Как найти скорость в данный момент времени


Загрузить PDF


Загрузить PDF

Скорость — это быстрота перемещения объекта в заданном направлении. [1]
В общих целях нахождение скорости объекта (v) — простая задача: нужно разделить перемещение (s) в течение определенного времени (s) на это время (t), то есть воспользоваться формулой v = s/t. Однако таким способом получают среднюю скорость тела. Используя некоторые вычисления, можно найти скорость тела в любой точке пути. Такая скорость называется мгновенной скоростью и вычисляется по формуле v = (ds)/(dt), то есть представляет собой производную от формулы для вычисления средней скорости тела.[2]

  1. Изображение с названием Calculate Instantaneous Velocity Step 1

    1

    Начните с уравнения. Для вычисления мгновенной скорости необходимо знать уравнение, описывающее перемещение тела (его позицию в определенный момент времени),[3]
    то есть такое уравнение, на одной стороне которого находится s (перемещение тела), а на другой стороне — члены с переменной t (время).[4]
    Например:

    s = -1.5t2 + 10t + 4

    • В этом уравнении:
      Перемещение = s. Перемещение — пройденный объектом путь. Например, если тело переместилось на 10 м вперед и на 7 м назад, то общее перемещение тела равно 10 – 7 = 3 м (а на 10 + 7 = 17 м).
      Время = t. Обычно измеряется в секундах.
  2. Изображение с названием Calculate Instantaneous Velocity Step 2

    2

    Вычислите производную уравнения. Чтобы найти мгновенную скорость тела, чьи перемещения описываются приведенным выше уравнением, нужно вычислить производную этого уравнения. Производная — это уравнение, позволяющее вычислить наклон графика в любой точке (в любой момент времени). Чтобы найти производную, продифференцируйте функцию следующим образом: если y = a*xn, то производная = a*n*xn-1. Это правило применяется к каждому члену многочлена.

    • Другими словами, производная каждого члена с переменной t равна произведению множителя (стоящему перед переменной) и степени переменной, умноженному на переменную в степени, равную исходной степени минус 1. Свободный член (член без переменной, то есть число) исчезает, потому что умножается на 0. В нашем примере:

      s = -1.5t2 + 10t + 4
      (2)-1.5t(2-1) + (1)10t1 – 1 + (0)4t0
      -3t1 + 10t0
      -3t + 10

  3. Изображение с названием Calculate Instantaneous Velocity Step 3

    3

    Замените “s” на “ds/dt”, чтобы показать, что новое уравнение — это производная от исходного уравнения (то есть производная s от t). Производная — это наклон графика в определенной точке (в определенный момент времени). Например, чтобы найти наклон линии, описываемой функцией s = -1.5t2 + 10t + 4 при t = 5, просто подставьте 5 в уравнение производной.

    • В нашем примере уравнение производной должно выглядеть следующим образом:

      ds/dt = -3t + 10

  4. Изображение с названием Calculate Instantaneous Velocity Step 4

    4

    В уравнение производной подставьте соответствующее значение t, чтобы найти мгновенную скорость в определенный момент времени.[5]
    Например, если вы хотите найти мгновенную скорость при t = 5, просто подставьте 5 (вместо t) в уравнение производной ds/dt = -3 + 10. Затем решите уравнение:

    ds/dt = -3t + 10
    ds/dt = -3(5) + 10
    ds/dt = -15 + 10 = -5 м/с

    • Обратите внимание на единицу измерения мгновенной скорости: м/с. Так как нам дано значение перемещения в метрах, а время — в секундах, и скорость равна отношению перемещения ко времени, то единица измерения м/с — правильная.

    Реклама

  1. Изображение с названием Calculate Instantaneous Velocity Step 5

    1

    Постройте график перемещения тела. В предыдущей главе вы вычисляли мгновенную скорость по формуле (уравнению производной, позволяющему найти наклон графика в определенной точке).[6]
    Построив график перемещения тела, вы можете найти его наклон в любой точке, а следовательно определить мгновенную скорость в определенный момент времени.

    • По оси Y откладывайте перемещение, а по оси X — время. Координаты точек (x,у) получите через подстановку различных значений t в исходное уравнение перемещение и вычисления соответствующих значений s.
    • График может опускаться ниже оси X. Если график перемещения тела опускается ниже оси X, то это значит, что тело движется в обратном направлении от точки начала движения. Как правило, график не распространяется за ось Y (отрицательные значения x) — мы не измеряем скорости объектов, движущихся назад во времени!
  2. Изображение с названием Calculate Instantaneous Velocity Step 6

    2

    Выберите на графике (кривой) точку P и близкую к ней точку Q. Чтобы найти наклон графика в точке P, используем понятие предела. Предел — состояние, при котором величина секущей, проведенной через 2 точки P и Q, лежащих на кривой, стремится к нулю.

    • Например, рассмотрим точки P(1,3) и Q(4,7) и вычислим мгновенную скорость в точке P.
  3. Изображение с названием Calculate Instantaneous Velocity Step 7

    3

    Найдите наклон отрезка PQ. Наклон отрезка PQ равен отношению разницы значений координат «у» точек P и Q к разнице значений координат «х» точек P и Q. Другими словами, H = (yQ – yP)/(xQ – xP), где H — наклон отрезка PQ. В нашем примере наклон отрезка PQ равен:

    H = (yQ – yP)/(xQ – xP)
    H = (7 – 3)/(4 – 1)
    H = (4)/(3) = 1.33

  4. Изображение с названием Calculate Instantaneous Velocity Step 8

    4

    Повторите процесс несколько раз, приближая точку Q к точке P. Чем меньше расстояние между двумя точками, тем ближе значение наклона полученных отрезков к наклону графика в точке P. В нашем примере проделаем вычисления для точки Q с координатами (2,4.8), (1.5,3.95) и (1.25,3.49) (координаты точки P остаются прежними):

    Q = (2,4.8): H = (4.8 – 3)/(2 – 1)
    H = (1.8)/(1) = 1.8

    Q = (1.5,3.95): H = (3.95 – 3)/(1.5 – 1)
    H = (.95)/(.5) = 1.9

    Q = (1.25,3.49): H = (3.49 – 3)/(1.25 – 1)
    H = (.49)/(.25) = 1.96

  5. Изображение с названием Calculate Instantaneous Velocity Step 9

    5

    Чем меньше расстояние между точками P и Q, тем ближе значение H к наклону графика в точке P При предельно малом расстоянии между точками P и Q, значение H будет равно наклону графика в точке P Так как мы не можем измерить или вычислить предельно малое расстояние между двумя точками, графический способ дает оценочное значение наклона графика в точке Р.

    • В нашем примере при приближении Q к P мы получили следующие значения H: 1.8; 1.9 и 1.96. Так как эти числа стремятся к 2, то можно сказать, что наклон графика в точке P равен 2.
    • Помните, что наклон графика в данной точке равен производной функции (по которой построен этот график) в этой точке. График отображает перемещение тела с течением времени и, как отмечалось в предыдущем разделе, мгновенная скорость тела равна производной от уравнения перемещения этого тела. Таким образом, можно заявить, что при t = 2 мгновенная скорость равна 2 м/с (это оценочное значение).

    Реклама

  1. Изображение с названием Calculate Instantaneous Velocity Step 10

    1

    Вычислите мгновенную скорость при t = 4, если перемещение тела описывается уравнением s = 5t3 – 3t2 + 2t + 9. Этот пример похож на задачу из первого раздела с той лишь разницей, что здесь дано уравнение третьего порядка (а не второго).

    • Сначала вычислим производную этого уравнения:

      s = 5t3 – 3t2 + 2t + 9
      s = (3)5t(3 – 1) – (2)3t(2 – 1) + (1)2t(1 – 1) + (0)9t0 – 1
      15t(2) – 6t(1) + 2t(0)
      15t(2) – 6t + 2

    • Теперь подставим в уравнение производной значение t = 4:

      s = 15t(2) – 6t + 2
      15(4)(2) – 6(4) + 2
      15(16) – 6(4) + 2
      240 – 24 + 2 = 22 м/с

  2. Изображение с названием Calculate Instantaneous Velocity Step 11

    2

    Оценим значение мгновенной скорости в точке с координатами (1,3) на графике функции s = 4t2 – t. В этом случае точка P имеет координаты (1,3) и необходимо найти несколько координат точки Q, лежащий близко к точке P. Затем вычислим H и найдем оценочные значения мгновенной скорости.

    • Сначала найдем координаты Q при t = 2, 1.5, 1.1 и 1.01.

      s = 4t2 – t

      t = 2: s = 4(2)2 – (2)
      4(4) – 2 = 16 – 2 = 14, so Q = (2,14)

      t = 1.5: s = 4(1.5)2 – (1.5)
      4(2.25) – 1.5 = 9 – 1.5 = 7.5, so Q = (1.5,7.5)

      t = 1.1: s = 4(1.1)2 – (1.1)
      4(1.21) – 1.1 = 4.84 – 1.1 = 3.74, so Q = (1.1,3.74)

      t = 1.01: s = 4(1.01)2 – (1.01)
      4(1.0201) – 1.01 = 4.0804 – 1.01 = 3.0704, so Q = (1.01,3.0704)

    • Теперь вычислим H:

      Q = (2,14): H = (14 – 3)/(2 – 1)
      H = (11)/(1) = 11

      Q = (1.5,7.5): H = (7.5 – 3)/(1.5 – 1)
      H = (4.5)/(.5) = 9

      Q = (1.1,3.74): H = (3.74 – 3)/(1.1 – 1)
      H = (.74)/(.1) = 7.3

      Q = (1.01,3.0704): H = (3.0704 – 3)/(1.01 – 1)
      H = (.0704)/(.01) = 7.04

    • Так как полученные значения H стремятся к 7, то можно сказать, что мгновенная скорость тела в точке (1,3) равна 7 м/с (оценочное значение).

    Реклама

Советы

  • Чтобы найти ускорение (изменение скорости с течением времени), используйте метод из первой части, чтобы получить производную функции перемещения. Затем возьмите еще раз производную от полученной производной. Это даст вам уравнение для нахождения ускорения в данный момент времени — все, что вам нужно сделать, это подставить значение для времени.
  • Уравнение, описывающее зависимость у (перемещение) от x (время), может быть очень простым, например: у = 6x + 3. В этом случае наклон является постоянным и не надо брать производную, чтобы его найти. Согласно теории линейных графиков, их наклон равен коэффициенту при переменной x, то есть в нашем примере =6.
  • Перемещение подобно расстоянию, но оно имеет определенное направление, что делает его векторной величиной. Перемещение может быть отрицательным, в то время как расстояние будет только положительным.

Реклама

Об этой статье

Эту страницу просматривали 83 377 раз.

Была ли эта статья полезной?

Если материальная точка находится в движении, то ее координаты подвергаются изменениям. Этот процесс может происходить быстро или медленно.

Определение 1

Величина, которая характеризует быстроту изменения положения координаты, называется скоростью.

Определение 2

Средняя скорость – это векторная величина, численно равная перемещению в единицу времени, и сонаправленная с вектором перемещения υ=∆r∆t; υ↑↑∆r.

Мгновенная и средняя скорость

Рисунок 1. Средняя скорость сонаправлена перемещению

Модуль средней скорости по пути равняется υ=S∆t.

Мгновенная скорость точки. Формулы

Мгновенная скорость характеризует движение в определенный момент времени. Выражение «скорость тела в данный момент времени» считается не корректным, но применимым при математических расчетах.

Определение 3

Мгновенной скоростью называют предел, к которому стремится средняя скорость υ при стремлении промежутка времени ∆t к 0:

υ=lim∆t∆r∆t=drdt=r˙.

Направление вектора υ идет по касательной к криволинейной траектории, потому как бесконечно малое перемещение dr совпадает с бесконечно малым элементом траектории ds.

Мгновенная скорость точки. Формулы

Рисунок 2. Вектор мгновенной скорости υ

Имеющееся выражение υ=lim∆t∆r∆t=drdt=r˙ в декартовых координатах идентично ниже предложенным уравнениям:

υx=dxdt=x˙υy=dydt=y˙υz=dzdt=z˙.

Перемещение и мгновенная скорость

Запись модуля вектора υ примет вид:

υ=υ=υx2+υy2+υz2=x2+y2+z2.

Чтобы перейти от декартовых прямоугольных координат к криволинейным, применяют правила дифференцирования сложных функций. Если радиус-вектор r является функцией криволинейных координат r=rq1, q2, q3, тогда значение скорости запишется как:

υ=drdt=∑i=13∂r∂qi∂qi∂r=∑i=13∂r∂qiq˙i.

Перемещение и мгновенная скорость

Рисунок 3. Перемещение и мгновенная скорость в системах криволинейных координат

При сферических координатах предположим, что q1=r; q2=φ; q3=θ, то получим υ, представленную в такой форме:

υ=υrer+υφeφ+υθφθ, где υr=r˙; υφ=rφ˙sin θ; υθ=rθ˙; r˙=drdt; φ˙=dφdt; θ˙=dθdt; υ=r1+φ2sin2θ+θ2.

Определение 4

Мгновенной скоростью называют значение производной от функции перемещения по времени в заданный момент, связанной с элементарным перемещением соотношением dr=υ(t)dt

Пример 1

Дан закон прямолинейного движения точки x(t)=0,15t2-2t+8. Определить ее мгновенную скорость через 10 секунд после начала движения.

Решение

Мгновенной скоростью принято называть первую производную радиус-вектора по времени. Тогда ее запись примет вид:

υ(t)=x˙(t)=0.3t-2; υ(10)=0.3×10-2=1 м/с.

Ответ: 1 м/с.

Пример 2

Движение материальной точки задается уравнением x=4t-0,05t2. Вычислить момент времени tост, когда точка прекратит движение, и ее среднюю путевую скорость υ.

Решение

Вычислим уравнение мгновенной скорости, подставим числовые выражения:

υ(t)=x˙(t)=4-0,1t.

4-0,1t=0;tост=40 с;υ0=υ(0)=4;υ=∆υ∆t=0-440-0=0,1 м/с.

Ответ: заданная точка остановится по прошествии 40 секунд; значение средней скорости равняется 0,1 м/с.

Мгновенная скорость, теория и онлайн калькуляторы

Мгновенная скорость

Мгновенная скорость при прямолинейном движении материальной точки

При рассмотрении неравномерного движения часто интересует не средняя скорость движения тела, а скорость в определенный момент времени, или мгновенная скорость. Так, если тело стукнулось о препятствие, то сила воздействия тела на препятствие в момент удара, определено скоростью в момент соударения, а не средней скоростью движения тела. Форма траектории перемещения снаряда и его дальность полета зависит от скорости в момент запуска, а не от средней скорости.

Средняя скорость ($leftlangle vrightrangle $) движения материальной точки по оси X равна:

[leftlangle vrightrangle =frac{Delta x}{Delta t}left(1right),]

$Delta t$ – промежуток времени движения тела.

Определение

Мгновенную скорость определим как предел к которому стремится средняя скорость за бесконечно малый промежуток времени:

[v={mathop{lim }_{Delta tto 0} leftlangle vrightrangle }={mathop{lim }_{Delta tto 0} frac{Delta x}{Delta t}left(2right). }]

Такой предел в математике называют производной:

[v=frac{dx}{dt}=dot{x}left(3right).]

Выражение (3) обозначает, что мгновенная скорость (скорость в определенный момент времени) – производная от координаты. При прямолинейном движении материальной точки Мгновенную скорость можно определить как производную от пути ($s$) по времени:

[v=frac{ds}{dt}=dot{s}left(4right).]

Мгновенная скорость равномерного движения материальной точки

Средняя скорость равномерно движущейся точки величина постоянная, значит, мгновенная скорость равномерно перемещающейся точки является неизменной величиной.

Скорость равномерного движения численно равна тангенсу угла наклона прямой к оси времени (рис.1):

[v=k tg alpha left(4right),]

где $k$ – безразмерный коэффициент, определяющий отношение масштаба единиц перемещения (ось ординат) и единиц времени (ось абсцисс).

При графическом изображении переменного движения материальной точки мгновенная скорость численно равна тангенсу угла наклона касательной к графику и осью абсцисс.

Мгновенная скорость, рисунок 1

Мгновенная скорость при криволинейном движении

Положение материальной точки на траектории зададим радиус-вектором $overline{r}(t)$, который проведем в точку наблюдения из какой-либо неподвижной точки, которую примем за начало координат. Тогда мгновенной скоростью материальной точки будет векторная величина, равная:

[overline{v}=frac{doverline{r}}{dt}=dot{overline{r}}left(5right).]

скорость – это вектор, направленный по касательной к траектории движения материальной точки в месте нахождения частицы.

Примеры задач с решением

Пример 1

Задание. Две материальные точки движутся согласно уравнениям:

[left{ begin{array}{c}
x_1=-3t+4t^2-t^3(м) \
x_2=t-2t^2-t^3(м) end{array}
right.left(1.1right),]

в какой момент времени скорости этих точек будут равны?

       

Решение. В задаче речь идет о нахождении времени, когда будут равны мгновенные скорости материальных точек. Величину мгновенной скорости будем находить как:

[v=frac{dx}{dt}left(1.2right).]

Тогда подставляя по очереди уравнения из системы (1.1) получим:

[left{ begin{array}{c}
v_1=frac{dx_1}{dt}=-3+8t-3t^2 \
v_2=frac{dx_2}{dt}=1-4t-3t^2 end{array}
right.left(1.3right).]

Приравняем правые части уравнений в системе (1.3), найдем момент времени в который скорости равны ($v_1=v_2$):

[-3+8t-3t^2=1-4t-3t^2to 8t+4t=1+3to 12t=4to t=frac{1}{3}left(cright).]

Ответ. $t=frac{1}{3}$ с

   

Пример 2

Задание. Материальная точка движется на плоскости XOY. Закон изменения координаты $x$ задан графиком рис.2 . Координата $y $задана аналитическим выражением: $y=At(1+Bt)$, где $A$ и $B$ постоянные величины. Запишите выражение, связывающее мгновенную скорость и время ($v(t)$).

Мгновенная скорость, пример 2

       

Решение. Из рис. 2 мы можем записать уравнение, которое определяет изменение координаты $x$ от времени:

[xleft(tright)=At left(2.1right).]

Получили, что движение материальной точки в плоскости XOY описывают при помощи системы уравнений:

[left{ begin{array}{c}
xleft(tright)=At;; \
y=Atleft(1+Btright) end{array}
left(2.2right).right.]

Найдем составляющие скорости движения материальной точки:

[v_x=frac{dx}{dt}=frac{d}{dt}left(Atright)=A;;]

[v_y=frac{dy}{dt}=frac{d}{dt}left(Atleft(1+Btright)right)=A+2ABt.]

Модуль скорости найдем как:

Мгновенная скорость, рисунок 2

[v=sqrt{v^2_x+v^2_y}=sqrt{A^2+{(A+2ABt)}^2}=sqrt{A^2+A^2+2A^2Bt+4A^2B^2t^2}=]

[=Asqrt{2+2Bt+4B^2t^2.}]

Ответ. $v=Asqrt{2+2Bt+4B^2t^2}$

   

Читать дальше: механические волны.

236

проверенных автора готовы помочь в написании работы любой сложности

Мы помогли уже 4 396 ученикам и студентам сдать работы от решения задач до дипломных на отлично! Узнай стоимость своей работы за 15 минут!

Мгновенная и средняя скорость

Если материальная точка находится в движении, то ее координаты подвергаются изменениям. Этот процесс может происходить быстро или медленно.

Величина, которая характеризует быстроту изменения положения координаты, называется скоростью.

Средняя скорость – это векторная величина, численно равная перемещению в единицу времени, и сонаправленная с вектором перемещения ” open=” υ = ∆ r ∆ t ; ” open=” υ ↑ ↑ ∆ r .

Рисунок 1 . Средняя скорость сонаправлена перемещению

Модуль средней скорости по пути равняется ” open=” υ = S ∆ t .

Мгновенная скорость точки. Формулы

Мгновенная скорость характеризует движение в определенный момент времени. Выражение «скорость тела в данный момент времени» считается не корректным, но применимым при математических расчетах.

Мгновенной скоростью называют предел, к которому стремится средняя скорость ” open=” υ при стремлении промежутка времени ∆ t к 0 :

υ = l i m ∆ t ∆ r ∆ t = d r d t = r ˙ .

Направление вектора υ идет по касательной к криволинейной траектории, потому как бесконечно малое перемещение d r совпадает с бесконечно малым элементом траектории d s .

Рисунок 2 . Вектор мгновенной скорости υ

Имеющееся выражение υ = l i m ∆ t ∆ r ∆ t = d r d t = r ˙ в декартовых координатах идентично ниже предложенным уравнениям:

υ x = d x d t = x ˙ υ y = d y d t = y ˙ υ z = d z d t = z ˙ .

Перемещение и мгновенная скорость

Запись модуля вектора υ примет вид:

υ = υ = υ x 2 + υ y 2 + υ z 2 = x 2 + y 2 + z 2 .

Чтобы перейти от декартовых прямоугольных координат к криволинейным, применяют правила дифференцирования сложных функций. Если радиус-вектор r является функцией криволинейных координат r = r q 1 , q 2 , q 3 , тогда значение скорости запишется как:

υ = d r d t = ∑ i = 1 3 ∂ r ∂ q i ∂ q i ∂ r = ∑ i = 1 3 ∂ r ∂ q i q ˙ i .

Рисунок 3 . Перемещение и мгновенная скорость в системах криволинейных координат

При сферических координатах предположим, что q 1 = r ; q 2 = φ ; q 3 = θ , то получим υ , представленную в такой форме:

υ = υ r e r + υ φ e φ + υ θ φ θ , где υ r = r ˙ ; υ φ = r φ ˙ sin θ ; υ θ = r θ ˙ ; r ˙ = d r d t ; φ ˙ = d φ d t ; θ ˙ = d θ d t ; υ = r 1 + φ 2 sin 2 θ + θ 2 .

Мгновенной скоростью называют значение производной от функции перемещения по времени в заданный момент, связанной с элементарным перемещением соотношением d r = υ ( t ) d t

Дан закон прямолинейного движения точки x ( t ) = 0 , 15 t 2 – 2 t + 8 . Определить ее мгновенную скорость через 10 секунд после начала движения.

Решение

Мгновенной скоростью принято называть первую производную радиус-вектора по времени. Тогда ее запись примет вид:

υ ( t ) = x ˙ ( t ) = 0 . 3 t – 2 ; υ ( 10 ) = 0 . 3 × 10 – 2 = 1 м / с .

Ответ: 1 м / с .

Движение материальной точки задается уравнением x = 4 t – 0 , 05 t 2 . Вычислить момент времени t о с т , когда точка прекратит движение, и ее среднюю путевую скорость ” open=” υ .

Решение

Вычислим уравнение мгновенной скорости, подставим числовые выражения:

υ ( t ) = x ˙ ( t ) = 4 – 0 , 1 t .

4 – 0 , 1 t = 0 ; t о с т = 40 с ; υ 0 = υ ( 0 ) = 4 ; ” open=” υ = ∆ υ ∆ t = 0 – 4 40 – 0 = 0 , 1 м / с .

Ответ: заданная точка остановится по прошествии 40 секунд; значение средней скорости равняется 0 , 1 м / с .

Мгновенная скорость

Средняя оценка: 4.3

Всего получено оценок: 225.

Средняя оценка: 4.3

Всего получено оценок: 225.

Большинство движений в природе являются неравномерными. При описании таких движений большое значение имеет параметр «мгновенная скорость». Рассмотрим его подробнее.

Скорость при неравномерном движении

Скорость – величина, показывающая, какое расстояние проходит материальная точка за единицу времени:

Рис. 1. Скорость равномерного прямолинейного движения.

Однако, для определения положения материальной точки в любой момент времени, во многих случаях эту формулу применять нельзя.

В самом деле, если провести опыт, можно видеть, что на Земле предмет падает с высоты 20м за 2.02с. Откуда следует, что скорость падения составляет:

Выходит, что через полсекунды после начала падения предмет окажется на 5м ниже, чем исходная точка, через секунду – на 9.9м ниже.

Однако, проведя реальное измерение, можно убедиться, что это совсем не так. За первую секунду предмет пройдет только 4.9м. А за первые полсекунды – всего лишь 1.23м ! Если же высота падения будет больше, то за три секунды путь составит не 29.7м, как следует из формулы, а больше 40м !

Рис. 2. Стробоскопическое фото свободного падения.

Причина такого расхождения с расчетом состоит в том, что предмет под действием тяготения Земли движется неравномерно, постоянно изменяя скорость. И на каком бы участке мы не измерили его скорость – полученное значение будет различно, и его невозможно будет использовать в расчетах и уравнениях для других участков.

Свести неравномерное движение к равномерному невозможно.

Мгновенная скорость

Описанное затруднение можно разрешить, если учесть, что движение – процесс непрерывный. Ни координаты точки, ни ее скорость не могут изменяться скачками. Во время движения точка проходит все бесчисленное множество координат пути, на всем пути скорость ее непрерывно изменяется в некотором диапазоне, и при этом, чем меньше рассматриваемый отрезок времени, тем меньше будет изменение координаты и скорости.

Рассмотрим падение предмета, начиная с конца первой секунды. В этот момент координата будет равна 4.905м. Отметим новую координату падающего предмета через небольшое время, и вычислим скорость:

Как рассчитать мгновенную скорость, формулу мгновенной скорости

Мгновенная скорость сообщает нам о движении частицы в определенный момент времени в любом месте на ее пути.

Мгновенная скорость принимается за предел средней скорости при стремлении времени к нулю. Вычислять Vинст мы можем использовать график смещения-времени / формулу мгновенной скорости. т.е. производная смещения (s) по времени (t), взятая.

Чтобы узнать, как рассчитать мгновенную скорость объекта, нам нужно выполнить следующие действия. . Давайте посмотрим на это на примере.

Рассмотрим уравнение скорости в терминах положения / смещения.

Вычислять мгновенная скорость, мы должны рассмотреть уравнение это говорит нам о его должность ‘s’ в определенный время ‘t’. Это означает, что уравнение должно содержать переменную ‘s‘с одной стороны и’t‘ с другой стороны,

s = -2т 2 + 10т +5 при t = 2 секунды.

В этом уравнении переменными являются:

Смещение = s, измеряется в метрах.

Время = t, измеряется в секундах.

Рассмотрим производную данного уравнения.

Чтобы найти производную данного уравнения перемещения, дифференцировать функцию по времени,

ds / dt = – (2) 2т (2-1) + (1) 10 т 1 – 1 + (0) 5 т 0

ds / dt = -4т 1 + 10т 0

ds / dt = -4t + 10

Подставьте данное значение «t» в уравнение производной, чтобы найти мгновенную скорость.

Найдите мгновенная скорость при t = 2 подставить “2” для t в производной ds / dt = -4t + 10. Тогда мы можем решить уравнение

ds / dt = -4 (2) + 10

ds / dt = -8 + 10

ds / dt = -2 метра в секунду

Здесь «метры / секунда» – это единица измерения мгновенной скорости в системе СИ.

Как рассчитать Instantaneo скорость нас из графика

Мгновенная скорость в любой конкретный момент времени определяется наклоном касательной, проведенной к графику положения-времени в этой точке.

  • Постройте график расстояние против времени.
  • Отметьте точку, в которой вам нужно найти мгновенную скорость, скажем A.
  • Определите точку на графике, соответствующую времени t1 и t2.
  • Вычислить vсредний и проведем касательную в точке A.
  • На графике vинст в точке A находится по касательной, проведенной в этой точке
  • Чем длиннее тангенс, тем точнее будут значения.
  • На показанном изображении Синяя линия это график зависимости положения от времени, А Красная линия – приблизительный наклон линии при t = 2.5 секунды.
  • Если мы продолжаем выбирать точки, которые все ближе и ближе друг к другу, линия начнет приближаться к наклону линии, касательной к одной точке.
  • Если мы возьмем предел функции в этой точке, мы получим значение наклона касательной в этой точке.
  • Расстояние составляет примерно 140 м, а временной интервал – 4.3 с. Следовательно, приблизительный уклон составляет 32.55 м / с.

Как рассчитать мгновенную скорость по графику положения-времени.

Для вычисления мгновенной скорости по графику положения-времени.

Постройте график зависимости смещения от времени.

  • Используйте оси X и Y для представления время и перемещение.
  • Затем нанесите на график значения времени и смещения.

Выберите любые две точки на графике st.

  • Линия смещения содержит точки (3,6) и (5,8).
  • В этом примере, если мы хотим найти наклон в точке (3,6), мы можем установить А = (3,6) и B=(5,8)

Найдите наклон линии, соединяющей две точки, т. Е. Между точками A и B.

Найдите среднюю скорость между этими двумя временными интервалами, т. Е.

где K – наклон между двумя точками.

Здесь наклон между A и B равен:

Повторите несколько раз, чтобы найти уклон, перемещая B ближе к A.

  • Продолжайте выбирать точки ближе друг к другу; затем он начнет приближаться к наклону касательной.
  • Если мы рассмотрим предел функции в этой точке, мы получим значение наклона в этой точке.
  • Здесь мы можем использовать точки (4,7.7), (3.5, 6.90) и (3.25, 6.49) для B и исходную точку (3,6) для A.

Вычислите наклон для бесконечно малого отрезка касательной.

В этом примере, когда мы приближаем B к A, мы получаем значения 1.7, 1.8 и 1.96 для K. Поскольку эти числа примерно равны 2, можно сказать, что 2 – наклон А.

Здесь, мгновенная скорость 2 м / с.

Формула мгновенной скорости

С математической точки зрения мы можем написать формула мгновенной скорости в виде,

Здесь, ds / dt – это производная смещения (с) по времени (t).

Приведенные выше производная имеет конечное значение когда и знаменатель, и числитель стремятся к нулю.

Расчет формулы мгновенной скорости

Используя вычисления, всегда можно вычислить скорость объекта в любой момент на его пути. Это называется мгновенной скоростью. и задается уравнением v = ds / dt .

Мгновенная скорость = предел, поскольку изменение во времени приближается к нулю (изменение положения / изменение во времени) = производная смещения по времени

Формула средней и мгновенной скорости

Формула Символ Определение
Средняя скорость sf = Окончательный смещение

si = Начальное смещение

tf = Последний раз


ti = Начальное время

Средняя скорость is общее расстояние
деленное на общее затраченное время.
Мгновенная скорость Скорость при любом момент времени.

Формула мгновенной угловой скорости

мгновенная угловая скорость скорость, с которой частица движется по круговой траектории в определенный момент времени.

мгновенная угловая скорость вращающегося объекта определяется выражением

dθ/dt = производная углового положения θ по времени, найденное предельным переходом Δ t → 0 в средняя угловая скорость.

направление угловой скорости на круговой траектории – вдоль оси вращения и указывает от вас на вращающееся тело по часовой стрелке и к вам для тела, вращающегося против часовой стрелки. В математике это обычно описывается правило правой руки.

Формула мгновенной скорости и скорости

Формула мгновенной скорости

Формула мгновенной скорости

Разница между мгновенной скоростью и мгновенной скоростью.

Мгновенная скорость Мгновенная скорость
Это скорость движущейся частицы в определенный момент t. Вход в музей Мадам Тюссо мера скорости частицы в определенный момент t.
Мгновенная скорость определяет, насколько быстро и в каком направлении движется объект. Мгновенная скорость измеряет, насколько быстро частица движется.
Количество векторов Скалярная величина

Определение и формула мгновенной скорости

Определение мгновенной скорости

Мгновенная скорость описывается как скорость движущегося объекта. Мы можем найти его, используя среднюю скорость, но мы должны сузить время, чтобы приблизиться к нулю.

Итого можно сказать, что мгновенная скорость – это скорость движущейся частицы в определенный момент времени.

Формула мгновенной скорости

Для любого уравнения движения s(t), для мгновенная скорость когда t приближается к нулю, мы можем записать формула в виде,

Мгновенная скорость формула предела

Мгновенная скорость любого объекта – это предел средней скорости, когда время приближается к нулю..

Вставьте значения t1= t и t2 = t + Δt в уравнение для средней скорости и переходя к пределу при Δt → 0, находим формула предела мгновенной скорости

Как найти мгновенную скорость на графике

Мгновенная скорость равна наклону касательной на графике положение-время.

Мгновенно s Интерпретация скорости из графика st

  • Мгновенная скорость равна наклону касательной на графике положение-время.
  • Интерпретация мгновенной скорости по графику st
  • Наклон фиолетовой линии (касательной) на графике смещения v / s дает мгновенную скорость.
  • Если фиолетовая линия образует угол с положительной осью абсцисс.

Vinst = наклон фиолетовой линии = tanθ

Как найти мгновенную скорость из средней скорости

Для того, чтобы найти мгновенная скорость в точке, мы должны сначала найти среднюю скорость в этой точке.

Вы можете найти мгновенную скорость при t = a с помощью вычисление средней скорости графика зависимости положения от времени путем взятия меньшего и большего приращения точки, в которой вы хотите определить V inst .

Пример мгновенной скорости

Во время езды на велосипеде велосипедист меняет свою скорость в зависимости от расстояния и времени, которое он проходит.

Если мы хотим найти скорость в одной конкретной точке, мы должны использовать мгновенную скорость.

Покажи нам пример,

а). Определить мгновенную скорость частицы, движущейся по прямому пути за t = 2 секунды, с функцией положения «s», определенной как 4t² + 2t + 3?

Решение:

Данный с = 4т² + 2т + 3

Дифференцируя данную функцию по времени, мы вычисляем мгновенную скорость следующим образом:

Подставляя значение t = 2, мы получаем мгновенную скорость как,

Подставляя функцию s,

Таким образом, мгновенная скорость для вышеуказанной функции составляет 18 м / с.

Проблема мгновенной скорости

Некоторые проблемы с мгновенной скоростью,

Проблема 1:

Движение тележки задается функцией s = 3t 2 + 10t + 5. Вычислите его мгновенную скорость в момент времени t = 4 с.

Решение:

Данная функция s = 3t 2 + 10т + 5.

Продифференцируя указанную выше функцию по времени, получим

Подставляя функцию s,

[v_ = v (t) = 6t + 10]

Подставляя значение t = 4 с, мы получаем мгновенную скорость как,

Для данной функции мгновенная скорость составляет 34 м / с.

Проблема 2:

Выстреленная пуля движется по прямой траектории, и ее уравнение движения имеет вид S (t) = 3t + 5t. 2 . Так, например, если он летит за 12 секунд до удара, найдите мгновенную скорость при t = 7 с.

Решение: Мы знаем уравнение движения:

Проблема 3:

Объект выпускается с определенной высоты, чтобы он мог свободно падать под действием силы тяжести. Уравнение движения для перемещения s (t) = 5.1 т. 2 . Какой будет мгновенная скорость объекта в момент времени t = 6 с после выпуска?

Решение:

Мгновенная скорость при t = 6 с

Проблема 4:

Найдите скорость при t = 2, учитывая уравнение перемещения s = 3t 3 – 3т 2 + 2т + 7.

Решение:

Это похоже на предыдущие задачи, за исключением того, что они дали кубическое уравнение вместо квадратного уравнения, чтобы решить его таким же образом.

s (t) = 3t 3 – 3т 2 + 2т + 7.

Мгновенная скорость при t = 7 с

Проблема 5:

Положение человека, движущегося по прямой, определяется выражением s (t) = 7t. 2 + 3t + 19, где t – время (секунды). Найдите уравнение для мгновенной скорости v (t) частицы в момент времени t.

Решение:

Дано: s (t) = 7t 2 + 3т + 19

vинст = v (t) = (14t + 3) м / с – уравнение для мгновенной скорости.

Предположим, что если принять t = 3s, то

Проблема 6:

Движение автомобиля описывается уравнением движения s = gt 2 + b, где b = 20 м и g = 12 м. Следовательно, найдите мгновенную скорость при t = 4 с.

Решение:

Здесь g = 12 и t = 4s,

v (4) = [2 x 12 x 4] = 96 м / с.

v (т) = 96 м / с.

Проблема 7:

Стол, упавший со здания 1145 футов, имеет высоту (в футах) над землей, определяемую как s (t) = 1145-12 т. 2 . Затем вычислите мгновенную скорость стола на 3 с?

Решение:

Мгновенная скорость при t = 3 с составляет -72 м / с.

Проблема 8:

Функция положения частиц определяется выражением s = (3t 2 )i – (4т)k + 2. какова его мгновенная скорость при t = 2? Каково его мгновенное ускорение как функция времени?

Решение:

Чтобы вычислить мгновенное ускорение как функцию времени

дифференцируя уравнение 1 по t, получаем

Проблема 9:

Положение насекомого определяется как s = 44 + 20t – 3t. 3 , где t в секундах, а s в метрах .

а. Найдите среднюю скорость объекта между t = 0 и t = 4. s.

б. В какое время между 0 и 4 мгновенная скорость равна нулю.

решение:

Для расчета средней скорости

Чтобы найти время, при котором мгновенная скорость равна нулю.

Проблема 10:

Частица движется с функцией смещения s = t 2 + 3 .

Найдите положение при t = 2.

Найдите среднюю скорость от t = 2 до t = 3.

Найти его мгновенную скорость при t = 2 .

Решение:

Чтобы найти позицию при t = 2

с (2) = 7

Для того, чтобы найти Средняя скорость.

Чтобы найти мгновенную скорость

При t = 2 с

Мгновенная скорость в зависимости от средней скорости

Мгновенная скорость Средняя скорость
мгновенная скорость – средняя скорость между двумя точками. Средняя скорость это соотношение изменения дистасть относительно времени за период.
Мгновенная скорость рассказывает о движении между двумя точками на пройденном пути. Средняя скорость не дает информации о движении между точками. Путь может быть прямым / изогнутым, а движение может быть постоянным / переменным.
Мгновенная скорость равен наклону касательной к смещение (с) в зависимости от графика времени. Он равен наклону секущая линия of граф st.
вектор вектор

Как найти мгновенная скорость без исчисления

Wмы можем найти мгновенную скорость приближением по график зависимости смещения от времени без исчисления в определенной точке. Нам нужно провести касательную в точке вдоль изогнутой линии и оценить наклон, где вам нужно найти мгновенную скорость.

Как рассчитать мгновенную скорость и мгновенное ускорение

Мгновенная скорость Мгновенное ускорение
Из формулы Для расчета мгновенной скорости, возьмем предел изменения расстояния по времени, когда время приближается к нулю. т. е. взяв первая производная функции смещения. к рассчитать мгновенное ускорение, принять предел изменения скорости по времени, когда изменение во времени приближается к нулю. т.е. взяв вторая производная функции смещения.
Из графика Равно наклон касательной к графику st. Равно наклон касательной графика vt.

11 задачи:

Пуля, выпущенная в космос, движется по прямой траектории, и ее уравнение движения имеет вид s (t) = 2t + 4t 2 . Если он движется в течение 12 секунд до удара, найдите мгновенную скорость и мгновенное ускорение в момент времени t = 3 секунды.

Решение: Мы знаем уравнение движения: s (t) = 2t + 4t 2

Как найти мгновенную скорость и скорость

Мгновенная скорость задается как величина мгновенной скорости.

Если известно смещение как функция времени, мы можем узнать мгновенную скорость в любое время.

Давайте разберемся в этом на примере.

12 задачи:

Уравнение движения s (t) = 3t 3

Рассмотрим t = 2s

Почему можно рассчитать мгновенную скорость по кинематическим формулам только при постоянном ускорении

Уравнения кинематики можно использовать только при постоянном ускорении объекта.

В случае переменные ускорения, Уравнения кинематики будут разными в зависимости от функции, которую принимает ускорение; в то время; мы должны использовать Комплексный подход вычислять мгновенная скорость. Что будет немного сложно.

Почему при вычислении мгновенной скорости мы берем небольшие промежутки времени. Как он дает скорость в этот момент, если мы рассчитываем ее за определенный промежуток времени?

мгновенная скорость дан кем-то ,

Чем меньше значение «t», Тем точнее будет наклон касательной, т. е. мгновенная скорость.

Когда ты хочешь рассчитать скорость в определенное время вам нужно сначала рассчитать средние скорости взяв небольшие промежутки времени. Если эти средние скорости дают одно и то же значение, тогда это будет требуемый мгновенная скорость.

Различаются ли скорость и мгновенная скорость?

Мгновенная скорость отличается от скорости.

Скорость обычно известен как скорость изменения положения во времени. Напротив, в мгновенная скорость, временной интервал сужается, чтобы приблизиться к нулю, чтобы получить скорость в конкретный момент времени.

Например,

Частица движение по кругу имеет нулевые смещения, и требуется знать скорость частицы. В этом случае мы можем вычислить мгновенную скорость, потому что она имеет тангенциальная скорость в любой момент времени.

Что такое мгновенная скорость на реальных примерах

Реальные примеры мгновенной скорости

Если мы рассмотрим пример мяча для сквоша, мяч возвращается в исходную точку; в это время полное смещение и средняя скорость будут равны нулю. В таких случаях движение рассчитывается по формуле мгновенная скорость.

  • Спидометр автомобиля дает информацию о мгновенная скорость / скорость средство передвижения. Он показывает скорость в определенный момент времени.
    Во время гонки фотографы делают снимки бегунов, их средняя скорость не меняется, но меняется их мгновенная скорость, зафиксированная на «снимках». Так что это будет пример мгновенной скорости.
  • Если вы находитесь рядом с магазином, и перед вами проехал автомобиль на отметке «t«Во-вторых, и вы начинаете думать о его скорости на конкретном время, здесь вы имели бы в виду мгновенная скорость транспортного средства.

Часто задаваемые вопросы | FAQs

Является ли мгновенная скорость вектором

Мгновенная скорость – это векторная величина.

Мгновенная скорость – это вектор, потому что он имеет как величину, так и направление. Он показывает как скорость (относится к величине), так и направление. участникале Имеет размер LT -1 Мы можем определить это, взяв наклон графика расстояние-время..

Как найти мгновенную скорость только с графиком положения и времени и без заданного уравнения

Мы можем определить мгновенную скорость, взяв наклон графика положения-времени.

  • Постройте график смещения во времени.
  • Выберите точку A и другую точку B, которая находится рядом с точкой A на линии.
  • Найдите угол наклона между A и B, рассчитайте несколько раз, перемещая A ближе к B.
  • Рассчитайте наклон для бесконечно малого интервала на прямой.
  • Полученный наклон представляет собой мгновенную скорость.

Можно ли мгновенно изменить скорость

Невозможно вызвать мгновенное изменение скорости, так как для этого потребуется бесконечное ускорение.

Как правило, ускорение является результатом F = ma

а скорость является результатом ускорения (от интегрирования). Если изменение скорости является ступенчатой ​​функцией и когда время приближается к нулю, потребуется бесконечное ускорение и сила, чтобы мгновенно изменить скорость массы.

Как я могу рассчитать смещение, если ускорение является функцией мгновенной скорости Задана начальная скорость

Мы можем вычислить смещение двумя способами, когда задана начальная скорость.

От происхождения

Здесь ускорение является функцией мгновенной скорости,

Начальная скорость

Интегрируя,

Используя эту форму, вы можете получить ds смещения.

Из формулы

Используя приведенное ниже кинематическое уравнение, мы можем найти смещение,

Что такое средний и мгновенная скорость

Средняя скорость и мгновенная скорость выражаются следующим образом:

Средняя скорость Мгновенная скорость
Средняя скорость для определенного временного интервала – это полное смещение, деленное на общее время. И временной интервал, и смещение в какой-то момент приближаются к нулю. Но предел производной смещения по общему интервалу времени отличен от нуля и называется мгновенной скоростью.
Средняя скорость это скорость всего пути в движении а мгновенная скорость скорость частицы в определенный момент времени
v avg = s/t v inst = ds/dt

Мгновенное ускорение перпендикулярно мгновенной скорости

Мгновенное ускорение тела всегда перпендикулярно мгновенной скорости.

При круговом движении мгновенное ускорение тела всегда перпендикулярно мгновенной скорости, и это ускорение называется центростремительным ускорением. Скорость остается неизменной; только направление меняется, поскольку перпендикулярное ускорение изменяет траекторию тела.

Последние выпуски передовой науки и исследований

[spoiler title=”источники:”]

http://obrazovaka.ru/fizika/mgnovennaya-skorost-formula.html

http://ru.lambdageeks.com/how-to-calculate-instantaneous-velocity-formula/

[/spoiler]

Скорость, время и ускорение

Расчеты

Три этих физических величины взаимосвязаны между собой процессом движения. Если известны две из этих величин, можно найти третью.
Скорость тела при условии равноускоренного прямолинейного движения определяем по формуле:

V = V0 + а*t

V0 — начальная скорость (при t = 0);
а — ускорение;
t — время.

Итак, чтобы найти скорость, к начальной скорости прибавляем произведение ускорения на время.
Если V0 = 0, то V = а*t.

Чтобы найти время, нужно вначале найти разность между скоростью в данный момент и начальной скоростью, затем полученный результат разделить на ускорение.

t = (V — V0) / а

Ускорение показывает изменение скорости движущегося тела, рассчитывается по двум скоростям и времени. Чтобы вычислить ускорение, следует найти разницу между скоростью в данный момент и начальной скоростью, затем все это разделить на время.
При ускорении:

а = (V — V0) / t

При торможении:

а = (V0 — V) / t

Ускорение — величина векторная, которая задается не только числом, но и направлением, измеряется в метрах в секунду (м/с2).

Чтобы рассчитать среднее ускорение, находим разницу между начальной и конечной скоростями Δv, полученный результат делим на разницу между временем Δt.(начальным и конечным) :

а = Δv / Δt

Быстро и правильно рассчитать величину скорости, ускорения или найти время вам поможет онлайн калькулятор.

Расчет скорости, времени и ускорения

Добавить комментарий