было в ЕГЭ
в условии
в решении
в тексте к заданию
в атрибутах
Категория
Атрибут
Всего: 112 1–20 | 21–40 | 41–60 | 61–80 …
Добавить в вариант
Груз массой m на пружине, совершая свободные колебания, проходит положение равновесия со скоростью Через половину периода колебаний он проходит положение равновесия, двигаясь в противоположном направлении с такой же по модулю скоростью Чему равен модуль изменения кинетической энергии груза за это время?
1)
2)
3)
4)
На рисунке представлен график зависимости потенциальной энергии математического маятника (относительно положения его равновесия) от времени. Какова полная механическая энергия маятника в момент времени, соответствующий на графике точке D? (Ответ дайте в джоулях.)
На рисунке представлен график зависимости потенциальной энергии математического маятника (относительно положения его равновесия) от времени. Какова кинетическая энергия маятника в момент времени ? (Ответ дайте в джоулях.)
На рисунке представлен график зависимости потенциальной энергии математического маятника (относительно положения его равновесия) от времени. Какова кинетическая энергия маятника в момент времени ? (Ответ дайте в джоулях.)
На рисунке дан график зависимости координаты материальной точки от времени. Какова частота колебаний? (Ответ дайте в герцах.)
Скорость тела, совершающего гармонические колебания меняется с течением времени в соответствии с уравнением где все величины выражены в СИ. Какова амплитуда колебаний скорости? (Ответ дайте в метрах в секунду.)
Колебательное движение тела задано уравнением:
где Чему равна амплитуда колебаний? (Ответ дайте в сантиметрах.)
Груз, подвешенный на пружине жёсткостью совершает свободные гармонические колебания. Какой должна быть жёсткость пружины, чтобы частота колебаний этого груза увеличилась в 2 раза? (Ответ дайте в ньютонах на метр.)
На рисунке изображена зависимость амплитуды установившихся колебаний маятника от частоты вынуждающей силы (резонансная кривая). Какова амплитуда колебаний этого маятника при резонансе? (Ответ дайте в сантиметрах.)
На графиках представлена зависимость координаты х центров масс тела а и тела б от времени t при гармонических колебаниях вдоль оси Ox.
На каком расстоянии друг от друга находятся центры масс тел а и б в момент времени 0 с? (Ответ дайте в сантиметрах.)
На рисунке представлены графики зависимости координаты х центров масс тела а и тела б от времени t при гармонических колебаниях вдоль оси Ox.
На каком расстоянии друг от друга находятся центры масс тел а и б в момент времени ? (Ответ дайте в сантиметрах.)
На рисунке представлены графики зависимости координаты х центров масс тела а и тела б от времени t при гармонических колебаниях вдоль оси Ox.
В какой момент времени между 0 и 4 с тело б двигалось в том же направлении и с такой же скоростью, которую имело тело а в момент времени ? (Ответ дайте в секундах.)
При свободных колебаниях груза на нити математического маятника его кинетическая энергия изменяется от 0 Дж до 50 Дж, максимальное значение потенциальной энергии 50 Дж. Чему равна полная механическая энергия груза при таких колебаниях? (Ответ выразите в джоулях.)
Груз изображенного на рисунке пружинного маятника совершает гармонические колебания между точками 1 и 3.
Как меняются кинетическая энергия груза маятника, скорость груза и жесткость пружины при движении груза маятника от точки 1 к точке 2?
Для каждой величины определите соответствующий характер изменения:
1) увеличивается;
2) уменьшается;
3) не изменяется.
Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.
Кинетическая энергия
груза маятника |
Скорость груза | Жесткость пружины |
Груз изображенного на рисунке пружинного маятника совершает гармонические колебания между точками 1 и 3.
Как меняются кинетическая энергия груза маятника, скорость груза и жесткость пружины при движении груза маятника от точки 2 к точке 3?
Для каждой величины определите соответствующий характер изменения:
1) увеличивается;
2) уменьшается;
3) не изменяется.
Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.
Кинетическая энергия
груза маятника |
Скорость груза | Жесткость пружины |
Груз изображенного на рисунке пружинного маятника может совершать гармонические колебания между точками 1 и 3.
Период колебаний груза Т. Графики А и Б представляют изменения физических величин, характеризующих колебания груза после начала колебаний из положения в точке 1.
ГРАФИКИ
А)
Б)
ФИЗИЧЕСКИЕ ВЕЛИЧИНЫ
1) Потенциальная энергия пружинного маятника;
2) Кинетическая энергия груза на пружине;
3) Проекция скорости груза на ось Ох;
4) Проекция ускорения груза на ось Ox
Установите соответствие между графиками и физическими величинами, зависимости которых от времени эти графики могут представлять.
К каждой позиции первого столбца подберите соответствующую позицию второго и запишите в таблицу выбранные цифры под соответствующими буквами.
Груз изображенного на рисунке пружинного маятника может совершать гармонические колебания между точками 1 и 3. Период колебаний груза Т.
Графики А и Б представляют изменения физических величин, характеризующих колебания груза после начала колебаний из положения в точке 1.
ГРАФИКИ
А)
Б)
ФИЗИЧЕСКИЕ ВЕЛИЧИНЫ
1) Потенциальная энергия пружинного маятника;
2) Кинетическая энергия груза на пружине;
3) Проекция скорости груза на ось Ох;
4) Проекция ускорения груза на ось Ох.
Установите соответствие между графиками и физическими величинами, зависимости которых от времени эти графики могут представлять.
К каждой позиции первого столбца подберите соответствующую позицию второго и запишите в таблицу выбранные цифры под соответствующими буквами.
Математический маятник совершает гармонические колебания между точками 1 и 2.
Графики А и Б представляют зависимость от времени t физических величин, характеризующих колебания. В начальный момент времени маятник находился в положении 1.
ГРАФИКИ
А)
Б)
ФИЗИЧЕСКИЕ ВЕЛИЧИНЫ
1) Проекция скорости на ось Оy;
2) Проекция ускорения на ось Ох;
3) Кинетическая энергия маятника;
4) Потенциальная энергия маятника относительно поверхности земли.
Установите соответствие между графиками и физическими величинами, зависимости которых от времени эти графики могут представлять.
К каждой позиции первого столбца подберите соответствующую позицию второго и запишите в таблицу выбранные цифры под соответствующими буквами.
Математический маятник совершает гармонические колебания между точками 1 и 2.
Графики А и Б представляют зависимость от времени t физических величин, характеризующих колебания. В начальный момент времени t маятник находился в положении 1.
ГРАФИКИ
А)
Б)
ФИЗИЧЕСКИЕ ВЕЛИЧИНЫ
1) Потенциальная энергия маятника относительно поверхности земли;
2) Кинетическая энергия маятника;
3) Проекция ускорения на ось Ох.
4) Проекция скорости на ось Ох.
Установите соответствие между графиками и физическими величинами, зависимости которых от времени эти графики могут представлять.
К каждой позиции первого столбца подберите соответствующую позицию второго и запишите в таблицу выбранные цифры под соответствующими буквами.
Груз массой m, подвешенный к длинной нерастяжимой нити длиной l, совершает колебания с периодом Угол максимального отклонения равен Что произойдет с периодом колебаний, максимальной кинетической энергией и частотой колебаний нитяного маятника, если при неизменном максимальном угле отклонения груза уменьшить длину нити?
К каждому элементу первого столбца подберите элемент из второго и внесите в строку ответов выбранные цифры под соответствующими буквами. Цифры могут повторяться.
ФИЗИЧЕСКИЕ ВЕЛИЧИНЫ
А) Период колебаний
Б) Максимальная кинетическая энергия
В) Частота колебаний
ИЗМЕНЕНИЕ ВЕЛИЧИНЫ
1) Увеличивается
2) Уменьшается
3) Не изменится
Всего: 112 1–20 | 21–40 | 41–60 | 61–80 …
Задачи на Механические колебания с решениями
Формулы, используемые на уроках «Задачи на Механические колебания».
Название величины |
Обозначение |
Единица измерения |
Формула |
Амплитуда колебаний |
A |
м |
|
Период колебаний |
T |
с |
T = 1 / v ;T = t / N |
Частота колебаний |
v |
Гц |
v = 1 / T ;v = N / t |
Число колебаний за какое-то время |
N |
N = t /T ;N = vt |
|
Время |
t |
с |
t = NT ;t = N / v |
Циклическая частота колебаний |
ω |
Гц |
|
Период колебаний пружинного маятника |
T |
c |
|
Период колебаний математического маятника |
T |
c |
|
Уравнение гармонических колебаний |
x(t) = Asin(ωt+φ0) |
ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ
Задача № 1.
Шарик на нити совершил 60 колебаний за 2 мин. Определите период и частоту колебаний шарика.
Задача № 2.
На рисунке изображен график зависимости координаты от времени колеблющегося тела.
По графику определите: 1) амплитуду колебаний; 2) период колебаний; 3) частоту колебаний; 4) запишите уравнение координаты.
Задача № 3.
Амплитуда незатухающих колебаний точки струны 2 мм, частота колебаний 1 кГц. Какой путь пройдет точка струны за 0,4 с? Какое перемещение совершит эта точка за один период колебаний?
Задача № 4.
Пользуясь графиком изменения координаты колеблющегося тела от времени, определить амплитуду, период и частоту колебаний. Записать уравнение зависимости x(t) и найти координату тела через 0,1 и 0,2 с после начала отсчета времени.
Задача № 5.
Какова длина математического маятника, совершающего гармонические колебания с частотой 0,5 Гц на поверхности Луны? Ускорение свободного падения на поверхности Луны 1,6 м/с2.
Задача № 6.
Груз массой 400 г совершает колебания на пружине с жесткостью 250 Н/м. Амплитуда колебаний 15 см. Найти полную механическую энергию колебаний и наибольшую скорость движения груза.
Задача № 7.
Частота колебаний крыльев вороны в полете равна в среднем 3 Гц. Сколько взмахов крыльями сделает ворона, пролетев путь 650 м со скоростью 13 м/с?
Задача № 8.
Гармоническое колебание описывается уравнением
Чему равны циклическая частота колебаний, линейная частота колебаний, начальная фаза колебаний?
Задача № 9.
Математический маятник длиной 0,99 м совершает 50 полных колебаний за 1 мин 40 с. Чему равно ускорение свободного падения в данном месте на поверхности Земли? (Можно принять π2 = 9,87.)
Задача № 10.
ОГЭ
Как и во сколько раз изменится период колебаний пружинного маятника, если шарик на пружине заменить другим шариком, радиус которого вдвое меньше, а плотность — в два раза больше?
Задача № 11.
ЕГЭ
Два математических маятника за одно и то же время совершают — первый N1 = 30, а второй — N2 = 40 колебаний. Какова длина каждого из них, если разность их длин Δl = 7 см?
Краткая теория для решения Задачи на Механические колебания.
Это конспект по теме «ЗАДАЧИ на Механические колебания». Выберите дальнейшие действия:
- Перейти к теме: ЗАДАЧИ на
- Посмотреть конспект по теме ДИНАМИКА: вся теория для ОГЭ (шпаргалка)
- Вернуться к списку конспектов по Физике.
- Проверить свои знания по Физике.
Механические колебания и волны
Механические колебания – периодически повторяющееся перемещение материальной точки, при котором она движется по какой-либо траектории поочередно в двух противоположных направлениях относительно положения устойчивого равновесия.
Отличительными признаками колебательного движения являются:
- повторяемость движения;
- возвратность движения.
Для существования механических колебаний необходимо:
- наличие возвращающей силы – силы, стремящейся вернуть тело в положение равновесия (при малых смещениях от положения равновесия);
- наличие малого трения в системе.
Механические волны – это процесс распространения колебаний в упругой среде.
Содержание
- Виды волн
- Гармонические колебания
- Амплитуда и фаза колебаний
- Период колебаний
- Частота колебаний
- Свободные колебания (математический и пружинный маятники)
- Вынужденные колебания
- Резонанс
- Длина волны
- Звук
- Основные формулы по теме «Механические колебания и волны»
Виды волн
- Поперечная – это волна, в которой колебание частиц среды происходит перпендикулярно направлению распространения волны.
Поперечная волна представляет собой чередование горбов и впадин.
Поперечные волны возникают вследствие сдвига слоев среды относительно друг друга, поэтому они распространяются в твердых телах.
- Продольная – это волна, в которой колебание частиц среды происходит в направлении распространения волны.
Продольная волна представляет собой чередование областей уплотнения и разряжения.
Продольные волны возникают из-за сжатия и разряжения среды, поэтому они могут возникать в жидких, твердых и газообразных средах.
Важно!
Механические волны не переносят вещество среды. Они переносят энергию, которая складывается из кинетической энергии движения частиц среды и потенциальной энергии ее упругой деформации.
Гармонические колебания
Гармонические колебания – простейшие периодические колебания, при которых координата тела меняется по закону синуса или косинуса:
где ( x ) – координата тела – смещение тела от положения равновесия в данный момент времени; ( A ) – амплитуда колебаний; ( omega t+varphi_0 ) – фаза колебаний; ( omega ) – циклическая частота; ( varphi_0 ) – начальная фаза.
Если в начальный момент времени тело проходит положение равновесия, то колебания являются синусоидальными.
Если в начальный момент времени смещение тела совпадает с максимальным отклонением от положения равновесия, то колебания являются косинусоидальными.
Скорость гармонических колебаний
Скорость гармонических колебаний есть первая производная координаты по времени:
где ( v ) – мгновенное значение скорости, т. е. скорость в данный момент времени.
Амплитуда скорости – максимальное значение скорости колебаний, это величина, стоящая перед знаком синуса или косинуса:
Ускорение гармонических колебаний
Ускорение гармонических колебаний есть первая производная скорости по времени:
где ( a ) – мгновенное значение ускорения, т. е. ускорение в данный момент времени.
Амплитуда ускорения – максимальное значение ускорения, это величина, стоящая перед знаком синуса или косинуса:
Если тело совершает гармонические колебания, то сила, действующая на тело, тоже изменяется по гармоническому закону:
где ( F ) – мгновенное значение силы, действующей на тело, т. е. сила в данный момент времени.
Амплитуда силы – максимальное значение силы, величина, стоящая перед знаком синуса или косинуса:
Тело, совершающее гармонические колебания, обладает кинетической или потенциальной энергией:
где ( W_k ) – мгновенное значение кинетической энергии, т. е. кинетическая энергия в данный момент времени.
Амплитуда кинетической энергии – максимальное значение кинетической энергии, величина, стоящая перед знаком синуса или косинуса:
При гармонических колебаниях каждую четверть периода происходит переход потенциальной энергии в кинетическую и обратно.
В положении равновесия:
- потенциальная энергия равна нулю;
- кинетическая энергия максимальна.
При максимальном отклонении от положения равновесия:
- кинетическая энергия равна нулю;
- потенциальная энергия максимальна.
Полная механическая энергия гармонических колебаний
При гармонических колебаниях полная механическая энергия равна сумме кинетической и потенциальной энергий в данный момент времени:
Важно!
Следует помнить, что период колебаний кинетической и потенциальной энергий в 2 раза меньше, чем период колебаний координаты, скорости, ускорения и силы. А частота колебаний кинетической и потенциальной энергий в 2 раза больше, чем частота колебаний координаты, скорости, ускорения и силы.
Графики зависимости кинетической, потенциальной и полной энергий всегда лежат выше оси времени.
Если сила сопротивления отсутствует, то полная энергия сохраняется. График зависимости полной энергии от времени есть прямая, параллельная оси времени (в отсутствие сил трения).
Амплитуда и фаза колебаний
Амплитуда колебаний – модуль наибольшего смещения тела от положения равновесия.
Обозначение – ( A, (X_{max}) ), единицы измерения – м.
Фаза колебаний – это величина, которая определяет состояние колебательной системы в любой момент времени.
Обозначение – ( varphi ), единицы измерения – рад (радиан).
Фаза колебаний – это величина, стоящая под знаком синуса или косинуса. Она показывает, какая часть периода прошла от начала колебаний.
Фаза гармонических колебаний в процессе колебаний изменяется.
( varphi_0 ) – начальная фаза колебаний.
Начальная фаза колебаний – величина, которая определяет положение тела в начальный момент времени.
Важно!
Путь, пройденный телом за одно полное колебание, равен четырем амплитудам.
Период колебаний
Период колебаний – это время одного полного колебания.
Обозначение – ( T ), единицы измерения – с.
Период гармонических колебаний – постоянная величина.
Частота колебаний
Частота колебаний – это число полных колебаний в единицу времени.
Обозначение – ( nu ), единицы времени – с-1 или Гц (Герц).
1 Гц – это частота такого колебательного движения, при котором за каждую секунду совершается одно полное колебание:
Период и частота колебаний – взаимно обратные величины:
Циклическая частота – это число колебаний за 2π секунд.
Обозначение – ( omega ), единицы измерения – рад/с.
Свободные колебания (математический и пружинный маятники)
Свободные колебания – колебания, которые совершает тело под действием внутренних сил системы за счет начального запаса энергии после того как его вывели из положения устойчивого равновесия.
Условия возникновения свободных колебаний:
- при выведении тела из положения равновесия должна возникнуть сила, стремящаяся вернуть его в положение равновесия;
- силы трения в системе должны быть достаточно малы. При наличии сил трения свободные колебания будут затухающими.
При наличии сил трения свободные колебания будут затухающими.
Затухающие колебания – это колебания, амплитуда которых с течением времени уменьшается.
Математический маятник – это материальная точка, подвешенная на невесомой нерастяжимой нити.
Период колебаний математического маятника:
Частота колебаний математического маятника:
Циклическая частота колебаний математического маятника:
Максимальное значение скорости колебаний математического маятника:
Максимальное значение ускорения колебаний математического маятника:
Период свободных колебаний математического маятника, движущегося вверх с ускорением или вниз с замедлением:
Период свободных колебаний математического маятника, движущегося вниз с ускорением или вверх с замедлением:
Период свободных колебаний математического маятника, горизонтально с ускорением или замедлением:
Мгновенное значение потенциальной энергии математического маятника, поднявшегося в процессе колебаний на высоту ( h ), определяется по формуле:
где ( l ) – длина нити, ( alpha ) – угол отклонения от вертикали.
Пружинный маятник – это тело, подвешенное на пружине и совершающее колебания вдоль вертикальной или горизонтальной оси под действием силы упругости пружины.
Период колебаний пружинного маятника:
Частота колебаний пружинного маятника:
Циклическая частота колебаний пружинного маятника:
Максимальное значение скорости колебаний пружинного маятника:
Максимальное значение ускорения колебаний пружинного маятника:
Мгновенную потенциальную энергию пружинного маятника можно найти по формуле:
Амплитуда потенциальной энергии – максимальное значение потенциальной энергии, величина, стоящая перед знаком синуса или косинуса:
Важно!
Если маятник не является ни пружинным, ни математическим (физический маятник), то его циклическую частоту, период и частоту колебаний по формулам, применимым к математическому и пружинному маятнику, рассчитать нельзя. В данном случае эти величины рассчитываются из формулы силы, действующей на маятник, или из формул энергий.
Вынужденные колебания
Вынужденные колебания – это колебания, происходящие под действием внешней периодически изменяющейся силы.
Вынужденные колебания, происходящие под действием гармонически изменяющейся внешней силы, тоже являются гармоническими и незатухающими. Их частота равна частоте внешней силы и называется частотой вынужденных колебаний.
Резонанс
Резонанс – явление резкого возрастания амплитуды колебаний, которое происходит при совпадении частоты вынуждающей силы и собственной частоты колебаний тела.
Условие резонанса:
( v_0 ) – собственная частота колебаний маятника.
На рисунке изображены резонансные кривые для сред с разным трением. Чем меньше трение, тем выше и острее резонансная кривая.
Явление резонанса учитывается при периодически изменяющихся нагрузках в машинах и различных сооружениях.
Также резонанс используется в акустике, радиотехнике и т. д.
Длина волны
Длина волны – это расстояние, на которое волна распространяется за один период, т. е. это кратчайшее расстояние между двумя точками среды, колеблющимися в одинаковых фазах.
Обозначение – ( lambda ), единицы измерения – м.
Расстояние между соседними гребнями или впадинами в поперечной волне и между соседними сгущениями или разряжениями в продольной волне равно длине волны.
Скорость распространения волны – это скорость перемещения горбов и впадин в поперечной волне и сгущений или разряжений в продольной волне.
Звук
Звук – это колебания упругой среды, воспринимаемые органом слуха.
Условия, необходимые для возникновения и ощущения звука:
- наличие источника звука;
- наличие упругой среды между источником и приемником звука;
- наличие приемника звука; • частота колебаний должна лежать в звуковом диапазоне;
- мощность звука должна быть достаточной для восприятия.
Звуковые волны – это упругие волны, вызывающие у человека ощущение звука, представляющие собой зоны сжатия и разряжения, передающиеся на расстояние с течением времени.
Классификация звуковых волн:
- инфразвук (( nu ) < 16 Гц);
- звуковой диапазон (16 Гц < ( nu ) < 20 000 Гц);
- ультразвук (( nu ) > 20 000 Гц).
Скорость звука – это скорость распространения фазы колебания, т. е. области сжатия и разряжения среды.
Скорость звука зависит
- от упругих свойств среды:
в воздухе – 331 м/с, в воде – 1400 м/с, в металле – 5000 м/с;
- от температуры среды:
в воздухе при температуре 0°С – 331 м/с,
в воздухе при температуре +15°С – 340 м/с.
Характеристики звуковой волны
- Громкость – это величина, характеризующая слуховые ощущения человека, зависящая от амплитуды колебаний в звуковой волне. Единицы измерения – дБ (децибел).
- Высота тона – это величина, характеризующая слуховые ощущения человека, зависящая от частоты колебаний в звуковой волне. Чем больше частота, тем выше звук. Чем меньше частота, тем ниже звук.
- Тембр – это окраска звука.
Музыкальный звук – это звук, издаваемый гармонически колеблющимся телом. Каждому музыкальному тону соответствует определенная длина и частота звуковой волны.
Шум – хаотическая смесь тонов.
Основные формулы по теме «Механические колебания и волны»
Механические колебания и волны
3 (59.31%) 144 votes
Амплитуда колебаний маятника зависит от частоты вынуждающей силы, определяемой по формуле A(w) = A0 * ωр² / | ωр² – ω |, где ω – частота вынуждающей силы (в ), A0 – постоянный параметр, ωр – резонансная частота. Найдите максимальную частоту ω, меньшую резонансной, для которой амплитуда колебаний превосходит величину A0 не более чем на 12.5%.
По своей сути, прикладная задача 10 Профильного ЕГЭ по математике — это «физика». Но вся физика в этой задаче уже решена за вас. Вам остается алгебра: сделать нужные математические преобразования. Иногда эти задачи бывают очень простые. Но последнее время стали попадаться сложные экземпляры, сложность которых заключается в запутанном вопросе. Несколько моих учеников не разобрались с условием задачи выше (см рисунок и текст условия в начале).
Во-первых, любые задачи я бы советовал читать по одной строчке и пытаться сразу записывать условия в виде формул.
Во-вторых, в задачах, связанных с физикой, все реальные величины (частота, модуль амплитуды, длина отрезка и т.д.) не могут быть отрицательными, что накладывает на них условие > 0.
Во многих задачах больше всего ошибок допускают в процентах. Нужно понимать, что проценты всегда считаются от какой-либо величины. Просто оперировать процентами (вычитать, складывать, умножать) опасно. Поэтому сразу же переводите их в коэффициенты перед величинами. Пример: какая-то вещь стоит x руб. Потом она подорожала на 20%. Значит новая цена определяется как 1.2*x. То есть коэффициент получился k = 1.2. Откуда ?
К старой цене x руб мы прибавляем 20 % от этой же старой цены, т.е. прибавляем (20/100) * x. Или же можно представить это как умножение на (100 + 20)/100.
Когда мы разобрались с процентами, то нужно записать ключевые неравенства для задачи и аккуратно решить их относительно искомой величины.
- Больше интересных статей читай по хэштегу #article@physics_math в группе Physics.Math.Code
- Помощь по физике, математике, программировании, информатике и другим техническим предметам найдете в Репетитор | IT mentor
- Наш канал в telegram (все книги паблика в одном месте): @physics_lib
https://tlgg.ru/physics_lib
https://tgtg.su/physics_lib
https://telete.in/physics_lib
https://ttttt.me/physics_lib
Фаза колебаний
Фаза колебаний — это аргумент периодически изменяющейся функции, описывающей колебательный или волновой процесс.
Для гармонических колебаний
$X(t)=Acos(ωt+φ_0)$
где $φ=ωt+φ_0$ — фаза колебания, $А$ — амплитуда, $ω$ — круговая частота, $t$ — время, $φ_0$ — начальная (фиксированная) фаза колебания: в момент времени $t=0$ $φ=φ_0$. Фаза выражается в радианах.
Фаза гармонического колебания при постоянной амплитуде определяет не только координату колеблющегося тела в любой момент времени, но и скорость и ускорение, которые тоже изменяются по гармоническому закону (скорость и ускорение гармонических колебаний — это первая и вторая производные по времени функции $X(t)=Acos(ωt+φ_0)$, которые, как известно, снова дают синус и косинус). Поэтому можно сказать, что фаза определяет при заданной амплитуде состояние колебательной системы в любой момент времени.
Два колебания с одинаковыми амплитудами и частотами могут отличаться друг от друга фазами. Так как $ω={2π}/{T}$, то
$φ-φ_0=ωt={2πt}/{T}$
Отношение ${t}/{T}$ показывает, какая часть периода прошла от момента начала колебаний. Любому значению времени, выраженному в долях периода, соответствует значение фазы, выраженной в радианах. Сплошная кривая — это зависимость координаты от времени и одновременно от фазы колебаний (верхние и нижние значения на оси абсцисс соответственно) для точки, совершающей гармонические колебания по закону:
$x=x_{m}cosω_{0}t$
Здесь начальная фаза равна нулю $φ_0=0$. В начальный момент времени амплитуда максимальна. Это соответствует случаю колебаний тела, прикрепленного к пружине (или маятника), которое в начальный момент времени отвели от положения равновесия и отпустили. Описание колебаний, начинающихся из положения равновесия (например, при кратковременном толчке покоящегося шарика), удобнее вести с помощью функции синуса:
$x=sinω_{0}t$
Как известно, $cosφ=sin(φ+{π}/{2})$, поэтому колебания, описываемые уравнениями $x=x_{m}cosω_{0}t$ и $x=sinω_{0}t$, отличаются друг от друга только фазами. Разность фаз, или сдвиг фаз, составляет ${π}/{2}$. Чтобы определить сдвиг фаз, нужно колеблющуюся величину выразить через одну и ту же тригонометрическую функцию — косинус или синус. Пунктирная кривая сдвинута относительно сплошной на ${π}/{2}$.
Сравнивая уравнения свободных колебаний, координаты, скорости и ускорения материальной точки, находим, что колебания скорости опережают по фазе на ${π}/{2}$, а колебания ускорения — на $π$ колебания смещения (координаты).
Затухающие колебания
Затухание колебаний — это уменьшение амплитуды колебаний с течением времени, обусловленное потерей энергии колебательной системой.
Свободные колебания всегда являются затухающими колебаниями.
Потери энергии колебаний в механических системах связаны с превращением ее в теплоту вследствие трения и сопротивления окружающей среды.
Так, механическая энергия колебаний маятника расходуется на преодоление сил трения и сопротивления воздуха, переходя при этом во внутреннюю энергию.
Амплитуда колебаний постепенно уменьшается, и через некоторое время колебания прекращаются. Такие колебания называются затухающими.
Чем больше силы сопротивления движению, тем быстрее прекращаются колебания. Например, в воде колебания прекращаются быстрее, чем в воздухе.
Упругие волны (механические волны)
Возмущения, распространяющиеся в пространстве, удаляясь от места их возникновения, называют волнами.
Упругие волны — это возмущения, распространяющиеся в твердой, жидкой и газообразной средах благодаря действию в них сил упругости.
Сами эти среды называют упругими. Возмущение упругой среды — это любое отклонение частиц этой среды от своего положения равновесия.
Возьмем, например, длинную веревку (или резиновую трубку) и прикрепим один из ее концов к стене. Туго натянув веревку, резким боковым движением руки создадим на ее незакрепленном конце кратковременное возмущение. Мы увидим, что это возмущение побежит вдоль веревки и, дойдя до стены, отразится назад.
Начальное возмущение среды, приводящее к появлению в ней волны, вызывается действием в ней какого-нибудь инородного тела, которое называют источником волны. Это может быть рука человека, ударившего по веревке, камешек, упавший в воду, и т. д.
Если действие источника носит кратковременный характер, то в среде возникает так называемая одиночная волна. Если же источник волны совершает длительное колебательное движение, то волны в среде начинают идти одна за другой. Подобную картину можно увидеть, поместив над ванной с водой вибрирующую пластину, имеющую наконечник, опущенный в воду.
Необходимым условием возникновения упругой волны является появление в момент возникновения возмущения сил упругости, препятствующих этому возмущению. Эти силы стремятся сблизить соседние частицы среды, если они расходятся, и отдалить их, когда они сближаются. Действуя на все более удаленные от источника частицы среды, силы упругости начинают выводить их из положения равновесия. Постепенно все частицы среды одна за другой вовлекаются в колебательное движение. Распространение этих колебаний и проявляется в виде волны.
В любой упругой среде одновременно существуют два вида движения: колебания частиц среды и распространение возмущения. Волна, в которой частицы среды колеблются вдоль направления ее распространения, называется продольной, а волна, в которой частицы среды колеблются поперек направления ее распространения, называется поперечной.
Продольная волна
Волна, в которой колебания происходят вдоль направления распространения волны, называется продольной.
В упругой продольной волне возмущения представляют собой сжатия и разрежения среды. Деформация сжатия сопровождается возникновением сил упругости в любой среде. Поэтому продольные волны могут распространяться во всех средах (и в жидких, и в твердых, и в газообразных).
Пример распространения продольной упругой волны изображен на рисунке. По левому концу длинной пружины, подвешенной на нитях, ударяют рукой. От удара несколько витков сближаются, возникает сила упругости, под действием которой эти витки начинают расходиться. Продолжая движение по инерции, они будут продолжать расходиться, минуя положение равновесия и образуя в этом месте разрежение. При ритмичном воздействии витки на конце пружины будут то сближаться, то отходить друг от друга, т. е. колебаться возле своего положения равновесия. Эти колебания постепенно передадутся от витка к витку вдоль всей пружины. По пружине распространятся сгущения и разрежения витков, или упругая волна.
Поперечная волна
Волны, в которых колебания происходят перпендикулярно направлению их распространения, называются поперечными.
В поперечной упругой волне возмущения представляют собой смещения (сдвиги) одних слоев среды относительно других. Деформация сдвига приводит к появлению сил упругости только в твердых телах: сдвиг слоев в газах и жидкостях возникновением сил упругости не сопровождается. Поэтому поперечные волны могут распространяться только в твердых телах.
Плоская волна
Плоская волна — это волна, у которой направление распространения одинаково во всех точках пространства.
В такой волне амплитуда не меняется со временем (по мере удаления от источника). Получить такую волну можно, если большую пластину, находящуюся в сплошной однородной упругой среде, заставить колебаться перпендикулярно плоскости. Тогда все точки среды, примыкающей к пластине, будут колебаться с одинаковыми амплитудами и одинаковыми фазами. Распространяться эти колебания будут в виде волн в направлении нормали к пластине, причем все частицы среды, лежащие в плоскостях, параллельных пластине, будут колебаться с одинаковыми фазами.
Геометрическое место точек, в которых фаза колебаний имеет одно и то же значение, называется волновой поверхностью, или фронтом волны.
С этой точки зрения плоской волне можно дать и следующее определение.
Волна называется плоской, если ее волновые поверхности представляют совокупность плоскостей, параллельных друг другу.
Линия, нормальная к волновой поверхности, называется лучом. Вдоль лучей происходит перенос энергии волны. Для плоских волн лучи — это параллельные прямые.
Уравнение плоской синусоидальной волны имеет вид:
$s=s_{m}sin[ω(t-{x}/{υ})+φ_0]$
где $s$ — смещение колеблющейся точки, $s_m$ — амплитуда колебаний, $ω$ — циклическая частота, $t$ — время, $х$ — текущая координата, $υ$ — скорость распространения колебаний или скорость волны, $φ_0$ — начальная фаза колебаний.
Сферическая волна
Сферической называется волна, волновые поверхности которой имеют вид концентрических сфер. Центр этих сфер называется центром волны.
Лучи в такой волне направлены вдоль радиусов, расходящихся от центра волны. На рисунке источником волны является пульсирующая сфера.
Амплитуда колебаний частиц в сферической волне обязательно убывает по мере удаления от источника. Энергия, излучаемая источником, равномерно распределяется по поверхности сферы, радиус которой непрерывно увеличивается по мере распространения волны. Уравнение сферической волны имеет вид:
$s={a_0}/{r}sin[ω(t-{r}/{υ})+φ_0]$
В отличие от плоской волны, где $s_m=A$ — амплитуда волны постоянная величина, в сферической волне она убывает с расстоянием от центра волны.
Длина и скорость волны
Любая волна распространяется с некоторой скоростью. Под скоростью волны понимают скорость распространения возмущения. Например, удар по торцу стального стержня вызывает в нем местное сжатие, которое затем распространяется вдоль стержня со скоростью около $5$ км/с.
Скорость волны определяется свойствами среды, в которой эта волна распространяется. При переходе волны из одной среды в другую ее скорость изменяется.
Длиной волны называется расстояние, на которое распространяется волна за время, равное периоду колебаний в ней.
Поскольку скорость волны — величина постоянная (для данной среды), то пройденное волной расстояние равно произведению скорости на время ее распространения. Таким образом, чтобы найти длину волны, надо скорость волны умножить на период колебаний в ней:
$λ=υT$
где $υ$ — скорость волны, $Т$ — период колебаний в волне, $λ$ (греческая буква лямбда) — длина волны.
Формула $λ=υT$ выражает связь длины волны с ее скоростью и периодом. Учитывая, что период колебаний в волне обратно пропорционален частоте $v$, т. е. $T={1}/{v}$, можно получить формулу, выражающую связь длины волны с ее скоростью и частотой:
$λ=υT=υ{1}/{v}$
откуда
$υ=λv$
Полученная формула показывает, что скорость волны равна произведению длины волны на частоту колебаний в ней.
Длина волны — это пространственный период волны. На графике волны длина волны определяется как расстояние между двумя ближайшими точками гармонической бегущей волны, находящимися в одинаковой фазе колебаний. Рисунок — это как бы мгновенные фотографии волн в колеблющейся упругой среде в моменты времени $t$ и $t+∆t$. Ось $х$ совпадает с направлением распространения волны, на оси ординат отложены смещения $s$ колеблющихся частиц среды.
Частота колебаний в волне совпадает с частотой колебаний источника, т. к. колебания частиц в среде являются вынужденными и не зависят от свойств среды, в которой распространяется волна. При переходе волны из одной среды в другую ее частота не изменяется, меняются лишь скорость и длина волны.