Содержание:
Я думаю, что мы еще никогда не жили в такой геометрический период. Все вокруг – геометрия. Ле Корбюзье
Перпендикулярность прямых в пространстве
В модуле 3 мы рассматривали взаимное расположение прямых в пространстве.
Естественно, что пересекающиеся прямые
образуют углы. Углом между прямыми является меньший из двух смежных. Например, на рисунке 5.1 изображены две пересекающиеся прямые
Две прямые в пространстве называются перпендикулярными, если они пересекаются под прямым углом.
Свойства перпендикулярных прямых пространства выражают теоремы 1-4.
Теорема 1
Через произвольную точку прямой в пространстве можно провести перпендикулярную ей прямую.
Доказательство:
Пусть – данная прямая и – точка на ней (рис. 5.2). Возьмем вне прямой а произвольную точку и проведем через эту точку и прямую плоскость (следствие из аксиом). В плоскости через точку можно провести прямую , перпендикулярную . Теорема доказана.
Теорема 2
Если две пересекающиеся прямые соответственно параллельны двум перпендикулярным прямым, то они также перпендикулярны.
Доказательство:
Пусть и – данные перпендикулярные прямые и , а также прямая пересекает в точке , а прямая пересекает в точке (рис. 5.3). Тогда и лежат в плоскости , а прямые и – в плоскости , которые будут параллельными по признаку параллельности плоскостей. Соединим точки и . Выберем на прямой точку , а на прямой – точку Проведем и .Тогда .
Четырехугольники и – параллелограммы, отсюда и . Поскольку , то они лежат в одной плоскости , пересекающей плоскость по прямой , а плоскость – по прямой , которые параллельны, т.е. .
Итак, четырехугольник -параллелограмм, у которого . Таким образом, треугольники и равны по третьему признаку равенства треугольников. , отсюда , поэтому . Итак, прямая перпендикулярна прямой Теорема доказана.
Теорема 3
Через любую точку пространства, не принадлежащую прямой, можно провести прямую, перпендикулярную данной (рис. 5.4, а).
Теорема 4
Если прямая перпендикулярна одной из двух параллельных прямых и лежит с ними в одной плоскости, то она перпендикулярна и второй прямой (рис. 5.4, б).
Доказательство теорем 3 и 4 выполните самостоятельно.
Расположение трех прямых в пространстве, когда они между собой попарно перпендикулярны и имеют общую точку, является особым случаем (рис. 5.4, в).
Отметим, что в пространстве существует множество плоскостей, которые можно провести через одну и ту же прямую. Выбирая точку А вне прямой, мы попадем на одну из этих плоскостей и в выбранной плоскости к данной прямой через точку А проводим прямую, перпендикулярную данной.
Итак, в пространстве к прямой можно провести сколь угодно много перпендикулярных прямых, проходящих через данную точку этой прямой.
Пример №1
Прямые и попарно перпендикулярны (рис. 5.5). Найдите отрезок , если .
Дано:
Найти:
Решение:
Из по теореме Пифагора . поэтому , отсюда .
Из по теореме Пифагора . поэтому
Ответ. 6,5 см
Почему именно так?
Каждая пара данных прямых и – перпендикулярна, т.е. образует прямые углы. Соединив последовательно точки с , с и с , получим прямоугольные треугольники.
- : известны катет и гипотенуза, неизвестна сторона, являющаяся вторым катетом. – сторона .
- : один катет известен по условию, второй – найден из ; неизвестной является третья сторона – гипотенуза. По теореме Пифагора составляем выражение и выполняем вычисление длины отрезка .
Перпендикулярность прямой и плоскости в пространстве
Мы уже рассматривали взаимное расположение прямой и плоскости, детально ознакомились со случаем, когда прямая не пересекает плоскость. В этом параграфе мы рассмотрим случай, когда прямая пересекает плоскость и, кроме того, образует с произвольной прямой этой плоскости, проходящей через точку пересечения, прямой угол. Такую прямую называют перпендикулярной плоскости. Все другие неперпендикулярные прямые, пересекающие плоскость, называют наклонными.
Моделью прямой, перпендикулярной плоскости, может быть установленная вышка, столб, вкопанный в землю, гвоздь, вбитый в стену, и т.п.
Прямая, пересекающая плоскость, называется перпендикулярной этой плоскости, если она перпендикулярна произвольной прямой, которая лежит на этой плоскости и проходит через их точку пересечения.
Чтобы определить, будет ли прямая перпендикулярной плоскости , нужно через точку ее пересечения с плоскостью провести множество прямых (рис. 5.10) и доказать, что она перпендикулярна каждой из них. Этот путь нерациональный. Поэтому, чтобы установить перпендикулярна ли прямая плоскости, пользуются признаком перпендикулярности прямой и плоскости.
Теорема 5 (признак перпендикулярности прямой и плоскости)
Если прямая перпендикулярна двум пересекающимся прямым этой плоскости, то она перпендикулярна и данной плоскости.
Доказательство:
Пусть – данная плоскость, – прямая, пересекающая ее в точке , и – прямые, которые принадлежат плоскости , проходят через точку (рис. 5.11) и перпендикулярны прямой . Докажем, что , т.е., что прямая с перпендикулярна любой прямой плоскости , которая проходит через точку .
Для этого выполним дополнительное построение:
- отложим в разных полупространствах на прямой от точки равные отрезки и ;
- обозначим на прямой некоторую точку , а на прямой – точку ; соединим точки: с , с , с , с и с ;
- проведем через точку произвольную прямую , которая пересечет в точке , и также соединим ее с и .
Рассмотрим образованные при этом треугольники.
- – медиана и высота; по построению; – общая сторона треугольников и ; . Итак, по двум сторонам и углу между ними. Отсюда .
- . Равенство отрезков и доказывается аналогично, как и равенство отрезков и .
- , поскольку и -общая сторона. Отсюда вытекает равенство соответствующих углов: .
- по двум сторонам и углу между ними: – общая сторона; по доказательству выше. Итак, , т.е. – равнобедренный: – основание треугольника, – середина , поэтому – медиана . В равнобедренном треугольнике медиана является высотой, т.е. , а это означает, что . Поскольку прямая – произвольная прямая плоскости , проходит через точку пересечения прямой и плоскости , перпендикулярна прямой , то .
Теорема доказана.
Отметим, что вы впервые столкнулись с таким громоздким доказательством. Доказательство не следует заучивать наизусть или запоминать шаги, необходимо понять его и последовательно, опираясь на известные факты, изложить рассуждения. Для этого важно спланировать последовательность логических шагов и не допускать ошибок.
Итак, для установления перпендикулярности прямой и плоскости достаточно проверить перпендикулярность прямой двум прямым плоскости, проходящим через точку их пересечения (по признаку).
Из данной теоремы вытекают два следствия.
Следствие 1. Если плоскость перпендикулярна одной из двух параллельных прямых, то она перпендикулярна и второй прямой.
Доказательство:
Пусть – плоскость, и – две прямые, пересекающие ее в точках и , причем , (рис. 5.12). Проведем через точку произвольную прямую на плоскости , а через точку -прямую , параллельную . Поскольку прямая , перпендикулярна плоскости , то прямые и перпендикулярны. Тогда, по теореме 2, прямые и также перпендикулярны. Таким образом, прямая перпендикулярна произвольной прямой, которая лежит на плоскости и проходит через их точку пересечения . Это определяет перпендикулярность прямой к плоскости .
Следствие 2. Две прямые, перпендикулярные одной плоскости, параллельны.
Доказательство:
Пусть и две прямые, перпендикулярные плоскости (рис. 5.13). Допустим, что прямые и не параллельные. Выберем на прямой точку , которая не принадлежит плоскости . Проведем через точку прямую параллельную прямой . Она перпендикулярна плоскости по предыдущему следствию. Пусть прямая пересекает плоскость в точке , а прямая пересекает в точке . Тогда пряма перпендикулярна пересекающимся прямым и . А это невозможно, предположение неверно. Таким образом, прямые параллельны.
Пример №2
Докажите, что через любую точку А можно провести прямую, перпендикулярную данной плоскости.
Доказательство:
Рассмотрим два случая.
Первый случай. Пусть точка принадлежит плоскости (рис. 5.14). Тогда через точку в плоскости проведем прямую . Выбрав точку , не принадлежащую , проведем через нее и прямую плоскость (следствие из аксиом). Проведем в плоскости прямую , а в плоскости -прямую . Через эти две прямые проходит плоскость у, которая будет перпендикулярна прямой (теорема о перпендикулярности прямой и плоскости).
Тогда в плоскости достаточно провести прямую . Она будет перпендикулярна и прямой , поскольку лежит в у и проходит через точку пересечения. Поскольку перпендикулярна двум прямым плоскости , то она перпендикулярна и самой плоскости. Итак, мы построили прямую , которая перпендикулярна плоскости и проходит через заданную точку .
Второй случай. Пусть точка не принадлежит плоскости . Выбрав произвольную точку на плоскости , аналогично предыдущему случаю, проведем прямую , которая проходит через точку . Тогда через эту прямую и точку можно провести некоторую плоскость , а на ней -некоторую прямую , которая проходит через точку параллельно . Прямая будет перпендикулярна (если одна из двух параллельных прямых перпендикулярна плоскости, то вторая также перпендикулярна). Построение выполнено. Итак, прямую построить можно. Ч.т.д.
Перпендикуляр и наклонная. Теорема о трех перпендикулярах
Рассмотрим изображение прямой а, перпендикулярной плоскости (рис. 5.20). Обозначим на прямой произвольный отрезок.
Отрезок называется перпендикулярным плоскости, если он лежит на прямой, перпендикулярной плоскости.
Итак, на прямой , перпендикулярной плоскости , можно разместить множество отрезков, которые будут перпендикулярны плоскости .
На рисунке 5.21 изображены различные случаи расположения перпендикулярного плоскости отрезка:
- отрезок лежит по одну сторону от плоскости и не пересекает ее (рис. 5.21, а);
- отрезок пересекает плоскость (концы отрезка находятся в разных полупространствах) (рис. 5.21, б);
- отрезок лежит по одну сторону от плоскости и точка – конец отрезка – принадлежит плоскости (рис. 5.21, в).
Чаще всего на практике встречается третий случай. Такой отрезок называют перпендикуляром, проведенным из данной точки к плоскости.
Перпендикуляром, проведенным из данной точки к данной плоскости, называется отрезок, который соединяет данную точку с точкой плоскости и лежит на прямой, перпендикулярной этой плоскости (рис. 5.21, в). Конец отрезка, лежащий на плоскости, называется основанием перпендикуляра.
Наклонной, проведенной из данной точки к данной плоскости, называется любой отрезок, который соединяет данную точку с точкой плоскости и не является перпендикуляром к плоскости. Конец отрезка, лежащий на плоскости, называется основанием наклонной. Отрезок, который соединяет основание перпендикуляра и основание наклонной, проведенных из одной и той же точки, называется проекцией наклонной.
На рисунке 5.22 отрезок – перпендикуляр, проведенный из точки на плоскость . Отрезок – наклонная, проведенная из точки на ту же плоскость . Точка – основание перпендикуляра, а точка – основание наклонной, отрезок – проекция наклонной на плоскость . Угол , образованный наклонной и ее проекцией , называют углом наклона наклонной к плоскости .
Углом между наклонной и плоскостью называется угол между наклонной и проекцией этой наклонной на плоскость.
Свойства перпендикуляра и наклонных
Если из одной точки вне плоскости провести к ней перпендикуляр и наклонные, то:
- из точки, не принадлежащей плоскости, можно провести один и только один перпендикуляр и множество наклонных;
- длина перпендикуляра меньше длины любой наклонной;
- наклонные, имеющие равные проекции, равны между собой, и наоборот, равные наклонные имеют равные проекции;
- из двух наклонных большую длину имеет та, которая имеет большую проекцию, и наоборот, большая наклонная имеет большую проекцию.
Докажите эти свойства самостоятельно.
Широко используется свойство прямой, перпендикулярной проекции наклонной или наклонной, которое называют теоремой о трех перпендикулярах.
Теорема 6 (о трех перпендикулярах)
Если прямая, проведенная на плоскости через основание наклонной, перпендикулярна ее проекции, то она перпендикулярна и наклонной. И наоборот, если прямая, проведенная на плоскости через основание наклонной, перпендикулярна наклонной, то она перпендикулярна и проекции наклонной.
Дано:
Доказать: прямая .
Доказательство:
Докажем вторую часть теоремы. Пусть – перпендикуляр к плоскости , – наклонная. Прямая принадлежит плоскости , проходит через основание наклонной и перпендикулярна ей (рис. 5.23). Т.е. . Проведем через основание наклонной прямую , параллельную . , т.е. . Прямые и лежат в одной плоскости . Поскольку и , то по признаку . . Итак,. Ч.т.д. Первую часть теоремы докажите самостоятельно.
Пример №3
Из точки к плоскости проведены две наклонные. Найдите длины наклонных, если одна из них на 26 см больше другой, а проекции наклонных равны 12 см и 40 см.
Дано: – перпендикуляр к плоскости (рис. 5.24); и – наклонные; на 26 см; .
Найти: и .
Решение:
Пусть , тогда . В – гипотенуза; – катет. По теореме Пифагора: , отсюда , .(1)
В – гипотенуза; – катет. По теореме Пифагора: , отсюда , , .(2)
Из (1) и (2) имеем:
Ответ. 15 см и 41 см.
Почему именно так?
– перпендикуляр к , поэтому и . Перпендикуляр, наклонная и ее проекция образуют прямоугольный треугольник. Две различные наклонные, один перпендикуляр и две проекции образуют два прямоугольных треугольника с общим катетом. Составить соотношение между сторонами прямоугольного треугольника можно по теореме Пифагора.
Алгебраический метод решения упрощает процесс поиска решения. Находим общий катет для и:
и
Отсюда имеем равенство: и соответствующее уравнение с одной переменной, что приводит к решению задачи.
Перпендикулярность плоскостей
Две пересекающиеся плоскости называются перпендикулярными, если третья плоскость, перпендикулярная прямой пересечения этих плоскостей, пересекает их по перпендикулярным прямым (рис. 5.31).
Если .
Моделями перпендикулярных плоскостей в окружающем мире являются различные конфигурации предметов. Например, шкатулка с крышкой, двери, окна, которые открываются, и т.д. Принцип «открывания» частей моделей основывается на перпендикулярности прямых, проведенных перпендикулярно прямой пересечения (линии крепления) (рис. 5.32).
Перпендикулярные плоскости обладают такими свойствами:
- Любая плоскость, перпендикулярная линии пересечения перпендикулярных плоскостей, пересекает их по перпендикулярным прямым. И наоборот, плоскость, перпендикулярная двум пересекающимся плоскостям, перпендикулярна линии их пересечения.
- Если две плоскости взаимно перпендикулярны, то любая прямая, лежащая в одной из них и перпендикулярная их линии пересечения, перпендикулярна другой плоскости.
- Если две плоскости взаимно перпендикулярны и из произвольной точки одной из них опущен перпендикуляр на вторую, то этот перпендикуляр лежит в первой плоскости.
Рассмотрим их несколько позднее. Докажем сначала признак перпендикулярности двух плоскостей.
Теорема 7 (признак перпендикулярности плоскостей)
Если одна из двух плоскостей проходит через прямую, перпендикулярную другой плоскости, то эти плоскости перпендикулярны.
Дано: ; плоскость проходит через . Доказать:
Доказательство:
Построим произвольную плоскость через прямую и некоторую точку вне ее (рис. 5.33). – общая точка плоскостей и , поэтому они пересекаются по некоторой прямой , проходящей через точку . Проведем на плоскости некоторую прямую (на плоскости такая прямая единственная). Поскольку и , то . Итак, прямая с перпендикулярна двум пересекающимся прямым и . Построим через прямые и плоскость . Она перпендикулярна прямой (поскольку две ее прямые перпендикулярны ). Поэтому ее линии пересечения с плоскостями и образуют прямой угол. Т.е. плоскость , перпендикулярная прямой пересечения плоскостей и , пересекает их по перпендикулярным прямым и , что по определению доказывает перпендикулярность плоскостей и .
Теорема доказана.
Теперь вернемся к свойствам перпендикулярных прямых и плоскостей и докажем некоторые из них.
Теорема 8
Если две плоскости взаимно перпендикулярны, то любая прямая, лежащая в одной из них и перпендикулярная линии их пересечения, перпендикулярна второй плоскости.
Дано:
Доказать:
Доказательство:
Пусть плоскости и взаимно перпендикулярны (рис. 5.34), т.е. некоторая плоскость , перпендикулярная прямой , пересекает их по перпендикулярным прямым и .
Проведем через точку прямую . Тогда , отсюда плоскость, проходящая через прямые и , будет перпендикулярна прямой . Поскольку , то перпендикулярными будут и прямые . Кроме того, (по условию), поэтому . Теорема доказана.
Теорема 9
Если две плоскости взаимно перпендикулярны и из некоторой точки одной из них опущен перпендикуляр на вторую, то этот перпендикуляр лежит в первой плоскости.
Дано:
Доказать:
Доказательство:
Пусть плоскости и взаимно перпендикулярны (рис. 5.35). Тогда некоторая плоскость , перпендикулярная прямой , пересекает их по перпендикулярным прямым и .
Итак, дано и . Т.е. . В плоскости через точку проведен отрезок По следствию, две прямые, перпендикулярные одной и той же плоскости, будут параллельными. . Таким образом, они лежат в одной плоскости – . Если одна из двух параллельных прямых пересекает в плоскости прямую , то и другая пересекает ее. Отсюда вытекает, что точка должна принадлежать прямой . Тогда она будет общей для двух плоскостей. Но если две точки и принадлежат , то вся прямая принадлежит плоскости .
Теорема доказана.
Остальные свойства докажите самостоятельно.
Пример №4
Из точек и , лежащих на двух взаимно перпендикулярных плоскостях (рис. 5.36), проведены перпендикуляры и на прямую пересечения плоскостей и . Найдите длину отрезка , если , .
Дано:
Найти:
Решение:
Поскольку , отсюда .
– прямоугольный: – катет, – катет, – гипотенуза (искомый отрезок). Рассмотрим на плоскости , тогда , поэтому и – прямоугольный.
Из – катет; – катет; – гипотенуза, которая является неизвестным катетом для . Из Из
Отсюда, учитывая что , имеем .
Ответ. 11 см.
Почему именно так?
Для каждой геометрической задачи важно построить цепочку логических рассуждений. В этой задаче важно видеть не только прямоугольные треугольники на плоскостях и , но и использовать признак и свойства перпендикулярных плоскостей. Таким образом можно выйти на новый прямоугольный треугольник или , третью сторону которого находят по известному и найденному катетам. В том или ином случае остается наклонной, меняются только перпендикуляры к соответствующим плоскостям и и проекции наклонной на плоскость или на плоскость .
Перпендикулярность прямой и плоскости
А) Напомним, что перпендикулярными называют прямые, угол между которыми равен 90°. Перпендикулярные прямые могут быть пересекающимися и могут быть скрещивающимися. На рисунке 210 перпендикулярные прямые и пересекаются, а перпендикулярные прямые и скрещиваются.
Прямая называется перпендикулярной плоскости, если она перпендикулярна каждой прямой этой плоскости.
Перпендикулярность прямой плоскости записывают так: Говорят также, что и плоскость перпендикулярна прямой и пишут
Прямая перпендикулярная плоскости обязательно эту плоскость пересекает. Если допустить, что прямая лежит в плоскости или параллельна ей, то в плоскости есть прямые, параллельные прямой и угол между и такими прямыми не равен 90°.
Окружающее пространство даёт много примеров, иллюстрирующих перпендикулярность прямой и плоскости. Столбы с осветительными лампами и колонны устанавливают перпендикулярно горизонтальной поверхности земли (рис. 211).
Из теоремы 6 параграфа 5 следует, что при определении угла между прямыми эти прямые можно заменять параллельными прямыми. Поэтому если одна из параллельных прямых перпендикулярна плоскости, то и другая также перпендикулярна этой плоскости. Верно и обратное утверждение.
Теорема 1. Если две прямые перпендикулярны плоскости, то они параллельны друг другу.
Доказательство: Пусть прямые и обе перпендикулярны плоскости (рис. 212). Докажем, что прямые и параллельны друг другу.
Через какую-либо точку прямой проведём прямую параллельную прямой Тогда Докажем, что прямая совпадает с прямой Допустим, что это не так. Тогда получается, что в плоскости заданной прямыми и через точку проведены две прямые, перпендикулярные прямой по которой пересекаются плоскости и что невозможно. Значит, прямые и совпадают, тогда и параллельны.
Пусть имеются плоскость и прямая которая её пересекает и не перпендикулярна (рис. 213). Основания перпендикуляров, опущенных из точек прямой на плоскость образуют прямую Эта прямая называется проекцией прямой на плоскость
Следующая теорема устанавливает признак перпендикулярности прямой и плоскости.
Теорема 2. Если прямая перпендикулярна двум пересекающимся прямым плоскости, то она перпендикулярна этой плоскости.
Доказательство: Пусть прямая пересекает плоскость в точке и перпендикулярна пересекающимся прямым и лежащим в плоскости а (рис. 214). Докажем, что прямая перпендикулярна плоскости т. е. что прямая перпендикулярна прямой произвольно выбранной в плоскости
Проведём через точку прямые и соответственно параллельные прямым и В плоскости проведём какую-либо прямую так, чтобы она пересекала прямые и в точках (рис. 215). На прямой отметим точки и на равных расстояниях от точки Прямые и — серединные перпендикуляры к отрезку поэтому и Значит, треугольники и равны по трём сторонам, поэтому углы и равны. Учитывая это, получим, что треугольники и равны по двум сторонам и углу между ними. Поэтому Это означает, что треугольник является равнобедренным, поэтому его медиана является и высотой, т. е. прямые и а также прямые и перпендикулярны.
Следствие 1. Если прямая перпендикулярна одной из параллельных плоскостей, то она перпендикулярна и другой плоскости.
Пусть плоскости и параллельны и прямая перпендикулярна плоскости а (рис. 216). Докажем, что прямая перпендикулярна плоскости Для доказательства проведём через прямую две какие-либо плоскости и Пусть они пересекают плоскость по прямым и а параллельную ей плоскость — по прямым и Поскольку и и то и По теореме 2 получаем, что
Следствие 2. Если одной прямой перпендикулярны две плоскости, то они параллельны.
Проведите самостоятельно обоснование этого утверждения, используя рисунок 216
Б) Теорема 3. Через каждую точку пространства проходит единственная плоскость, перпендикулярная данной прямой.
Доказательство: Пусть даны прямая и точка В случае, когда точка не лежит на прямой (рис. 217), в плоскости, которая определяется точкой и прямой через точку проведём прямую перпендикулярную прямой и через точку пересечения прямых и — ещё одну прямую перпендикулярную прямой
В случае, когда точка лежит на прямой (рис. 218), через точку проведём прямые и перпендикулярные прямой . Через прямые и проведём плоскость Эти плоскости и прямая перпендикулярны по признаку перпендикулярности прямой и плоскости.
Докажем теперь, что построенная плоскость а единственная. Допустим, что это не так. Пусть через точку проведены две плоскости и перпендикулярные прямой (рис. 219 и 220). Через прямую и точку проведём какую-либо плоскость Она пересекает плоскости и по некоторым прямым и так как плоскость имеет с плоскостями и общую точку Поскольку и то и Получается, что в плоскости через точку проведены две прямые и перпендикулярные прямой что невозможно.
Теорема 4. Через каждую точку пространства проходит единственная прямая, перпендикулярная данной плоскости.
Доказательство: Пусть даны точка и плоскость Пусть — прямая в плоскости а — плоскость, которая проходит через точку и перпендикулярна прямой Пусть плоскости и пересекаются по прямой (рис. 221). В плоскости через точку проведём прямую перпендикулярную прямой Прямая — искомая, так как она перпендикулярна пересекающимся прямым и по построению; так как и принадлежит
Прямая — единственная. Допустим, что это не так. Пусть через точку проходит ещё одна прямая перпендикулярная плоскости (рис. 222 и 223). Тогда по теореме 1 прямые и параллельны друг другу. Но такое невозможно, так как прямые и пересекаются в точке
Следствие 3. Квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов трёх его измерений.
Пусть — прямоугольный параллелепипед (рис. 224). Поскольку ребро перпендикулярно плоскости то треугольник прямоугольный с прямым углом Поэтому А поскольку треугольник также прямоугольный с прямым углом то Учитывая, что и получаем, что
Пример №5
Докажите, что если рёбра и а также и четырёхугольной пирамиды основанием которой является параллелограмм, равны между собой (рис. 225), то отрезок, соединяющий вершину с точкой пересечения диагоналей этого параллелограмма, перпендикулярен основанию
Решение:
— параллелограмм и поэтому и
Поскольку равнобедренный и то
Поскольку равнобедренный и то
и и поэтому (теорема 2).
Используя рисунок 226, докажите самостоятельно обратное утверждение: «Если отрезки и а также и соединяют точку перпендикуляра, проведённого из центра параллелограмма с противоположными его вершинами, то эти отрезки попарно равны».
Пример №6
В правильной треугольной пирамиде точка — середина ребра (рис. 227). Докажите, что прямая перпендикулярна плоскости
Решение:
— правильная треугольная пирамида, поэтому — равносторонний и — равнобедренный.
— равносторонний, и — середина поэтому
— равнобедренный, и — середина поэтому
и поэтому
Пример №7
Докажите, что диагональ куба перпендикулярна плоскости треугольника (рис. 228).
Решение:
— квадрат, поэтому
— куб, поэтому
и поэтому
и поэтому
— квадрат, поэтому
— куб, поэтому
и поэтому
и поэтому
и поэтому
Используя рисунок 228, установите, в какой точке прямая пересекает плоскость
Пространственное моделирование
При выполнении задания на определение вертикальности столба для забора (рис. 240) ученик проверил вертикальность первого из столбов, а дальше, измерив высоту первого и второго столбов и расстояние между ними снизу и сверху, сделал вывод о том, что и второй столб тоже вертикальный. Определите, обеспечивают ли полученные учеником сведения правильность его вывода. Ответ обоснуйте.
Расстояния
А) Пусть даны плоскость и точка вне её (рис. 241). Через точку проведём прямую перпендикулярную плоскости и пусть — точка пересечения прямой с плоскостью Отрезок называется перпендикуляром к плоскости, проведённым из точки а точка — основанием перпендикуляра.
Соединим точку ещё с какой-либо точкой плоскости Отрезок называется наклонной к плоскости, проведённой из точки а точка — основанием наклонной. Отрезок называется проекцией наклонной на плоскость
Свойства перпендикуляра и наклонных
Если из одной точки вне плоскости проведены к этой плоскости две наклонные (рис. 242), то:
- а) наклонные, имеющие равные проекции, равны между собой;
- б) та наклонная больше, проекция которой больше;
- в) равные наклонные имеют равные проекции;
- г) большая наклонная имеет большую проекцию.
Свойства перпендикуляров и наклонных докажите самостоятельно, используя рисунок.
Теорема 5. Перпендикуляр к плоскости, проведённый из некоторой точки, меньше любой наклонной к этой плоскости, проведённой из той же точки.
Доказательство: Пусть отрезок на рисунке 243 — перпендикуляр, а отрезок — наклонная к плоскости Эти перпендикуляр и наклонная в прямоугольном треугольнике являются соответственно катетом и гипотенузой. Поэтому
В соответствии с утверждением теоремы 5, из всех расстояний от данной точки до различных точек данной плоскости наименьшим является расстояние, измеренное по перпендикуляру.
Б) Расстоянием от точки до плоскости называется длина перпендикуляра, проведённого из этой точки к плоскости.
Когда мы говорим, например, что уличный фонарь находится на высоте 8 м от земли, то подразумеваем, что расстояние от фонаря до поверхности земли, измеренное по перпендикуляру, проведённому от фонаря к плоскости земли, составляет 8 м (рис. 244).
Теорема 6. Расстояние от любой точки одной из параллельных плоскостей к другой плоскости одно и то же и равно длине их общего перпендикуляра.
Доказательство: Пусть даны параллельные плоскости и (рис. 245). Пусть какая-либо точка плоскости отрезок — перпендикуляр, проведённый из точки к плоскости Возьмём произвольную точку плоскости и проведём из неё перпендикуляр к плоскости Тогда по теореме 1 прямые и параллельны, а по теореме 12 из параграфа 6 отрезки и равны друг другу. Это означает, что расстояние от любой точки плоскости до плоскости равно отрезку Поскольку отрезок перпендикулярен плоскости то он является расстоянием от точки до плоскости Понятно, что расстояние от любой точки плоскости до плоскости равно отрезку
Расстоянием между параллельными плоскостями называется длина перпендикуляра, проведённого из какой-либо точки одной плоскости к другой плоскости.
Все точки одной стены комнаты находятся на одинаковом расстоянии от противоположной стены (рис. 246). Это расстояние и есть ширина комнаты.
Теорема 7. Расстояние от любой точки прямой, параллельной плоскости, до этой плоскости одно и то же и равно перпендикуляру, проведённому из какой-либо точки прямой к плоскости.
Используя рисунок 247, проведите доказательство теоремы самостоятельно.
Расстоянием между прямой и параллельной ей плоскостью называется длина перпендикуляра, проведённого из какой-либо точки прямой к плоскости.
Все точки края стола находятся на одном расстоянии от пола (рис. 248).
Теорема 8. Две скрещивающиеся прямые имеют единственный общий перпендикуляр.
Доказательство: Пусть даны скрещивающиеся прямые и (рис. 249). Докажем, что на этих прямых можно выбрать такие точки и что прямая перпендикулярна и прямой и прямой
Пусть — плоскость, проходящая через прямую параллельно прямой Возьмём на прямой точку и опустим перпендикуляр на плоскость Пусть — плоскость, проходящая через пересекающиеся прямые и Обозначим — прямую, по которой пересекаются плоскости и Поскольку то прямые и пересекаются в некоторой точке В плоскости опустим перпендикуляр на прямую Прямые и лежат в одной плоскости и перпендикулярны прямой Поэтому и значит, и
Этим самым существование общего перпендикуляра скрещивающихся прямых обосновано. Докажем теперь его единственность.
Пусть скрещивающиеся прямые и имеют ещё один общий перпендикуляр причём точка принадлежит прямой а точка — прямой (рис. 250).
Точки и и совпадать не могут, так как из одной точки к прямой можно провести только один перпендикуляр. Поскольку и то прямая как и прямая перпендикулярна плоскости проходящей через прямую параллельно прямой Поэтому и точки принадлежат одной плоскости. Значит, и прямые и принадлежат одной плоскости. Получили противоречие с тем, что эти прямые скрещиваются.
Расстоянием между скрещивающимися прямыми называется длина их общего перпендикуляра.
Из доказательства теоремы 8 следует, что расстояние между скрещивающимися прямыми равно расстоянию от любой точки одной из них до плоскости, содержащей другую прямую и параллельную первой.
Чтобы найти расстояние между скрещивающимися прямыми, можно действовать по-разному.
а) Можно построить отрезок с концами на этих прямых, перпендикулярный им обеим, и найти его длину.
Пример №8
Найдём расстояние между прямыми, которые содержат ребро куба длиной и диагональ грани, которая с этим ребром не имеет общих точек.
Решение:
Пусть нужно найти расстояние между прямыми и (рис. 251). Поскольку и то — общий перпендикуляр скрещивающихся прямых и а потому искомое расстояние равно ребру куба, т. е.
б) Можно построить плоскость, которая содержит одну из прямых и параллельна другой. Тогда искомое расстояние будет равно расстоянию от этой плоскости до другой прямой.
Пример №9
В правильной четырёхугольной пирамиде рёбра основания равны 4, а боковые рёбра — 6. Найдём расстояние между прямыми и где — середина ребра
Решение:
Пусть — центр квадрата Через прямую проведём плоскость параллельную прямой (рис. 252). Поскольку плоскость перпендикулярна прямой и содержит прямую то перпендикуляр, опущенный из любой точки прямой на плоскость принадлежит плоскости
Пусть — такая точка на прямой что Учитывая, что — середина стороны треугольника получаем, что равно половине высоты треугольника проведённой к стороне Поэтому Найдем площадь треугольника и его медиану
Теперь
в) Можно построить две параллельные плоскости, каждая из которых содержит одну из скрещивающихся прямых и параллельна другой. Тогда искомое расстояние будет равно расстоянию между этими плоскостями.
Пример №10
Найдём расстояние между прямыми, содержащими непересекающиеся диагонали двух смежных граней куба с ребром
Решение:
Пусть нужно найти расстояние между прямыми и (рис. 253). Плоскость, которая содержит и параллельна пересекает грань по прямой, параллельной т. е. по прямой а грань — по прямой Рассуждая так же, получаем, что плоскость, которая содержит и параллельна пересекает грань по прямой а грань — по прямой
Диагональ куба как прямая плоскости образует прямой угол с прямыми и которые перпендикулярны этой плоскости, а как прямая плоскости образует прямой угол с прямыми и которые перпендикулярны этой плоскости. Поэтому прямая перпендикулярна как плоскости так и параллельной ей плоскости
Плоскость пересекается с плоскостями и по прямым и где и — центры граней и (рис. 254), прямая пересекает плоскости и в точках и на прямых и Поскольку то по теореме Фалеса и Поэтому общий перпендикуляр плоскостей и имеет длину т. е.
Ответ:
Диагональ куба делится плоскостью треугольника, сторонами которого служат диагонали граней куба, имеющие с рассматриваемой диагональю куба общую точку, в отношении 1 : 2.
г) Можно построить плоскость, перпендикулярную одной из скрещивающихся прямых, и построить проекцию на неё другой прямой. Тогда искомое расстояние будет равно длине перпендикуляра, опущенного из точки, являющейся проекцией первой прямой на построенную плоскость, на проекцию другой прямой.
Пример №11
В четырёхугольной пирамиде все рёбра равны Найдём расстояние между скрещивающимися рёбрами и (рис. 255).
Решение:
Из теоремы 8 следует, что на прямых и есть такие точки и что прямая перпендикулярна как прямой так и прямой и, вместе с этим, плоскости, проходящей через одну из этих прямых параллельно другой.
Пусть — плоскость, проходящая через точку перпендикулярно прямой Она проходит через середины и рёбер и Тогда и проекцией отрезка на плоскость будет отрезок, равный
Определим, в какие точки спроектируются точки и Поскольку то вся прямая проектируется в точку Значит, точка проектируется в точку
Поскольку точки и проектируются в точки и N соответственно, то прямая проектируется в прямую Учтём также, что прямая принадлежит плоскости, параллельной прямой Поэтому искомая проекция отрезка — перпендикуляр к прямой проведённый из точки
Длину этого перпендикуляра найдём, используя площадь равнобедренного треугольника с основанием и боковыми сторонами
Получим откуда
Ответ:
Пример №12
Точка отстоит на 40 см от каждой вершины правильного треугольника со стороной 60 см. Найдите расстояние от точки до плоскости
Решение:
и — правильный треугольник, поэтому — центр окружности, описанной около треугольника и — её радиус (рис. 257).
поэтому — прямоугольный.
Тогда
Ответ: 20 см.
Пример №13
Из вершины равнобедренного треугольника с основанием возведён перпендикуляр и точка соединена с серединой этого основания (рис. 258). Докажите, что прямые и перпендикулярны.
Решение:
— перпендикуляр к плоскости поэтому и — проекции наклонных и на
— равнобедренный треугольник с основой поэтому
и — проекции наклонных и на и поэтому
и — середина поэтому
Угол между прямой и плоскостью
А) С помощью чисел, выражающих расстояние между двумя прямыми и величину угла между ними, можно описать взаимное расположение этих прямых в пространстве. Если прямые и пересекаются, то их взаимное расположение характеризует угол между ними, расстояние между такими прямыми считается равным нулю (рис. 266). Если прямые и параллельны, то их взаимное расположение характеризует расстояние между ними, угол между такими прямыми равен нулю (рис. 267). Если прямые и скрещиваются, то их взаимное расположение характеризует угол и расстояние между ними (рис. 268).
Теорема 9. Если прямая плоскости перпендикулярна проекции наклонной на эту плоскость, то она перпендикулярна и самой наклонной, а если прямая плоскости перпендикулярна наклонной к плоскости, то она перпендикулярна и проекции этой наклонной.
Доказательство: Пусть отрезки и — соответственно перпендикуляр и наклонная к плоскости а, тогда отрезок — проекция наклонной на эту плоскость (рис. 269).
Пусть прямая плоскости а перпендикулярна проекции Докажем, что прямая перпендикулярна самой наклонной
Прямая перпендикулярна пересекающимся прямым и плоскости — первой прямой по условию, а второй — так как она лежит в плоскости которой перпендикулярна прямая Поэтому прямая перпендикулярна и прямой плоскости
Пусть прямая плоскости перпендикулярна наклонной Докажем, что прямая перпендикулярна проекции этой наклонной.
Прямая перпендикулярна пересекающимся прямым и плоскости Поэтому она перпендикулярна и прямой плоскости
Теорема 9 называется теоремой о трёх перпендикулярах, потому что в ней идёт речь об отношении перпендикулярности между тремя прямыми. Приведём примеры использования этой теоремы.
Пример №14
Из вершины к плоскости треугольника стороны которого равны 13, 20, 11 соответственно, возведён перпендикуляр длиной 36 (рис. 270). Найдём расстояние от точки до прямой
Решение:
Искомое расстояние — длина перпендикуляра, опущенного из точки на прямую Проведение этого перпендикуляра потребует найти его основание на прямой Для этого в плоскости треугольника построим высоту этого треугольника. Поскольку прямая перпендикулярна высоте которая является проекцией наклонной то по теореме о трёх перпендикулярах прямая перпендикулярна наклонной т. е. отрезок выражает искомое расстояние.
Найдём сначала высоту треугольника По формуле Герона определим площадь этого треугольника, что позволит найти и его высоту
Треугольник — прямоугольный с прямым углом по теореме Пифагора найдём
Ответ: 36,6.
Пример №15
Докажем, что если данная точка пространства равноудалена от сторон многоугольника, то в этот многоугольник можно вписать окружность, центр которой совпадает с основанием перпендикуляра, опущенного из данной точки на плоскость многоугольника.
Доказательство: Пусть точка равноудалена от сторон многоугольника и — перпендикуляр из точки на плоскость этого многоугольника. Тогда перпендикуляры опущенные из точки на стороны многоугольника, равны друг другу (рис. 271).
Соединим точку с точками Поскольку отрезки — проекции отрезков на плоскость многоугольника, стороны которого перпендикулярны наклонным то эти стороны и, соответственно, отрезки перпендикулярны.
Треугольники прямоугольные, и все они имеют общий катет и равные гипотенузы. Значит, эти треугольники равны, соответственно, равны и отрезки что означает равноудалённость точки от сторон многоугольника. Значит, в этот многоугольник можно вписать окружность с центром
Пример №16
Если данная точка пространства равноудалена от вершин многоугольника, то около этого многоугольника можно описать окружность, центр которой совпадает с основанием перпендикуляра, опущенного из данной точки на плоскость многоугольника.
Используя рисунок 272, проведите доказательство этого утверждения самостоятельно.
Б) Теперь введём понятие угла между прямой и плоскостью. Пусть дана плоскость и прямая которая её пересекает и не перпендикулярна (рис. 273). Основания перпендикуляров, опущенных из точек прямой на плоскость образуют прямую Эта прямая называется проекцией прямой на плоскость
Углом между прямой и плоскостью, пересекающей эту прямую и не перпендикулярной ей, называется угол между прямой и её проекцией на плоскость.
Угол между прямой и плоскостью — наименьший из углов, которые образует эта прямая со всеми прямыми плоскости. Докажите утверждение самостоятельно.
Если прямая перпендикулярна плоскости то её проекцией на эту плоскость является точка пересечения прямой с плоскостью (рис. 274). В этом случае прямая образует со всеми прямыми плоскости углы, равные 90°. Этот угол и принимается в качестве угла между прямой и перпендикулярной ей плоскостью.
Если прямая параллельна плоскости то её проекцией на плоскость является прямая параллельная . Угол между параллельными прямыми считается равным 0°. Поэтому угол между параллельными прямой и плоскостью принимается равным 0°.
Пример №17
В треугольной пирамиде рёбра основания равны 6, а боковые рёбра — 5. Найдём угол между медианой основания и плоскостью
Решение:
Пусть — перпендикуляр, опущенный из точки на плоскость Поскольку наклонная перпендикулярна прямой то и её проекция перпендикулярна прямой Значит, точка К находится на серединном перпендикуляре к отрезку (рис. 275).
Искомый угол между медианой основания и плоскостью — это угол Его можно найти через теорему косинусов, если знать стороны треугольника Находим:
тогда
Значит,
Ответ:
При вычислении угла между скрещивающимися прямыми бывает полезной следующая теорема о трёх косинусах.
Угол между прямой и плоскостью угол между другой прямой этой плоскости и проекцией на неё прямой и угол между прямыми и связаны равенством
Доказательство: Пусть точка принадлежит прямой — точка пересечения прямой с плоскостью прямая лежит в плоскости и проходит через точку — основание перпендикуляра, опущенного из точки на прямую — проекция точки на плоскость (рис. 276).
Пусть и Поскольку — проекция и то Тогда из прямоугольных треугольников и имеем:
и
Пример №18
В треугольной пирамиде ребро перпендикулярно плоскости и равно 20. Найдём угол между прямыми и учитывая, что и
Решение:
Используем теорему о трёх косинусах, учитывая, что угол между прямыми и равен углу между прямой и прямой которая проходит через точку параллельно (рис. 277), поэтому
Поскольку и
то и Значит,
Ответ:
Пример №19
Основанием треугольной пирамиды является прямоугольный треугольник с гипотенузой и углом в 30° (рис. 279). Найдите высоту грани проведённую из вершины учитывая, что боковое ребро перпендикулярно плоскости основания и равно 4 см, а катет равен 6 см.
Решение:
поэтому — проекция наклонной на
— высота грани — проекция наклонной на поэтому
и поэтому
прямоугольный,
прямоугольный, поэтому
Ответ: 5 см.
Пример №20
Докажите, что если луч не лежит в плоскости неразвёрнутого угла и острые углы и равны, то проекция луча на плоскость является биссектрисой угла (рис. 280).
Решение:
Пусть и
(по гипотенузе и острому углу), поэтому
— проекция на и
— проекция на и
(проекции равных наклонных).
— биссектриса угла (точка равноудалена от сторон угла
Пространственное моделирование
Определим, как при движении на эскалаторе можно оценить глубину расположения станции метро, длину эскалатора (рис. 289).
Обратим внимание на то, что при спуске или подъёме на эскалаторе мы проезжаем вдоль ряда ламп, расположенных на равных расстояниях друг от друга. Нормативами задаётся освещённость тоннеля, исходя из которой устанавливается и расстояние между соседними лампами. Также учтём, что оптимальный угол наклона линии эскалатора к плоскости земли равен 30°.
Будем рассматривать эскалатор как наклонную к плоскости земли. Тогда глубину расположения станции можно интерпретировать как длину перпендикуляра к плоскости земли.
Для ответа на вопрос достаточно рассмотреть прямоугольный треугольник в котором гипотенуза представляет эскалатор, а катет — глубину расположения той станции метро, на которую ведёт данный эскалатор.
- а) Подсчитайте длину эскалатора, учитывая, что расстояние между лампами равно а.
- б) Составьте формулу для нахождения глубины закладки станции метро.
Перпендикулярность плоскостей
А) Два луча на плоскости с общим началом разделяют эту плоскость на две части, каждая из которых называется углом.
Аналогично две полуплоскости с общей границей разделяют пространство на две части (рис. 290). Каждую из этих частей вместе с полуплоскостями называют двугранным углом. Полуплоскости, ограничивающие двугранный угол, называют гранями угла, а общую прямую — ребром двугранного угла (рис. 291).
Обычно рассматривают меньший из двугранных углов с данными гранями (рис. 292). Точки угла, не лежащие на его гранях, составляют внутреннюю область двугранного угла (рис. 293).
Двугранный угол обычно обозначают по ребру: (см. рис. 293) или (рис. 294). При необходимости можно присоединить названия граней или названия точек на гранях: (3 (см. рис. 293), или (см. рис. 294), или (см. рис. 294).
Моделью двугранного угла может служить двускатная крыша (рис. 295), стена вместе с открытой дверью (рис. 296), полураскрытая книга (рис. 297).
Для измерения двугранных углов вводится понятие линейного угла. Выберем на ребре двугранного угла точку и в его гранях и из этой точки проведём лучи и перпендикулярные ребру (рис. 298). Полученный угол стороны которого и ограничивают часть плоскости принадлежащую двугранному углу называют линейным углом двугранного угла. Плоскость линейного угла перпендикулярна ребру двугранного угла, так как по построению лучи и перпендикулярны ребру
Понятно, что двугранный угол имеет бесконечно много линейных углов (рис. 299).
Теорема 10. Все линейные углы двугранного угла равны друг другу.
Доказательство: Пусть и — линейные углы двугранного угла (рис. 300). Докажем, что
Отложим на сторонах углов и равные отрезки Тогда получатся четырёхугольники и у которых противоположные стороны и а также и равны по построению и параллельны как перпендикуляры к одной прямой, проведённые в соответствующей плоскости. Поэтому и А это означает, что четырёхугольник является параллелограммом, что позволяет сделать вывод о равенстве отрезков PS и QR. Получили, что у треугольников и равны соответственные стороны, поэтому треугольники равны, а значит, равны и их углы и
Измерение двугранных углов связывается с измерением их линейных углов. В зависимости от того, каким — острым, прямым, тупым, развёрнутым — является линейный угол двугранного угла, отличают острые, прямые, тупые, развёрнутые двугранные углы. Двугранный угол, изображённый на рисунке 301, — острый, на рисунке 302 — прямой, на рисунке 303 — тупой.
Две пересекающиеся плоскости разделяют пространство на четыре двугранных угла с общим ребром (рис. 304). Если один из них равен то ещё один из них также равен а, а два остальных — 180° – Среди этих углов есть не превосходящий 90°, его величину и принимают за величину угла между пересекающимися плоскостями.
Если один из двугранных углов, образовавшихся при пересечении двух плоскостей, прямой, то три остальных также прямые (рис. 305).
Б) Плоскости, при пересечении которых образуются прямые двугранные углы, называются перпендикулярными плоскостями.
Для обозначения перпендикулярности плоскостей, как и для обозначения перпендикулярности прямых, используют знак
Моделями перпендикулярных плоскостей могут служить столешница и боковина стола (рис. 306), пол в комнате и дверь в неё (рис. 307).
Теорема 11. Если одна из двух плоскостей проходит через прямую, перпендикулярную другой плоскости, то такие плоскости перпендикулярны.
Доказательство: Пусть через прямую которая перпендикулярна плоскости и пересекает её в точке проходит плоскость (рис. 308). Докажем, что a
Плоскости и пересекаются по некоторой прямой перпендикулярной прямой так как по условию прямая и плоскость перпендикулярны.
В плоскости проведём прямую перпендикулярную прямой Полученный угол где — точка прямой является линейным углом двугранного угла Поскольку по условию то угол — прямой, и, значит, плоскости и перпендикулярны.
Теорема 11 выражает признак перпендикулярности плоскостей.
Следствие. Плоскость, перпендикулярная линии пересечения двух данных плоскостей, перпендикулярна каждой из них (рис. 309).
Докажем теперь утверждение, обратное утверждению теоремы 11.
Теорема 12. Если через точку одной из перпендикулярных плоскостей провести прямую, перпендикулярную другой плоскости, то эта прямая принадлежит первой плоскости.
Доказательство: Пусть две перпендикулярные плоскости и пересекаются по прямой и через точку плоскости проведена прямая перпендикулярная плоскости Докажем, что эта прямая принадлежит плоскости
Через точку в плоскости проведём прямую перпендикулярную и через точку их пересечения в плоскости — прямую также перпендикулярную (рис. 310). Угол между прямыми и прямой как линейный угол прямого двугранного угла. Получили, что прямая проходит через точку и перпендикулярна плоскости так как она перпендикулярна пересекающимся прямым и этой плоскости. А поскольку через эту точку к данной плоскости можно провести только одну перпендикулярную прямую, то прямые и совпадают. Значит, прямая а принадлежит плоскости
Пример №21
Точка — середина ребра при основании правильной пирамиды (рис. 311). Докажем, что плоскость перпендикулярна плоскости основания
Решение:
Прямая является основанием равнобедренных треугольников и Поэтому она перпендикулярна медианам и этих треугольников и вместе с этим плоскости Из теоремы 12 следует, что плоскость проходящая через перпендикуляр к плоскости ей перпендикулярна.
Следствие. Если две пересекающиеся плоскости перпендикулярны третьей плоскости, то их линия пересечения перпендикулярна той же плоскости (рис. 312).
Пример №22
В правильной треугольной пирамиде плоский угол при вершине равен Найдём величину двугранного угла при боковом ребре.
Решение:
Пусть — середина ребра — перпендикуляр к ребру проведённый из точки (рис. 313).
Из равенства треугольников и следует, что . Поэтому угол — линейный угол двугранного угла
Из прямоугольных треугольников и получаем: Из прямоугольного треугольника находим, что
Поэтому
Ответ:
В) При вычислениях бывает полезной теорема о трёх синусах.
Теорема 13. Линейный угол двугранного угла, угол между ребром этого двугранного угла и прямой, лежащей в одной из его граней, и угол между этой прямой и плоскостью другой грани связаны равенством
Доказательство: Пусть прямая лежит в плоскости точка принадлежит прямой — точка пересечения прямой с ребром двугранного угла — основание перпендикуляра, опущенного из точки на грань ) — основание перпендикуляра, опущенного из точки на ребро угла (рис. 314). Пусть и Поскольку — проекция и то Тогда из прямоугольных треугольников и будем иметь: и
Следствие 1. Если точка лежит в грани двугранного угла величиной то расстояние от неё до плоскости другой грани угла равно где — точка на ребре двугранного угла, а — угол между прямой и ребром двугранного угла (рис. 315).
Пример №23
Стороны и правильного треугольника лежат соответственно в гранях и острого двугранного угла величиной Сторона образует угол с ребром двугранного угла. Найдём величину угла между плоскостью и плоскостью
Решение:
Пусть искомый угол равен сторона треугольника имеет длину Тогда расстояние от точки до плоскости можно найти двумя способами (рис. 316): и Поэтому
Ответ:
Следствие 2. Пусть рёбра и — грани двугранных углов величиной и соответственно. Тогда (рис. 317).
Пример №24
Плоскости правильных треугольника и четырёхугольника перпендикулярны (рис. 319). Найдите учитывая, что
Решение:
и тогда по теореме 12
поэтому — прямоугольный. так как правильный и
так как четырёхугольник правильный и
Тогда по теореме Пифагора
Ответ:
Пример №25
Из точек и ребра двугранного угла в разных его гранях возведены перпендикуляры и (рис. 320). Определите величину двугранного угла, учитывая, что и расстояние между точками и равно 50 см.
Решение:
Пусть и Тогда — параллелограмм и см, 48 см.
и поэтому
— линейный угол двугранного угла
и тогда
и , тогда
и тогда
поэтому — прямоугольный.
Тогда по теореме Пифагора
Из треугольника
Поэтому
Ответ:
Пространственное моделирование
Отдельным видом параллельного проектирования, применяемого в геометрии для изображения пространственных фигур, является ортогональное проектирование.
Ортогональной проекцией точки на плоскость называется точка пересечения с этой плоскостью прямой, проходящей через данную точку перпендикулярно
Ортогональной проекцией фигуры на плоскость называется множество ортогональных проекций всех точек этой фигуры на плоскость.
Если — треугольная пирамида, и то
«…Разум заключается не только в знаниях, но и в умении применять знания на деле…»
(Аристотель).
- Ортогональное проецирование
- Декартовы координаты на плоскости
- Декартовы координаты в пространстве
- Геометрические преобразования в геометрии
- Теорема синусов и теорема косинусов
- Параллельность прямых и плоскостей
- Перпендикулярность прямой и плоскости
- Взаимное расположение прямых в пространстве, прямой и плоскости
План урока:
Перпендикулярность прямых
Перпендикулярность прямой и плоскости
Признак перпендикулярности прямой и плоскости
Задачи на перпендикулярность
Перпендикулярность прямых
Напомним, что планиметрии две прямые перпендикулярны, если угол между ними – прямой (то есть его величина составляет 90°).
Однако в стереометрии угол измеряется и между скрещивающимися двумя прямыми в пространстве, у которых общих точек нет. Если он составляет 90°, то прямые также именуются перпендикулярными.
Как же проверить, перпендикулярны ли скрещивающиеся прямые или нет? Для этого может быть использована специальная теорема, которую можно считать признаком перпендикулярности прямых.
Действительно, пусть есть прямые m, n и p, причем р||n и m⊥n. Требуется показать, что также m⊥p. Для этого выберем в пространстве какую-нибудь точку К и проведем через нее две такие прямые m’ и n’, что m’||m и n’||n:
По определению угла между прямыми из того факта, что m⊥n, вытекает, что и m’⊥n’. Так как p||n и n||n’, то в силу транзитивности параллельности, можно сделать вывод, что и р||n’. Но тогда угол между m’ и n’ одновременно является углом между m и p. А разm’⊥n’, то и m⊥p, ч. т. д.
Проиллюстрируем это правило на примере простого кубика:
Ребра ВС и AD параллельны как стороны квадрата АВСD. В свою очередь ВС⊥СG. Тогда по доказанной теореме можно утверждать, что и AD⊥CG.
Перпендикулярность прямой и плоскости
Из реальной жизни мы знаем, что палку в землю можно вставить так, что она будет стоять строго вертикально. В таких случаях говорят, что палка располагается перпендикулярно земле. Также гвоздь, «ровно» забитый в стену, оказывается перпендикулярным стене. Колонны, которые архитекторы используют при строительстве, также перпендикулярны плоскости пола в этих зданиях.
По аналогии и в геометрии прямая может быть перпендикулярна плоскости. На рисунке такая ситуация будет выглядеть так:
Сформулируем строгое определение:
Так, на следующем рисунке перпендикулярны прямая m и плоскость α. Это значит, что m перпендикулярна каждой прямым, находящимся в α:
Ясно, что прямая m, перпендикулярная плоскости α, должна пересекать ее. Действительно, если бы это было не так, то m либо полностью лежала бы в α, либо была бы ей параллельна. В обоих случаях в α можно было бы построить прямую n, параллельную m. В этом случае m и n уже не были бы перпендикулярны, а значит, что m уже не будет перпендикулярна к α.
Сформулируем две теоремы, связанные с перпендикулярностью прямой и плоскости.
Действительно, пусть есть прямые m и n, и m||n. Также есть плоскость α, и α⊥m. Проведем в α какую-нибудь прямую р:
По определению перпендикулярности (опр. 2) ясно, что m⊥p. Тогда по теор. 1 и n⊥p, ведь m||n. Прямая р была выбрана произвольно, поэтому получается, что n перпендикулярно любой произвольной прямой в α. Это как раз и значит, что n⊥α.
Теперь перейдем ко второй теореме, которая по сути обратна первой:
Для доказательства выберем на n точку К, не находящуюся в плоскости α. Через нее можно построить прямую р, параллельную m. Нам надо показать, что р и n – это одна и та же прямая. Пусть это не так, тогда р будет перпендикулярна α по теор. 2. Если n и р – различные прямые, то они должны пересекать α в разных точках, которые мы обозначим буквами Н и Т соответственно:
Прямая ТН будет перпендикулярна и n, и р. Тогда в ∆ТНК есть два прямых угла, ∠Н и∠Т, что невозможно. Значит, на самом деле прямые n и p совпадают. Так как p||m, то и n||m, ч. т. д.
Признак перпендикулярности прямой и плоскости
Заметим,что проверять перпендикулярность прямой и плоскости с помощью определения неудобно, ведь в любой плоскости находится бесконечно большое количество прямых. Поэтому на практике используется более простой признак перпендикулярности прямой и плоскости:
Доказательство. Пусть есть прямые m, n и р, причем m⊥n и m⊥p. При этом n и р пересекаются в какой-нибудь точке О, и через них проходит плоскость α.Надо продемонстрировать, что m также будет перпендикулярна и любой произвольной прямой k, принадлежащей α:
Если k||nили k||р, то k⊥m по теор. 1. Тогда надо рассмотреть случай, когда k пересекается с n и р. Проведем через О прямую k’, параллельную k.
Далее на прямой m отложим точки А и В так, чтобы ОА = АВ. Также проведем прямую s, пересекающую р, n, k’ в точках Р, L и Q соответственно:
В результате такого построения прямые n и р оказались серединными перпендикулярами для отрезка АВ. Тогда по свойству серединного перпендикуляра мы можем прийти к выводу, что
Теперь мы можем сравнить ∆АРQ и ∆BPQ, которые также оказываются равными:
Отсюда вытекает, что отрезки АQ и BQ одинаковы, поэтому ∆АВQ – равнобедренный. Теперь заметим, что в ∆АВQ отрезок OQ представляет собой медиану, ведь О – середина АВ. Но медиана в равнобедренном треугольнике – это ещё и высота, поэтому АВ⊥OQ. Это как раз и значит, что k’⊥m. Наконец, отсюда по теор. 1 выходит, что и k⊥m, ч. т. д.
Надо также рассмотреть и второй случай, когда изначально m НЕ проходит через О. В таком случае мы можем провести через О прямую m’, чтобы m’||m:
В этом случае по аналогии с предыдущим доказательством получаем, что m’⊥k. Тогда по теор. 1 и m⊥k, ч. т. д.
Покажем, как можно применить доказанный признак. Снова рассмотрим куб:
Докажем, что, например, ребро DH перпендикулярно грани АВСD. Действительно,DH⊥AD и DH⊥CD. Значит, в плоскости АВСD есть две пересекающиеся прямые (это AD и CD), каждая из которых перпендикулярна DH. По доказанному признаку (теор. 4) этого достаточно для того, чтобы DH⊥ABCD. Аналогично можно показать, что ребра BF, AE, СG также перпендикулярны АВСD.
Докажем ещё несколько важных и вместе с тем очевидных теорем.
Действительно, пусть есть прямая m и точка K. Здесь мы рассмотрим случай, когда K не находится на m. Тогда через m и K можно построить единственную плоскость α:
Дальше выполним следующие построения:
1) Проведем в плоскости α через К прямую n, такую, что n⊥m. Она пересечет m в какой-то точке Т.
2) Построим через m плоскость β, не совпадающую с α. То есть m окажется границей между α и β.
3) Через точку Т уже в плоскости β построим прямую р так, чтобы р⊥m.
4) Построим плоскость γ, проходящую пересекающиеся прямые р и n (эта плоскость будет единственной).
В итоге мы получили плоскость γ, в которой располагаются две прямые, р и n, каждая из которых перпендикулярна m. Тогда и вся плоскость γ будет перпендикулярна прямой m по теор. 4. То есть γ удовлетворяет условию теоремы.
В случае, когда точка К находится непосредственно на прямой m, плоскости α и β будут просто двумя различными плоскостями, проходящими через m. В каждой из них через К можно будет построить перпендикуляры к m, которые и будут играть роль прямых pи n.
Осталось убедиться, что γ – единственная плоскость, удовлетворяющая условию теоремы. В самом деле, пусть через некоторую точку К можно построить хотя бы две несовпадающие плоскости, перпендикулярные прямой m:
Обозначим буквами Т и Р точки, где m пересекает эти две плоскости. Тогда по опр. 2 получится, что РК⊥m и KT⊥m. Теперь рассмотрим ∆KPT. У него сразу два прямых угла – это ∠Р и ∠Т. Треугольник с двумя прямыми углами существовать не может, значит, на самом деле через K нельзя провести две плоскости, перпендикулярных m.
Прямым следствием из только что доказанной теоремы является следующее утверждение:
Действительно, пусть существуют такие плоскости α и β и прямая m, что m⊥α, m⊥β. Предположим, что α и β пересекаются по какой-нибудь прямой n. Тогда получается, что через каждую точку, принадлежащую n, проведены сразу 2 плоскости, перпендикулярные m, а это невозможно по теор. 5. Значит, α и β не пересекаются, то есть они параллельны.
Следующее утверждение часто называют теоремой о прямой, перпендикулярной плоскости:
Возьмем произвольные плоскость α и точку К. Далее в α выберем какую-нибудь прямую m. Мы можем провести через К такую плоскость β, что β⊥m (по теор. 5):
Прямую, по которой пересекутся α и β, обозначим буквой n. Теперь мы можем в плоскости β опустить перпендикуляр из К на n. Этот перпендикуляр обозначим буквой р.
Получается, что р⊥n,но также и р⊥m (ведь m⊥β, а р находится в β). Тогда по признаку перпендикулярности (теор. 4) получаем, что р⊥α, то есть р – это как раз искомая прямая.
Осталось показать, что р – единственная такая прямая. Действительно, пусть через К построили две прямых, каждая из которых перпендикулярна α. Тогда, по теореме 3, они окажутся параллельными. Но при этом у них будет общая точка K, а параллельные прямые общих точек не имеют. Поэтому р – единственная прямая, удовлетворяющая условию теоремы.
Задачи на перпендикулярность
Прежде, чем смотреть решение задач, постарайтесь решить их самостоятельно.
Задание. Ребра ВС и AD в тетраэдре АВСD перпендикулярны. M и N – это середины ребер АВ и АС. Докажите, что MN⊥AD.
Решение.MN по определению оказывается средней линией в ∆АВС. Это значит, что MN||ВС. Тогда, по теор. 1, можно утверждать, что и АD⊥MN, ч. т. д.
Задание. Диагонали квадрата, чья сторона имеет длина а, пересекаются в точке О. Через О проведена прямая ОК, перпендикулярная плоскости квадрата, причем отрезок ОК имеет длину b. Найдите расстояние от какой-нибудь вершины квадрата до точки К.
Решение.
Обозначим вершины квадрата буквами А, В, С и D. Найдем длину его диагонали, например, АС. Для этого используем теорему Пифагору и прямоугольный ∆АСD:
Точка пересечения диагоналей квадрата одновременно является серединой каждой диагонали, то есть отрезок ОС вдвое короче АС:
Теперь заметим, что если ОК перпендикулярна плоскости квадрата, то также ОК⊥ОС (опр. 2). Значит, ∆КОС – прямоугольный, и для него справедлива теорема Пифагора:
Аналогично можно показать, что расстояние и до других вершин вычисляется по такой же формуле.
Задание. В кубе найдите угол между прямыми АС и DH:
Решение. Заметим, что DH⊥АD и DH⊥CD, при этом AD и CD находятся в плоскости грани АВСD. Тогда по теор. 4 получаем, что DH перпендикулярна этой грани. В свою очередь из опр. 2 вытекает, что DH перпендикулярна любой прямой, принадлежащей грани, в том числе и АС. То есть угол между этими прямыми составляет 90°.
Ответ: 90°.
Задание. Ребро куба имеет длину, равную единице. Какова длина его диагонали FD?
Решение. Предварительно найдем длину диагонали FC (эта диагональ называется не диагональю куба, а диагональю грани ВСGF). Ее можно найти из прямоугольного ∆FCG:
Далее заметим, что СD⊥BC и CD⊥CG, то есть по теор. 4 ребро CD перпендикулярно всей грани BCGF. Это значит, что и ∠FCD– прямой, а ∆FCD – прямоугольный. Применим и к нему теорему Пифагора:
Задание. Какой угол в кубе с единичным ребром образуют диагональ куба и его ребро?
Решение. Используем рисунок предыдущей задачи и полученные в ней результаты. Нам надо найти ∠FDC. Мы уже рассчитали длины всех сторон в ∆FDC:
Тогда ∠FDC легко найти с помощью теоремы косинусов:
Примечание. Несложно показать, что ровно такой же угол диагональ куба образует и со всеми остальными ребрами куба. Также можно показать, что это угол никак не зависит от длины ребра.
Задание. Отрезок PQ и плоскость α параллельны. Через точку P и Q построены прямые, перпендикулярные α. Они пересекают α в точках Р1 и Q1. Докажите, что отрезки PQ и P1Q1 одинаковы.
Решение. По условию РР1⊥α и QQ1⊥α. Тогда по теор. 3 можно утверждать, что РР1||QQ1. Это значит, что отрезки РР1 и QQ1, в том числе и точки Р, Р1, Q, Q1 располагаются в одной плоскости. Тогда РQQ1P1– это плоский четырехугольник.
Заметим, что PQ||P1Q1, ведь если бы они пересекались, то точка их пересечения была бы общей для PQ и α, и тогда PQ и α не были бы параллельны. С учетом того факта, что и РР1||QQ1, получаем, что в четырехугольнике РQQ1P1 противоположные стороны параллельны. То есть он представляет собой параллелограмм.
Так как РР1⊥α и QQ1⊥α, то
Получается, что все углы в РQQ1P1 – прямые, то есть это прямоугольник. Из этого вытекает, что PQиP1Q1 – одинаковые отрезки, ч. т. д. Попутно мы также убедились, что также РР1 и QQ1 одинаковы.
Задание. Есть плоскости α и β, параллельные друг другу. Прямая m перпендикулярна α. Верно ли, что также m перпендикулярна и β?
Решение.
Пусть α и m пересекаются в точке Р. Заметим, что m обязательно должна пересекаться и с β в какой-нибудь точке М. Действительно, m не может полностью принадлежать β, ведь тогда бы точка Р также находилась в β, то есть существовала бы общая точка Р у параллельных плоскостей, что невозможно. Если бы m и β были параллельны, то тогда в β можно провести такую прямую m’, что m’||m. Раз m пересекает α, то и m’ должна пересекаться с α (по теор. 3 из этого урока). Но m’ с α не может пересечься, так как m’ находится в β и потому общих точек с α не имеет. Это противоречие показывает, что m пересекает β в точке, обозначенной нами как М.
Предположим, что утверждение в условии ошибочно и на самом деле β и m не перпендикулярны. Тогда через М можно провести третью плоскость γ, перпендикулярную m (по теор. 5). Проанализируем расположение плоскостей α, β и γ. Раз α⊥m и γ⊥m, то по теор. 6 можно утверждать, что α||γ. По условию α||β. Тогда в силу транзитивности параллельности и β||γ. Но это невозможно, ведь уβ и γ есть общая точка М. Значит, на самом деле β и m всё же перпендикулярны, ч. т. д.
Задание. Прямые AD, АС, АВ попарно параллельны. Известно, что
BC = 26
AB = 24
BD = 25
Найдите длину отрезка CD.
Решение. В задаче есть сразу три прямоугольных треугольника: ∆АВС, ∆АВD и ∆АСD. Для каждого из них можно записать теорему Пифагора, что позволит найти длины отрезков АС, АD и СD. Начнем с ∆АВС:
Теперь можно найти и длину CD c помощью ∆АСD:
Задание. На прямой m отмечена точка М. Через точку M проведены плоскость α и прямая n, причем m⊥α и m⊥n. Докажите, что n обязательно принадлежит α.
Решение. Так как m и n пересекаются, то через них можно построить плоскость β:
Так как у α и β есть общая точка М, то они должны пересекаться по некоторой прямой р. При этом р находится в α, а m⊥α, то m⊥n (по опр. 2). Тогда получается, что в плоскости β через точку M проходят две прямые, n и p, которые перпендикулярны m. Но в одной плоскости через точку прямой можно построить строго один перпендикуляр к ней. То есть n и p совпадают. Это значит, что n, как и p, полностью находится в α, ч. т. д.
Задание. Отрезок АВ не пересекает плоскость α, а отрезок СD принадлежит α. Известно, что отрезки АС и BD перпендикулярны α. Также известны длины:
AC = 3
BD = 2
CD = 2,4
Какова длина АВ?
Решение.
Если АС⊥α и BD⊥α, то АС||BD (по теор. 3). Это значит, что через АВ и СD можно провести плоскость, то есть АВСD – плоский четырехугольник. При этом∠С и ∠D прямые (по опр. 2). Построим отдельно этот четырехугольник и проведем некоторые построения:
Опустим из В перпендикуляр ВК на АС. Так как в четырехугольнике СDBK три угла прямые (∠С, ∠D и ∠K), то и четвертый угол также прямой, то есть СDBK – прямоугольник. Это значит, что
В ходе сегодняшнего урока мы узнали о перпендикулярных прямых в пространстве, а также о том, что перпендикулярны могут быть также прямая и плоскость. На основе простейших теорем о перпендикулярности возможно определять длину диагонали в кубе и углы, которые образует его диагональ с ребрами куба.
Как найти длину перпендикуляра
Даны точка и прямая представленная уравнением (1) § 161. Требуется найти расстояние от точки до прямой т. е. длину перпендикуляра (см. рис. 175), опущенного из точки на прямую .
Можно сначала найти основание К перпендикуляра (§ 161, пример), затем длину отрезка Проще применить формулу (при обозначениях § 161)
т. е. в векторной форме
Числитель выражения (1а) есть площадь параллелограмма (§ 111) , а знаменатель — длина основания Следовательно, дробь равна высоте параллелограмма.
Расстояние от точки до прямой
Что называется расстоянием от точки до прямой? Как найти расстояние от точки до прямой?
Расстоянием от точки до прямой называется длина перпендикуляра, опущенного из данной точки на прямую.
Таким образом, чтобы найти расстояние от точки до прямой, надо из точки к прямой провести перпендикуляр и найти его длину.
Например, на рисунке 1 расстояние от точки A до прямой a равно длине перпендикуляра AB, опущенного из точки A на прямую a.
Задачи на нахождение расстояния от точки до прямой сводятся к рассмотрению прямоугольного треугольника.
№ 1. Из точки к прямой проведены две наклонные, длины которых относятся как 2:3, а длины их проекций соответственно равны 2 см и 7 см. Найти расстояние от точки до прямой.
Дано: A∉a,
BC и BD — их проекции, BC=2 см, BD=7 см
1) Пусть k — коэффициент пропорциональности. Тогда AC=2k см, AD=3k см.
2) Рассмотрим треугольник ABC — прямоугольный (так как AB — перпендикуляр к прямой a по условию). По теореме Пифагора
3) Аналогично, из треугольника ABD
4) Приравниваем правые части полученных равенств и находим k:
5) Зная k, найдем AB:
№ 2. Из точки к прямой проведены две наклонные, длины которых равны 13 см и 15 см. Найти расстояние от точки до прямой, если разность проекций наклонных равна 4 см.
Дано: A∉a,
AC и AD — наклонные, AC=13 см, AD=15 см,
BC и BD — их проекции, BD-BC=4 см
1) Пусть BC=x см, тогда BD=x+4 см.
2) Рассмотрим треугольник ABC — прямоугольный (так как AB — перпендикуляр к прямой a по условию). По теореме Пифагора
3) Аналогично, из треугольника ABD
4) Приравниваем правые части полученных равенств и находим x:
5) Зная x, найдем AB:
№ 3. Найти расстояние от точки A до прямой a, если известно, что наклонная AF, длина которой равна c, образует с прямой a угол α.
Дано: A∉a,
Треугольник ABF — прямоугольный (так как AB — перпендикуляр к прямой a по условию). AB — катет, противолежащий углу ACB, AF — гипотенуза.
Основные сведения о перпендикуляре к прямой — что это такое, как находить
Каким будет определение положения прямой и плоскости, зависит от наличия общих точек. Если их больше одной, то прямая лежит на данной плоскости, если одна — то она ее пересекает. Если прямая не имеет с плоскостью точек пересечения, то прямая и плоскость параллельны.
Пересечение прямой линии и плоскости может происходить под разными углами. Если при пересечении между прямой и плоскостью образуется прямой угол, то такая прямая является к плоскости перпендикуляром. При этом она перпендикулярна всем прямым линиям, принадлежащим данной плоскости. Из этого свойства вытекает следующее определение.
Перпендикулярной к плоскости называется прямая линия, которая перпендикулярна всем без исключения прямым, лежащим в выбранной плоскости.
Следствием из данного определения является свойство плоскости, для которой установлено наличие перпендикуляра. Оно формулируется следующим образом: «Если плоскость перпендикулярна некоторой прямой, то она является также перпендикулярной для всех прямых, параллельных данной прямой».
В решении задач на построение перпендикуляров к плоскости в конкретной точке существует только одно решение, поскольку через определенную точку можно провести только одну прямую, занимающую по отношению к плоскости перпендикулярное положение.
О единственности такой прямой в геометрии существует доказательство.
Проведение перпендикуляра из точки к прямой
В жизни с перпендикуляром можно столкнуться часто. Например, если по двум параллельным направляющим движутся тела, то кратчайшее расстояние между ними будет лежать именно по перпендикуляру.
Допустим, на уроке ученикам дали задание построить перпендикуляр к имеющейся площади. Особым условием является то, что проходить этот перпендикуляр должен через выбранную точку. Технически задача проста. Для ее исполнения нужен чертежный треугольник, один угол у которого является прямым, то есть составляет 90°.
Приложив его к прямой таким образом, что одна из сторон, образующих прямой угол, лежит на прямой, а другая — проходит через точку с определенными координатами, необходимо соединить эту точку и прямую.
Такой отрезок будет кратчайшим соединением точки с прямой линией (и выбранной плоскостью).
Взаимное положение такого перпендикуляра и прямой обозначается специальным знаком.
Для перпендикуляра, проведенного из выбранной точки к прямой, можно определить длину. Она равна расстоянию от этой точки до точки пересечения с прямой плоскостью.
Как построить перпендикуляр к прямой
Построить перпендикуляр к прямой можно несколькими способами:
1. С помощью циркуля.
Из выбранной точки P проводим полуокружность, которая пересекается с прямой в точках A и B.
Затем тем же радиусом строим две окружности, центры которых совпадают с точками A и B. При этом окружности проходят через точку P.
Следующим шагом будет соединение точек P и Q.
На данном рисунке перпендикуляр к прямой AB — отрезок PQ.
2. Вторым способом построения перпендикуляра является использование транспортира. Чтобы провести перпендикуляр, внимательно откладываем 90° от выбранной точки на прямой, используя при этом линейку транспортира. Отрезок, соединяющий эту точку и деление 90°, является перпендикуляром к прямой в заданной точке.
3. Третий способ был описан выше. Он основан на применении чертежного треугольника и линейки. С помощью линейки проводим прямую. Прикладываем к ней прямым углом треугольник и очерчиваем этот угол с двух сторон. Один отрезок совпадает с имеющейся прямой, а второй является перпендикуляром к ней.
Пояснение на примерах
В конспектах по геометрии присутствует понятие высоты, представляющей собой перпендикуляр к одной из сторон геометрической фигуры (например, треугольника).
Высотой треугольника называется перпендикуляр, который выходит из вершины треугольника и следует к противоположной стороне (либо к продолжению этой стороны, если треугольник тупоугольный).
В данном определении содержится отличие от основной характеристики биссектрисы, которая, опускаясь на противолежащую углу сторону, не является перпендикуляром к ней.
Аналогичная ситуация с определением медианы — линии, исходящей из угла треугольника и делящей противоположную сторону на две равные части.
Высоту треугольника можно провести из любого его угла, поэтому у каждого треугольника имеется три высоты.
Существует теорема, что все три высоты треугольника пересекаются в одной точке, которая называется ортоцентром.
Используя свойство высоты треугольника о пересечении одной из его сторон под прямым углом, можно через высоту выразить формулу площади треугольника:
Уравнение для расчета высоты через площадь:
Найти через длины сторон:
h a = 2 p p — a p — b p — c a
где p — это полупериметр треугольника, который рассчитывается так:
p = a + b + c 2
Можно дать краткую характеристику еще двум способам выразить высоту треугольника:
Уравнения прямой, которая проходит через заданную точку и перпендикулярна к заданной плоскости.
В этой статье мы разберемся с нахождением уравнений прямой, которая в прямоугольной системе координат в трехмерном пространстве проходит через заданную точку и перпендикулярна к заданной плоскости. Сначала разберем принцип составления уравнений такой прямой, после чего перейдем к решению задач.
Навигация по странице.
Принцип составления уравнений прямой, проходящей через заданную точку перпендикулярно к заданной плоскости.
Прежде чем приступить к составлению уравнений прямой, которая проходит через заданную точку пространства перпендикулярно к заданной плоскости, освежим в памяти один момент.
В 10 классе на уроках геометрии доказывается теорема: через любую точку трехмерного пространства проходит единственная прямая, перпендикулярная к заданной плоскости. Таким образом, мы можем определить конкретную прямую, указав точку, через которую она проходит, и плоскость, к которой она перпендикулярна.
Сформулируем условие задачи.
Пусть в трехмерном пространстве зафиксирована прямоугольная система координат Oxyz , задана точка , плоскость и требуется написать уравнения прямой a , проходящей через точку М1 перпендикулярно к заданной плоскости .
Решим эту задачу.
Нам известны координаты точки M1 , через которую проходит прямая a , уравнения которой нам требуется найти. Но этого мало, чтобы записать уравнения прямой a . Если мы будем знать еще координаты направляющего вектора прямой a , то сможем записать канонические уравнения прямой a в пространстве и параметрические уравнения прямой a в пространстве.
Как же определить координаты направляющего вектора прямой a ? Да очень просто. Так как по условию прямая a перпендикулярна к плоскости , то нормальный вектор плоскости является направляющим вектором прямой a . Таким образом, нам остается отыскать координаты нормального вектора плоскости , принять их за соответствующие координаты направляющего вектора прямой a и записать требуемые уравнения прямой a .
В свою очередь координаты нормального вектора плоскости находятся в зависимости от способа задания плоскости в прямоугольной системе координат Oxyz . Если плоскости в прямоугольной системе координат Oxyz отвечает общее уравнение плоскости вида , то нормальным вектором плоскости является вектор . Если плоскость задается уравнением плоскости в отрезках , то от него следует перейти к общему уравнению плоскости , откуда станут видны координаты нормального вектора плоскости : . Если плоскость задана каким-либо другим способом (например, с помощью трех точек, не лежащих на одной прямой, или с помощью уравнений двух пересекающихся прямых, или с помощью уравнений двух параллельных прямых), то на основании этих данных следует определить общее уравнение плоскости , откуда получить координаты ее нормального вектора.
Итак, задача нахождения уравнений прямой, которая проходит через заданную точку пространства и перпендикулярна к заданной плоскости, решена. Осталось лишь рассмотреть несколько решенных примеров.
Примеры нахождения уравнений прямой, которая проходит через заданную точку пространства и перпендикулярна к заданной плоскости.
В этом пункте статьи мы приведем подробные решения наиболее характерных задач, в которых находятся уравнения прямой, проходящей через заданную точку пространства перпендикулярно к заданной плоскости.
Начнем с самого простого случая, когда требуется написать уравнения прямой, проходящей через заданную точку перпендикулярно к одной из координатных плоскостей.
Напишите канонические уравнения прямой a , которая проходит через точку и перпендикулярна координатной плоскости Oyz .
Нормальным вектором координатной плоскости Oyz является координатный вектор . Так как прямая a перпендикулярна плоскости Oyz , то является ее направляющим вектором. Итак, мы знаем координаты точки, лежащей на прямой a , и координаты ее направляющего вектора, то есть, можем написать ее канонические уравнения: .
.
Аналогично решается задача, в условии которой даны координаты точки, через которую проходит прямая, и задана плоскость с помощью общего уравнения плоскости.
Составьте параметрические уравнения прямой a , проходящей через точку перпендикулярно к плоскости .
Направляющим вектором прямой a является нормальный вектор плоскости , то есть, . Теперь мы можем записать требуемые уравнения прямой a . Они имеют вид .
.
В заключении рассмотрим пример составления уравнений прямой, которая проходит через заданную точку пространства и перпендикулярна к плоскости, заданной тремя не лежащими на одной прямой точками.
В прямоугольной системе координат Oxyz в трехмерном пространстве заданы три точки . Напишите уравнения прямой a , проходящей через начало координат перпендикулярно к плоскости ABC .
Направляющим вектором прямой, проходящей через начало координат перпендикулярно к плоскости АВС , является нормальный вектор плоскости АВС . Нормальным вектором плоскости АВС является векторное произведение векторов и . Найти указанное векторное произведение мы сможем, если будем знать координаты векторов и . Вычислим координаты векторов и по координатам точек А , В и С (при необходимости смотрите статью нахождение координат вектора по координатам точек его конца и начала): .
Тогда, , а в координатной форме (при необходимости обращайтесь к статье координаты вектора).
Теперь мы можем записать требуемые уравнения прямой a , которая проходит через точку и перпендикулярна к плоскости ABC : .
Приведем второй способ решения этой задачи.
Составим уравнение плоскости, проходящей через три заданные точки А , В и С , , откуда виден нормальный вектор этой плоскости . Далее принимаем этот вектор за направляющий вектор прямой a и записываем ее уравнения.
.
Уравнение прямой, проходящей через данную точку и перпендикулярной данной плоскости онлайн
С помощю этого онлайн калькулятора можно построить уравнение прямой, проходящей через данную точку и перпендикуляной данной плоскости. Дается подробное решение с пояснениями. Для построения уравнения прямой введите координаты точки и коэффициенты уравнения плоскости в ячейки и нажимайте на кнопку “Решить”.
Предупреждение
Инструкция ввода данных. Числа вводятся в виде целых чисел (примеры: 487, 5, -7623 и т.д.), десятичных чисел (напр. 67., 102.54 и т.д.) или дробей. Дробь нужно набирать в виде a/b, где a и b (b>0) целые или десятичные числа. Примеры 45/5, 6.6/76.4, -7/6.7 и т.д.
Уравнение прямой, проходящей через данную точку и перпендикулярной данной плоскости
Наша цель построить уравнение прямой, проходящей через данную точку M0 и перпендикулярной к данной плоскости Ax+By+Cz+D=0.
Общее уравнение плоскости имеет вид:
где n(A,B,C)− называется нормальным вектором плоскости.
Уравнение прямой, проходящей через точку M0(x0, y0, z0) и имеющий направляющий вектор q(l, m, n) имеет следующий вид:
Для того, чтобы прямая (2) была ортогональна плоскости (1), направляющий вектор q(l, m, n) прямой (2) должен быть коллинеарным нормальному вектору n(A,B,C) плоскости (1)(Рис. 1). Следовательно, в качестве направляющего вектора прямой (2) можно взять нормальный вектор плоскости (1) .
Таким образом, уравнение прямой, проходящей через точку M0(x0, y0, z0) и ортогональный плоскости (1) имеет следующий вид:
Пример 1. Построить прямую, проходящую через точку M0(5, -4, 4) и перпендикулярной плоскости
Общее уравнение плоскости имеет вид (1), где :
Подставляя координаты точки M0(5, -4, 4) и координаты нормального вектора плоскости (4) в (3), получим:
Уравнение прямой, проходящей через заданную точку перпендикулярно заданной прямой
В данной статье научимся составлять уравнения прямой, проходящей через заданную точку на плоскости перпендикулярно заданной прямой. Изучим теоретические сведения, приведем наглядные примеры, где необходимо записать такое уравнение.
Принцип составления уравнения прямой, проходящей через заданную точку плоскости перпендикулярно заданной прямой
Перед нахождением уравнения прямой, проходящей через заданную точку перпендикулярно заданной прямой. Теорема рассматривается в средней школе. Через заданную точку, лежащую на плоскости, можно провести единственную прямую, перпендикулярную данной. Если имеется трехмерное пространство, то количество таких прямых увеличится до бесконечности.
Если плоскость α проходит через заданную точку М 1 перпендикулярно к заданной прямой b , то прямые, лежащие в этой плоскости, в том числе и проходящая через М 1 являются перпендикулярными заданной прямой b .
Отсюда можно прийти к выводу, что составление уравнения прямой, проходящей через заданную точку перпендикулярно заданной прямой применимо только для случая на плоскости.
Задачи с трехмерным пространством подразумевают поиск уравнения плоскости, проходящей через заданную точку перпендикулярно к заданной прямой.
Если на плоскости с системой координат О х у z имеем прямую b , то ей соответствует уравнение прямой на плоскости, задается точка с координатами M 1 ( x 1 , y 1 ) , а необходимо составить уравнение прямой a , которая проходит через точку М 1 , причем перпендикулярно прямой b .
По условию имеем координаты точки М 1 . Для написания уравнения прямой необходимо иметь координаты направляющего вектора прямой a , или координаты нормального вектора прямой a , или угловой коэффициент прямой a .
Необходимо получить данные из заданного уравнения прямой b . По условию прямые a и b перпендикулярные, значит, направляющий вектор прямой b считается нормальным вектором прямой a . Отсюда получим, что угловые коэффициенты обозначаются как k b и k a . Они связаны при помощи соотношения k b · k a = – 1 .
Получили, что направляющий вектор прямой b имеет вид b → = ( b x , b y ) , отсюда нормальный вектор – n a → = ( A 2 , B 2 ) , где значения A 2 = b x , B 2 = b y . Тогда запишем общее уравнение прямой, проходящее через точку с координатами M 1 ( x 1 , y 1 ) , имеющее нормальный вектор n a → = ( A 2 , B 2 ) , имеющее вид A 2 · ( x – x 1 ) + B 2 · ( y – y 1 ) = 0 .
Нормальный вектор прямой b определен и имеет вид n b → = ( A 1 , B 1 ) , тогда направляющий вектор прямой a является вектором a → = ( a x , a y ) , где значения a x = A 1 , a y = B 1 . Значит осталось составить каноническое или параметрическое уравнение прямой a , проходящее через точку с координатами M 1 ( x 1 , y 1 ) с направляющим вектором a → = ( a x , a y ) , имеющее вид x – x 1 a x = y – y 1 a y или x = x 1 + a x · λ y = y 1 + a y · λ соответственно.
После нахождения углового коэффициента k b прямой b можно высчитать угловой коэффициент прямой a . Он будет равен – 1 k b . Отсюда следует, что можно записать уравнение прямой a , проходящей через M 1 ( x 1 , y 1 ) с угловым коэффициентом – 1 k b в виде y – y 1 = – 1 k b · ( x – x 1 ) .
Полученное уравнение прямой, проходящее через заданную точку плоскости перпендикулярно заданной. Если того требуют обстоятельства, можно переходить к другому виду данного уравнения.
Решение примеров
Рассмотрим составление уравнения прямой, проходящей через заданную точку плоскости и перпендикулярно заданной прямой.
Записать уравнение прямой а, которая проходит через точку с координатами M 1 ( 7 , – 9 ) и перпендикулярна прямой b , которое задано каноническим уравнением прямой x – 2 3 = y + 4 1 .
Из условия имеем, что b → = ( 3 , 1 ) является направляющим вектором прямой x – 2 3 = y + 4 1 . Координаты вектора b → = 3 , 1 являются координатами нормального вектора прямой a , так как прямые a и b взаимно перпендикулярны. Значит, получаем n a → = ( 3 , 1 ) . Теперь необходимо записать уравнение прямой, проходящее через точку M 1 ( 7 , – 9 ) , имеющее нормальный вектор с координатами n a → = ( 3 , 1 ) .
Получим уравнение вида: 3 · ( x – 7 ) + 1 · ( y – ( – 9 ) ) = 0 ⇔ 3 x + y – 12 = 0
Полученное уравнение является искомым.
Ответ: 3 x + y – 12 = 0 .
Составить уравнение прямой, которая проходит через начало координат системы координат О х у z , перпендикулярно прямой 2 x – y + 1 = 0 .
Имеем, что n b → = ( 2 , – 1 ) является нормальным вектором заданной прямой. Отсюда a → = ( 2 , – 1 ) – координаты искомого направляющего вектора прямой.
Зафиксируем уравнение прямой, проходящую через начало координат с направляющим вектором a → = ( 2 , – 1 ) . Получим, что x – 0 2 = y + 0 – 1 ⇔ x 2 = y – 1 . Полученное выражение является уравнение прямой, проходящей через начало координат перпендикулярно прямой 2 x – y + 1 = 0 .
Ответ: x 2 = y – 1 .
Записать уравнение прямой, проходящей через точку с координатами M 1 ( 5 , – 3 ) перпендикулярно прямой y = – 5 2 x + 6 .
Из уравнения y = – 5 2 x + 6 угловой коэффициент имеет значение – 5 2 . Угловой коэффициент прямой, которая перпендикулярна ей имеет значение – 1 – 5 2 = 2 5 . Отсюда делаем вывод, что прямая, проходящая через точку с координатами M 1 ( 5 , – 3 ) перпендикулярно прямой y = – 5 2 x + 6 , равна y – ( – 3 ) = 2 5 · x – 5 ⇔ y = 2 5 x – 5 .
[spoiler title=”источники:”]
http://matworld.ru/analytic-geometry/prjamaja-ploskost-online.php
http://zaochnik.com/spravochnik/matematika/prjamaja-ploskost/uravnenie-prjamoj-prohodjaschej-cherez-zadannuju-t/
[/spoiler]
Перпендикуляром, опущенным из данной точки на данную плоскость, называется отрезок, соединяющий данную точку с точкой плоскости и лежащий на прямой, перпендикулярной плоскости. Конец этого отрезка, лежащий в плоскости, называется основанием перпендикуляра.
Расстоянием от точки до плоскости называется длина перпендикуляра, опущенного из этой точки на плоскость.
Наклонной, проведенной из данной точки к данной плоскости, называется любой отрезок, соединяющий данную точку с точкой плоскости, не являющийся перпендикуляром к плоскости. Конец отрезка, лежащий в плоскости, называется основанием наклонной. Отрезок, соединяющий основания перпендикуляра наклонной, проведенных из одной и той же точки, называется проекцией наклонной.
AB – перпендикуляр к плоскости α. AC – наклонная, CB – проекция. С – основание наклонной, B – основание перпендикуляра.
У равных наклонных, проведенных к плоскости из одной точки, проекции равны.
Из двух наклонных, проведенных к плоскости из одной точки, больше та, у которой проекция больше.
Теорема о трех перпендикулярах. Если прямая, проведенная на плоскости через основание наклонной, перпендикулярна ее проекции, то она перпендикулярна и самой наклонной.
Обратная теорема. Если прямая на плоскости перпендикулярна наклонной, то она перпендикулярна и проекции наклонной.
Прямая a, не лежащая в плоскости α, перпендикулярна прямой b, лежащей в плоскости α, тогда и только тогда, когда проекция a‘ прямой a перпендикулярна прямой b.
Пример. Отрезок SО – перпендикуляр к плоскости квадрата АВСD, где точка О – центр квадрата. Доказать: (BD perp SC).
Доказательство:
Первый способ.
Имеем квадрат, центр квадрата точка – О, SО – перпендикуляр. Значит, для наклонной SC отрезок ОС есть проекция.
Прямая ВD перпендикулярна прямой ОС, которая является проекцией наклонной SC, значит, по теореме о трех перпендикулярах, прямая ВD перпендикулярна наклонной SC.
Второй способ.
Прямая SО перпендикулярна плоскости АВС, а значит – и прямой ВD, лежащей в ней.
Прямая ВD перпендикулярна SО и прямая ВD перпендикулярна прямой АС по свойству квадрата.
Получаем, что прямая ВD перпендикулярна двум пересекающимся прямым плоскости SОС, значит, она перпендикулярна ко всей плоскости SОС, а значит – и к прямой SC, лежащей в этой плоскости.
Расстояние от точки до плоскости есть перпендикуляр, опущенный на эту плоскость, то есть расстояние от точки А до плоскости a, есть длина перпендикуляра АВ.
- Если прямая параллельна плоскости, то расстояние от произвольной точки прямой до плоскости называется расстоянием между прямой и параллельной ей плоскостью.
- Если две плоскости параллельны, то расстояние от произвольной точки одной из плоскостей до другой называется расстоянием между данными плоскостями.
- Если две прямые скрещиваются, то расстояние между одной из этих прямых и плоскостью, проведенной через другую прямую параллельно первой, называется расстоянием между скрещивающимися прямыми.