4 cdot 1 cdot 5 = 16 = 4^{2})

3. С помощью дискриминанта найдем корни по формулам:

(leftlbrack begin{matrix} \ x_{1} = frac{6 + 4 }{2} \ \ x_{1} = frac{6 – 4 }{2} \ \ end{matrix} right. ) (leftlbrack begin{matrix} x_{1} = 5 \ {text{ }x}_{2} = 1 \ end{matrix} right. )

Ответ: 5; 1.

СОКРАЩЁННЫЙ ДИСКРИМИНАНТ:

Существует второй способ решения квадратного уравнения. В случае, если коэффициент (b) – четное число, запишем его как (2k). Квадратное уравнение примет следующий вид:

(ax^{2} + 2kx + c = 0),( a neq 0, k, c) – некоторые числа.

Тогда вместо дискриминанта D будем использовать сокращённый дискриминант (frac{D}{4}), а формула его нахождения будет следующей:

(frac{D}{4} = k^{2} – ac)

Корни уравнения определим так же через сокращённый дискриминант:

(leftlbrack begin{matrix} \ x_{1} = frac{- k + sqrt{frac{D}{4}} }{a} \ \ x_{1} = frac{- k – sqrt{frac{D}{4}} }{a} \ \ end{matrix} right. )

  • Способ 2:

1. Преобразуем уравнение к стандартному виду, перенеся все слагаемые в левую часть:

(x^{2} – 6x + 5 = 0)

2. Выделим коэффициент k:

(x^{2} – 2 bullet 3x + 5 = 0)

(k = 3)

3. Определим сокращённый дискриминант полученного уравнения:

(frac{D}{4} = 3^{2} – 1 cdot 5 = 4 = 2^{2})

4. С помощью сокращённого дискриминанта найдем корни по формулам:

(leftlbrack begin{matrix} \ x_{1} = frac{3 + 2 }{1} \ \ x_{1} = frac{3 – 2 }{1} \ \ end{matrix} right. ) (leftlbrack begin{matrix} x_{1} = 5 \ {text{ }x}_{2} = 1 \ end{matrix} right. )

Ответ: 5; 1.

Как мы видим, ответ остался прежним, но числа, используемые при вычислениях, стали меньше. Это значит, что при работе с большими коэффициентами решение через сокращённый дискриминант уменьшает вероятность вычислительной ошибки.

ТЕОРЕМА ВИЕТА:

В некоторых случаях (например, (a = 1)) корни проще искать по теореме Виета, решая подбором систему уравнений:

(left{ begin{matrix} \ x_{1} cdot x_{2} = frac{c}{a} \ \ text{ x}_{1} + x_{2} = – frac{b}{a} \ \ end{matrix} right. )

Важно, что теорему Виета можно использовать при любом ненулевом коэффициенте а, формула представлена в общем виде. Однако если (a = 1,) то чаще всего нужно работать с целыми числами, а не с дробными, что упрощает подбор.

Следствия из теоремы Виета:

Используя теорему Виета, можно увидеть взаимосвязь между коэффициентами b и c и знаками корней уравнения.

Коэффициент c показывает, будут ли одинаковыми знаки корней:

  1. Если( c > 0), то корни( x_{1}) и (x_{2} ) имеют одинаковый знак.

  2. Если коэффициент (c < 0), корни (x_{1}) и (x_{2}) будут разных знаков.

Коэффициент b показывает, какой именно знак у корней, если он один, либо какой корень положительный, а какой отрицательный, если знаки разные.

  1. Если (x_{1} + x_{2} = – b > 0) (т.е. сумма корней положительна), то возможны 2 варианта:

а) либо оба корня положительны;

б) либо модуль положительного корня больше модуля отрицательного.

  1. Если( x_{1} + x_{2} = – b < 0) (т.е. сумма корней отрицательна), то опять же есть 2 варианта:

а) либо все корни отрицательны;

б) либо модуль положительного корня меньше модуля отрицательного.

Пример №2:

(x^{2} – 5x + 6 = 0)

1. Составим систему:

(left{ begin{matrix} \ x_{1} cdot x_{2} = 6 \ \ text{ }x_{1} + x_{2} = 5 \ \ end{matrix} right. )

Из следствий из т. Виета видим, что (c > 0), значит у корней одинаковые знаки.

Коэффициент (b > 0), значит оба корня положительные

2. Подберем (x_{1}, x_{2}) так, чтобы оба равенства выполнялись.

Видим, что произведение больше нуля, значит, либо оба числа отрицательные, либо оба положительные. Сумма положительна, значит, оба положительные.

Произведение корней раскладываем всеми способами на множители:

(6 = 2 cdot 3 = 1 cdot 6)

Через сумму делаем проверку:

(2 + 3 = 5)

(1 + 6 = 7)

В данном случае подходят числа

(x_{1} = 2, x_{2} = 3).

Ответ: 2; 3.

ЧАСТНЫЕ СЛУЧАИ РЕШЕНИЯ КВАДРАТНЫХ УРАВНЕНИЙ:

  • Если (a + b + c = 0), то (x_{1} = 1, x_{2} = frac{c}{a})

Пример №3:

(x^{2} + 3x – 4 = 0)

1. Сложим все коэффициенты уравнения, чтобы проверить, является ли это уравнение примером частного случая. Действительно, коэффициенты в сумме дают 0:

(1 + 3 – 4 = 0)

2. Тогда по правилу: (x_{1} = 1, x_{2} = frac{c}{a}) получаем:

(leftlbrack frac{x_{1} = 1}{x_{2} = frac{–4}{1} = –4} right. )

Ответ: 1; -4.

  • Если (a + c = b), то (x_{1} = –1, x_{2} = – frac{c}{a})

Пример №4:

(x^{2} + 9x + 8 = 0)

1. Сложим коэффициенты a и c, чтобы проверить уравнение на соответствие второму частному случаю. Действительно (a + c = b):

(1 + 8 = 9)

2. Тогда по правилу: (x_{1} = –1, x_{2} = – frac{c}{a}) получаем:

(leftlbrack frac{x_{1} = –1}{x_{2} = – frac{8}{1} = –8} right. )

Ответ: – 1; – 8.

НЕПОЛНЫЕ КВАДРАТНЫЕ УРАВНЕНИЯ

Неполное квадратное уравнение вида

(ax^{2} + bx = 0.)

Если отсутствует свободный член, то:

1.Раскладываем левую часть на множители:

(x(ax + b) = 0)

2. Приравниваем каждый из множителей к нулю:

(leftlbrack begin{matrix} \ begin{matrix} \ x = 0 \ ax + b = 0 \ \ end{matrix} \ end{matrix} right. )

3. Решаем каждое из полученных уравнений, получаем:

(leftlbrack begin{matrix} \ x = 0 \ x = – frac{b}{a} \ end{matrix} right. )

Неполное квадратное уравнение вида

(ax^{2} + c = 0.)

Если отсутствует слагаемое с переменной в первой степени, то:

1.Делим левую и правую часть на коэффициент (a neq 0.)

(x^{2} + frac{c}{a} = 0)

2. Смотрим на знак слагаемого без переменной.

Если (frac{c}{a} < 0), то раскладываем по формуле разности квадратов, приравниваем каждую из скобок к нулю и решаем полученные уравнения.

Если (frac{c}{a} = 0), то получаем единственное решение (x = 0.)

Если (frac{c}{a} > 0), то решений нет.

Добавить комментарий