Как найти массовое число углерода

Порядковый номер или ссуммировать число протонов и нейтронов

1
Упомянутый атом водорода имеет простейшее строение ядра из всех химических элементов. Оно состоит из единственной частицы, которая называется «протон» . Все другие элементы имеют более сложное строение, и в состав их ядер, помимо протонов, входят так называемые «нейтроны» . Запомните, что масса протона практически совпадает с массой нейтрона. Это очень важно.
2
За единицу измерения принята «атомная единица массы» , или по-другому «Дальтон» . Это масса 1/12 атома изотопа углерода. Она приблизительно равна 1,66*10^-24грамм. Именно из этой величины вам надо исходить, рассчитывая массу ядра того или иного химического элемента.
3
Легко можно понять, что поскольку масса электронов ничтожно мала по сравнению с массой протонов и нейтронов, ею в расчетах можно пренебречь. Разумеется, если не требуется очень высокая точность. Поэтому, решая задачу о нахождении массы ядра, можно рассматривать только «тяжелые» частицы – протоны и нейтроны. Их сумма дает вам «массовое число» . Его необходимо умножить на величину атомной единицы массы и получить требуемый результат.
4
А как узнать массовое число? Тут на помощь придет знаменитая Таблица Менделеева. Каждому элементу в ней отведено строго определенное место, а заодно дана вся необходимая информация. В частности указана атомная масса элемента, которую можно принять за массовое число, поскольку общая масса электронов атома ничтожно мала по сравнению с массой протонов и нейтронов.
5
Рассмотрите конкретный пример. Вот хорошо знакомый металл – золото (Au). Его атомная масса – 196,97. Округлите ее до 197 и умножьте на величину атомной единицы массы. Получите:
(197*1,66)*10^-24 = 327,02*10^-24 = 3,2*10^-22 грамм. Вот такова приблизительная масса ядра атома золота.

Характеристика углерода

Положение в ПСХЭ

Углерод (C) располагается во 2 периоде, в IV группе, главной подгруппе, имеет порядковый номер 6.

Атомные числа

A (массовое число) = 12
P (число протонов) = 6
N (число нейтронов) = A – Z = 12 – 6 = 6
ē (число электронов) = 6

Электронное строение атома

C
+6

2

4

6C 1s2 2s2 2p2

Валентные электроны

6C ↑↓
2s 2p
6C*
2s 2p

Степени окисления

минимальная: -4

максимальная: +4

Свойства простого вещества

Углерод – p-элемент, неметалл.

Высший оксид

CO2 – оксид углерода (IV).
Проявляет кислотные свойства:
CO2 + 2NaOH ⟶ Na2CO3 + H2O

Высший гидроксид

H2CO3 – угольная кислота.
Проявляет кислотные свойства:
H2CO3 + 2NaOH ⟶ Na2CO3 + 2H2O

Водородное соединение

CH4


Массовое число, зарядовое число для ЕГЭ-ОГЭ

Видео: Массовое число, зарядовое число для ЕГЭ-ОГЭ

Содержание

  • Примеры массовых чисел
  • Водород
  • Кислород
  • Углерод
  • Уран
  • Как получить массовое число?
  • Обозначения для атомов
  • Изотопы
  • Изотопы углерода
  • Таблица природных изотопов углерода
  • Примеры работы
  • – Пример 1
  • Ответить
  • – Пример 2
  • Ответить
  • Ссылки 

В массовое число Массовое число атома – это сумма количества протонов и количества нейтронов в ядре. Эти частицы взаимозаменяемо обозначаются именем нуклоны, поэтому массовое число представляет их количество.

Пусть N – количество присутствующих нейтронов, а Z – количество протонов, если мы назовем A массовым числом, тогда:

А = N + Z

Примеры массовых чисел

Вот несколько примеров массовых чисел для хорошо известных элементов:

Водород

Самый стабильный и многочисленный атом водорода также самый простой: 1 протон и один электрон. Поскольку ядро ​​водорода не имеет нейтронов, верно, что A = Z = 1.

Кислород

В ядре кислорода 8 нейтронов и 8 протонов, поэтому A = 16.

Углерод

Жизнь на Земле основана на химии углерода, легкого атома с 6 протонами в ядре плюс 6 нейтронов, поэтому A = 6 + 6 = 12.

Уран

Этот элемент, намного тяжелее предыдущих, хорошо известен своими радиоактивными свойствами. В ядре урана 92 протона и 146 нейтронов. Тогда его массовое число A = 92 + 146 = 238.

Как получить массовое число?

Как упоминалось ранее, массовое число A элемента всегда соответствует сумме числа протонов и числа нейтронов, содержащихся в его ядре. Это тоже целое число, но … есть ли какое-нибудь правило относительно соотношения между двумя величинами?

Посмотрим: все перечисленные элементы легкие, кроме урана. Атом водорода, как мы уже сказали, самый простой. В нем нет нейтронов, по крайней мере, в его наиболее распространенной версии, а в кислороде и углероде есть равное количество протонов и нейтронов.

То же самое происходит и с другими легкими элементами, такими как азот, еще один очень важный для жизни газ, который имеет 7 протонов и 7 нейтронов. Однако по мере того, как ядро ​​становится более сложным, а атомы становятся тяжелее, количество нейтронов увеличивается с другой скоростью.

В отличие от легких элементов, уран с 92 протонами имеет примерно в 1 ½ раза больше нейтронов: 1 ½ x 92 = 1,5 x 92 = 138.

Как видите, это довольно близко к 146 – количеству нейтронов, которое он имеет.

Все это становится очевидным на кривой на рисунке 2. Это график зависимости N от Z, известный каккривая ядерной устойчивости. Там вы можете увидеть, как легкие атомы имеют такое же количество протонов, что и нейтроны, и как с Z = 20 количество нейтронов увеличивается.

Таким образом, большой атом становится более стабильным, так как избыток нейтронов уменьшает электростатическое отталкивание между протонами.

Обозначения для атомов

Очень полезная запись, которая быстро описывает тип атома, следующая: символ элемента и соответствующие атомные и массовые числа записываются, как показано ниже на этой диаграмме:

В этих обозначениях атомы в предыдущих примерах будут:

Иногда используются другие более удобные обозначения, в которых для обозначения атома используются только символ элемента и массовое число, без атомного номера. Таким образом, 12 6C просто записывается как углерод-12, 16 8Или кислород – 16 и так далее для любого элемента.

Изотопы

Число протонов в ядре определяет природу элемента. Например, каждый атом, ядро ​​которого содержит 29 протонов, является атомом меди, несмотря ни на что.

Предположим, атом меди по какой-то причине теряет электрон, это все равно медь. Однако теперь это ионизированный атом.

Атомному ядру сложнее получить или потерять протон, но в природе это может происходить. Например, внутри звезд более тяжелые элементы непрерывно образуются из легких элементов, поскольку звездное ядро ​​ведет себя как термоядерный реактор.

И прямо здесь, на Земле, есть феномен радиоактивный распад, в котором некоторые нестабильные атомы изгоняют нуклоны и излучают энергию, превращаясь в другие элементы.

Наконец, существует вероятность того, что атом определенного элемента имеет другое массовое число, в данном случае это изотоп.

Хороший пример – всем известный углерод-14 или радиоуглерод, который используется для датировки археологических объектов и как биохимический индикатор. Это тот же углерод с идентичными химическими свойствами, но с двумя дополнительными нейтронами.

Углерод-14 менее распространен, чем углерод-12, стабильный изотоп, а также радиоактивен. Это означает, что со временем он распадается, выделяя энергию и частицы, пока не станет стабильным элементом, которым в его случае является азот.

Изотопы углерода

Углерод существует в природе как смесь нескольких изотопов, наиболее распространенными из которых являются уже упомянутые 126С или углерод-12. А кроме углерода-14 есть 136C с дополнительным нейтроном.

Это обычное явление в природе, например, известно 10 стабильных изотопов олова. С другой стороны, из бериллия и натрия известен только один изотоп.

Каждый изотоп, природный или искусственный, имеет разную скорость превращения. Таким же образом можно создавать искусственные изотопы в лаборатории, которые, как правило, нестабильны и радиоактивно распадаются за очень короткий период долей секунды, в то время как для других требуется гораздо больше времени, равное возрасту Земли или больше.

Таблица природных изотопов углерода

Изотопы углерода Атомный номер Z Массовое число A Изобилие%
12 6 C 6 12 98.89
13 6 C 6 13 1.11
14 6 C 6 14 Следы

Примеры работы

– Пример 1

В чем разница между137 N и 147 N?

Ответить

Оба являются атомами азота, так как их атомный номер равен 7. Однако один из изотопов с A = 13 имеет на один нейтрон меньше, а 147 N – самый распространенный изотоп.

– Пример 2

Сколько нейтронов находится в ядре атома ртути, обозначаемого как 20180 Hg?

Ответить

Поскольку A = 201 и Z = 80, а также зная, что:

А = Z + N

N = А – Я = 201 – 80 = 121

И делается вывод, что в атоме ртути 121 нейтрон.

Ссылки 

  1. Коннор, Н. Что такое нуклон – Структура атомного ядра – Определение. Получено с: period-table.org.
  2. Найт, р. 2017. Физика для ученых и инженерии: стратегический подход. Пирсон.
  3. Сирс, Земанский. 2016. Университетская физика с современной физикой. 14-го. Ред. Том 2.
  4. Типпенс, П. 2011. Физика: концепции и приложения. 7-е издание. Макгроу Хилл.
  5. Википедия. Массовое число. Получено с: en.wikipedia.org.
Обучайтесь и развивайтесь всесторонне вместе с нами, делитесь знаниями и накопленным опытом, расширяйте границы знаний и ваших умений.

поделиться знаниями или
запомнить страничку

  • Все категории
  • экономические
    43,653
  • гуманитарные
    33,653
  • юридические
    17,917
  • школьный раздел
    611,926
  • разное
    16,901

Популярное на сайте:

Как быстро выучить стихотворение наизусть? Запоминание стихов является стандартным заданием во многих школах. 

Как научится читать по диагонали? Скорость чтения зависит от скорости восприятия каждого отдельного слова в тексте. 

Как быстро и эффективно исправить почерк?  Люди часто предполагают, что каллиграфия и почерк являются синонимами, но это не так.

Как научится говорить грамотно и правильно? Общение на хорошем, уверенном и естественном русском языке является достижимой целью. 

Практически сразу после
открытия нейтрона советским физиком Дмитрием Иваненко и немецким учёным
Вернером Гейзенбергом была предложена протонно-нейтронная модель атомного ядра.
Согласно ей, ядра всех химических элементов (за исключением водорода) состоят
из двух видов частиц: протонов и нейтронов. Протоны и нейтроны называют
нуклонами
(от латинского «нуклеус» — ядро), а ядра атомов — нуклидами.

Общее число нуклонов в ядре
называют массовым числом
и обозначают
буквой А. Оно ставится вверху перед буквенным обозначением химического
элемента.

Например, массовое число
кислорода равно 16, а углерода — 12.

Мы уже говорили о том, что массовое
число принято выражать в атомных единицах массы (сокращённо, а. е. м.) и
округлять до целых чисел.
Напомним также, что атомную единицу массы
выражают через массу атома углерода; она равна 1/12 части массы атома углерода:

Число протонов в ядре
соответствует порядковому или атомному номеру элемента в таблице Менделеева и
называется зарядовым числом
,
поскольку оно определяет заряд ядра. Обозначается зарядовое число буквой Z.

В наших примерах, зарядовое
число кислорода равно восьми, а углерода — 6.

Как видно из приведённых
примеров, зарядовое число ставится внизу перед буквенным обозначением элемента.

Напомним, что заряд протона положителен
и равен элементарному электрическому заряду. Следовательно, зарядовое число
численно равно заряду ядра, выраженному в элементарных электрических зарядах.

Так как атом в целом
электрически нейтрален, то зарядовое число определяет одновременно и число
электронов в атоме.

Число нейтронов в ядре обозначают большой буквой N. Нетрудно
догадаться, что оно равно разнице между массовым и зарядовым числом:

Таким образом, ядро любого
атома обозначается буквенным символом элемента. Вверху указывается значение его
массового числа, а внизу — зарядового.

В общем случае любой
химический элемент периодической таблицы Дмитрия Ивановича Менделеева можно
представить в виде:

где под X
подразумевается символ химического элемента.

Ещё раз уточним, каким образом
определяется число протонов, электронов и нейтронов в ядре атома любого
химического элемента. Во-первых, необходимо посмотреть в таблице Менделеева
порядковый номер интересующего нас химического элемента. Таким образом мы
найдём зарядовое число, то есть количество протонов и электронов в ядре. Затем,
всё в той же таблице, необходимо посмотреть атомную массу этого элемента и
округлить её до целых. Тем самым мы найдём массовое число, то есть общее
количество нуклонов в ядре. И наконец, чтобы определить количество нейтронов в
ядре атома, мы должны будем вычесть из массового числа зарядовое.

На основе новой,
протонно-нейтронной модели строения атомных ядер, было дано объяснение многим
экспериментальным фактам. Так, например, ещё в 1906—1907 годах учёными было
выявлено, что продукт радиоактивного распада урана — ионий и продукт
радиоактивного распада тория — радиоторий имеют те же химические свойства, что
и торий, но отличаются от него атомной массой и характеристиками радиоактивного
распада. При этом атомы обладали одинаковыми химическими свойствами, а отделить
их друг от друга было невозможно никакими химическими методами. Впервые, на
существование таких атомов обратил внимание Фредерик Содди в 1910 году. Он
предложил называть такие разновидности атомов одного и того же химического
элемента изотопами
(что по-гречески означает «равноместные»), так как по
своим химическим свойствам они должны быть помещены в одну и ту же клетку
таблицы Менделеева.

На основании многих
экспериментов, было установлено, что изотопы одинаково вступают в химические
реакции и образуют одинаковые соединения. Это говорило о том, что число
электронов в электронных оболочках, а, значит, и заряд ядра у изотопов
одинаковы. Следовательно, ядра изотопов различаются только числом нейтронов.
Иными словами, химические свойства элементов определяются не атомной массой, а
зарядовым числом ядра. Действительно, например, нуклиды водорода-три и гелия-три
имеют близкие по величине атомные массы, но принципиально разные химические
свойства.

Из всех известных на
сегодняшний день изотопов (а они есть у всех химических элементов) только изотопы
водорода имеют названия:

Протий является самым
распространённым изотопом в природе, а его ядро содержит только один протон.
Изотоп дейтерия (его ещё называют тяжёлой водой), содержит в своём ядре один
протон и один нейтрон. Соответственно, у трития — один протон и два нейтрона. В
настоящее время в лабораториях получены изотопы водорода и с большим числом
нейтронов: тремя, четырьмя, пятью и даже шестью.

Следует отметить, что у разных
атомов существует разное количество изотопов. Например, у урана их 26, но
самыми распространёнными в природе являются два — это уран-235 (около 0,7 %), и
уран-238 (чуть более 99 %). Вы, наверное, обратили внимание на то, что мы не
называли зарядового числа изотопов урана. Дело в том, что обычно изотопы
называют по их массовым числам, так как зарядовые числа у них одинаковые.

Отметим, что изотопы бывают
устойчивые (или стабильные) и неустойчивые (то есть радиоактивные). Стабильные
изотопы сохраняются сколь угодно долго.

А нестабильные изотопы со
временем превращаются в другие химические элементы в результате радиоактивных
превращений.

В настоящее время известно
около 280 стабильных изотопов химических элементов и более 2 тыс. радиоактивных
изотопов.

Как правило, природные
элементы представляют собой смесь нескольких изотопов,
поэтому возникает
задача их разделения. Как мы уже знаем, магнитное поле искривляет траекторию
движения заряженных частиц. На этом свойстве магнитного поля основано действие
устройства, называемого масс-спектрографом, который используется для
разделения изотопов по массовому числу.

Закрепления материала.

В заключении отметим, что предложенная
Иваненко и Гейзенбергом протонно-нейтронная модель строения ядра впоследствии
полностью была подтверждена экспериментально. Однако оставался нерешённым ещё
один вопрос: почему ядра атомов не распадаются на отдельные нуклоны?
Действительно, ведь мы знаем, что ядра атомов являются весьма устойчивыми
образованиями, хотя в их состав входят одинаково заряженные частицы — протоны.
А поскольку размеры ядер очень малы, то между протонами должны существовать
огромные силы электрического отталкивания — порядка 230 ньютонов, что для
частиц с массой порядка 10–27 степени килограмм является очень
большой силой. Поэтому возникает вопрос: какое взаимодействие препятствует
взаимному отталкиванию между одноимённо заряженными частицами?

Мы знаем, что, кроме
электромагнитных сил, в природе существуют также гравитационные силы. Может
быть, стабилизирующую роль в ядрах играет именно гравитационное взаимодействие
между нуклонами?

Нет, так как расчёты
показывают, что сила гравитационного притяжения между двумя протонами в ядре
пренебрежимо мала по сравнению с силой электростатического отталкивания. Этот
результат позволяет сделать вывод о том, что между ядерными частицами,
по-видимому, действуют силы особой природы, радикально отличающиеся от
гравитационных и электромагнитных сил. Эти силы принято называть ядерными
силами.
А так как ядерное взаимодействие во много раз превосходит
электромагнитное, то его ещё называют сильным взаимодействием.

Другой особенностью ядерных
сил является то, что они очень быстро убывают с увеличением расстояния между
ядерными частицами. Проще говоря, они действуют на расстояниях, сравнимыми с
размерами самих ядер.

Добавить комментарий