Содержание
- Определение места повреждения кабеля
- Причины и виды повреждений кабельных линий
- Кратко о ремонте кабельной линии
- Методики определения повреждения кабеля в земле
- Индукционный метод
- Импульсный метод
- Акустический метод
- Емкостной метод
- Метод колебательного разряда
- Метод петли
- Метод накладной рамки
- Как найти повреждение изоляции кабеля
- Повреждения изоляции кабельных линий.
- Изоляция экрана
- Поиск повреждений оболочки кабеля (изоляции экрана)
Определение места повреждения кабеля
Как правило, соединения потребителей с источниками электроэнергии (трансформаторными и распределительными подстанциями) осуществляется при помощи кабельных линий (КЛ). Это связано с тем, что у данного способа есть масса преимуществ перед воздушными линиями (ВЛ). Но, если случилась авария на КЛ, то поиск места повреждения кабеля без специальных приборов, практически невозможен. Сегодня мы рассмотрим несколько способов, позволяющих локализовать аварийный участок кабельной трассы, проложенной в земле.
Причины и виды повреждений кабельных линий
Существует много факторов, негативно влияющих на целостность силовых кабелей, к наиболее распространенным из них можно отнести следующие:
- Подвижка грунта, может быть вызвана аварией водопроводных, канализационных или тепловых сетей, а также сезонными явлениями, например, весенним оттаиванием.
- Превышение допустимых норм эксплуатации КЛ, что может привести к термической перегрузки линии, вызванной увеличением токовой нагрузки.
- Образование в КЛ высокого уровня электрического тока от транзитного КЗ.
- Механическое повреждение при земляных работах без учета прохождения подземных коммуникаций и глубины трассы.
- Ошибки при прокладке КЛ. В качестве примера можно привести нарушения технологии соединения жил кабельными муфтами.
- Заводской брак.
Заметим, что при открытой прокладке кабельных трасс некоторые перечисленные выше причины повреждений встречаются крайне редко. В частности, снижается вероятность влияния подвижки грунта и механические воздействия вследствие земляных работ. Помимо этого зоны повреждения открытых КЛ, в большинстве случаев, можно обнаружить при визуальном осмотре, без задействования спецметодов.
Разобравшись с причинами, перейдем к видам повреждений, поскольку от этого напрямую зависит, каким методом будет локализирован аварийный участок КЛ.
Чаще всего ремонтным бригадам приходится сталкиваться со следующими видами неисправностей:
- Дефект, вызванный полным или частичным обрывом КЛ. Чаще всего причиной аварии является проведение земляных работ без определения прохождения кабельных трасс. Несколько реже причиной данного повреждения может стать КЗ в соединительных муфтах.
- В силовых кабелях (более 1кВ), часто встречается пробой одной из жил на землю (однофазное замыкание). Ток утечки, как правило, это вызвано снижением качества изоляции в процессе эксплуатации КЛ.
- Межфазные повреждения, а также виды металлических замыканий, могут возникнуть в любых линиях, причина повреждений такая же, как и в предыдущем пункте.
- Плановое испытание кабеля, при котором задействуется высокий уровень напряжения, показывают низкую надежность изоляции, и приводит к возникновению пробоя. При определенных обстоятельствах такая линия может продолжать эксплуатироваться, но из-за низкого уровня ее надежности, авария может проявиться в любое время.
Кратко о ремонте кабельной линии
Ремонтные работы на кабельных линиях принято классифицировать на плановые и аварийные. Что касается объема таких работ, то у первых он, как правило, капитальный, у вторых – текущий.
При капитальных работах производится плановая замена КЛ, прокладка новых трасс и т.д. При необходимости также выполняется ремонт и/или модернизация сопутствующего оборудования. К последним относятся вентиляционные системы и освещение кабельных туннелей, а также насосы для откачки грунтовых вод. Учитывая специфику плановых работ, при их проведении не требуется локализация дефектных участков.
Совсем иначе обстоит дело при аварийном ремонте. Чтобы не раскапывать всю трассу, следует точно определить место обрыва провода, пробоя изоляции и т.д. Для этой цели применяются различные способы, для которых задействуется спецоборудование. Подробно об этом будет рассказано ниже.
Методики определения повреждения кабеля в земле
Как правило, дефектоскопия кабеля осуществляется в два этапа:
- Устанавливаются границы зоны, в пределах которой находится аварийный участок.
- Производится поиск точного места повреждения в определенной зоне.
Соответственно на первом этапе применяются относительные способы, а на втором широко используются технологии с повышенной точностью поиска повреждений. Перечислим основные методики дефектоскопии и особенности их применения.
Индукционный метод
Эта технология позволяет определить локацию, где произошел пробой изоляционного слоя токопроводящих элементов кабеля. Для этого при помощи специального генератора в КЛ подается переменный ток с силой до 20,0 ампер и частотой от 800,0 до 1200,0 герц. В результате, вокруг КЛ формируется электромагнитное поле определенной интенсивности. Если поместить в него антенную рамку подключенную к наушникам через усилитель, то можно услышать звук определенной частоты над неповрежденными токопроводящими элементами.
По характеру звукового сигнала можно определить не локацию дефекта, позиции муфт для соединения, топографию трассы (трассировку), включая наличие защитных труб. Ниже представлен рисунок, где показан уровень изменения сигнала над различными участками КЛ.
Поиск повреждений кабеля индукционным методом
Обозначения:
- Задающий генератор.
- Расположение соединительных элементов.
- Защита кабеля.
- Дефектное место.
Импульсный метод
Как уже упоминалось выше, данный способ относится к относительным, то есть, позволяющим установить дефектную зону повреждения (как правило, межфазное КЗ). Принцип работы заключается в подаче специальным прибором эталонного высоковольтного импульса в КЛ и последующим определением удаленности аварийного участка по отраженному сигналу импульсных токов.
Экран прибора ИКЛ с отображением отраженного импульса в случае замыкания (а) и обрыва (b) кабеля
В приведенном на рисунке примере расстояние до дефектного участка определяется следующим образом:
tx – интервал времени между посланным и отраженным электрическим сигналом, измеряется в микросекундах. Как видно из рисунка, он равен 3,5 мкс. Учитывая, что скорость распространения импульса (v) примерно равна 160,0 м/мкс, то для решения необходимо применить следующую формулу: lx = ( tx*v ) / 2, где lx – расстояние от генератора импульсов до поврежденного участка кабеля. В результате мы получим ( 3.5 * 160 ) / 2, то есть, 280,0 метров.
Обратим внимание, что в некоторых приборах по форме отраженного сигнала можно судить о характере дефекта.
Акустический метод
Технология основана на формировании в дефектном участке искровых разрядов, сопровождающимися звуковыми импульсами. Зафиксировать их можно используя обычный стетоскоп, прикладывая акустическую головку к земле, либо применяя специальный акустический приемник. Над дефектным участком разряды звуковых частот будут максимально громкими.
Различные схемы, применяемые при акустическом методе поиска повреждений кабеля
Обозначения:
- Поиск устойчивого короткого замыкания между токоведущей жилой и оболочкой кабеля.
- Схема для поиска заплывающих пробоев.
- Применение работоспособных токопроводящих элементов (задействована емкость жил).
- Схема для поиска обрыва.
Видео по теме:
Емкостной метод
Технология данного метода позволяет проводить поиск повреждения, в частности обрыва токоведущих элементов кабеля, путем измерения емкости жил. Как известно данный параметр напрямую зависит от длины кабеля. С упрощенной схемой высоковольтных колебаний для такого устройства можно ознакомиться ниже.
Мост переменного тока, используемый в емкостном методе обнаружения повреждения кабеля
Обозначения:
- R1, R2, R3 – регулируемые резисторы.
- Cэ – эталонный высоковольтный конденсатор.
- L – расстояние до места обрыва.
- Lк – общая длина КЛ.
- 1 – токоведущие элементы кабеля.
- 2 – защитная оболочка.
- 3 – место обрыва.
Подбирая сопротивление переменных резисторов, добиваются минимального отклонения стрелки прибора Г, что указывает на равновесие между плечами моста, что говорит о следующем соотношении R1 / R2 = Сx / Сэ , это позволяет установить емкость поврежденной жилы Сx = Сэ* (R1 / R2) .
Подобным способом производим определение емкости на другом конце КЛ, то есть, подключаем к нему генератор и повторяем измерения. В результате, вычисляем расстояние до поврежденной зоны: L = Lk * С1 / ( C1 + C2 ), где С1 и С2 – емкости поврежденных токоведущих элементов кабеля, измеренные в начале и конце КЛ.
Метод колебательного разряда
Данный способ позволяет более эффективно определить расстояние до дефекта кабеля, известного, как заплывающий пробой. Для этой цели в поврежденную линию подаются импульсные колебательные разряды, после чего на экран спецприбора (например, ЭМКС58) выводятся данные о расстоянии до дефектного места.
Экран прибора РЕЙС-305 с указанием расстояния до поврежденного участка кабеля
Принципа работы данного метода во многом напоминает импульсный способ дефектоскопии.
Метод петли
Данный способ хорошо работает в тех случаях, когда в месте нарушения изоляции нет обрыва токоведущих элементов кабеля, а переходное сопротивление в месте дефекта не более 5,0 кОм. При несоответствии последнего условия может быть выполнен прожиг кабеля (прожигание изоляции для уменьшения переходного сопротивления). Упрощенный пример электрической схемы для метода петли показан ниже.
Устройство для поиска повреждения кабеля методом петли
Обозначения:
- Г – гальванометр.
- R1 и R2 – переменные резисторы, измерение сопротивления которых осуществляется после уравновешивания моста.
- Lk – длина КЛ.
- L – расстояние до дефектного участка.
- 1 – токопроводящие элементы кабеля.
- 2 – перемычка между целой и дефектной жилой.
После уравновешивания моста, расстояние до обрыва вычисляется по формуле: .
Метод накладной рамки
Данный вариант поиска повреждения в КЛ можно рассматривать в качестве одной из разновидностей индукционного способа, когда необходимо найти пробой между токоведущим элементом кабеля и его металлической оболочкой (броней). Данная технология рассчитана на поиск дефектных мест при открытой прокладке кабельных трасс, но ее можно успешно использовать и КЛ уложенных в грунт. В последнем случае требуется выкопать шурфы в зоне локализации дефекта.
Локализация повреждения кабеля методом накладной рамки
Обозначения:
- Накладные рамки.
- Место пробоя изоляции.
Поиск обрыва кабеля в бетонной стене и под гипсокартоном с помощью трассоискателя
Источник
Как найти повреждение изоляции кабеля
Термин «изоляция» в среде электриков и связистов часто применяется в значении «сопротивление изоляции». То есть элемент конструкции кабеля и сопротивление изоляции линии обозначаются одним и тем же словом, и понимаются по смыслу. Говорят: «померь изоляцию», «проверь изоляцию», но и «протри изоляцию»
В измерении сопротивления изоляции есть ещё одна тонкость. Электрическая изоляция проверяется не столько измерением сколько испытанием. Например, маленьким цифровым тестером можно померить сопротивление в 100 и даже 1000 Мегаом, но такое измерение не является правильным. Измерение должно проводится с подачей на испытуемый участок повышенного напряжения. Для связи это обычно 120 или 400 Вольт, для электриков 500, 1000, 2500 В. Эти напряжения, как правило образуются преобразователями специальных измерительных приборов — мегомметров. Функция мегомметра в связных приборах есть в составе комплексных кабельных измерителей, например, таких как ПКП или ИРК-ПРО
Изоляция — самый болезненный для связных линий параметр. Ибо даже небольшая с точки зрения обывателя царапина может отключить телефоны в небольшом микрорайоне. Легко мерится, но далеко не всегда легко находится. Нормы на этот параметр есть на странице → Справочные данные о кабелях связи ТПП и КСПП. Нормы на смонтированные линии связи
Повреждения изоляции кабельных линий.
В зависимости от того изоляция между какими жилами или элементами кабеля повреждена телефонисты различают три типа повреждений электрической изоляции: короткое замыкание, сообщение и земля.
Короткое это нарушение изоляции между двумя жилами одной пары. Короткое замыкание у телефонистов несколько отличается от аналогичного понятия в радиотехнике, так уменьшение изоляции между жилами в сотни мегом у связистов уже короткое. А короткое в 1 – 2 мегома уже делает абонентскую линию нерабочей.
Сообщение – нарушение изоляции между двумя жилами разных пар. В эксплуатации определяют тип повреждения ещё на кроссе, и сообщение определяют по наличию постороннего напряжения на паре. Один из нюансов заключается в том, что если на кроссе отключить пару, сообщающуюся с искомой, то станционный прибор или компьютер покажет что в линии всё нормально. Как правило, чистое сообщение в кабеле возникает при попадании воды в муфту или в кабель. Для абонентов это повреждение вызывает эффект «круглого стола» или «конференции». Слышны переговоры каких-то посторонних людей, которые, в свою очередь слышат вас и можно при этом лихо обложить кого-нибудь матом или самому услышать что-нибудь этакое. Следует различать сообщение с таким понятием, как прослушивание, или правильнее, пониженное переходное затухание, но об этом в разделе измерения переменным током.
Земля – нарушение изоляции по отношению к заземлению. Иногда на кроссе определяя повреждение, как землю, путают его с сообщением. Происходит это из-за того, что станционный прибор не видит постороннего напряжения на линии, а повреждённая жила сообщается с «+» другой пары. Для приборов типа ИРК-ПРО особой разницы нет, а вот более старым может мешать постороннее напряжение присутствующее на такой паре.
Повреждения изоляции линий связи
Как это всё ищут. Чем ниже изоляция, тем проще найти повреждение. А если в том же кабеле присутствуют целая жила с хорошей изоляцией, то всё довольно просто. Коротим на противоположном конце линии повреждённую жилу с чистой, со своей стороны включаем три провода прибора (ИРК-ПРО, ПКП, ПКМ или другой с мостовой схемой): два провода «А» и «В» идут на «чистую» и повреждённую жилу соответственно, «С» заземляется.
Мостовая схема сравнения плеч
На картинке урезанный вариант мостовой схемы измерения Муррея. Прибор сравнивает сопротивление между проводами «А» и «В» (жёлтая и красная стрелки). По полученному результату и судят о расстоянии до повреждения. В современных приборах это всё упрощено до безобразия. Вносим в прибор, длину или тип кабеля – получаем ответ в метрах или процентах от общей длины, если длину и тип кабеля не ввели.
При казалось бы простом принципе тестером эту операцию проделать невозможно. Причина в том, что Rповр. постоянно «плавает» и фокус именно в одновременном сравнении сопротивлений.
• Всё это хорошо работает при повреждении изоляции до 10 мегом. Если сопротивление больше, погрешность измерений резко возрастает. Так же сильно растёт погрешность, если чистую жилу найти не удаётся и приходится мерить с тем, что есть.
• Если все жилы «землят» одинаково применение мостовых методов бессмысленно. Причём ИРК-ПРО, например, всё равно выдаёт какой-то результат, не верьте — обманывает.
• Если сопротивление изоляции этих жил отличается более чем в 3 раза, имеет смысл померить с использованием коэффициента К, но в этом случае рекомендуют провести измерения несколько раз и с обеих сторон линии. Как правило, разброс показаний очень большой и судить о месте повреждения можно лишь ориентировочно.
• Если «земля» на всех жилах менее 10 кОм имеет смысл использовать рефлектометр.
Особенности включения прибора при разных типах повреждения изоляции кабеля.
Сообщение в кабеле с включенным питанием остальных пар ищется так же, как и земля. Современным приборам всё равно куда пойдёт ток утечки, пройдя через Rповр., они мерят соотношение плеч. Если же кабельная линия полностью отключена, то такой номер не пройдёт. Придётся искать, какая жила, с какой сообщается. Далее на найденную жилу подключают к проводу «С» прибора или заземляют.
Сообщение
Короткое мерится похожим образом. Только шнур «С» подключается к жиле этой же пары, провод «А» включается уже в жилу другой пары и коротятся на другом конце уже другие жилы.
Короткое
Обладатели ПКП могут посетить страничку методикой работы ПКП-5 или конкретно методы Муррея, и Купфмюллера.
Изоляция экрана
Норма 5 Мом/км прописана в документах очень давно, как обязательная изоляция защитной оболочки кабеля. Относится также к броне оптоволоконного кабеля. Норма в некоторых документах имеет оговорку, при невозможности найти повреждение допускается изоляция 1 Мом/км. Не влияет на другие параметры, но, тем не менее является доказательством герметичности оболочки. В реальности в новом кабеле изоляция экрана от 40 до 30000 Мом. И раньше и сейчас измерение этого параметра часто игнорировалось при приёмо-сдаточных измерениях, а зря.
Несколько лет назад кабель выпускался без наполнителя, без буквы «З» в маркировке. Негерметичность оболочки проявлялась очень быстро либо падением изоляции жил, либо сильным расходом воздуха при установке магистрали под избыточное давление (установки КСУ и аналогичные). То есть все «дырки вылазили» почти сразу. С появлением кабелей с гидрофобным наполнителем ситуация изменилась, а эксплуатирующие организации частенько не обращают внимание на то, что строители сдают им кабеля с «задранной» оболочкой. Кабель с гидрофобом несмотря на довольно большую дыру очень долго сохраняет изоляцию жил, даже если кабель лежит во влажном грунте. То есть, по привычке померили изоляцию, ёмкость, шлейф, иногда переходное затухание: остались довольны и всё. Если вам сдают кабель с гидрофобом, проверяйте экран обязательно. Мне приходилось находить повреждения при изоляции экрана в 1,2 Мом, при этом дырка оказалась 7 мм в диаметре. Естественно, что обещанных кабельным заводом 25 лет безоблачной эксплуатации вы с такой «дыркой» не дождётесь.
Поиск повреждений оболочки кабеля (изоляции экрана)
Если кабель проложен в грунте, проще всего искать комплектом генератор-кабелеискатель-штыри описанным на соответствующих страницах.
Если кабель разветвлён, то есть сначала 100х2, перчатка, 50х2 + 30х2 + 20х2, то муфту-перчатку лучше вскрыть. Здесь вообще метод деления на части часто оказывается самым эффективным.
Можно воспользоваться мостовыми схемами измерения в случаях, если смонтированный кабель не имеет муфт или состоит из одинаковых и по парной ёмкости и произведённых одним кабельным заводом длин кабеля.
Объяснюсь. Сопротивление цепи экрана ни где не нормируется, то есть в 1км ТППэпЗ 50х2х0.5 экран может иметь сопротивление от 6 до 20 Ом и зависит от толщины алюминиевого покрытия. То есть один завод делает кабель с экраном в 8 Ом/км, другой 14. Естественно, о какой-то точности при таком разбросе говорить не приходится.
И, всё таки, если вы имеете однородный кабель мостовой схемой воспользоваться можно.
Если у вас есть ИРК-ПРО можно воспользоваться возможностью прибора измерять несимметричный кабель или искать повреждение по вспомогательным жилам. Вместо вспомогательных жил используется одна пара кабеля. Если экран кабеля однороден, получается достаточно точно. В ИРК-ПРО-Альфа на экране даже схема соответствующая рисуется. Измерение проводится в два этапа, на индикаторе появляются соответствующие подсказки и если предварительно ввести длину кабеля, то результат высветится в метрах.
Метод может быть использован для поиска повреждений оболочки оптоволоконного кабеля, но для этого уже нужно разматывать вспомогательный кабель поверх трассы, потому, что в современных оптических кабелях не закладывается дополнительных жил, необходимых для измерения мостовыми методами.
Поиск повреждений экрана кабеля связи методом Муррея
Кто больше привык доверять методу Муррея может попробовать ещё один способ:
1. Мерим шлейф пары. Сразу можно вычислить длину, если она неизвестна. Предположим 344.8 (Ом), длина 2км.
2. Мерим шлейф цепи жила-экран. Получается почти в 2 раза меньше 183.7 (Ом).
3. Вычисляем сопротивление 1 жилы. Оно равно в нашем случае 344.8/2=172.2 (Ом).
3. Далее находим сопротивление экрана. Отнимаем от сопротивления жила-экран сопротивление жилы. 183.7-172.2=11.5 (Ом).
Следующим шагом является «создание» жилы с сопротивлением равным сопротивлению экрана.
4. Для этого десяток (иногда требуется 2) кабеля закорачиваем между собой и с экраном кабеля.
5. На другом конце мерим шлейф и изменяем количество запараллеленных жил. Добиться в данном случае надо шлейфа ровно в два раза большего, чем сопротивление экрана. В нашем случае: 11.5х2=23.0 (Ом). Например закоротили все 20 жил: получили шлейф 18.7 (Ом) — мало, откидываем 1 жилу: 19.2 — опять мало. Иногда участвующих в измерении жил может быть 10, иногда 15. (количество требуемых жил можно вычислить, но проще распараллеливать по одной).
6. Далее, добившись нужного шлейфа производим измерение методом Муррея или, для ИРК-ПРО, режим «утечка». В данном случае экран — это повреждённая жила. Предположим результат 75% или коэффициент 0.75
7. Полученный результат умножаем на известную длину кабеля: 2000х0.75=1500 (метров).
Иногда не удаётся добиться жилами сопротивления равного сопротивлению экрана. Это может получиться при измерении КСПП, жил всего 4. Мерим сначала с 3-мя, затем с 4-мя жилами результат усредняем. (погрешность будет больше).
Источник
Как правило, соединения потребителей с источниками электроэнергии (трансформаторными и распределительными подстанциями) осуществляется при помощи кабельных линий (КЛ). Это связано с тем, что у данного способа есть масса преимуществ перед воздушными линиями (ВЛ). Но, если случилась авария на КЛ, то поиск места повреждения кабеля без специальных приборов, практически невозможен. Сегодня мы рассмотрим несколько способов, позволяющих локализовать аварийный участок кабельной трассы, проложенной в земле.
Причины и виды повреждений кабельных линий
Существует много факторов, негативно влияющих на целостность силовых кабелей, к наиболее распространенным из них можно отнести следующие:
- Подвижка грунта, может быть вызвана аварией водопроводных, канализационных или тепловых сетей, а также сезонными явлениями, например, весенним оттаиванием.
- Превышение допустимых норм эксплуатации КЛ, что может привести к термической перегрузки линии, вызванной увеличением токовой нагрузки.
- Образование в КЛ высокого уровня электрического тока от транзитного КЗ.
- Механическое повреждение при земляных работах без учета прохождения подземных коммуникаций и глубины трассы.
- Ошибки при прокладке КЛ. В качестве примера можно привести нарушения технологии соединения жил кабельными муфтами.
- Заводской брак.
Заметим, что при открытой прокладке кабельных трасс некоторые перечисленные выше причины повреждений встречаются крайне редко. В частности, снижается вероятность влияния подвижки грунта и механические воздействия вследствие земляных работ. Помимо этого зоны повреждения открытых КЛ, в большинстве случаев, можно обнаружить при визуальном осмотре, без задействования спецметодов.
Разобравшись с причинами, перейдем к видам повреждений, поскольку от этого напрямую зависит, каким методом будет локализирован аварийный участок КЛ.
Чаще всего ремонтным бригадам приходится сталкиваться со следующими видами неисправностей:
- Дефект, вызванный полным или частичным обрывом КЛ. Чаще всего причиной аварии является проведение земляных работ без определения прохождения кабельных трасс. Несколько реже причиной данного повреждения может стать КЗ в соединительных муфтах.
- В силовых кабелях (более 1кВ), часто встречается пробой одной из жил на землю (однофазное замыкание). Ток утечки, как правило, это вызвано снижением качества изоляции в процессе эксплуатации КЛ.
- Межфазные повреждения, а также виды металлических замыканий, могут возникнуть в любых линиях, причина повреждений такая же, как и в предыдущем пункте.
- Плановое испытание кабеля, при котором задействуется высокий уровень напряжения, показывают низкую надежность изоляции, и приводит к возникновению пробоя. При определенных обстоятельствах такая линия может продолжать эксплуатироваться, но из-за низкого уровня ее надежности, авария может проявиться в любое время.
Кратко о ремонте кабельной линии
Ремонтные работы на кабельных линиях принято классифицировать на плановые и аварийные. Что касается объема таких работ, то у первых он, как правило, капитальный, у вторых – текущий.
При капитальных работах производится плановая замена КЛ, прокладка новых трасс и т.д. При необходимости также выполняется ремонт и/или модернизация сопутствующего оборудования. К последним относятся вентиляционные системы и освещение кабельных туннелей, а также насосы для откачки грунтовых вод. Учитывая специфику плановых работ, при их проведении не требуется локализация дефектных участков.
Совсем иначе обстоит дело при аварийном ремонте. Чтобы не раскапывать всю трассу, следует точно определить место обрыва провода, пробоя изоляции и т.д. Для этой цели применяются различные способы, для которых задействуется спецоборудование. Подробно об этом будет рассказано ниже.
Методики определения повреждения кабеля в земле
Как правило, дефектоскопия кабеля осуществляется в два этапа:
- Устанавливаются границы зоны, в пределах которой находится аварийный участок.
- Производится поиск точного места повреждения в определенной зоне.
Соответственно на первом этапе применяются относительные способы, а на втором широко используются технологии с повышенной точностью поиска повреждений. Перечислим основные методики дефектоскопии и особенности их применения.
Индукционный метод
Эта технология позволяет определить локацию, где произошел пробой изоляционного слоя токопроводящих элементов кабеля. Для этого при помощи специального генератора в КЛ подается переменный ток с силой до 20,0 ампер и частотой от 800,0 до 1200,0 герц. В результате, вокруг КЛ формируется электромагнитное поле определенной интенсивности. Если поместить в него антенную рамку подключенную к наушникам через усилитель, то можно услышать звук определенной частоты над неповрежденными токопроводящими элементами.
По характеру звукового сигнала можно определить не локацию дефекта, позиции муфт для соединения, топографию трассы (трассировку), включая наличие защитных труб. Ниже представлен рисунок, где показан уровень изменения сигнала над различными участками КЛ.
Обозначения:
- Задающий генератор.
- Расположение соединительных элементов.
- Защита кабеля.
- Дефектное место.
Импульсный метод
Как уже упоминалось выше, данный способ относится к относительным, то есть, позволяющим установить дефектную зону повреждения (как правило, межфазное КЗ). Принцип работы заключается в подаче специальным прибором эталонного высоковольтного импульса в КЛ и последующим определением удаленности аварийного участка по отраженному сигналу импульсных токов.
В приведенном на рисунке примере расстояние до дефектного участка определяется следующим образом:
tx – интервал времени между посланным и отраженным электрическим сигналом, измеряется в микросекундах. Как видно из рисунка, он равен 3,5 мкс. Учитывая, что скорость распространения импульса (v) примерно равна 160,0 м/мкс, то для решения необходимо применить следующую формулу: lx = ( tx*v ) / 2, где lx – расстояние от генератора импульсов до поврежденного участка кабеля. В результате мы получим ( 3.5 * 160 ) / 2, то есть, 280,0 метров.
Обратим внимание, что в некоторых приборах по форме отраженного сигнала можно судить о характере дефекта.
Акустический метод
Технология основана на формировании в дефектном участке искровых разрядов, сопровождающимися звуковыми импульсами. Зафиксировать их можно используя обычный стетоскоп, прикладывая акустическую головку к земле, либо применяя специальный акустический приемник. Над дефектным участком разряды звуковых частот будут максимально громкими.
Обозначения:
- Поиск устойчивого короткого замыкания между токоведущей жилой и оболочкой кабеля.
- Схема для поиска заплывающих пробоев.
- Применение работоспособных токопроводящих элементов (задействована емкость жил).
- Схема для поиска обрыва.
Видео по теме:
Емкостной метод
Технология данного метода позволяет проводить поиск повреждения, в частности обрыва токоведущих элементов кабеля, путем измерения емкости жил. Как известно данный параметр напрямую зависит от длины кабеля. С упрощенной схемой высоковольтных колебаний для такого устройства можно ознакомиться ниже.
Обозначения:
- R1, R2, R3 – регулируемые резисторы.
- Cэ – эталонный высоковольтный конденсатор.
- L – расстояние до места обрыва.
- Lк – общая длина КЛ.
- 1 – токоведущие элементы кабеля.
- 2 – защитная оболочка.
- 3 – место обрыва.
Подбирая сопротивление переменных резисторов, добиваются минимального отклонения стрелки прибора Г, что указывает на равновесие между плечами моста, что говорит о следующем соотношении R1 / R2 = Сx / Сэ , это позволяет установить емкость поврежденной жилы Сx = Сэ* (R1 / R2) .
Подобным способом производим определение емкости на другом конце КЛ, то есть, подключаем к нему генератор и повторяем измерения. В результате, вычисляем расстояние до поврежденной зоны: L = Lk * С1 / ( C1 + C2 ), где С1 и С2 – емкости поврежденных токоведущих элементов кабеля, измеренные в начале и конце КЛ.
Метод колебательного разряда
Данный способ позволяет более эффективно определить расстояние до дефекта кабеля, известного, как заплывающий пробой. Для этой цели в поврежденную линию подаются импульсные колебательные разряды, после чего на экран спецприбора (например, ЭМКС58) выводятся данные о расстоянии до дефектного места.
Принципа работы данного метода во многом напоминает импульсный способ дефектоскопии.
Метод петли
Данный способ хорошо работает в тех случаях, когда в месте нарушения изоляции нет обрыва токоведущих элементов кабеля, а переходное сопротивление в месте дефекта не более 5,0 кОм. При несоответствии последнего условия может быть выполнен прожиг кабеля (прожигание изоляции для уменьшения переходного сопротивления). Упрощенный пример электрической схемы для метода петли показан ниже.
Обозначения:
- Г – гальванометр.
- R1 и R2 – переменные резисторы, измерение сопротивления которых осуществляется после уравновешивания моста.
- Lk – длина КЛ.
- L – расстояние до дефектного участка.
- 1 – токопроводящие элементы кабеля.
- 2 – перемычка между целой и дефектной жилой.
После уравновешивания моста, расстояние до обрыва вычисляется по формуле: .
Метод накладной рамки
Данный вариант поиска повреждения в КЛ можно рассматривать в качестве одной из разновидностей индукционного способа, когда необходимо найти пробой между токоведущим элементом кабеля и его металлической оболочкой (броней). Данная технология рассчитана на поиск дефектных мест при открытой прокладке кабельных трасс, но ее можно успешно использовать и КЛ уложенных в грунт. В последнем случае требуется выкопать шурфы в зоне локализации дефекта.
Обозначения:
- Накладные рамки.
- Место пробоя изоляции.
Поиск обрыва кабеля в бетонной стене и под гипсокартоном с помощью трассоискателя
В быту также найдется применение для методик дефектоскопии кабеля, особенно когда необходимо определить точное место повреждения скрытой проводки. Вскрытие трассы, особенно, когда речь идет о бетонных стенах, допустимо только при общем ремонте. Поэтому наиболее щадящим способом в данном случае будет применение специальных приборов — трассоискателей. Чтобы не повторятся, рекомендуем к прочтению статью https://www.asutpp.ru/iskatel-skrytoj-provodki.html, где подробно рассматривается данная тема.
Пригодность кабеля к эксплуатации
определяется состоянием его брони и
изоляции жил. Кабель еще можно
эксплуатировать, если число порывов
отдельных проволок верхней брони не
превышает десяти и проволоки стерты
не более чем на 25%. В первом случае для
предотвращения развивки проволок места
порыва защищают бандажом из изоляционной
ленты.
Качество
изоляции характеризуется ее электрическим
сопротивлением. Сопротивление изоляции
измеряют мегоомметром или омметром.
Пониженное значение сопротивления
изоляции обычно вызвано нарушением
изоляционного
покрытия
жил
в
отдельных
местах
(проколы,
15
порывы,
инородные включения). После обнаружения
этих мест и соответствующего ремонта
кабель вновь становится пригодным к
работе либо бракуется. Существует
несколько способов отыскания мест
нарушения жил для кабелей разного типа.
Основным
при отыскании мест нарушения изоляции
бронированного кабеля является способ,
предложенный И.А.Васильевым, схема
которого показана на рис.6. В этом способе
кабель перематывают с лебедки Л1 на
лебедку Л2. Одна из них, например Л2,
должна быть изолирована от земли
изолятором ИЛ. По броне кабеля от корпуса
одной лебедки к корпусу другой пропускают
ток силой 2-8 А от батареи Б, вызывающей
напряжение на участке брони длиной
15-25 м.
Рис.6.Поиск
мест нарушения целостности изоляции
бронированных кабелей по методу
И.А.Васильева.
Индикация
мест нарушения изоляции производится
с помощью высокоомного милливольтметра,
подключенного к жиле кабеля на одной
из лебедок и к броне между лебедками.
При такой схеме измеряется напряжение
на участке брони между контактом С и
местом утечки тока из жилы на броню.
При
перемещении
места
нарушения
изоляции
с
одной
лебедки
на
16
другую
оно отмечается отклонением стрелки
милливольтметра сначала в одну сторону,
затем в другую, минимальные показания
наблюдаются при проходе места утечки
под контактом С. Этот способ применим
и при наличии нескольких нарушений
изоляции.
Другим, более простым в исполнении, но
менее точным по результату способом
отыскания мест нарушения изоляции
кабеля является мостовой метод (рис.7).
Рис.7.Схема
определения места утечки по мостовой
схеме.
L1/L2=R1/R2
Данный метод позволяет ориентировочно
оценить место нарушения изоляции кабеля
без смотки его с барабана каротажного
подъемника и пригоден к использованию
в полевых условиях, что и оправдывает
его широкое применение. Для локализации
места нарушения используется индукционный
метод (рис.8).
17
Рис.8.Схема
индукционного метода поиска мест
нарушения
изоляции
кабеля.
Этот
метод используется, как правило, в
стационарных условиях при перемотке
кабеля с одного барабана на другой. В
процессе перемотки кабеля с подающего
барабана на приемный, по испытуемому
кабелю через коллектор подающей лебедки
и место нарушения электрической изоляции
пропускается переменный электрический
ток с частотой 5-10 кГц. При этом посредством
приемной катушки, через которую пропущен
испытуемый кабель, наблюдается момент
возникновения наведенной ЭДС и
фиксируется точка нарушения.
Соседние файлы в папке Аппаратура
- #
- #
- #
- #
- #
- #
В процессе эксплуатации и на этапе монтажа кабельных линий, проложенных под землей, возникают непредвиденные механические повреждения изоляции и токоведущих жил. Это может быть связано с нарушением нормальных режимов работы, неаккуратным ведением монтажных работ на других коммуникациях, расположенных в нескольких метрах от места прокладки и не относящихся к линии электроснабжения.
Как выполнить поиск места повреждения кабеля под землей и в стене, мы расскажем далее, предоставив существующие методики и приборы для обнаружения аварийного участка.
Чтобы найти место повреждения кабельной линии, необходимо понимать специфику и методику ведения поиска. Процесс необходимо разделить на два этапа:
- Поиск проблемной зоны на всей протяженности линии.
- Поиск места аварии на установленном участке трассы.
Существует несколько методов отыскания поврежденной зоны:
- Импульсный метод;
- Петлевой метод;
- Акустический метод;
- Индукционный метод;
- Метод шагового напряжения.
Импульсный метод.
Данный способ подразумевает поиск повреждения с помощью рефлектометра. Работа прибора основывается на посылании зондирующих импульсов определенной частоты, которые встречая на своем пути препятствие, отражаются и возвращаются обратно к прибору. То есть, прибор располагается с одного конца силового кабеля, что очень удобно и практично. Испытания следует проводить на полностью отключенной линии.
Метод петли.
Данный способ применим при условии, что хотя бы один провод в кабеле остался цел, или рядом пролегает еще один проводник с целыми жилами. Чтобы узнать расстояние до места повреждения петлевым методом, нужно измерить сопротивление жил постоянному току прибором Р333. Это измерительный мост постоянного тока. Это один из первых придуманных методов, применяемых для отыскания места повреждения, и используется он исключительно при однофазном и двухфазном замыкании. Постепенно им перестают пользоваться, ввиду его трудоемкости и большой погрешности в измерениях.
Акустический метод.
Найти обрыв в кабеле акустическим методом можно, создав в месте повреждения разряд с помощью генератора высоковольтных импульсов. В месте обрыва или замыкания появятся колебания звука определенной частоты. Качество прослушивания зависит от вида грунта, расстояния от поверхности до кабельной линии и типа повреждения. Обязательным условием для работы способа является превышение значения переходного сопротивления в 40 Ом.
Метод шагового напряжения.
Метод основан на пропускании по кабелю тока, вырабатываемого генератором. Он создает между двумя расположенными в земле точками разность потенциалов, о которой можно судить по утечке тока в месте аварии. Чтобы найти точку с пониженным сопротивлением изоляции, контактные штыри-зонды устанавливаются так – первый ровно над пролегающим проводником, второй под углом 90 в метре от первого.
Индукционный метод.
Способ очень точно определяет места обрыва, однако его применение связано с прожигом кабеля. При большом переходном сопротивлении необходимо уменьшить его величину путем прожига, используя специальные устройства. Метод основан на пропускании по жиле тока с высокой частотой, который образует электромагнитное поле над кабельной линии. В местах механических повреждений трассы, проводя приемной рамкой, звук будет изменяться. Таким образом, отсутствие звука говорит об обрыве жилы.
Место обрыва провода в бетонной стене поможет найти специальный прибор – трассоискатель. Он представляет собой сочетание приемника и генератора. Данный способ можно ассоциировать с индукционным методом в поиске повреждений кабелей под землей.
Кабельные линии (КЛ) особенно широко используются в городском коммунальном хозяйстве, обладая рядом преимуществ перед воздушными линиями. Кабельные линии, проложенные в земле, не занимают надземное пространство, имеют маленькую охранную зону и в целом более безопасны.
В то же время, повреждения такого кабеля сложнее локализовать, а их устранение требует применения специальной технологии и более затратно.
Повреждение кабеля — виды и причины
В подавляющем ряде случаев, нарушение работоспособности кабеля происходит в результате снижения сопротивления его изоляции до недопустимо низкого уровня. Изоляция может постепенно деградировать в процессе эксплуатации под воздействием рабочего напряжения и внешних факторов — перепадов температуры, влажности. Обычно это происходит, когда не соблюдаются условия эксплуатации кабеля. Например, кабельная оболочка может быть не рассчитана на воздействие ультрафиолета, смазочных материалов, эксплуатацию вне допустимого диапазона температуры и наличие этих факторов ускоряют её разрушение.
Иногда со временем проявляется не замеченный изначально производственный брак. Но значительно чаще повреждение изоляционного слоя происходит в результате механических воздействий — при производстве земляных работ, колёсами транспортных средств, стрелой грузоподъёмного механизма, при просадке грунта и т.п. В этих случаях также может произойти обрыв одной или нескольких кабельных жил. Дополнительным фактором риска является наличие соединительных муфт на кабельной линии. Кроме перечисленного, повреждение броневого слоя и защитной оболочки кабеля может быть вызвано воздействием агрессивных реагентов, содержащихся в грунтовых водах или попадающих в кабельные траншеи извне.
В зависимости от того, какие изоляционные слои оказываются повреждёнными, в трёхфазном силовом кабеле возникают различные виды замыканий:
- замыкание одной из фаз на землю;
- междуфазное замыкание двух фаз;
- трёхфазное замыкание.
Замыкания могут быть короткими, либо через переходное сопротивление, если изоляционные свойства утрачены лишь частично.
Поиск места повреждения кабеля — основные методы
Иногда место повреждение кабельной линии легко обнаруживается визуально по выгоревшей оболочке и следам копоти. Однако не редки случаи, когда быстродействующие защиты отключают питание линии на ранней стадии повреждения, признаки которого не обнаруживаются визуально. В таких ситуациях применяют специальное оборудование для определения мест повреждения, реализующее различные методы.
Индукционный метод заключается в подключении кабеля к источнику напряжения высокой частоты и прослушиванием трассы КЛ с помощью антенной рамки с наушниками. В месте повреждения уровень сигнала резко снижается.
Акустический метод реализуется путём создания периодических электрических разрядов в месте повреждения, которые сопровождаются звуковыми эффектами в виде щелчков. Локализация дефекта производится на слух либо с применением акустических приёмников (стетоскопов, микрофонов).
Импульсный метод основан на подаче в линию электрического сигнала и измерении времени возвращения его отражения. Расстояние от конца КЛ до места повреждения определяется при этом по расчётным формулам.
Методом прожига производится дожигание повреждённого изоляционного промежутка путём пропускания тока по образовавшемуся переходному сопротивлению. При этом в месте повреждения выделяется большое количество теплоты, изоляция плавится и горит с выделением дыма, что легко определяется визуально.
Как устранить повреждение кабеля — лучшие способы
Объём и вид ремонта кабельной линии определяется типом её повреждения. Ремонтные работы могут включать следующие процедуры:
- восстановление разрушенного броневого покрова;
- ремонт трещин, разрывов или проколов покровной оболочки;
- установка соединительных муфт в местах пробоя кабеля;
- замена повреждённых соединительных и концевых муфт.
Броневой покров восстанавливают пайкой, используя при необходимости дополнительные куски стальной ленты. Спаянные ленты брони покрывают антикоррозионным лаком на основе битума или полимерных композитов.
Повреждения защитных шланговых покрытий запаивают с помощью строительного фена. Места разрывов покрывают поливинилхлоридными заплатами или разрезными манжетами, одеваемыми на кабель. Незначительные отверстия можно заплавить, применяя присадочный пруток из ПВХ.
Значительные повреждения с замыканием жил могут быть восстановлены только одним способом — установкой соединительной муфты. Если же повреждённым оказывается значительный по длине участок, приходится делать кабельную вставку с двумя соединительными муфтами.
При монтаже муфты, зачищенные от изоляции жилы кабеля, соединяются при помощи втулок входящих в комплект. Изолирование соединённых жил в зависимости от типа муфты выполняется кабельной бумагой, битумным или эпоксидным компаундом. Более современные конструкции муфт содержат термоусаживаемые элементы на клеевой основе, которые при нагревании образуют плотное герметичное покрытие с хорошими изоляционными свойствами. Снаружи место соединения герметично закрывается защитным кожухом из металла или ПВХ.
Повреждение кабеля в земле — особенности поиска и устранения
Наиболее сложным и ответственным является нахождение места повреждения подземной трассы КЛ. С учётом того, что для производства ремонта необходимо выполнить земляные работы, точность локализации повреждения имеет здесь наибольшую важность.
При подземном расположении КЛ обычно комбинируют несколько методов обнаружения. Например, с использованием акустического и индукционного методов определяют участок, на котором следует произвести раскопку. Комбинация методов позволяет максимально сузить участок поиска. После раскопки можно вторично использовать эти методы и применить прожиг, если повреждение не визуализировано.
Защита кабеля от повреждения
При прокладке КЛ выполняется предусмотренная проектом защита кабеля, необходимая при данных условиях эксплуатации и способе монтажа. К основным видам защитных конструкций относятся железобетонные лотки и плиты, шахты, тоннели и эстакады, металлические, полимерные и асбоцементные трубы.
При прокладке кабелей внутри помещений используются металлические или пластиковые гофрированные рукава.
Подземная прокладка осуществляется на песчаную подушку, предотвращающую повреждение КЛ при смещении слоёв грунта. На участках пересечения КЛ с автодорогами, прокладка выполняется в защитных трубах.