Как найти арктангенс зная тангенс формула

Арктангенс(y = arctg(x)) – это обратная тригонометрическая функция к тангенсу x = tg(y). Область определения -∞ ≤ x ≤ +∞ и множество значений -π/2 ≤ y ≤ +π/2.

arctg(0) = 0° arctg(-1.732050808) = 120° arctg(1.732050808) = 240°
arctg(0.01745506493) = 1° arctg(-1.664279482) = 121° arctg(1.804047755) = 241°
arctg(0.03492076949) = 2° arctg(-1.600334529) = 122° arctg(1.880726465) = 242°
arctg(0.05240777928) = 3° arctg(-1.539864964) = 123° arctg(1.962610506) = 243°
arctg(0.06992681194) = 4° arctg(-1.482560969) = 124° arctg(2.050303842) = 244°
arctg(0.08748866353) = 5° arctg(-1.428148007) = 125° arctg(2.144506921) = 245°
arctg(0.1051042353) = 6° arctg(-1.37638192) = 126° arctg(2.246036774) = 246°
arctg(0.1227845609) = 7° arctg(-1.327044822) = 127° arctg(2.355852366) = 247°
arctg(0.1405408347) = 8° arctg(-1.279941632) = 128° arctg(2.475086853) = 248°
arctg(0.1583844403) = 9° arctg(-1.234897157) = 129° arctg(2.605089065) = 249°
arctg(0.1763269807) = 10° arctg(-1.191753593) = 130° arctg(2.747477419) = 250°
arctg(0.1943803091) = 11° arctg(-1.150368407) = 131° arctg(2.904210878) = 251°
arctg(0.2125565617) = 12° arctg(-1.110612515) = 132° arctg(3.077683537) = 252°
arctg(0.2308681911) = 13° arctg(-1.07236871) = 133° arctg(3.270852618) = 253°
arctg(0.2493280028) = 14° arctg(-1.035530314) = 134° arctg(3.487414444) = 254°
arctg(0.2679491924) = 15° arctg(-1) = 135° arctg(3.732050808) = 255°
arctg(0.2867453858) = 16° arctg(-0.9656887748) = 136° arctg(4.010780934) = 256°
arctg(0.3057306815) = 17° arctg(-0.9325150861) = 137° arctg(4.331475874) = 257°
arctg(0.3249196962) = 18° arctg(-0.9004040443) = 138° arctg(4.704630109) = 258°
arctg(0.3443276133) = 19° arctg(-0.8692867378) = 139° arctg(5.144554016) = 259°
arctg(0.3639702343) = 20° arctg(-0.8390996312) = 140° arctg(5.67128182) = 260°
arctg(0.383864035) = 21° arctg(-0.8097840332) = 141° arctg(6.313751515) = 261°
arctg(0.4040262258) = 22° arctg(-0.7812856265) = 142° arctg(7.115369722) = 262°
arctg(0.4244748162) = 23° arctg(-0.7535540501) = 143° arctg(8.144346428) = 263°
arctg(0.4452286853) = 24° arctg(-0.726542528) = 144° arctg(9.514364454) = 264°
arctg(0.4663076582) = 25° arctg(-0.7002075382) = 145° arctg(11.4300523) = 265°
arctg(0.4877325886) = 26° arctg(-0.6745085168) = 146° arctg(14.30066626) = 266°
arctg(0.5095254495) = 27° arctg(-0.6494075932) = 147° arctg(19.08113669) = 267°
arctg(0.5317094317) = 28° arctg(-0.6248693519) = 148° arctg(28.63625328) = 268°
arctg(0.5543090515) = 29° arctg(-0.600860619) = 149° arctg(57.28996163) = 269°
arctg(0.5773502692) = 30° arctg(-0.5773502692) = 150° arctg(∞) = 270°
arctg(0.600860619) = 31° arctg(-0.5543090515) = 151° arctg(-57.28996163) = 271°
arctg(0.6248693519) = 32° arctg(-0.5317094317) = 152° arctg(-28.63625328) = 272°
arctg(0.6494075932) = 33° arctg(-0.5095254495) = 153° arctg(-19.08113669) = 273°
arctg(0.6745085168) = 34° arctg(-0.4877325886) = 154° arctg(-14.30066626) = 274°
arctg(0.7002075382) = 35° arctg(-0.4663076582) = 155° arctg(-11.4300523) = 275°
arctg(0.726542528) = 36° arctg(-0.4452286853) = 156° arctg(-9.514364454) = 276°
arctg(0.7535540501) = 37° arctg(-0.4244748162) = 157° arctg(-8.144346428) = 277°
arctg(0.7812856265) = 38° arctg(-0.4040262258) = 158° arctg(-7.115369722) = 278°
arctg(0.8097840332) = 39° arctg(-0.383864035) = 159° arctg(-6.313751515) = 279°
arctg(0.8390996312) = 40° arctg(-0.3639702343) = 160° arctg(-5.67128182) = 280°
arctg(0.8692867378) = 41° arctg(-0.3443276133) = 161° arctg(-5.144554016) = 281°
arctg(0.9004040443) = 42° arctg(-0.3249196962) = 162° arctg(-4.704630109) = 282°
arctg(0.9325150861) = 43° arctg(-0.3057306815) = 163° arctg(-4.331475874) = 283°
arctg(0.9656887748) = 44° arctg(-0.2867453858) = 164° arctg(-4.010780934) = 284°
arctg(1) = 45° arctg(-0.2679491924) = 165° arctg(-3.732050808) = 285°
arctg(1.035530314) = 46° arctg(-0.2493280028) = 166° arctg(-3.487414444) = 286°
arctg(1.07236871) = 47° arctg(-0.2308681911) = 167° arctg(-3.270852618) = 287°
arctg(1.110612515) = 48° arctg(-0.2125565617) = 168° arctg(-3.077683537) = 288°
arctg(1.150368407) = 49° arctg(-0.1943803091) = 169° arctg(-2.904210878) = 289°
arctg(1.191753593) = 50° arctg(-0.1763269807) = 170° arctg(-2.747477419) = 290°
arctg(1.234897157) = 51° arctg(-0.1583844403) = 171° arctg(-2.605089065) = 291°
arctg(1.279941632) = 52° arctg(-0.1405408347) = 172° arctg(-2.475086853) = 292°
arctg(1.327044822) = 53° arctg(-0.1227845609) = 173° arctg(-2.355852366) = 293°
arctg(1.37638192) = 54° arctg(-0.1051042353) = 174° arctg(-2.246036774) = 294°
arctg(1.428148007) = 55° arctg(-0.08748866353) = 175° arctg(-2.144506921) = 295°
arctg(1.482560969) = 56° arctg(-0.06992681194) = 176° arctg(-2.050303842) = 296°
arctg(1.539864964) = 57° arctg(-0.05240777928) = 177° arctg(-1.962610506) = 297°
arctg(1.600334529) = 58° arctg(-0.03492076949) = 178° arctg(-1.880726465) = 298°
arctg(1.664279482) = 59° arctg(-0.01745506493) = 179° arctg(-1.804047755) = 299°
arctg(1.732050808) = 60° arctg(0) = 180° arctg(-1.732050808) = 300°
arctg(1.804047755) = 61° arctg(0.01745506493) = 181° arctg(-1.664279482) = 301°
arctg(1.880726465) = 62° arctg(0.03492076949) = 182° arctg(-1.600334529) = 302°
arctg(1.962610506) = 63° arctg(0.05240777928) = 183° arctg(-1.539864964) = 303°
arctg(2.050303842) = 64° arctg(0.06992681194) = 184° arctg(-1.482560969) = 304°
arctg(2.144506921) = 65° arctg(0.08748866353) = 185° arctg(-1.428148007) = 305°
arctg(2.246036774) = 66° arctg(0.1051042353) = 186° arctg(-1.37638192) = 306°
arctg(2.355852366) = 67° arctg(0.1227845609) = 187° arctg(-1.327044822) = 307°
arctg(2.475086853) = 68° arctg(0.1405408347) = 188° arctg(-1.279941632) = 308°
arctg(2.605089065) = 69° arctg(0.1583844403) = 189° arctg(-1.234897157) = 309°
arctg(2.747477419) = 70° arctg(0.1763269807) = 190° arctg(-1.191753593) = 310°
arctg(2.904210878) = 71° arctg(0.1943803091) = 191° arctg(-1.150368407) = 311°
arctg(3.077683537) = 72° arctg(0.2125565617) = 192° arctg(-1.110612515) = 312°
arctg(3.270852618) = 73° arctg(0.2308681911) = 193° arctg(-1.07236871) = 313°
arctg(3.487414444) = 74° arctg(0.2493280028) = 194° arctg(-1.035530314) = 314°
arctg(3.732050808) = 75° arctg(0.2679491924) = 195° arctg(-1) = 315°
arctg(4.010780934) = 76° arctg(0.2867453858) = 196° arctg(-0.9656887748) = 316°
arctg(4.331475874) = 77° arctg(0.3057306815) = 197° arctg(-0.9325150861) = 317°
arctg(4.704630109) = 78° arctg(0.3249196962) = 198° arctg(-0.9004040443) = 318°
arctg(5.144554016) = 79° arctg(0.3443276133) = 199° arctg(-0.8692867378) = 319°
arctg(5.67128182) = 80° arctg(0.3639702343) = 200° arctg(-0.8390996312) = 320°
arctg(6.313751515) = 81° arctg(0.383864035) = 201° arctg(-0.8097840332) = 321°
arctg(7.115369722) = 82° arctg(0.4040262258) = 202° arctg(-0.7812856265) = 322°
arctg(8.144346428) = 83° arctg(0.4244748162) = 203° arctg(-0.7535540501) = 323°
arctg(9.514364454) = 84° arctg(0.4452286853) = 204° arctg(-0.726542528) = 324°
arctg(11.4300523) = 85° arctg(0.4663076582) = 205° arctg(-0.7002075382) = 325°
arctg(14.30066626) = 86° arctg(0.4877325886) = 206° arctg(-0.6745085168) = 326°
arctg(19.08113669) = 87° arctg(0.5095254495) = 207° arctg(-0.6494075932) = 327°
arctg(28.63625328) = 88° arctg(0.5317094317) = 208° arctg(-0.6248693519) = 328°
arctg(57.28996163) = 89° arctg(0.5543090515) = 209° arctg(-0.600860619) = 329°
arctg(∞) = 90° arctg(0.5773502692) = 210° arctg(-0.5773502692) = 330°
arctg(-57.28996163) = 91° arctg(0.600860619) = 211° arctg(-0.5543090515) = 331°
arctg(-28.63625328) = 92° arctg(0.6248693519) = 212° arctg(-0.5317094317) = 332°
arctg(-19.08113669) = 93° arctg(0.6494075932) = 213° arctg(-0.5095254495) = 333°
arctg(-14.30066626) = 94° arctg(0.6745085168) = 214° arctg(-0.4877325886) = 334°
arctg(-11.4300523) = 95° arctg(0.7002075382) = 215° arctg(-0.4663076582) = 335°
arctg(-9.514364454) = 96° arctg(0.726542528) = 216° arctg(-0.4452286853) = 336°
arctg(-8.144346428) = 97° arctg(0.7535540501) = 217° arctg(-0.4244748162) = 337°
arctg(-7.115369722) = 98° arctg(0.7812856265) = 218° arctg(-0.4040262258) = 338°
arctg(-6.313751515) = 99° arctg(0.8097840332) = 219° arctg(-0.383864035) = 339°
arctg(-5.67128182) = 100° arctg(0.8390996312) = 220° arctg(-0.3639702343) = 340°
arctg(-5.144554016) = 101° arctg(0.8692867378) = 221° arctg(-0.3443276133) = 341°
arctg(-4.704630109) = 102° arctg(0.9004040443) = 222° arctg(-0.3249196962) = 342°
arctg(-4.331475874) = 103° arctg(0.9325150861) = 223° arctg(-0.3057306815) = 343°
arctg(-4.010780934) = 104° arctg(0.9656887748) = 224° arctg(-0.2867453858) = 344°
arctg(-3.732050808) = 105° arctg(1) = 225° arctg(-0.2679491924) = 345°
arctg(-3.487414444) = 106° arctg(1.035530314) = 226° arctg(-0.2493280028) = 346°
arctg(-3.270852618) = 107° arctg(1.07236871) = 227° arctg(-0.2308681911) = 347°
arctg(-3.077683537) = 108° arctg(1.110612515) = 228° arctg(-0.2125565617) = 348°
arctg(-2.904210878) = 109° arctg(1.150368407) = 229° arctg(-0.1943803091) = 349°
arctg(-2.747477419) = 110° arctg(1.191753593) = 230° arctg(-0.1763269807) = 350°
arctg(-2.605089065) = 111° arctg(1.234897157) = 231° arctg(-0.1583844403) = 351°
arctg(-2.475086853) = 112° arctg(1.279941632) = 232° arctg(-0.1405408347) = 352°
arctg(-2.355852366) = 113° arctg(1.327044822) = 233° arctg(-0.1227845609) = 353°
arctg(-2.246036774) = 114° arctg(1.37638192) = 234° arctg(-0.1051042353) = 354°
arctg(-2.144506921) = 115° arctg(1.428148007) = 235° arctg(-0.08748866353) = 355°
arctg(-2.050303842) = 116° arctg(1.482560969) = 236° arctg(-0.06992681194) = 356°
arctg(-1.962610506) = 117° arctg(1.539864964) = 237° arctg(-0.05240777928) = 357°
arctg(-1.880726465) = 118° arctg(1.600334529) = 238° arctg(-0.03492076949) = 358°
arctg(-1.804047755) = 119° arctg(1.664279482) = 239° arctg(-0.01745506493) = 359°

Формулы с обратными тригонометрическими функциями: arcsin, arccos, arctg и arcctg

Ранее мы рассматривали обратные тригонометрические функции: арксинус, арккосинус, арктангенс и арккотангенс. Как и в случае с другими функциями, между ними существуют связи и зависимости, реализуемые в виде формул, которые можно использовать для решения задач.

Сейчас мы будем рассматривать основные формулы с использованием этих функций: какие они бывают, на какие группы их можно разделить, как их доказать и как решать задачи с их помощью.

Формулы котангенса арккотангенса, тангенса арктангенса, синуса арксинуса и косинуса арккосинуса

Для начала сгруппируем формулы, в которых содержатся основные свойства обратных тригонометрических функций. Мы уже обсуждали и доказывали их ранее, а здесь приведем, чтобы логика объяснения была более понятной и все формулы были в одной статье.

для α∈-1, 1  sin(arccis α)=α,   cos(arccos α)=α,для α∈(-∞, ∞)  tg(arctg α)=α, ctg(arcctg α)=α

Указанное в них легко сформулировать из самих определений обратных тригонометрических функций числа. Если вы забыли, как найти, например, тангенс арктангенса, все можно посмотреть в этой формуле.

Формулы арккотангенса котангенса, арктангенса тангенса и арксинуса синуса и арккосинуса косинуса

для -π2≤α≤π2  arcsin (sin α)=α,для 0≤α≤π arccos(cos α)=α,для -π2<α<π2 arctg (tg α)=α,для 0<α<π arcctg (ctg α)=α

Здесь все также более-менее очевидно, как и в предыдущем пункте: эти формулы можно вывести из определений арксинуса, арккосинуса и др. Единственное, на что нужно обратить пристальное внимание: они будут верны только в том случае, если a (число или угол) будут входить в указанный предел. В противном случае расчет по формуле будет ошибочен, и применять ее нельзя.

Как соотносятся между собой арксинусы, арккосинусы, арктангенсы и арккотангенсы противоположных чисел

В этом блоке мы сформулируем важное утверждение:

Определение 1

Обратные тригонометрические функции отрицательного числа можно выразить через арксинус, арккосинус, арктангенс и арккотангенс противоположного ему положительного числа.

для α∈-1, 1  arccis (-α)=-arcsin α,   arccos (-α)=π-arccos α,для α∈(-∞, ∞)  arctg (-α)=-arctg α, arcctg (-α)=π-arcctg α

Таким образом, если в расчетах нам встречаются эти функции для отрицательных чисел, мы можем от них избавиться, преобразовав их в аркфункции положительных чисел, с которыми иметь дело проще.

Формулы суммы: арксинус + арккосинус, арктангенс + арккотангенс

Они выглядят следующим образом:

для α∈-1, 1  arccis α+arccos α=π2,для α∈(-∞, ∞)  arctg α+arcctg α=π2

Из написанного видно, что арксинус некоторого числа можно вывести с помощью его арккосинуса, и наоборот. С арктангенсом и арккотангенсом аналогично – они соотносятся между собой аналогичным образом.

Формулы связи между прямыми и обратными тригонометрическими функциями

Знать связи между прямыми функциями и их аркфункциями очень важно для решения многих практических задач. Как же быть, если у нас есть необходимость вычислить, к примеру, тангенс арксинуса? Ниже приведен список основных формул для этого, которые полезно выписать себе.

-1≤α≤1,sin (arcsin α)=α -1≤α≤1,sin (arccos α)=1-α2 -∞≤α≤+∞,sin (arctg α)=α1+α2 -∞≤α≤+∞, sin (arcctg α)=11+α2
-1≤α≤1,cos (arcsin α)=1-α2 -1≤α≤1,cos (arccos α)=α -∞≤α≤+∞,cos (arctg α)=11+α2 -∞≤α≤+∞, cos (arcctg α)=11+α2
-1<α<1,tg (arcsin α) =α1-α2 α∈(-1, 0)∪(0, 1),tg (arccos α) =1-α2α -∞≤α≤+∞,tg (arctg α)=α α≠0 ,tg (arcctg α)=1α
α∈(-1, 0)∪(0, 1),ctg (arcsin α)=1-α2α -1<α<1,ctg (arccos α)=α1-α2 α≠0,ctg (arctg α)=1α -∞≤α≤+∞, ctg (arcctg α)=α

Теперь разберем примеры, как они применяются в задачах.

Пример 1

Вычислите косинус арктангенса из 5.

Решение

У нас для этого есть подходящая формула следующего вида: cos(arctg α)=11+α2

Подставляем нужное значение: cos(arctg5)=11+(5)2=26

Пример 2

Вычислить синус арккосинуса 12.

Решение

Для этого нам понадобится формула: sin (arccos α)=1-a2

Подставляем в нее значения и получаем: sin (arccos 12)=1-(12)2=32

Обратите внимание, что непосредственные вычисления приводят к аналогичному ответу: sin(arccos 12)=sin π3=32

Если вы забыли, как правильно вычислять значения прямых и обратных функций, вы всегда можете вернуться к нашим предыдущим материалам, где мы разбирали это.

Доказательства формул синусов арккосинуса, арккотангенса и арктангенса

Для того, чтобы наглядно вывести полученные формулы, нам понадобятся основные тригонометрические тождества и собственно формулы основных обратных функций – косинуса арккосинуса и др. Мы их уже выводили ранее, поэтому тратить время на их доказательства не будем. Начнем сразу с формул синусов арккосинуса, арккотангенса и арктангенса. Используя тождество, получим:

sin2α+cos2α=11+ctg2α=1sin2α

Вспомним, что tgα·ctgα=1. Из этого можно получить:

sinα=1-cos2α, 0≤α≤π sinα=tgα1+tg2α, -π2<α<π2sinα=11+ctg2α, 0<α<π

У нас получилось, что мы выразили синус через необходимые аркфункции при заданном условии.

Теперь в первой формуле вместо a мы добавим arccos a. Итог – формула синуса арккосинуса.

Далее во вторую вместо a ставим arctg a. Это формула синуса арктангенса.

Аналогично с третьей – если мы добавим в нее arcctg a, будет формула синуса арктангенса.

Все наши расчеты можно сформулировать более емко:

  1. sinα=1-cos2α, 0≤α≤π

Следовательно, sin(arccosα)=1-cos2(arccosα)=1-a2

  1. sinα=tgα1+tgα, -π2<α<π2,

Следовательно, sin(arctgα)=tg(arctgα)1+tg2(arctgα)=α1+α2

  1. sinα=11+ctg2α, 0<α<π

Следовательно, sin(arctgα)=11+tg2(arctgα)=11+α2

Выводим формулы косинуса арксинуса, косинуса арктангенса и косинуса арккотангенса.

Их мы выведем по имеющемуся шаблону:

  1. Из cosα=1-sin2α, -π2≤α≤π2 следует, что

cos(arcsin α)=1-sin2(arcsin α)=1-a2

  1. Из cosα=11+tg2α, -π2<α<π2 следует, что
  2. Из cosα=ctgα1+ctg2α, 0<α<πcos(arctgα)=11+tg2(arctgα)=11+α2

следует, что cos(arctgα)=ctg(arcctgα)1+ctg2(arcctgα)=α1+α2

Доказательства формул тангенсов арксинуса, арккосинуса и арккотангенса

  1. Исходим из tgα=sin α1-sin2α, -π2<α<π2. Получаем tg(arcsin α)=sin(arcsinα)1-sin2(arcsinα)=α1-α2 при условии, что -1<α<1.
  2. Исходим из tgα=1-cos2αcosα, α∈[0, π2)∪(π2, π], получаем

tg(arccosα)=1-cos2(arccosα)cos(arccosα)=1-α2α при условии α∈(-1, 0)∪(0, 1).

  1. Исходим из tgα=1ctgα, α∈(0, π2)∪(π2, π), получаем tg(arcctgα)=1ctg(arcctgα)=1α при условии, что α≠0.

Теперь нам нужны формулы котангенсов арксинуса, арккосинуса и арктангенса. Вспомним одно из тригонометрических равенств:

ctgα=1tgα

Используя его, мы можем сами вывести необходимые формулы, используя формулы тангенса арксинуса, тангенса арккосинуса и тангенса арктангенса. Для этого понадобится поменять в них местами числитель и знаменатель.

Как выразить арксинус через арккосинус, арктангенс и арккотангенс и так далее

Мы связали между собой прямые и обратные тригонометрические функции. Полученные формулы дадут нам возможность связать и одни обратные функции с другими, то есть выразить одни аркфункции через другие аркфункции. Разберем примеры.

Здесь мы можем заменить арксинус на арккосинус, арктангенс и арккотангенс соответственно, и получить искомую формулу:

arcsinα=arccos1-α2, 0≤α≤1-arccos1-a2, -1≤α<0arcsinα=arctgα1-α2, -1<α<1arcsinα=arcctg1-α2α, 0<α≤1arcctg1-α2α-π, -1≤α≤0

А так мы выразим арккосинус через остальные обратные функции:

arccosα=arcsin1-α2, 0≤α≤1π-arcsin1-α2, -1≤α<0arccosα=arctg1-α2α, 0<α≤1π+arctg1-α2α, -1<α<0arccosα=arcctgα1-α2, -1<α<1

Формула выражения арктангенса:

arctgα=arcsinα1+α2, -∞<α<+∞arctgα=arccos11+α2, α≥0-arccos11+α2, α<0arctgα=arcctg1α, α≠0

Последняя часть – выражение арккотангенса через другие обратные функции:

arcctgα=arcsin11+α2, α≥0π-arcsin11+α2, α<0arcctgα=arccosα1+α2, -∞<α<+∞arcctgα=arctg1α, α≠0

Теперь попробуем доказать их, опираясь на основные определения обратных функций и ранее выведенных формул.

Возьмём arcsinα=arctgα1-α2, -1<α<1 и постараемся вывести доказательство.

Мы знаем, что arctgα1-α2 – это число, величина которого составляет от минус половины пи до плюс половины пи. Из формулы синуса арктангенса получим:

sin(arctgα1-α2)=α1-α21+(α1-α2)2=α1-α21+α21-α2=α1-α21+α21-α2=α1-α211-α2=α

Получается, что arctgα1-α2 при условии 1<a<1 – это и есть арксинус числа a.

Вывод: arcsina=arctga1-a2, -1<a<1

Прочие формулы доказываются по аналогии.

В завершение разберем один пример применения формул на практике.

Пример 3

Условие Вычислить синус арккотангенса минус корня из 3.

Решение

Нам понадобится формула выражения арккотангенса через арксинус: arcctgα=arcsin11+a2, α≥0π-arcsin 11+a2, α<0
Подставим в нее α=-3 и получим ответ – 12. Непосредственное вычисление дало бы нам те же результаты: sin(arcctg(-3))=sin5π6=12 Для решения задачи можно взять и другую формулу, выражающую синус через котангенс: sinα=11+ctg2α, 0<α<π

В итоге у нас бы вышло: sin(arcctg(-3))=11+ctg2(arcctg(-3))=11+(-3)2=12

Или возьмем формулу синуса арккотангенса и получим тот же ответ: sin(arcctgα)=11+α2  sin(arcctg(-3))=11+(-3)2=12

Прочие формулы с обратными функциями

Мы рассмотрели самые основные формулы, которые понадобятся вам при решении задач. Однако это не все формулы с аркфункциями: есть и ряд других, специфичных, которые употребляются нечасто, но все же их знание может быть полезно. Запоминать их особого смысла нет: проще вывести их тогда, когда они нужны.

Разберем одну из них, называемую формулой половинного угла. Она выглядит следующим образом:

sin2α2=1-cosα2

Если угол альфа при этом больше нуля, но меньше числа пи, то у нас выходит:

sinα2=1-cosα2

Учитывая данное условие, заменяем упомянутый угол на arccos. В итоге наша предварительная формула выглядит так:

sinarccosα2=1-cos(arccosα)2⇔sinarccosα2=1-α2

Отсюда мы выводим итоговую формулу, в которой арксинус выведен через арккосинус:

arccosα2=arcsin1-α2

Мы перечислили не все связи, которые имеются между обратными тригонометрическими функциями, а лишь наиболее употребляемые из них. Важно подчеркнуть, что ценность имеют не столько сами сложные формулы, что мы привели в статье: заучивать их наизусть не нужно. Гораздо важнее уметь самому делать нужные преобразования, и тогда сложные вычисления не потребуется хранить в голове.

В продолжение темы в следующей статье мы рассмотрим преобразование выражений с арксинусом, арккосинусом, арктангенсом и арккотангенсом.

  1. Понятие арктангенса
  2. График и свойства функции y=arctgx
  3. Уравнение tgx=a
  4. Понятие арккотангенса
  5. График и свойства функции y=arcctgx
  6. Уравнение ctgx=a
  7. Формулы преобразований аркфункци
  8. Примеры

Определение тангенса и котангенса через отношение сторон прямоугольника и с помощью касательной к числовой окружности – см. §3 данного справочника.
Свойства функции y=tgx на всей области определения (xinmathbb{R}) – см. §6 данного справочника.
Свойства функции y=ctgx на всей области определения (xinmathbb{R}) – см. §7 данного справочника.
Определение и свойства взаимно обратных функций – см. §2 справочника для 9 класса.

п.1. Понятие арктангенса

В записи (y=tgx) аргумент x – это значение угла (в градусах или радианах), функция y – тангенс угла, действительное число в пределах от (-infty;) до (+infty). Т.е., по заданному углу мы находим тангенс.
Можно поставить обратную задачу: по заданному тангенсу найти угол. Но одному значению тангенса соответствует бесконечное количество углов. Например, если (tgx=1), то (x=fracpi4+pi k, kinmathbb{Z}); если (tgx=0), то (x=pi k, kinmathbb{Z}) и т.д.
Поэтому, чтобы построить однозначную обратную функцию, ограничим значения углов x главной ветвью тангенса: (-fracpi2leq xleq fracpi2) (правая половина числовой окружности, вся ось тангенсов).

Арктангенсом числа (a (ainmathbb{R})) называется такое число (xin[-fracpi2; fracpi2]), тангенс которого равен (a). $$ arctg a=x Leftrightarrow begin{cases} tgx=a\ -fracpi2leq xleq fracpi2 end{cases} $$

Например:

(arctgfrac{1}{sqrt{3}}=fracpi6, arctg(-sqrt{3})=-frac{pi}{3}, arctg1=fracpi4).

п.2. График и свойства функции y=arctgx

График и свойства функции y=arctg x
1. Область определения (xinmathbb{R}).
2. Функция ограничена сверху и снизу асимптотами (-fracpi2leq arctgxleq fracpi2).
Область значений (yinleft(-fracpi2; fracpi2right))
3. Функция стремится к максимальному значению (y_{max}=fracpi2 text{при} xrightarrow +infty)
Функция стремится к минимальному значению (y_{min}=-fracpi2 text{при} xrightarrow -infty)
Функция имеет две горизонтальные асимптоты (y=pmfracpi2).
4. Функция возрастает на всей области определения.
5. Функция непрерывна на всей области определения.
6. Функция нечётная: (arctg(-x)=-arctg(x)).

п.3. Уравнение tgx=a

Уравнение tgx=a На оси тангенсов каждому углу на числовой окружности в интервале (-fracpi2leq xleq fracpi2) соответствует одно действительное число.

Например:
1) Решим уравнение (tgx=frac{1}{sqrt{3}})
Числу (frac{1}{sqrt{3}}) на оси тангенсов соответствует угол (fracpi6) на числовой окружности, (arctgfrac{1}{sqrt{3}}=fracpi6).
Учитывая период тангенса (pi), получаем ответ:
(x=fracpi6+pi k)

Уравнение tgx=a 2) Решим уравнение (tgx=2)
Числу (frac{1}{sqrt{3}}) на оси тангенсов соответствует угол (arctg2) на числовой окружности.
Учитывая период тангенса (pi), получаем ответ:
(x=arctg2+pi k)

В общем случае:

Уравнение (tgx=a) имеет решения $$ x=arctga+pi k, kinmathbb{Z}, ainmathbb{R} $$

п.4. Понятие арккотангенса

По аналогии с арктангенсом, арккотангенс определяется на главной ветви котангенса: (0lt xlt pi) (верхняя половина числовой окружности, вся ось котангенсов).

Арккотангенсом числа (a (ainmathbb{R})) называется такое число (xin(0;pi)), котангенс которого равен (a). $$ arcctg a=x Leftrightarrow begin{cases} ctgx=a\ 0lt xlt pi end{cases} $$

Например:

(arcctgfrac{1}{sqrt{3}}=fracpi3, arcctg(-sqrt{3})=-frac{pi}{6}, arcctg1=fracpi4).

п.5. График и свойства функции y=arcctgx

График и свойства функции y=arcctg x
1. Область определения (xinmathbb{R}).
2. Функция ограничена сверху и снизу асимптотами (0lt arcctgxlt pi).
Область значений (yin(0;pi))
3. Функция стремится к максимальному значению (y_{max}=pi text{при} xrightarrow -infty)
Функция стремится к минимальному значению (y_{min}=0 text{при} xrightarrow +infty)
Функция имеет две горизонтальные асимптоты (y=0 text{и} y=pi).
4. Функция убывает на всей области определения.
5. Функция непрерывна на всей области определения.
6. Функция ни чётная, ни нечётная.

п.6. Уравнение ctgx=a

Уравнение ctgx=a

В общем случае:

Уравнение (ctgx=a) имеет решения $$ x=arcctga+pi k, kinmathbb{Z}, ainmathbb{R} $$

Часто уравнение (ctgx=a) преобразуют в уравнение (tgx=frac{1}{a}), и ищут его корни.
Например:
1) (ctgx=sqrt{3})
(x=fracpi6+pi k)
Можно также преобразовать уравнение в (tg x=frac{1}{sqrt{3}})
Получаем тот же ответ: (x=fracpi6+pi k)

2) (ctgx=2)
(x=arcctg2+pi k)
Можно также преобразовать уравнение в (tg x=frac{1}{2})
Получаем ответ: (x=arctgfrac12+pi k)
Очевидно, что (arcctg 2=arctgfrac{1}{2}) (см. ниже формулы для аркфункций).

п.7. Формулы преобразования аркфункций

Аркфункции от обратных тригонометрических функций

begin{gather*} arcsin(sinalpha)=alpha, alphainleft[-fracpi2;fracpi2right], arccos(cosalpha)=alpha, alphain[0;pi]\ arctg(tgalpha)=alpha, alphainleft(-fracpi2;fracpi2right), arcctg(ctgalpha)=alpha, alphain(0;pi) end{gather*}

Аркфункции отрицательных аргументов

begin{gather*} arcsin(-alpha)=-arcsinalpha, arccos(-alpha)=pi-arccosalpha\ arctg(-alpha)=-arctgalpha, arcctg(-alpha)=pi-arcctgalpha end{gather*}

Суммы аркфункций

begin{gather*} arcsinalpha+arccosalpha=fracpi2, arctgalpha+arcctgalpha=fracpi2 end{gather*}

Сводная таблица тригонометрических функций от аркфункций

arcsin arccos arctg arcctg
sin begin{gather*} a\ ain[-1;1] end{gather*} begin{gather*} sqrt{1-a^2}\ ain[-1;1] end{gather*} begin{gather*} frac{a}{sqrt{1+a^2}}\ ainmathbb{R} end{gather*} begin{gather*} frac{1}{sqrt{1+a^2}}\ ainmathbb{R} end{gather*}
cos begin{gather*} sqrt{1-a^2}\ ain[-1;1] end{gather*} begin{gather*} a\ ain[-1;1] end{gather*} begin{gather*} frac{1}{sqrt{1+a^2}}\ ainmathbb{R} end{gather*} begin{gather*} frac{a}{sqrt{1+a^2}}\ ainmathbb{R} end{gather*}
tg begin{gather*} frac{a}{sqrt{1-a^2}}\ ain(-1;1) end{gather*} begin{gather*} frac{sqrt{1-a^2}}{a}\ ain(-1;0)cup(0;1) end{gather*} begin{gather*} a\ ainmathbb{R} end{gather*} begin{gather*} frac{1}{a}\ ane 0 end{gather*}
ctg begin{gather*} frac{sqrt{1-a^2}}{a}\ ain(-1;0)cup(0;1) end{gather*} begin{gather*} frac{a}{sqrt{1-a^2}}\ ain(-1;1) end{gather*} begin{gather*} frac{1}{a}\ ane 0 end{gather*} begin{gather*} a\ ainmathbb{R} end{gather*}

Аркфункции, выраженные через другие аркфункции

arcsin
arccos $$ arcsina= begin{cases} arccossqrt{1-a^2}, 0leq aleq 1\ -arccossqrt{1-a^2}, -1leq alt 0 end{cases} $$
arctg $$ arcsina=arctgfrac{a}{sqrt{1-a^2}}, -1lt alt 1 $$
arcctg $$ arcsina= begin{cases} arcctgfrac{sqrt{1-a^2}}{a}, 0lt aleq 1\ -arcctgfrac{sqrt{1-a^2}}{a}-pi, -1leq alt 0 end{cases} $$

arccos
arcsin $$ arccosa= begin{cases} arcsinsqrt{1-a^2}, 0leq aleq 1\ pi-arcsinsqrt{1-a^2}, -1leq alt 0 end{cases} $$
arctg $$ arccosa= begin{cases} arcctgfrac{sqrt{1-a^2}}{a}, 0lt aleq 1\ pi+arctgfrac{sqrt{1-a^2}}{a}, -1leq alt 0 end{cases} $$
arcctg $$ arccosa=arcctgfrac{a}{sqrt{1-a^2}}, -1lt alt 1 $$

arctg
arcsin $$ arctga=arcsinfrac{a}{sqrt{1+a^2}}, ainmathbb{R} $$
arccos $$ arctga= begin{cases} arccosfrac{1}{sqrt{1+a^2}}, ageq 0\ -arccosfrac{1}{sqrt{1+a^2}}, alt 0 end{cases} $$
arcctg $$ arctga=arcctgfrac{1}{a}, ane 0 $$

arcctg
arcsin $$ arcctga= begin{cases} arcsinfrac{1}{sqrt{1+a^2}}, ageq 0\ pi-arcsinfrac{1}{sqrt{1+a^2}}, alt 0 end{cases} $$
arccos $$ arcctga=arccosfrac{a}{sqrt{1+a^2}}, ainmathbb{R} $$
arctg $$ arcctga=arctgfrac{1}{a}, ane 0 $$

п.8. Примеры

Пример 1. Найдите функцию, обратную арктангенсу. Постройте графики арктангенса и найденной функции в одной системе координат.

Для (y=arctgx) область определения (xinmathbb{R}), область значений (-fracpi2leq yleq fracpi2).
Обратная функция (y=tgx) должна иметь ограниченную область определения (-fracpi2leq xleq fracpi2) (главная ветвь) и область значений (yinmathbb{R}).
Строим графики:
Пример 1
Графики симметричны относительно прямой y=x.
Обратная функция найдена верно.

Пример 2. Решите уравнения:

a) (tg x=-1)
(x=fracpi4+pi k)
б) (ctgx=-1)
(x=frac{3pi}{4}+pi k)

Если решать через (tgx=-1)
(x=-fracpi4+pi k)

в) (tg x=-5)
(x=arctg(-5)+pi k=-arctg5+pi k)
г) (ctgx=3)
(x=arcctg3+pi k)

Если решать через (tgx=frac13)
(x=arctgfrac13+pi k)

Пример 3. Вычислите:
a) (2arccosleft(-frac12right)+arctg(-1)+arcsinfrac{sqrt{2}}{2}=2cdotfrac{2pi}{3}-fracpi4+fracpi4=frac{4pi}{3})
б) (arcsin1-arccosfrac{sqrt{3}}{2}-arctg(sqrt{-3})=arcsin1-fracpi3+fracpi3=arcsin1)
в) (arctg4+arcsin0-arccos1=arctg4+0-0=arctg4)
г) (5-2arccos0+arcsinfrac{sqrt{2}}{2}+3arccosfrac{sqrt{2}}{2}=5-2cdotfracpi2+fracpi4+3cdotfracpi4=5)

Пример 4. Постройте графики функций:
(a) y=arccosleft(frac{1}{x}right)+arccosleft(-frac{1}{x}right))
Сумма арккосинусов (arccosa+arccos(-a)=pi), где (-1leq aleq 1).
Получаем систему для определения ОДЗ: begin{gather*} -1leq frac{1}{x}leq 1Rightarrow 0leq frac{1}{x}+1leq 2Rightarrow begin{cases} frac{x+1}{x}geq 0\ frac{x+1}{x}leq 2 end{cases} Rightarrow begin{cases} frac{x+1}{x}geq 0\ frac{-x+1}{x}leq 0 end{cases} Rightarrow begin{cases} frac{x+1}{x}geq 0\ frac{x-1}{x}geq 0 end{cases} Rightarrow\ Rightarrow left[ begin{array}{l l} begin{cases} xgt 0\ x+1geq 0\ x-1geq 0 end{cases} \ begin{cases} xlt 0\ x+1leq 0\ x-1leq 0 end{cases} end{array} right. Rightarrow left[ begin{array}{l l} begin{cases} xgt 0\ xgeq 1 end{cases} \ begin{cases} xlt 0\ xleq -1 end{cases} end{array} right. Rightarrow xleq -1cup xgeq 1 end{gather*} Заметим, что используя модуль, тот же результат можно получить значительно быстрей: $$ -1leqfrac{1}{x}leq 1Leftrightarrow |frac{1}{x}|leq 1Leftrightarrow |x|geq 1 $$ Таким образом, ОДЗ – вся числовая прямая, кроме (xnotin(-1;1).) $$ y=arccosleft(frac{1}{x}right)+arccosleft(-frac{1}{x}right)Leftrightarrow begin{cases} y=pi\ xnotin (-1;1) end{cases} $$ Строим график:
Пример 4а

(б) y=arcctg(sqrt{x})+arcctg(-sqrt{x}))
Сумма арккотангенсов (arcctga+arcctg(-a)=pi), где (ainmathbb{R})
ОДЗ ограничено требованием к подкоренному выражению: (xgeq 0)
$$ y=arcctgleft(sqrt{x}right)+arcctgleft(-sqrt{x}right)Leftrightarrow begin{cases} y=pi\ xgeq 0 end{cases} $$ Строим график:
Пример 4б

Пример 5*. Запищите в порядке возрастания:
$$ arctgleft(fracpi4right), arcsinleft(fracpi4right), arctg1 $$

Пример 5 Способ 1. С помощью числовой окружности.

Отмечаем точку (fracpi4) на оси синусов (ось OY) и точки (fracpi4) и 1 на оси тангенсов (касательная к окружности).
На пересечении с числовой окружностью получаем искомые углы.
В порядке возрастания: $$ arctgleft(fracpi4right)lt underbrace{arctg1}_{=fracpi4} lt arcsinleft(fracpi4right) $$

Способ 2. Аналитический
Арктангенс – функция возрастающая: (fracpi4approx 0,79lt 1Rightarrow arctgleft(fracpi4right)lt arctg 1)
Сравним (arctg1=fracpi4=arcsinleft(frac{sqrt{2}}{2}right)) и (arcsinleft(fracpi4right))
(frac{sqrt{2}}{2} ? fracpi4) – возведем в квадрат обе части
(frac12 ? frac{pi^2}{16}Leftrightarrow 8 ? pi^2)
(8ltpi^2Rightarrowfrac{sqrt{2}}{2}ltfracpi4 Rightarrow arcsinleft(frac{sqrt{2}}{2}right)lt arcsinleft(fracpi4right)Rightarrow 1lt arcsinleft(fracpi4right))
Получаем: $$ arctgleft(fracpi4right)lt underbrace{arctg1}_{=fracpi4} lt arcsinleft(fracpi4right) $$

Пример 6*. Решите уравнения:

a) (arccosx=arctgx)
ОДЗ определяется ограничением для арккосинуса: (-1leq xleq 1)
Арккосинус ограничен (0leq arccosxleq pi), арктангенс (-fracpi2leq arctgxltfracpi2)
Т.к. по условию они равны, ограничение сужается до (0leq arctgxlt fracpi2) и (0leq arccos xlt fracpi2) $$ arccosx=arctgxLeftrightarrow begin{cases} x=cos(arctgx)\ -1leq xleq 1\ 0leq arctgxltfracpi2\ 0leq arccosxltfracpi2 end{cases} Leftrightarrow begin{cases} x=cos(arctgx)\ -1leq xleq 1\ 0leq x\ 0lt xleq 1 end{cases} Leftrightarrow begin{cases} x=cos(arctgx)\ 0lt xlt 1 end{cases} $$ Для решения можно воспользоваться готовой формулой для (cos(arctgx)).
Выведем её. Пуcть (arctgx=varphi). Тогда (x=tgvarphi) и $$ cos(arctgx)=cosvarphi=sqrt{frac{1}{1+tg^2varphi}}=sqrt{frac{1}{1+x^2}} $$ Получаем уравнение: $$ x=sqrt{frac{1}{1+x^2}}Rightarrow x^2=frac{1}{1+x^2}Rightarrow x^2(1+x^2)=1Rightarrow x^4+x^2-1=0 $$ $$ D=1+4=5, x^2=frac{-1pmsqrt{5}}{2} $$ Квадрат числа не может быть отрицательным. Остаётся корень (x^2=frac{sqrt{5}-1}{2})
Откуда (x=pmsqrt{frac{sqrt{5}-1}{2}})
По условию (0lt xlt 1). Получаем (x=sqrt{frac{sqrt{5}-1}{2}})
Ответ: (sqrt{frac{sqrt{5}-1}{2}})

б) (arccos^2x+arcsin^2x=frac{5pi^2}{36})
Используем формулу для суммы: (arccosx+arcsinx=fracpi2)
Получаем: begin{gather*} arccos^2x+left(fracpi2-arccosxright)^2=frac{5pi^2}{36}\ arccos^2x+frac{pi^2}{4}-pi arccosx+arccos^2x=frac{5pi^2}{36}\ 2arccos^2x-pi arccosx+frac{pi^2}{9}=0\ D=(-pi)^2-4cdot 2cdot frac{pi^2}{9}=pi^2-frac89pi^2=frac{pi^2}{9}\ arccosx=frac{pipmfracpi3}{4}Rightarrow left[ begin{array} {l l} arccosx_1=fracpi6\ arccosx_2=fracpi3 end{array} right. Rightarrow left[ begin{array} {l l} x_1=cosfracpi6=frac{sqrt{3}}{2}\ x_2=cosfracpi3=frac12 end{array} right. end{gather*} Ответ: (left{frac12; frac{sqrt{3}}{2}right})

в) (arcsinfrac{sqrt{3x+2}}{2}=arcctgsqrt{frac{2}{x+1}})
ОДЗ определяется ограничением для арксинуса: ( -1leq frac{sqrt{3x+2}}{2}leq 1)
Арксинус ограничен (-fracpi2leq arcsinfrac{sqrt{3x+2}}{2}leqfracpi2), арккотангенс (0leq arcctgsqrt{frac{2}{x+1}}ltpi)
Т.к. по условию они равны, ограничение сужается до (0leq arcctgsqrt{frac{2}{x+1}}ltfracpi2) и (0leq arcsinfrac{sqrt{3x+2}}{2}ltfracpi2). begin{gather*} arcsinfrac{sqrt{3x+2}}{2}=arcctgsqrt{frac{2}{x+1}}Leftrightarrow begin{cases} frac{sqrt{3x+2}}{2}=sinleft(arcctgsqrt{frac{2}{x+1}}right)\ -1leqfrac{sqrt{3x+2}}{2}leq 1\ 0leq arcsinfrac{sqrt{3x+2}}{2}ltfracpi2\ 0leq arcctgsqrt{frac{2}{x+1}}ltfracpi2 end{cases} Leftrightarrow\ Leftrightarrow begin{cases} frac{sqrt{3x+2}}{2}=sinleft(arcctgsqrt{frac{2}{x+1}}right)\ -1leqfrac{sqrt{3x+2}}{2}leq 1\ 0leq frac{sqrt{3x+2}}{2}lt 1\ 0leq sqrt{frac{2}{x+1}} end{cases} Leftrightarrow begin{cases} frac{sqrt{3x+2}}{2}=sinleft(arcctgsqrt{frac{2}{x+1}}right)\ 0leq frac{sqrt{3x+2}}{4}lt 1\ frac{4}{x+1}geq 0 end{cases} end{gather*} Для ОДЗ получаем: $$ begin{cases} 0leq 3x+2lt 4\ x+1gt 0 end{cases} Rightarrow begin{cases} -2leq 3x lt 2\ xgt -1 end{cases} Rightarrow begin{cases} -frac23leq x lt frac23\ xgt -1 end{cases} Rightarrow -frac23leq xltfrac23 $$ ОДЗ: (-frac23leq xlt frac23)
Выведем формулу для синуса арккотангенса.
Пусть (arcctgx=varphi Rightarrow x=ctgvarphi)
Тогда (sin(arcctgx)=sinvarphi=sqrt{frac{1}{1+ctg^2varphi}}=sqrt{frac{1}{1+x^2}})
Правая часть уравнения: $$ sinleft(arcctgsqrt{frac{2}{x+1}}right)= sqrt{frac{1}{1+left(sqrt{frac{2}{x+1}}right)}}= sqrt{frac{1}{1+frac{2}{x+1}}}=sqrt{frac{x+1}{x+3}} $$ Подставляем: begin{gather*} frac{sqrt{3x+2}}{2}=sqrt{frac{x+1}{x+3}}Rightarrow frac{3x+2}{4}=frac{x+1}{x+3}Rightarrow (3x+2)(x+3)=4(x+1)Rightarrow\ Rightarrow 3x^2+11x+6=4x+4Rightarrow 3x^2+7x+2=0\ D=49-4cdot 3cdot 2=25\ x=frac{-7pm5}{6}Rightarrow left[ begin{array} {l l} x_1=-2 – text{ не подходит по ОДЗ}\ x_2=-frac13 end{array} right. end{gather*} Ответ: (-frac13)

  • Определение

  • График арктангенса

  • Свойства арктангенса

  • Таблица арктангенсов

Определение

Арктангенс (arctg или arctan) – это обратная тригонометрическая функция.

Арктангенс x определяется как функция, обратная к тангенсу x, где x – любое число (x∈ℝ).

Если тангенс угла у равен х (tg y = x), значит арктангенс x равняется y:

arctg x = tg-1 x = y, причем -π/2<y<π/2

Примечание: tg-1x означает обратный тангенс, а не тангенс в степени -1.

Например:

arctg 1 = tg-1 1 = 45° = π/4 рад

График арктангенса

Функция арктангенса пишется как y = arctg (x). График в общем виде выглядит следующим образом:

График арктангенса

Свойства арктангенса

Ниже в табличном виде представлены основные свойства арктангенса с формулами.

Таблица арктангенсов

arctg x (°) arctg x (рад) x
-90° -π/2 -∞
-71.565° -1.2490 -3
-63.435° -1.1071 -2
-60° -π/3 -√3
-45° -π/4 -1
-30° -π/6 -1/√3
-26.565° -0.4636 -0.5
0 0
26.565° 0.4636 0.5
30° π/6 1/√3
45° π/4 1
60° π/3 3
63.435° 1.1071 2
71.565° 1.2490 3
90° π/2

microexcel.ru

Арктангенса что это

Чётность и возрастание

Чтобы получить график арктангенса, используется кривая тангенса путём замены местами осей ординат и абсцисс. Для устранения многозначности используется интервал, на котором функция монотонна. Это определение считается основным значением арктангенса. Если показатель отрицательный, значит функция нечётная.

Главное свойство arctg — бесконечность на его области определения (для числа х). Так как y = arctg x, где y равен нулю, тогда x = 0, значит и arctg 0. При выполнении расчётов используется таблица арктангенсов.

Арктангенс это

В ней указаны значения в градусах и радианах, при определённых данных аргумента. Если вычисления выполняются на математическом веб-ресурсе, пользователю предоставляется возможность бесплатно использовать онлайн-калькулятор и таблицу Брадиса. Можно вычислить синус, косинус, производную арктангенса в экселе либо с помощью языка программирования Паскаль.

Чтобы посчитать величину правильно, используются свойства функций. При помощи определения арксинуса выполняется уравнение sin (arcsin a)=a. Свойства других величин:

  • косинус: cos (arccos a)=a;
  • тангенс: tg (arctg a)=a;
  • катангенс: ctg (arcctg a)=a.

В первых двух свойствах соблюдается условие −1≤a≤1. Если значение а выходит за указанные пределы, тогда функции нет смысла определять. Учитывая свойства синуса арксинуса, нельзя записать sin (arcsin8)=8, так как выражение sin (arcsin8) не имеет смысла. Аналогичный ответ получается, если необходимо определить разность арккосинуса sqrt (квадратный корень) из пяти.

Противоположные числа

Формулы, с помощью которых производится расчёт связи между производными: arcsin (-a)=-arcsina, arccos (-a)=пи-arccosa, arctg (-a)=-arctga, arcctg (-a)=пи-arcctga. Должно соблюдаться условие −1≤a≤1. Если а принадлежит промежутку −∞ до +∞, тогда arctg (−a), и arcctg (−a).

Чтобы доказать первое отношение с противоположными числами, рассматривается определение arcsin (−a). Число либо угол находится в пределах −π/2-π/2 и синус, равный −a. Учитывая определение арксинуса, можно записать следующее равенство: −π/2≤arcsin a≤π/2.

На основе свойств неравенств, выполняется умножение составных частей на -а. Заменив знаки неравенств на противоположные, можно произвести умножение на -1: −π/2≤−arcsin a≤π/2.

Производная арктангенса

Необходимо доказать, что sin (−arcsin a)=−a. Для этого рекомендуется придерживаться свойств противоположных углов. Из рассмотренных примеров можно сделать вывод: sin (−arcsin a)=−sin (arcsin a)=−a.

Аналогичным способом можно доказать, что arccos (−a)=π−arccos a. Используя определение производной функции, подтверждается, что π−arccos a — угол либо число, значение которого колеблется в пределах 0-π, а cos (π−arccos a)=−a. Придерживаясь определения арккосинуса числа, выполняется неравенство 0≤arccos a≤π.

Используя свойства неравенств, перемножаются поочерёдно его части на -1, сменяются знаки. Решается неравенство из сумм частей и числа пи, при этом сохраняются знаки: −π+π≤−arccosa+π≤0+π. Получается двойное выражение вида 0≤π−arccos a≤π.

Если средняя часть уравнения равняется −a, тогда, придерживаясь формулы приведения, записывается следующее равенство cos (π−arccos a)=−cos (arcos a). С помощью свойства производной косинуса завершается доказательство cos (π−arccos a)=−cos (arcos a)=−a. Аналогичной схемы рекомендуется придерживаться при рассмотрении свойств арккотангенсов и арктангенсов противоположных знаков. Плюс утверждения — возможность избавиться от вычисления производных функций отрицательных чисел.

Сложение величин

Свойство, согласно которому устанавливается связь между arccos arcsin числа а, и между arctg и arcctg переменной, записывается следующим образом: arcsina+arccosa=пи/2, arctga+arcctga=пи/2. Чтобы доказать первую часть равенства, где расписана сумма производных синуса и косинуса числа а, делённая на два, необходимо рассмотреть следующую запись: arcsin a=π/2−arccos a.

Основываясь на определение арксинуса, можно доказать, что выражение верно, когда π/2−arccos a — угол (цифровое значение), лежащий на промежутке −π/2 до π/2, а синус угла равен а. Чтобы показать такую действительность, используется определение арккосинуса и равенство 0≤arccos a≤π. Последнее выражение считается справедливым.

Арктангенс примеры

С учётом свойств неравенств, умножаются части на минус один, изменяются знаки. Полученные значения суммируются с числом π/2. Выполнив перечисленные действия, получается неравенство −π/2≤π/2−arccosa≤π/2. Чтобы показать, что sin (π/2−arccos a)=a, используется формула приведения, свойство производной функции косинус.

Доказано, что сумма arccos и arccos a равна π/2. Аналогично понадобится доказать, что сумма арккотангенса числа a и арктангенса равняется π/2. Главное предназначение таких свойств заключается в том, что они выражают арксинус через акрккосинус одного числа, а также арккотангенс через арктангенс и наоборот.

Примеры и задачи

Задания на свойства функций и их производных от числа либо угла можно решить с помощью разных программ: excel, pascal. Действия будут зависеть от условий задачи. Решение должно основываться на основные признаки, доказанные либо утверждённые равенства. Свойствам производных отвечают следующие выражения:

  • arcsin (sinx)=x;
  • arccos (cosx)=x;
  • arctg (tgx)=x;
  • arcctg (ctgx)=x.

Равенства при определённых условий следуют из определений функций числа. Чтобы понять утверждения, необходимо доказать: arcsin (sin α)=α, при этом должно выполняться требование −π/2≤α≤π/2. Аналогичным образом доказываются оставшиеся свойства. Если обозначить sin α=а, которое находится на отрезке [−1, 1], тогда получится выражение arcsin (sin α)=α, то есть arcsin a=α. Известно из условий задач, что −π/2≤α≤π/2. При решении через а обозначили sin α.

Посчитать арктангенс онлайн

Поэтому можно записать, что arcsin a=α, что эквивалентно определению производной функции синуса. Вывод: arcsin (sin α)=α при условии, что −π/2≤α≤π/2. Разные свойства, связанные с синусом и косинусом, тангенсом и котангенсом, можно применить на практике.

Известно, аrcsin sin (-15)= -15 град., arccos (cos (2π/3))=2π/3, arctg (tg (0,2))=0,2. Нужно отметить, что выражение arcsin (sin α) справедливо на отрезке −π/2≤α≤π/2. Но равенство arcsin (sin α)=α имеет смысл только при соблюдении этого условия. Нельзя утверждать, что arcsin (sin (7π/4))=7π/4, так как 7π/4 не принадлежит указанному интервалу (−π/2-π/2).

Запись arccos (cos α) правдивая, не только при условии, что 0≤α≤π. Выражение arccos (cos α)=α считается справедливым только при таком условии. Поэтому arccos (cos (−3π))=−3π не верно, так как −3π не принадлежит указанному отрезку. Схожие утверждения логичны и для arcctg (ctg α), arctg (tg α).

Используя определение всех функций, их признаки, тригонометрические формула можно получить другие равенства и уравнения, в которых отображается связь между arcsin, arcctg, arctg и arccos. Чтобы быстро решать задачи на данную тематику, рекомендуется выучить некоторые утверждённые равенства (arcsin 0=0, arccos 1=0, как угол arccos (-1)=180 градусов). Они описаны в специальных таблицах, которые можно найти в глобальной сети либо в учебниках по математике.

Добавить комментарий