поделиться знаниями или
запомнить страничку
- Все категории
-
экономические
43,653 -
гуманитарные
33,653 -
юридические
17,917 -
школьный раздел
611,926 -
разное
16,901
Популярное на сайте:
Как быстро выучить стихотворение наизусть? Запоминание стихов является стандартным заданием во многих школах.
Как научится читать по диагонали? Скорость чтения зависит от скорости восприятия каждого отдельного слова в тексте.
Как быстро и эффективно исправить почерк? Люди часто предполагают, что каллиграфия и почерк являются синонимами, но это не так.
Как научится говорить грамотно и правильно? Общение на хорошем, уверенном и естественном русском языке является достижимой целью.
Ответы Mail.ru
Образование
ВУЗы, Колледжи
Детские сады
Школы
Дополнительное образование
Образование за рубежом
Прочее образование
Вопросы – лидеры.
Где найти ответы на ОГЭ 2023?
1 ставка
Написать экологическое обоснование изделия из кольца
1 ставка
Помогите с английским 21 упражнением, расставить a,an,the.
1 ставка
Чем на ваш взгляд лучше заменить ЕГЭ?
1 ставка
Лидеры категории
Лена-пена
Искусственный Интеллект
М.И.
Искусственный Интеллект
Y.Nine
Искусственный Интеллект
•••
r b
Ученик
(133),
закрыт
2 года назад
Решение полностью
Лучший ответ
Вячек
Высший разум
(391245)
4 года назад
p(CO) = M/Vm = 28 г/моль/22,4 л/моль = 1,25 г/л
Остальные ответы
Похожие вопросы
Рассмотрены физические свойства угарного газа (окиси углерода CO) при нормальном атмосферном давлении в зависимости от температуры при отрицательных и положительных ее значениях.
В таблицах представлены следующие физические свойства CO: плотность угарного газа ρ, удельная теплоемкость при постоянном давлении Cp, коэффициенты теплопроводности λ и динамической вязкости μ.
В первой таблице приведены значения плотности и удельной теплоемкости окиси углерода CO в диапазоне температуры от -73 до 2727°С.
Во второй таблице даны значения таких физических свойств угарного газа, как теплопроводность и его динамическая вязкость в интервале температуры от минус 200 до 1000°С.
Плотность угарного газа, как и плотность других газов, существенно зависит от температуры — при нагревании оксида углерода CO его плотность снижается. Например, при комнатной температуре плотность угарного газа имеет значение 1,129 кг/м3, но в процессе нагрева до температуры 1000°С, плотность этого газа уменьшается в 4,2 раза — до величины 0,268 кг/м3.
При нормальных условиях (температура 0°С) угарный газ имеет плотность 1,25 кг/м3. Если же сравнить его плотность с воздухом или другими распространенными газами, то плотность угарного газа относительно воздуха имеет меньшее значение — угарный газ легче воздуха. Он также легче углекислого газа и аргона, но тяжелее азота, водорода, гелия и других легких газов.
Удельная теплоемкость угарного газа при нормальных условиях равна 1040 Дж/(кг·град). В процессе роста температуры этого газа его удельная теплоемкость увеличивается. Например, при 2727°С ее значение составляет 1329 Дж/(кг·град).
t, °С | ρ, кг/м3 | Cp, Дж/(кг·град) | t, °С | ρ, кг/м3 | Cp, Дж/(кг·град) | t, °С | ρ, кг/м3 | Cp, Дж/(кг·град) |
---|---|---|---|---|---|---|---|---|
-73 | 1,689 | 1045 | 157 | 0,783 | 1053 | 1227 | 0,224 | 1258 |
-53 | 1,534 | 1044 | 200 | 0,723 | 1058 | 1327 | 0,21 | 1267 |
-33 | 1,406 | 1043 | 257 | 0,635 | 1071 | 1427 | 0,198 | 1275 |
-13 | 1,297 | 1043 | 300 | 0,596 | 1080 | 1527 | 0,187 | 1283 |
-3 | 1,249 | 1043 | 357 | 0,535 | 1095 | 1627 | 0,177 | 1289 |
0 | 1,25 | 1040 | 400 | 0,508 | 1106 | 1727 | 0,168 | 1295 |
7 | 1,204 | 1042 | 457 | 0,461 | 1122 | 1827 | 0,16 | 1299 |
17 | 1,162 | 1043 | 500 | 0,442 | 1132 | 1927 | 0,153 | 1304 |
27 | 1,123 | 1043 | 577 | 0,396 | 1152 | 2027 | 0,147 | 1308 |
37 | 1,087 | 1043 | 627 | 0,374 | 1164 | 2127 | 0,14 | 1312 |
47 | 1,053 | 1043 | 677 | 0,354 | 1175 | 2227 | 0,134 | 1315 |
57 | 1,021 | 1044 | 727 | 0,337 | 1185 | 2327 | 0,129 | 1319 |
67 | 0,991 | 1044 | 827 | 0,306 | 1204 | 2427 | 0,125 | 1322 |
77 | 0,952 | 1045 | 927 | 0,281 | 1221 | 2527 | 0,12 | 1324 |
87 | 0,936 | 1045 | 1027 | 0,259 | 1235 | 2627 | 0,116 | 1327 |
100 | 0,916 | 1045 | 1127 | 0,241 | 1247 | 2727 | 0,112 | 1329 |
Теплопроводность угарного газа при нормальных условиях имеет значение 0,02326 Вт/(м·град). Она увеличивается с ростом его температуры и при 1000°С становится равной 0,0806 Вт/(м·град). Следует отметить, что величина теплопроводности угарного газа немногим меньше этой величины у воздуха.
Динамическая вязкость угарного газа при комнатной температуре равна 0,0246·10-7 Па·с. При нагревании окиси углерода, ее вязкость увеличивается. Такой характер зависимости динамической вязкости от температуры наблюдается у большинства газов. Необходимо отметить, что угарный газ более вязкий чем водяной пар и диоксид углерода CO2, однако имеет меньшую вязкость по сравнению с окисью азота NO и воздухом.
t, °С | λ, Вт/(м·град) | μ·107, Па·с | t, °С | λ, Вт/(м·град) | μ·107, Па·с |
---|---|---|---|---|---|
-200 | 0,00603 | 48 | 200 | 0,03652 | 245 |
-160 | 0,009 | 74,5 | 300 | 0,04257 | 279 |
-140 | 0,01163 | 88 | 400 | 0,0485 | 309 |
-120 | 0,01349 | 102 | 500 | 0,05408 | 337 |
-100 | 0,01512 | 113 | 600 | 0,05966 | 363 |
-75 | 0,01698 | 127 | 700 | 0,06501 | 387 |
-50 | 0,0193 | 140 | 800 | 0,07013 | 410 |
0 | 0,02326 | 166 | 900 | 0,07548 | 433 |
100 | 0,03012 | 207 | 1000 | 0,08059 | 453 |
Источники:
- Варгафтик Н.Б. Справочник по теплофизическим свойствам газов и жидкостей.
- Чиркин В.С. Теплофизические свойства материалов ядерной техники.
Ответ
Проверено экспертом
Ответ:
Объяснение:
4.
а) Дано:
M(CO)=
12+16=28г./моль
M(H₂)=2г./моль
——————————
D(H₂)-?
D(H₂)=M(CO)÷M(H₂)
D(H₂)=28г./моль÷2г./моль=14
Ответ:относительную плотность угарного газа СО по водороду=14
б)
Дано:
Mr(воздух)=
29
D(воздух)=2
——————————
Mr(газа)-?
D(воздух)=Mr(газа)÷Mr(воздух)
Mr(газа)=D(воздух)×Mr(воздух)
Mr(газа)=2×29=58
Ответ: молярную массу газа =58
Ответы и объяснения
Запрос «CO» перенаправляется сюда; см. также другие значения.
Монооксид углерода | ||
---|---|---|
|
||
Общие | ||
Систематическое наименование |
Оксид углерода(II) | |
Традиционные названия | Угарный газ | |
Хим. формула | CO | |
Рац. формула | CO | |
Физические свойства | ||
Состояние | Газообразное | |
Молярная масса | 28,01 г/моль | |
Плотность | 1,25 кг/м3 (при 0 °C), 814 кг/м3 (при -195 °C) | |
Энергия ионизации | 14,01 ± 0,01 эВ[3] | |
Термические свойства | ||
Температура | ||
• плавления | −205 °C | |
• кипения | −191,5 °C | |
Пределы взрываемости | 12,5 ± 0,1 об.%[3] | |
Критическая точка | ||
• температура | −140,23 °C | |
• давление | 3,499 МПа | |
Энтальпия | ||
• образования | −110,52 кДж/моль | |
• плавления | 0,838 кДж/моль | |
• кипения | 6,04 кДж/моль | |
Давление пара | 35 ± 1 атм[3] | |
Химические свойства | ||
Растворимость | ||
• в воде | 0,0026 г/100 мл | |
Классификация | ||
Рег. номер CAS | 630-08-0 | |
PubChem | 281 | |
Рег. номер EINECS | 211-128-3 | |
SMILES |
[C-]#[O+] |
|
InChI |
InChI=1S/CO/c1-2 UGFAIRIUMAVXCW-UHFFFAOYSA-N |
|
RTECS | FG3500000 | |
ChEBI | 17245 | |
Номер ООН | 1016 | |
ChemSpider | 275 | |
Безопасность | ||
Предельная концентрация | 20 мг/м3[1] | |
ЛД50 | 200—250 мг/кг | |
Токсичность | общетоксическое действием. 4-й класс опасности. | |
Пиктограммы ECB | ||
NFPA 704 |
4 3 0 [2] |
|
Приведены данные для стандартных условий (25 °C, 100 кПа), если не указано иное. | ||
Медиафайлы на Викискладе |
Моноокси́д углеро́да (оксид углерода(II), о́кись углеро́да, уга́рный газ, химическая формула — CO) — химическое соединение, представляющее собой несолеобразующий оксид углерода, состоящий из одного атома кислорода и углерода.
При стандартных условиях, монооксид углерода — это бесцветный токсичный газ без вкуса и запаха, легче воздуха.
Строение молекулы[править | править код]
Молекула CO имеет тройную связь, как и молекула азота N2. Так как эти молекулы сходны по строению (изоэлектронны, двухатомны, имеют близкую молярную массу), то и свойства их также схожи — очень низкие температуры плавления и кипения, близкие значения стандартных энтропий и т. п.
В рамках метода валентных связей строение молекулы CO можно описать формулой :C≡O:.
Согласно методу молекулярных орбиталей, электронная конфигурация невозбуждённой молекулы CO σ2
Oσ2
zπ4
x, y σ2
C. Тройная связь образована σ-связью, образованной за счёт σz электронной пары, а электроны дважды вырожденного уровня πx, y соответствуют двум π-связям. Электроны на несвязывающих σC-орбитали и σO-орбитали соответствуют двум электронным парам, одна из которых локализована у атома углерода, другая — у атома кислорода.
Благодаря наличию тройной связи молекула CO весьма прочна (энергия диссоциации 1069 кДж/моль (256 ккал/моль), что больше, чем у любых других двухатомных молекул) и имеет малое межъядерное расстояние (dC≡O=0,1128 нм).
Молекула слабо поляризована, её электрический дипольный момент μ = 0,04⋅10−29 Кл·м. Многочисленные исследования показали, что отрицательный заряд в молекуле CO сосредоточен на атоме углерода C−←O+ (направление дипольного момента в молекуле противоположно предполагавшемуся ранее). Энергия ионизации 14,0 эВ, силовая константа связи k = 18,6.
Свойства[править | править код]
Оксид углерода(II) представляет собой бесцветный газ без вкуса и запаха. Горюч. Так называемый «запах угарного газа» на самом деле представляет собой запах органических примесей.
Стандартная энергия Гиббса образования ΔG | −137,14 кДж/моль (г.) (при 298 К) |
Стандартная энтропия образования S | 197,54 Дж/моль·K (г.) (при 298 К) |
Стандартная мольная теплоёмкость Cp | 29,11 Дж/моль·K (г.) (при 298 К) |
Энтальпия плавления ΔHпл | 0,838 кДж/моль |
Энтальпия кипения ΔHкип | 6,04 кДж/моль |
Критическая температура tкрит | −140,23 °C |
Критическое давление Pкрит | 3,499 МПа |
Критическая плотность ρкрит | 0,301 г/см³ |
Основными типами химических реакций, в которых участвует оксид углерода(II), являются реакции присоединения и окислительно-восстановительные реакции, в которых он проявляет восстановительные свойства.
При комнатных температурах CO малоактивен, его химическая активность значительно повышается при нагревании и в растворах. Так, в растворах он восстанавливает соли Au, Pt, Pd и других до металлов уже при комнатной температуре. При нагревании восстанавливает и другие металлы, например CO + CuO → Cu + CO2↑. Это широко используется в пирометаллургии. На реакции CO в растворе с хлоридом палладия основан способ качественного обнаружения CO.
Окисление СО в растворе часто идёт с заметной скоростью лишь в присутствии катализатора. При подборе последнего основную роль играет природа окислителя. Так, KMnO4 быстрее всего окисляет СО в присутствии мелкораздробленного серебра, K2Cr2O7 — в присутствии солей ртути, KClO3 — в присутствии OsO4. В общем, по своим восстановительным свойствам СО похож на молекулярный водород.
Ниже 830 °C более сильным восстановителем является CO, — выше — водород. Поэтому равновесие реакции до 830 °C смещено вправо, выше 830 °C — влево.
Интересно, что существуют бактерии, способные за счёт окисления СО получать необходимую им для жизни энергию.
Оксид углерода(II) горит пламенем синего цвета[4] (температура начала реакции 700 °C) на воздухе:
-
- (ΔG°298 = −257 кДж, ΔS°298 = −86 Дж/K).
Благодаря такой хорошей теплотворной способности CO является компонентом разных технических газовых смесей (например, генераторный газ), используемых, в том числе, для отопления. В смеси с воздухом взрывоопасен; нижний и верхний концентрационные пределы распространения пламени: от 12,5 до 74 % (по объёму)[5].
Оксид углерода(II) реагирует с галогенами. Наибольшее практическое применение получила реакция с хлором:
Реакция экзотермическая, её тепловой эффект 113 кДж, в присутствии катализатора (активированный уголь) она идёт уже при комнатной температуре. В результате реакции образуется фосген — вещество, получившее широкое распространение в разных отраслях химии (а также как боевое отравляющее вещество). По аналогичным реакциям могут быть получены COF2 (карбонилфторид) и COBr2 (карбонилбромид). Карбонилиодид не получен. Экзотермичность реакций быстро снижается от F к I (для реакций с F2 тепловой эффект 481 кДж, с Br2 — 4 кДж). Можно также получать и смешанные производные, например COFCl (см. галогенпроизводные угольной кислоты).
Реакцией CO с F2, кроме карбонилфторида COF2, можно получить перекисное соединение (FCO)2O2. Его характеристики: температура плавления −42 °C, кипения +16 °C, обладает характерным запахом (похожим на запах озона), при нагревании выше 200 °C разлагается со взрывом (продукты реакции CO2, O2 и COF2), в кислой среде реагирует с иодидом калия по уравнению:
Оксид углерода(II) реагирует с халькогенами. С серой образует сероксид углерода COS, реакция идёт при нагревании, по уравнению:
-
- (ΔG°298 = −229 кДж, ΔS°298 = −134 Дж/K).
Получены также аналогичные селеноксид углерода COSe и теллуроксид углерода COTe.
Восстанавливает SO2:
C переходными металлами образует горючие и ядовитые соединения — карбонилы,
такие как [Fe(CO)5], [Cr(CO)6], [Ni(CO)4], [Mn2(CO)10], [Co2(CO)9] и др. Некоторые из них летучие.
Оксид углерода(II) незначительно растворяется в воде, однако не реагирует с ней. Также он не вступает в реакции с растворами щелочей и кислот. Однако реагирует с расплавами щелочей с образованием соответствующих формиатов:
Интересна реакция оксида углерода(II) с металлическим калием в аммиачном растворе. При этом образуется взрывчатое соединение диоксодикарбонат калия:
Реакцией с аммиаком при высоких температурах можно получить важное для промышленности соединение — циановодород HCN. Реакция идёт в присутствии катализатора (диоксид тория ThO2) по уравнению:
Важнейшим свойством оксида углерода(II) является его способность реагировать с водородом с образованием органических соединений (процесс синтеза Фишера — Тропша):
-
- спирты + линейные алканы.
Этот процесс является источником производства таких важнейших промышленных продуктов как метанол, синтетическое дизельное топливо, многоатомные спирты, масла и смазки.
Физиологическое действие[править | править код]
Токсичность[править | править код]
Оксид углерода — токсичное вещество. В соответствии с ГОСТ 12.1.007-76 «Система стандартов безопасности труда (ССБТ). Вредные вещества. Классификация и общие требования безопасности» оксид углерода является токсичным малоопасным веществом по степени воздействия на организм, 4-го класса опасности.
TLV (предельная пороговая концентрация, США) — 25 ppm; TWA (среднесменная концентрация, США; ACGIH 1994—1995) — 29 мг/м³; MAC (максимальная допустимая концентрация, США): 30 ppm; 33 мг/м³. ПДКр.з. по ГН 2.2.5.1313-03 «Предельно допустимые концентрации (ПДК) вредных веществ в воздухе рабочей зоны» составляет 20 мг/м³ (около 0,0017 %).
В выхлопе бензинового автомобиля допускается до 1,5—3,0 % (допустимая концентрация сильно различается в зависимости от страны/применяемых стандартов; 3 % — много даже для старого карбюраторного автомобиля без каталитического нейтрализатора).
По классификации ООН оксид углерода(II) относится к классу опасности 2,3, вторичная опасность по классификации ООН равна 2,1.
Угарный газ очень опасен, так как не имеет запаха. Он связывает гемоглобин, переводя его в карбоксигемоглобин и лишая его способности захватывать кислород, и обладает общей токсичностью, вызывает отравление[6] с поражением жизненно важных органов и систем, с последующим летальным исходом.
Признаки отравления: головная боль и головокружение, сужение поля восприятия; отмечается шум в ушах, одышка, учащённое сердцебиение, мерцание перед глазами, покраснение всех кожных покровов (характерно для всех ингибиторов дыхательной цепи), общая мышечная слабость, тошнота, иногда рвота; в терминальных стадиях судороги, потеря сознания, кома[4][7].
Токсическое действие оксида углерода(2+) обусловлено образованием карбоксигемоглобина — значительно более прочного карбонильного комплекса с гемоглобином, по сравнению с комплексом гемоглобина с кислородом (оксигемоглобином)[7]. Таким образом, блокируются процессы транспортировки кислорода и клеточного дыхания. Концентрация в воздухе более 0,1 % приводит к смерти в течение одного часа[7].
Опыты на молодых крысах показали, что концентрация CO в воздухе 0,02 % замедляет их рост и снижает активность по сравнению с контрольной группой[источник не указан 587 дней].
Помощь при отравлении оксидом углерода(II)[править | править код]
При отравлении рекомендуются следующие действия[7]:
- пострадавшего следует вынести на свежий воздух. При отравлении лёгкой степени достаточно гипервентиляции лёгких кислородом;
- искусственная вентиляция лёгких, О2-терапия, в том числе в барокамере;
- ацизол, хромосмон, метиленовый синий внутривенно.
Мировой медицине неизвестны надежные антидоты для применения в случае отравления угарным газом[8].
Защита от оксида углерода(II)[править | править код]
CO очень слабо поглощается активированным углём обычных фильтрующих противогазов, поэтому для защиты от него применяется специальный фильтрующий элемент (он может также подключаться дополнительно к основному) — гопкалитовый патрон. Гопкалит представляет собой катализатор, способствующий окислению CO в CO2 при нормальных температурах. Недостатком использования гопкалита является то, что при его применении приходится вдыхать нагретый в результате реакции воздух. Обычный способ защиты — использование изолирующего дыхательного аппарата[4].
Эндогенный монооксид углерода[править | править код]
Эндогенный монооксид углерода вырабатывается в норме клетками организма человека и животных и выполняет функцию сигнальной молекулы. Он играет известную физиологическую роль в организме, в частности, является
нейротрансмиттером и вызывает вазодилатацию[9]. Ввиду роли эндогенного угарного газа в организме, нарушения его метаболизма связывают с различными заболеваниями, такими, как нейродегенеративные заболевания, атеросклероз кровеносных сосудов, гипертоническая болезнь, сердечная недостаточность, различные воспалительные процессы[9].
Эндогенный угарный газ образуется в организме благодаря окисляющему действию фермента гемоксигеназы на гем, являющийся продуктом разрушения гемоглобина и миоглобина, а также других гемосодержащих белков. Этот процесс вызывает образование в крови человека небольшого количества карбоксигемоглобина, даже если человек не курит и дышит не атмосферным воздухом (всегда содержащим небольшие количества экзогенного угарного газа), а чистым кислородом или смесью азота с кислородом.
Вслед за появившимися в 1993 году данными о том, что эндогенный угарный газ является нормальным нейротрансмиттером в организме человека[10][11], а также одним из трёх эндогенных газов, которые в норме модулируют течение воспалительных реакций в организме (два других — оксид азота (II) и сероводород), эндогенный угарный газ привлёк значительное внимание клиницистов и исследователей как важный биологический регулятор. Было показано, что во многих тканях все три вышеупомянутых газа являются противовоспалительными веществами, вазодилататорами, а также вызывают ангиогенез[12]. Однако не всё так просто и однозначно. Ангиогенез — не всегда полезный эффект, поскольку он, в частности, играет роль в росте злокачественных опухолей, а также является одной из причин повреждения сетчатки при макулярной дегенерации. В частности, курение (основной источник угарного газа в крови, дающий в несколько раз большую концентрацию его, чем естественная продукция) повышает риск макулярной дегенерации сетчатки в 4—6 раз.
Существует теория о том, что в некоторых синапсах нервных клеток, где происходит долговременное запоминание информации, принимающая клетка в ответ на принятый сигнал вырабатывает эндогенный угарный газ, который передаёт сигнал обратно передающей клетке, чем сообщает ей о своей готовности и в дальнейшем принимать сигналы от неё и повышая активность клетки-передатчика сигнала. Некоторые из этих нервных клеток содержат гуанилатциклазу, фермент, который активируется при воздействии эндогенного угарного газа[11].
Исследования, посвящённые роли эндогенного угарного газа как противовоспалительного вещества и цитопротектора, проводились во множестве лабораторий по всему миру. Эти свойства эндогенного угарного газа делают воздействие на его метаболизм интересной терапевтической мишенью для лечения таких разных патологических состояний, как повреждение тканей, вызванное ишемией и последующей реперфузией (а это, например, инфаркт миокарда, ишемический инсульт), отторжение трансплантата, атеросклероз сосудов, тяжёлый сепсис, тяжёлая малярия, аутоиммунные заболевания. Проводились в том числе и клинические испытания на человеке, однако результаты их пока ещё не опубликованы[13].
На 2015 год о роли эндогенного угарного газа в организме известно следующее[14]:
- он является одной из важных эндогенных сигнальных молекул;
- он модулирует функции ЦНС и сердечно-сосудистой системы;
- он ингибирует агрегацию тромбоцитов и их адгезию к стенкам сосудов;
- влияние на обмен эндогенного угарного газа в будущем может быть одной из важных терапевтических стратегий при ряде заболеваний.
История открытия[править | править код]
Токсичность дыма, выделяющегося при горении угля, была описана ещё Аристотелем и Галеном.
Оксид углерода(II) был впервые получен французским химиком Жаком де Лассоном в 1776 году при нагревании оксида цинка с углём, но первоначально его ошибочно приняли за водород, так как он сгорал синим пламенем.
То, что в состав этого газа входит углерод и кислород, обнаружил в 1800 году английский химик Вильям Крюйкшенк. Токсичность газа была исследована в 1846 году французским медиком Клодом Бернаром в опытах на собаках[15].
Оксид углерода(II) вне атмосферы Земли впервые был обнаружен бельгийским учёным М. Мижотом (M. Migeotte) в 1949 году по наличию основной колебательно-вращательной полосы в ИК-спектре Солнца. Оксид углерода(II) в межзвёздной среде был обнаружен в 1970 году[16].
Получение[править | править код]
Промышленный способ[править | править код]
Влияние температуры на равновесие реакции:
Образуется при горении углерода или соединений на его основе (например, бензина) в условиях недостатка кислорода:
- (тепловой эффект этой реакции 220 кДж),
Также образуется при восстановлении диоксида углерода раскалённым углём:
- (ΔH = 172 кДж, ΔS = 176 Дж/К)
Эта реакция происходит при печной топке, когда слишком рано закрывают печную заслонку (пока окончательно не прогорели угли). Образующийся при этом оксид углерода(II) вследствие своей ядовитости вызывает физиологические расстройства («угар») и даже смерть (см. ниже), отсюда и одно из тривиальных названий — «угарный газ»[4].
Реакция восстановления диоксида углерода обратимая, влияние температуры на состояние равновесия этой реакции приведено на графике. Протекание реакции вправо обеспечивает энтропийный фактор, а влево — энтальпийный. При температуре ниже 400 °C равновесие практически полностью сдвинуто влево, а при температуре выше 1000 °C вправо (в сторону образования CO). При низких температурах скорость этой реакции очень мала, поэтому оксид углерода(II) при нормальных условиях вполне устойчив. Это равновесие носит специальное название равновесие Будуара.
Смеси оксида углерода(II) с другими веществами получают при пропускании воздуха, водяного пара и т. п. сквозь слой раскалённого кокса, каменного или бурого угля и т. п. (см. генераторный газ, водяной газ, смешанный газ, синтез-газ).
Лабораторный способ[править | править код]
Разложение жидкой муравьиной кислоты под действием горячей концентрированной серной кислоты либо пропускание газообразной муравьиной кислоты над P2O5. Схема реакции:
Можно также обработать муравьиную кислоту хлорсульфоновой. Эта реакция идёт уже при обычной температуре по схеме:
Нагревание смеси щавелевой и концентрированной серной кислот. Реакция идёт по уравнению:
Нагревание смеси гексацианоферрата(II) калия с концентрированной серной кислотой. Реакция идёт по уравнению:
Восстановлением из карбоната цинка магнием при нагревании:
Определение оксида углерода(II)[править | править код]
Качественно можно определить наличие CO по потемнению растворов хлорида палладия (или пропитанной этим раствором бумаги). Потеменение связано с выделением мелкодисперсного металлического палладия по схеме:
Эта реакция очень чувствительная. Стандартный раствор: 1 грамм хлорида палладия на литр воды.
Количественное определение оксида углерода(II) основано на иодометрической реакции:
Применение[править | править код]
- Оксид углерода(II) является промежуточным реагентом, используемым в реакциях с водородом в важнейших промышленных процессах для получения органических спиртов и неразветвлённых углеводородов.
- Оксид углерода(II) применяется для обработки мяса животных и рыбы, придаёт им ярко-красный цвет и вид свежести, не изменяя вкуса (технологии Clear smoke[en] и Tasteless smoke[en]). Допустимая концентрация CO равна 200 мг/кг мяса.
- Оксид углерода(II) является основным компонентом генераторного газа, использовавшегося в качестве топлива в газогенераторных автомобилях.
- Угарный газ от выхлопа двигателей применялся нацистами в годы Второй мировой войны для массового умерщвления людей путём отравления (газовая камера, газенваген).
Оксид углерода(II) в атмосфере Земли[править | править код]
Содержание CO в атмосфере Земли по данным MOPITT
Различают природные и антропогенные источники поступления в атмосферу Земли. В естественных условиях, на поверхности Земли, CO образуется при неполном анаэробном разложении органических соединений и при сгорании биомассы, в основном в ходе лесных и степных пожаров. Оксид углерода(II) образуется в почве как биологическим путём (выделение живыми организмами), так и небиологическим. Экспериментально доказано выделение оксида углерода(II) за счёт обычных в почвах фенольных соединений, содержащих группы OCH3 или OH в орто- или пара-положениях по отношению к первой гидроксильной группе.
Общий баланс продуцирования небиологического CO и его окисления микроорганизмами зависит от конкретных экологических условий, в первую очередь от влажности и значения pH. Например, из аридных почв оксид углерода(II) выделяется непосредственно в атмосферу, создавая таким образом локальные максимумы концентрации этого газа.
В атмосфере СО является продуктом цепочек реакций с участием метана и других углеводородов (в первую очередь, изопрена).
Основным антропогенным источником CO в настоящее время служат выхлопные газы двигателей внутреннего сгорания. Оксид углерода образуется при сгорании углеводородного топлива в двигателях внутреннего сгорания при недостаточных температурах или плохой настройке системы подачи воздуха (подается недостаточное количество кислорода для окисления CO в CO2). В прошлом значительную долю антропогенного поступления CO в атмосферу обеспечивал светильный газ, использовавшийся для освещения помещений в XIX веке. По составу он примерно соответствовал водяному газу, то есть содержал до 45 % оксида углерода(II). В коммунальной сфере не применяется в виду наличия значительно более дешёвого и энергоэффективного аналога — природного газа.
Поступление CO от природных и антропогенных источников примерно одинаково.
Оксид углерода(II) в атмосфере находится в быстром круговороте: среднее время его пребывания составляет около 35 суток[источник не указан 587 дней]. Основной канал потери CO — окисление гидроксилом до диоксида углерода.
Оксид углерода(II) в космическом пространстве[править | править код]
Оксид углерода(II) — вторая по распространённости (после H2) молекула в межзвёздной среде[16]. Этот газ играет важную роль в эволюции молекулярных газовых облаков, в которых происходит активное звездообразование. Как и другие молекулы, CO излучает ряд инфракрасных линий, возникающих при переходах между вращательными уровнями молекулы; эти уровни возбуждаются уже при температурах в несколько десятков кельвин. Концентрация CO в межзвёздной среде достаточно мала, чтобы (в отличие от гораздо более распространённой молекулы H2) излучение в молекулярных вращательных линиях не испытывало сильного самопоглощения в облаке. В результате энергия почти беспрепятственно уходит из облака, которое остывает и сжимается, запуская механизм звездообразования. В наиболее плотных облаках, где самопоглощение в линиях CO оказывается значительным, становится заметной потеря энергии в линиях редкого изотопного аналога 13CO (относительная изотопная распространённость 13C — около 1 %). В связи с его более сильным излучением, по сравнению с атомарным водородом, оксид углерода(II) используется для поиска подобных газовых скоплений. В феврале 2012 года астрономы с использованием европейского космического телескопа «Планк» составили наиболее полную карту его распределения по небесной сфере[17].
См. также[править | править код]
- Водяной газ
- Выхлопные газы
- Генераторный газ
- Синтез-газ
- Смешанный газ
- Отравление угарным газом
Примечания[править | править код]
- ↑ ГОСТ 12.1.005-76 «Воздух рабочей зоны. Общие санитарно-гигиенические требования».
- ↑ Carbon Monoxide
- ↑ 1 2 3 http://www.cdc.gov/niosh/npg/npgd0105.html
- ↑ 1 2 3 4 Оксид углерода // Российская энциклопедия по охране труда: В 3 тт. — 2-е изд., перераб. и доп. — М.: Изд-во НЦ ЭНАС, 2007.
- ↑ Баратов А. Н. Пожаровзрывоопасность веществ и материалов и средства их тушения: Справочное издание: в 2-х книгах. — М.: Химия, 1990. — Т. Книга 2. — С. 384.
- ↑ Рощин А. В., Томилин В. В., Штернберг Э. Я. Окись углерода // Большая медицинская энциклопедия : в 30 т. / гл. ред. Б.В. Петровский. — 3 изд. — Москва : Советская энциклопедия, 1981. — Т. 17. Ниландера проба – Остеопатии. — 512 с. — 150 800 экз.
- ↑ 1 2 3 4 Справочник фельдшера. Под ред. А. Н. Шабанова. — М.: «Медицина», 1984.
- ↑ Scientists hunt for carbon monoxide poisoning antidote (англ.), Associated Press (9 December 2016). Дата обращения: 29 сентября 2018. «we don’t have antidotes for carbon monoxide poisoning, and it’s the most common poisoning».
- ↑ 1 2 Wu, L; Wang, R. Carbon Monoxide: Endogenous Production, Physiological Functions, and Pharmacological Applications (англ.) // Pharmacol Rev (англ.) (рус. : journal. — 2005. — December (vol. 57, no. 4). — P. 585—630. — doi:10.1124/pr.57.4.3. — PMID 16382109.
- ↑ Verma, A; Hirsch, D.; Glatt, C.; Ronnett, G.; Snyder, S. Carbon monoxide: A putative neural messenger (англ.) // Science. — 1993. — Vol. 259, no. 5093. — P. 381—384. — doi:10.1126/science.7678352. — Bibcode: 1993Sci…259..381V. — PMID 7678352.
- ↑ 1 2 Kolata, Gina. Carbon Monoxide Gas Is Used by Brain Cells As a Neurotransmitter (26 января 1993). Дата обращения: 2 мая 2010.
- ↑ Li, L; Hsu, A; Moore, P. K. Actions and interactions of nitric oxide, carbon monoxide and hydrogen sulphide in the cardiovascular system and in inflammation—a tale of three gases! (англ.) // Pharmacology & therapeutics : journal. — 2009. — Vol. 123, no. 3. — P. 386—400. — doi:10.1016/j.pharmthera.2009.05.005. — PMID 19486912.
- ↑ Johnson, Carolyn Y.. Poison gas may carry a medical benefit (16 октября 2009). Дата обращения: 16 октября 2009.
- ↑ Olas, Beata. Carbon monoxide is not always a poison gas for human organism: Physiological and pharmacological features of CO (англ.) // Chemico-Biological Interactions (англ.) (рус. : journal. — 2014. — 25 April (vol. 222, no. 5 October 2014). — P. 37—43. — doi:10.1016/j.cbi.2014.08.005.
- ↑ Rosemary H. Waring, Glyn B. Steventon, Steve C. Mitchell. Molecules of death (неопр.). — Imperial College Press, 2007. — С. 38. — ISBN 1-86094-814-6.
- ↑ 1 2 Combes, Françoise. Distribution of CO in the Milky Way (англ.) // Annual Review of Astronomy & Astrophysics (англ.) (рус. : journal. — 1991. — Vol. 29. — P. 195. — doi:10.1146/annurev.aa.29.090191.001211. — Bibcode: 1991ARA&A..29..195C.
- ↑ «Планк» составил карту угарного газа в Галактике.
Литература[править | править код]
- Ахметов Н. С. Общая и неорганическая химия. 5-е изд., испр. — М.: «Высшая школа», 2003. — ISBN 5-06-003363-5.
- Некрасов Б. В. Основы общей химии. Т. I, изд. 3-е, испр. и доп. — М.: «Химия», 1973. — Сс. 495—497, 511—513.
- В. Шретер, К.-Х. Лаутеншлегер, Х. Бибрак и др. Химия: Справ. Пер. с. с нем. 2-е изд., стереотип. — М.: «Химия», 2000. — ISBN 5-7245-0360-3.
- Баратов А. Н. Пожаровзрывоопасность веществ и материалов и средства их тушения: Справочное издание: в 2-х книгах. Книга 2. — М.: Химия, 1990. — 384 с.
Ссылки[править | править код]
- Международная карта химической безопасности для монооксида углерода (ICSC 0023, апрель 2007) (англ.)
п • о • р Оксиды | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
H2O | ||||||||||||||||
Li2O LiCoO2 Li3PaO4 Li5PuO6 Ba2LiNpO6 LiAlO2 Li3NpO4 Li2NpO4 Li5NpO6 LiNbO3 |
BeO | B2O3 | С3О2 C12O9 CO C12O12 C4O6 CO2 |
N2O NO N2O3 N4O6 NO2 N2O4 N2O5 |
O | F | ||||||||||
Na2O NaPaO3 NaAlO2 Na2PtO3 |
MgO | AlO Al2O3 NaAlO2 LiAlO2 AlO(OH) |
SiO SiO2 |
P4O P4O2 P2O3 P4O8 P2O5 |
S2O SO SO2 SO3 |
Cl2O ClO2 Cl2O6 Cl2O7 |
||||||||||
K2O K2PtO3 KPaO3 |
CaO Ca3OSiO4 CaTiO3 |
Sc2O3 | TiO Ti2O3 TiO2 TiOSO4 CaTiO3 BaTiO3 |
VO V2O3 V3O5 VO2 V2O5 |
FeCr2O4 CrO Cr2O3 CrO2 CrO3 MgCr2O4 |
MnO Mn3O4 Mn2O3 MnO(OH) Mn5O8 MnO2 MnO3 Mn2O7 |
FeCr2O4 FeO Fe3O4 Fe2O3 |
CoFe2O4 CoO Co3O4 CoO(OH) Co2O3 CoO2 |
NiO NiFe2O4 Ni3O4 NiO(OH) Ni2O3 |
Cu2O CuO CuFe2O4 Cu2O3 CuO2 |
ZnO | Ga2O Ga2O3 |
GeO GeO2 |
As2O3 As2O4 As2O5 |
SeOCl2 SeOBr2 SeO2 Se2O5 SeO3 |
Br2O Br2O3 BrO2 |
Rb2O RbPaO3 Rb4O6 |
SrO | Y2O3 YOF YOCl |
ZrO(OH)2 ZrO2 ZrOS Zr2О3Сl2 |
NbO Nb2O3 NbO2 Nb2O5 Nb2O3(SO4)2 LiNbO3 |
Mo2O3 Mo4O11 MoO2 Mo2O5 MoO3 |
TcO2 Tc2O7 |
Ru2O3 RuO2 Ru2O5 RuO4 |
RhO Rh2O3 RhO2 |
PdO Pd2O3 PdO2 |
Ag2O Ag2O2 |
Cd2O CdO |
In2O InO In2O3 |
SnO SnO2 |
Sb2O3 Sb2O4 Hg2Sb2O7 Sb2O5 |
TeO2 TeO3 |
I2O4 I4O9 I2O5 |
Cs2O Cs2ReCl5O |
BaO BaPaO3 BaTiO3 BaPtO3 |
HfO(OH)2 HfO2 |
Ta2O TaO TaO2 Ta2O5 |
WO2Br2 WO2 WO2Cl2 WOBr4 WOF4 WOCl4 WO3 |
Re2O ReO Re2O3 ReO2 Re2O5 ReO3 Re2O7 |
OsO Os2O3 OsO2 OsO4 |
Ir2O3 IrO2 |
PtO Pt3O4 Pt2O3 PtO2 K2PtO3 Na2PtO3 PtO3 |
Au2O AuO Au2O3 |
Hg2O HgO (Hg3O2)SO4 Hg2O(CN)2 Hg2Sb2O7 Hg3O2Cl2 Hg5O4Cl2 |
Tl2O Tl2O3 |
Pb2O PbO Pb3O4 Pb2O3 PbO2 |
BiO Bi2O3 Bi2O4 Bi2O5 |
PoO PoO2 PoO3 |
At | |
Fr | Ra | Rf | Db | Sg | Bh | Hs | Mt | Ds | Rg | Cn | Nh | Fl | Mc | Lv | Ts | |
↓ | ||||||||||||||||
La2O2S La2O3 |
Ce2O3 CeO2 |
PrO Pr2O2S Pr2O3 Pr6O11 PrO2 |
NdO Nd2O2S Nd2O3 NdHO |
Pm2O3 | SmO Sm2O3 |
EuO Eu3O4 Eu2O3 EuO(OH) Eu2O2S |
Gd2O3 | Tb | Dy2O3 | Ho2O3 Ho2O2S |
Er2O3 | Tm2O3 | YbO Yb2O3 |
Lu2O2S Lu2O3 LuO(OH) |
||
Ac2O3 | UO2 UO3 U3O8 |
PaO PaO2 Pa2O5 PaOS |
ThO2 | NpO NpO2 Np2O5 Np3O8 NpO3 |
PuO Pu2O3 PuO2 PuO3 PuO2F2 |
AmO2 | Cm2O3 CmO2 |
Bk2O3 | Cf2O3 | Es | Fm | Md | No | Lr |