В данной статье рассматриваются вопросы нахождения значений арксинуса, арккосинуса, арктангенса и арккотангенса заданного числа. Для начала вводятся понятия арксинуса, арккосинуса, арктангенса и арккотангенса. Рассматриваем основные их значения, по таблицам, в том числе и Брадиса, нахождение этих функций.
Значения арксинуса, арккосинуса, арктангенса и арккотангенса
Необходимо разобраться в понятиях «значения арксинуса, арккосинуса, арктангенса, арккотангенса».
Определения арксинуса, арккосинуса, арктангенса и арккотангенса числа помогут разобраться в вычислении заданных функций. Значение тригонометрических функций угла равняется числу a, тогда автоматически считается величиной этого угла. Если a – число, тогда это и есть значение функции.
Для четкого понимания рассмотрим пример.
Если имеем арккосинус угла равного π3, то значение косинуса отсюда равно 12 по таблице косинусов. Данный угол расположен в промежутке от нуля до пи, значит, значение арккосинуса 12 получим π на 3. Такое тригонометрическое выражение записывается как arcos(12)=π3.
Величиной угла может быть как градус, так и радиан. Значение угла π3 равняется углу в 60 градусов (подробней разбирается в теме перевода градусов в радианы и обратно). Данный пример с арккосинусом 12 имеет значение 60 градусов. Такая тригонометрическая запись имеет вид arccos12=60°
Основные значения arcsin, arccos, arctg и arctg
Благодаря таблице синусов, косинусов, тангенсов и котангенсов, мы имеет точные значения угла при 0, ±30, ±45, ±60, ±90, ±120, ±135, ±150, ±180 градусов. Таблица достаточно удобна и из нее можно получать некоторые значения для аркфункций, которые имеют название как основные значения арксинуса, арккосинуса, арктангенса и арккотангенса.
Таблица синусов основных углов предлагает такие результаты значений углов:
sin(-π2)=-1, sin(-π3)=-32, sin(-π4)=-22, sin(-π6)=-12,sin 0 =0, sinπ6=12, sinπ4=22, sinπ3=32, sinπ2=1
Учитывая их, можно легко высчитать арксинус числа всех стандартных значений, начиная от -1 и заканчивая 1, также значения от –π2 до +π2 радианов, следуя его основному значению определения. Это и является основными значениями арксинуса.
Для удобного применения значений арксинуса занесем в таблицу. Со временем придется выучить эти значения, так как на практике приходится часто к ним обращаться. Ниже приведена таблица арксинуса с радианным и градусным значением углов.
α | -1 | -32 | -22 | -12 | 0 | 12 | 22 | 32 | |
arcsin αкак угол |
в радианах |
-π2 | -π3 | -π4 | -π6 | 0 | π6 | π4 | π3 |
в градусах | -90° | -60° | -45° | -30° | 0° | 30° | 45° | 60° | |
arcsin α как число | -π2 | -π3 | -π4 | -π6 | 0 | π6 | π4 | π3 |
Для получения основных значений арккосинуса необходимо обратиться к таблице косинусов основных углов. Тогда имеем:
cos 0=1, cos π6=32 , cos π4=22, cos π3=12, cosπ2=0,cos2π3=-12, cos3π4=-22, cos5π6=-32, cosπ=-1
Следуя из таблицы, находим значения арккосинуса:
arccos (-1)=π, arccos (-32)=5π6, arcocos (-22)=3π4, arccos-12=2π3, arccos 0 =π2, arccos 12=π3, arccos 22=π4, arccos32=π6, arccos 1 =0
Таблица арккосинусов.
α | -1 | -32 | -22 | -12 | 0 | 12 | 22 | 32 | 1 | |
arccos αкак угол |
в радианах |
π | 5π6 | 3π4 | 2π3 | π2 | π3 | π4 | π6 | 0 |
в градусах | 180° | 150° | 135° | 120° | 90° | 60° | 45° | 30° | 0° | |
arccos α как число | π | 5π6 | 3π4 | 2π3 | π2 | π3 | π4 | π6 | 0 |
Таким же образом, исходя из определения и стандартных таблиц, находятся значения арктангенса и арккотангенса, которые изображены в таблице арктангенсов и арккотангенсов ниже.
α | -3 | -1 | -33 | 0 | 33 | 1 | 3 | |
arctg aкак угол | в радианах | -π3 | -π4 | -π6 | 0 | π6 | π4 | π3 |
в градусах | -60° | -45° | -30° | 0° | 30° | 45° | 60° | |
arctg a как число | -π3 | -π4 | -π6 | 0 | π6 | π4 | π3 |
Нахождение значений по таблицам синусов, косинусов, тангенсов и котангенсов Брадиса
arcsin, arccos, arctg и arcctg
Для точного значения arcsin, arccos, arctg и arcctg числа а необходимо знать величину угла. Об этом сказано в предыдущем пункте. Однако, точное значении функции нам неизвестно. Если необходимо найти числовое приближенное значение аркфункций, применяют таблицу синусов, косинусов, тангенсов и котангенсов Брадиса.
Такая таблица позволяет выполнять довольно точные вычисления, так как значения даются с четырьмя знаками после запятой. Благодаря этому числа выходят точными до минуты. Значения arcsin, arccos, arctg и arcctg отрицательных и положительных чисел сводится к нахождению формул arcsin, arccos, arctg и arcctg противоположных чисел вида arcsin(-α)=-arcsin α, arccos(-α)=π-arccos α, arctg(-α)=-arctg α, arcctg(-α)=π-arcctg α.
Рассмотрим решение нахождения значений arcsin, arccos, arctg и arcctg с помощью таблицы Брадиса.
Если нам необходимо найти значение арксинуса 0,2857, ищем значение, найдя таблицу синусов. Видим, что данному числу соответствует значение угла sin 16 градусов и 36 минут. Значит, арксинус числа 0,2857 – это искомый угол в 16 градусов и 36 минут. Рассмотрим на рисунке ниже.
Правее градусов имеются столбцы называемые поправки. При искомом арксинусе 0,2863 используется та самая поправка в 0,0006, так как ближайшим числом будет 0,2857. Значит, получим синус 16 градусов 38 минут и 2 минуты, благодаря поправке. Рассмотрим рисунок с изображением таблицы Брадиса.
Бывают ситуации, когда искомого числа нет в таблице и даже с поправками его не найти, тогда отыскивается два самых близких значения синусов. Если искомое число 0,2861573, то числа 0,2860 и 0,2863 являются ближайшими его значениями. Этим числам соответствуют значения синуса 16 градусов 37 минут и 16 градусов и 38 минут. Тогда приближенное значение данного числа можно определить с точностью до минуты.
Таким образом находятся значения arcsin, arccos, arctg и arcctg.
Нахождение значения arcsin, arccos, arctg и arcctg
Чтобы найти арксинус через известный арккосинус данного числа, нужно применить тригонометрические формулы arcsin α+arccos α=π2, arctg α+arcctg α=π2 (не обходимо просмотреть тему формул суммы арккосинуса и арксинуса, суммы арктангенса и арккотангенса).
При известном arcsin α= -π12 необходимо найти значение arccos α, тогда необходимо вычислить арккосинус по формуле:
arccos α=π2−arcsin α=π2−(−π12)=7π12.
Если необходимо найти значение арктангенса или арккотангенса числа a с помощью известного арксинуса или арккосинуса, необходимо производить долгие вычисления, так как стандартных формул нет. Рассмотрим на примере.
Если дан арккосинус числа а равный π10, а вычислить арктангенс данного числа поможет таблица тангенсов. Угол π10 радиан представляет собой 18 градусов, тогда по таблице косинусов видим, что косинус 18 градусов имеет значение 0,9511, после чего заглядываем в таблицу Брадиса.
При поиске значения арктангенса 0,9511 определяем, что значение угла имеет 43 градуса и 34 минуты. Рассмотрим по таблице ниже.
Фактически, таблица Брадиса помогает в нахождении необходимого значения угла и при значении угла позволяет определить количество градусов.
-
Определение
- График арктангенса
- Свойства арктангенса
- Таблица арктангенсов
Определение
Арктангенс (arctg или arctan) – это обратная тригонометрическая функция.
Арктангенс x определяется как функция, обратная к тангенсу x, где x – любое число (x∈ℝ).
Если тангенс угла у равен х (tg y = x), значит арктангенс x равняется y:
arctg x = tg-1 x = y, причем -π/2<y<π/2
Примечание: tg-1x означает обратный тангенс, а не тангенс в степени -1.
Например:
arctg 1 = tg-1 1 = 45° = π/4 рад
График арктангенса
Функция арктангенса пишется как y = arctg (x). График в общем виде выглядит следующим образом:
Свойства арктангенса
Ниже в табличном виде представлены основные свойства арктангенса с формулами.
Таблица арктангенсов
arctg x (°) | arctg x (рад) | x |
-90° | -π/2 | -∞ |
-71.565° | -1.2490 | -3 |
-63.435° | -1.1071 | -2 |
-60° | -π/3 | -√3 |
-45° | -π/4 | -1 |
-30° | -π/6 | -1/√3 |
-26.565° | -0.4636 | -0.5 |
0° | 0 | 0 |
26.565° | 0.4636 | 0.5 |
30° | π/6 | 1/√3 |
45° | π/4 | 1 |
60° | π/3 | √3 |
63.435° | 1.1071 | 2 |
71.565° | 1.2490 | 3 |
90° | π/2 | ∞ |
microexcel.ru
Обра́тные тригонометри́ческие фу́нкции (круговые функции, аркфункции) — математические функции, являющиеся обратными к тригонометрическим функциям. К обратным тригонометрическим функциям обычно относят шесть функций:
Название обратной тригонометрической функции образуется от названия соответствующей ей тригонометрической функции добавлением приставки «арк-» (от лат. arcus — дуга). Это связано с тем, что геометрически значение обратной тригонометрической функции можно связать с длиной дуги единичной окружности (или углом, стягивающим эту дугу), соответствующей тому или иному отрезку. Так, обычный синус позволяет по дуге окружности найти стягивающую её хорду, а обратная функция решает противоположную задачу. Манера обозначать таким образом обратные тригонометрических функции появилась у австрийского математика XVIII века Карла Шерфера и закрепилась благодаря Лагранжу. Впервые специальный символ для обратной тригонометрической функции использовал Даниил Бернулли в 1729 году. Английская и немецкая математические школы до конца XIX века предлагали иные обозначения: но они не прижились[1].
Лишь изредка в иностранной литературе, также как и в научных/инженерных калькуляторах, пользуются обозначениями типа sin−1, cos−1 для арксинуса, арккосинуса и т. п.[2], — такая запись считается не очень удобной, так как возможна путаница с возведением функции в степень −1.
Тригонометрические функции периодичны, поэтому функции, обратные к ним, многозначны. То есть, значение аркфункции представляет собой множество углов (дуг), для которых соответствующая прямая тригонометрическая функция равна заданному числу. Например, означает множество углов , синус которых равен . Из множества значений каждой аркфункции выделяют её главные значения (см. графики главных значений аркфункций ниже), которые обычно и имеют в виду, говоря об арксинусе, арккосинусе и т. д.
В общем случае при условии все решения уравнения можно представить в виде [3]
Основное соотношение[править | править код]
Функция arcsin[править | править код]
График функции
Аркси́нусом числа x называется такое значение угла y, выраженного в радианах, для которого
Функция непрерывна и ограничена на всей своей области определения. Она является строго возрастающей.
Свойства функции arcsin[править | править код]
Получение функции arcsin[править | править код]
Дана функция . На всей своей области определения она является кусочно-монотонной, и, значит, на всей числовой прямой обратное соответствие функцией не является. Поэтому рассмотрим отрезок , на котором функция строго монотонно возрастает и принимает все значения своей области значений только один раз. Тогда на отрезке существует обратная функция , график которой симметричен графику функции относительно прямой .
Функция arccos[править | править код]
График функции
Аркко́синусом числа x называется такое значение угла y в радианной мере, для которого
Функция непрерывна и ограничена на всей своей области определения. Она является строго убывающей и неотрицательной.
Свойства функции arccos[править | править код]
Получение функции arccos[править | править код]
Дана функция . На всей своей области определения она является кусочно-монотонной, и, значит, на всей числовой прямой обратное соответствие функцией не является. Поэтому рассмотрим отрезок , на котором функция строго монотонно убывает и принимает все значения своей области значений только один раз. Тогда на отрезке существует обратная функция , график которой симметричен графику функции относительно прямой .
Функция arctg[править | править код]
График функции
Аркта́нгенсом числа x называется такое значение угла выраженное в радианах, для которого
Функция определена на всей числовой прямой, всюду непрерывна и ограничена. Она является строго возрастающей.
Свойства функции arctg[править | править код]
Получение функции arctg[править | править код]
Дана функция . На всей своей области определения она является кусочно-монотонной, и, значит, обратное соответствие функцией не является. Поэтому рассмотрим интервал , на котором функция строго монотонно возрастает и принимает все значения своей области значений только один раз. Тогда на интервале существует обратная функция , график которой симметричен графику функции относительно прямой .
Функция arcctg[править | править код]
График функции
Арккота́нгенсом числа x называется такое значение угла y (в радианной мере измерения углов), для которого
Функция определена на всей числовой прямой, всюду непрерывна и ограничена. Она является строго убывающей и всюду положительной.
Свойства функции arcctg[править | править код]
Получение функции arcctg[править | править код]
Дана функция . На всей своей области определения она является кусочно-монотонной, и, значит, обратное соответствие функцией не является. Поэтому рассмотрим интервал , на котором функция строго монотонно убывает и принимает все значения своей области значений только один раз. Тогда на интервале существует обратная функция , график которой симметричен графику функции относительно прямой .
График арккотангенса получается из графика арктангенса, если последний отразить относительно оси ординат (то есть заменить знак аргумента, ) и сместить вверх на π/2; это вытекает из вышеупомянутой формулы
Функция arcsec[править | править код]
График функции
Арксе́кансом числа x называется такое значение угла y (в радианной мере измерения углов), для которого
Функция непрерывна и ограничена на всей своей области определения. Она является строго возрастающей и всюду неотрицательной.
Свойства функции arcsec[править | править код]
Функция arccosec[править | править код]
График функции
Арккосе́кансом числа x называется такое значение угла y (в радианной мере измерения углов), для которого
Функция непрерывна и ограничена на всей своей области определения. Она является строго убывающей.
Свойства функции arccosec[править | править код]
Разложение в ряды[править | править код]
Производные от обратных тригонометрических функций[править | править код]
Все обратные тригонометрические функции бесконечно дифференцируемы в каждой точке своей области определения. Первые производные:
производные обратных тригонометрических функций
Функция | Производная | Примечание |
---|---|---|
Доказательство Найти производную арксинуса можно при помощи взаимно обратных функций. |
||
Доказательство Найти производную арккосинуса можно при помощи данного тождества: |
||
Доказательство Найти производную арктангенса можно при помощи взаимнообратной функции: |
||
Доказательство Найти производную арккотангенса можно при помощи данного тождества: |
||
Доказательство Найти производную арксеканса можно при помощи тождества:
Теперь находим производную обеих частей этого тождества.
Получается.
|
||
Доказательство Найти производную арккосеканса можно при помощи данного тождества: |
Интегралы от обратных тригонометрических функций[править | править код]
Неопределённые интегралы[править | править код]
Для действительных и комплексных x:
Для действительных x ≥ 1:
- См. также Список интегралов от обратных тригонометрических функций
Использование в геометрии[править | править код]
Обратные тригонометрические функции используются для вычисления углов треугольника, если известны его стороны, например, с помощью теоремы косинусов.
В прямоугольном треугольнике эти функции от отношений сторон сразу дают угол.
Так, если катет длины является противолежащим для угла , то
Связь с натуральным логарифмом[править | править код]
Для вычисления значений обратных тригонометрических функций от комплексного аргумента удобно использовать формулы, выражающие их через натуральный логарифм:
См. также[править | править код]
- Обратные гиперболические функции
- Теорема Данжуа — Лузина
Примечания[править | править код]
Ссылки[править | править код]
- Weisstein, Eric W. Обратные тригонометрические функции (англ.) на сайте Wolfram MathWorld.
- Математическая энциклопедия / Гл. ред. И. М. Виноградов. — М.: «Советская Энциклопедия», 1982. — [dic.academic.ru/dic.nsf/enc_mathematics/3612/%D0%9E%D0%91%D0%A0%D0%90%D0%A2%D0%9D%D0%AB%D0%95 Т. 3. — с. 1135].
- Обратные тригонометрические функции — статья из Большой советской энциклопедии. — М.: «Советская Энциклопедия», 1974. — Т. 18. — с. 225.
- Обратные тригонометрические функции // Энциклопедический словарь юного математика / Савин А.П. — М.: Педагогика, 1985. — С. 220—221. — 352 с.
- Построение графиков обратных тригонометрических функций онлайн
- Онлайн калькулятор: обратные тригонометрические функции
Некоторые внешние ссылки в этой статье ведут на сайты, занесённые в спам-лист. Эти сайты могут нарушать авторские права, быть признаны неавторитетными источниками или по другим причинам быть запрещены в Википедии. Редакторам следует заменить такие ссылки ссылками на соответствующие правилам сайты или библиографическими ссылками на печатные источники либо удалить их (возможно, вместе с подтверждаемым ими содержимым). Список проблемных доменов
|
- Понятие арктангенса
- График и свойства функции y=arctgx
- Уравнение tgx=a
- Понятие арккотангенса
- График и свойства функции y=arcctgx
- Уравнение ctgx=a
- Формулы преобразований аркфункци
- Примеры
Определение тангенса и котангенса через отношение сторон прямоугольника и с помощью касательной к числовой окружности – см. §3 данного справочника.
Свойства функции y=tgx на всей области определения (xinmathbb{R}) – см. §6 данного справочника.
Свойства функции y=ctgx на всей области определения (xinmathbb{R}) – см. §7 данного справочника.
Определение и свойства взаимно обратных функций – см. §2 справочника для 9 класса.
п.1. Понятие арктангенса
В записи (y=tgx) аргумент x – это значение угла (в градусах или радианах), функция y – тангенс угла, действительное число в пределах от (-infty;) до (+infty). Т.е., по заданному углу мы находим тангенс.
Можно поставить обратную задачу: по заданному тангенсу найти угол. Но одному значению тангенса соответствует бесконечное количество углов. Например, если (tgx=1), то (x=fracpi4+pi k, kinmathbb{Z}); если (tgx=0), то (x=pi k, kinmathbb{Z}) и т.д.
Поэтому, чтобы построить однозначную обратную функцию, ограничим значения углов x главной ветвью тангенса: (-fracpi2leq xleq fracpi2) (правая половина числовой окружности, вся ось тангенсов).
Арктангенсом числа (a (ainmathbb{R})) называется такое число (xin[-fracpi2; fracpi2]), тангенс которого равен (a). $$ arctg a=x Leftrightarrow begin{cases} tgx=a\ -fracpi2leq xleq fracpi2 end{cases} $$
Например:
(arctgfrac{1}{sqrt{3}}=fracpi6, arctg(-sqrt{3})=-frac{pi}{3}, arctg1=fracpi4).
п.2. График и свойства функции y=arctgx
1. Область определения (xinmathbb{R}).
2. Функция ограничена сверху и снизу асимптотами (-fracpi2leq arctgxleq fracpi2).
Область значений (yinleft(-fracpi2; fracpi2right))
3. Функция стремится к максимальному значению (y_{max}=fracpi2 text{при} xrightarrow +infty)
Функция стремится к минимальному значению (y_{min}=-fracpi2 text{при} xrightarrow -infty)
Функция имеет две горизонтальные асимптоты (y=pmfracpi2).
4. Функция возрастает на всей области определения.
5. Функция непрерывна на всей области определения.
6. Функция нечётная: (arctg(-x)=-arctg(x)).
п.3. Уравнение tgx=a
На оси тангенсов каждому углу на числовой окружности в интервале (-fracpi2leq xleq fracpi2) соответствует одно действительное число.
Например: |
|
2) Решим уравнение (tgx=2) Числу (frac{1}{sqrt{3}}) на оси тангенсов соответствует угол (arctg2) на числовой окружности. Учитывая период тангенса (pi), получаем ответ: (x=arctg2+pi k) |
В общем случае:
Уравнение (tgx=a) имеет решения $$ x=arctga+pi k, kinmathbb{Z}, ainmathbb{R} $$
п.4. Понятие арккотангенса
По аналогии с арктангенсом, арккотангенс определяется на главной ветви котангенса: (0lt xlt pi) (верхняя половина числовой окружности, вся ось котангенсов).
Арккотангенсом числа (a (ainmathbb{R})) называется такое число (xin(0;pi)), котангенс которого равен (a). $$ arcctg a=x Leftrightarrow begin{cases} ctgx=a\ 0lt xlt pi end{cases} $$
Например:
(arcctgfrac{1}{sqrt{3}}=fracpi3, arcctg(-sqrt{3})=-frac{pi}{6}, arcctg1=fracpi4).
п.5. График и свойства функции y=arcctgx
1. Область определения (xinmathbb{R}).
2. Функция ограничена сверху и снизу асимптотами (0lt arcctgxlt pi).
Область значений (yin(0;pi))
3. Функция стремится к максимальному значению (y_{max}=pi text{при} xrightarrow -infty)
Функция стремится к минимальному значению (y_{min}=0 text{при} xrightarrow +infty)
Функция имеет две горизонтальные асимптоты (y=0 text{и} y=pi).
4. Функция убывает на всей области определения.
5. Функция непрерывна на всей области определения.
6. Функция ни чётная, ни нечётная.
п.6. Уравнение ctgx=a
В общем случае:
Уравнение (ctgx=a) имеет решения $$ x=arcctga+pi k, kinmathbb{Z}, ainmathbb{R} $$
Часто уравнение (ctgx=a) преобразуют в уравнение (tgx=frac{1}{a}), и ищут его корни.
Например:
1) (ctgx=sqrt{3})
(x=fracpi6+pi k)
Можно также преобразовать уравнение в (tg x=frac{1}{sqrt{3}})
Получаем тот же ответ: (x=fracpi6+pi k)
2) (ctgx=2)
(x=arcctg2+pi k)
Можно также преобразовать уравнение в (tg x=frac{1}{2})
Получаем ответ: (x=arctgfrac12+pi k)
Очевидно, что (arcctg 2=arctgfrac{1}{2}) (см. ниже формулы для аркфункций).
п.7. Формулы преобразования аркфункций
begin{gather*} arcsin(sinalpha)=alpha, alphainleft[-fracpi2;fracpi2right], arccos(cosalpha)=alpha, alphain[0;pi]\ arctg(tgalpha)=alpha, alphainleft(-fracpi2;fracpi2right), arcctg(ctgalpha)=alpha, alphain(0;pi) end{gather*}
begin{gather*} arcsin(-alpha)=-arcsinalpha, arccos(-alpha)=pi-arccosalpha\ arctg(-alpha)=-arctgalpha, arcctg(-alpha)=pi-arcctgalpha end{gather*}
begin{gather*} arcsinalpha+arccosalpha=fracpi2, arctgalpha+arcctgalpha=fracpi2 end{gather*}
Сводная таблица тригонометрических функций от аркфункций
arcsin | arccos | arctg | arcctg | |
sin | begin{gather*} a\ ain[-1;1] end{gather*} | begin{gather*} sqrt{1-a^2}\ ain[-1;1] end{gather*} | begin{gather*} frac{a}{sqrt{1+a^2}}\ ainmathbb{R} end{gather*} | begin{gather*} frac{1}{sqrt{1+a^2}}\ ainmathbb{R} end{gather*} |
cos | begin{gather*} sqrt{1-a^2}\ ain[-1;1] end{gather*} | begin{gather*} a\ ain[-1;1] end{gather*} | begin{gather*} frac{1}{sqrt{1+a^2}}\ ainmathbb{R} end{gather*} | begin{gather*} frac{a}{sqrt{1+a^2}}\ ainmathbb{R} end{gather*} |
tg | begin{gather*} frac{a}{sqrt{1-a^2}}\ ain(-1;1) end{gather*} | begin{gather*} frac{sqrt{1-a^2}}{a}\ ain(-1;0)cup(0;1) end{gather*} | begin{gather*} a\ ainmathbb{R} end{gather*} | begin{gather*} frac{1}{a}\ ane 0 end{gather*} |
ctg | begin{gather*} frac{sqrt{1-a^2}}{a}\ ain(-1;0)cup(0;1) end{gather*} | begin{gather*} frac{a}{sqrt{1-a^2}}\ ain(-1;1) end{gather*} | begin{gather*} frac{1}{a}\ ane 0 end{gather*} | begin{gather*} a\ ainmathbb{R} end{gather*} |
Аркфункции, выраженные через другие аркфункции
arcsin | |
arccos | $$ arcsina= begin{cases} arccossqrt{1-a^2}, 0leq aleq 1\ -arccossqrt{1-a^2}, -1leq alt 0 end{cases} $$ |
arctg | $$ arcsina=arctgfrac{a}{sqrt{1-a^2}}, -1lt alt 1 $$ |
arcctg | $$ arcsina= begin{cases} arcctgfrac{sqrt{1-a^2}}{a}, 0lt aleq 1\ -arcctgfrac{sqrt{1-a^2}}{a}-pi, -1leq alt 0 end{cases} $$ |
arccos | |
arcsin | $$ arccosa= begin{cases} arcsinsqrt{1-a^2}, 0leq aleq 1\ pi-arcsinsqrt{1-a^2}, -1leq alt 0 end{cases} $$ |
arctg | $$ arccosa= begin{cases} arcctgfrac{sqrt{1-a^2}}{a}, 0lt aleq 1\ pi+arctgfrac{sqrt{1-a^2}}{a}, -1leq alt 0 end{cases} $$ |
arcctg | $$ arccosa=arcctgfrac{a}{sqrt{1-a^2}}, -1lt alt 1 $$ |
arctg | |
arcsin | $$ arctga=arcsinfrac{a}{sqrt{1+a^2}}, ainmathbb{R} $$ |
arccos | $$ arctga= begin{cases} arccosfrac{1}{sqrt{1+a^2}}, ageq 0\ -arccosfrac{1}{sqrt{1+a^2}}, alt 0 end{cases} $$ |
arcctg | $$ arctga=arcctgfrac{1}{a}, ane 0 $$ |
arcctg | |
arcsin | $$ arcctga= begin{cases} arcsinfrac{1}{sqrt{1+a^2}}, ageq 0\ pi-arcsinfrac{1}{sqrt{1+a^2}}, alt 0 end{cases} $$ |
arccos | $$ arcctga=arccosfrac{a}{sqrt{1+a^2}}, ainmathbb{R} $$ |
arctg | $$ arcctga=arctgfrac{1}{a}, ane 0 $$ |
п.8. Примеры
Пример 1. Найдите функцию, обратную арктангенсу. Постройте графики арктангенса и найденной функции в одной системе координат.
Для (y=arctgx) область определения (xinmathbb{R}), область значений (-fracpi2leq yleq fracpi2).
Обратная функция (y=tgx) должна иметь ограниченную область определения (-fracpi2leq xleq fracpi2) (главная ветвь) и область значений (yinmathbb{R}).
Строим графики:
Графики симметричны относительно прямой y=x.
Обратная функция найдена верно.
Пример 2. Решите уравнения:
a) (tg x=-1) (x=fracpi4+pi k) |
б) (ctgx=-1) (x=frac{3pi}{4}+pi k) Если решать через (tgx=-1) |
в) (tg x=-5) (x=arctg(-5)+pi k=-arctg5+pi k) |
г) (ctgx=3) (x=arcctg3+pi k) Если решать через (tgx=frac13) |
Пример 3. Вычислите:
a) (2arccosleft(-frac12right)+arctg(-1)+arcsinfrac{sqrt{2}}{2}=2cdotfrac{2pi}{3}-fracpi4+fracpi4=frac{4pi}{3})
б) (arcsin1-arccosfrac{sqrt{3}}{2}-arctg(sqrt{-3})=arcsin1-fracpi3+fracpi3=arcsin1)
в) (arctg4+arcsin0-arccos1=arctg4+0-0=arctg4)
г) (5-2arccos0+arcsinfrac{sqrt{2}}{2}+3arccosfrac{sqrt{2}}{2}=5-2cdotfracpi2+fracpi4+3cdotfracpi4=5)
Пример 4. Постройте графики функций:
(a) y=arccosleft(frac{1}{x}right)+arccosleft(-frac{1}{x}right))
Сумма арккосинусов (arccosa+arccos(-a)=pi), где (-1leq aleq 1).
Получаем систему для определения ОДЗ: begin{gather*} -1leq frac{1}{x}leq 1Rightarrow 0leq frac{1}{x}+1leq 2Rightarrow begin{cases} frac{x+1}{x}geq 0\ frac{x+1}{x}leq 2 end{cases} Rightarrow begin{cases} frac{x+1}{x}geq 0\ frac{-x+1}{x}leq 0 end{cases} Rightarrow begin{cases} frac{x+1}{x}geq 0\ frac{x-1}{x}geq 0 end{cases} Rightarrow\ Rightarrow left[ begin{array}{l l} begin{cases} xgt 0\ x+1geq 0\ x-1geq 0 end{cases} \ begin{cases} xlt 0\ x+1leq 0\ x-1leq 0 end{cases} end{array} right. Rightarrow left[ begin{array}{l l} begin{cases} xgt 0\ xgeq 1 end{cases} \ begin{cases} xlt 0\ xleq -1 end{cases} end{array} right. Rightarrow xleq -1cup xgeq 1 end{gather*} Заметим, что используя модуль, тот же результат можно получить значительно быстрей: $$ -1leqfrac{1}{x}leq 1Leftrightarrow |frac{1}{x}|leq 1Leftrightarrow |x|geq 1 $$ Таким образом, ОДЗ – вся числовая прямая, кроме (xnotin(-1;1).) $$ y=arccosleft(frac{1}{x}right)+arccosleft(-frac{1}{x}right)Leftrightarrow begin{cases} y=pi\ xnotin (-1;1) end{cases} $$ Строим график:
(б) y=arcctg(sqrt{x})+arcctg(-sqrt{x}))
Сумма арккотангенсов (arcctga+arcctg(-a)=pi), где (ainmathbb{R})
ОДЗ ограничено требованием к подкоренному выражению: (xgeq 0)
$$ y=arcctgleft(sqrt{x}right)+arcctgleft(-sqrt{x}right)Leftrightarrow begin{cases} y=pi\ xgeq 0 end{cases} $$ Строим график:
Пример 5*. Запищите в порядке возрастания:
$$ arctgleft(fracpi4right), arcsinleft(fracpi4right), arctg1 $$
Способ 1. С помощью числовой окружности.
Отмечаем точку (fracpi4) на оси синусов (ось OY) и точки (fracpi4) и 1 на оси тангенсов (касательная к окружности). |
|
Способ 2. Аналитический Арктангенс – функция возрастающая: (fracpi4approx 0,79lt 1Rightarrow arctgleft(fracpi4right)lt arctg 1) Сравним (arctg1=fracpi4=arcsinleft(frac{sqrt{2}}{2}right)) и (arcsinleft(fracpi4right)) (frac{sqrt{2}}{2} ? fracpi4) – возведем в квадрат обе части (frac12 ? frac{pi^2}{16}Leftrightarrow 8 ? pi^2) (8ltpi^2Rightarrowfrac{sqrt{2}}{2}ltfracpi4 Rightarrow arcsinleft(frac{sqrt{2}}{2}right)lt arcsinleft(fracpi4right)Rightarrow 1lt arcsinleft(fracpi4right)) Получаем: $$ arctgleft(fracpi4right)lt underbrace{arctg1}_{=fracpi4} lt arcsinleft(fracpi4right) $$ |
Пример 6*. Решите уравнения:
a) (arccosx=arctgx)
ОДЗ определяется ограничением для арккосинуса: (-1leq xleq 1)
Арккосинус ограничен (0leq arccosxleq pi), арктангенс (-fracpi2leq arctgxltfracpi2)
Т.к. по условию они равны, ограничение сужается до (0leq arctgxlt fracpi2) и (0leq arccos xlt fracpi2) $$ arccosx=arctgxLeftrightarrow begin{cases} x=cos(arctgx)\ -1leq xleq 1\ 0leq arctgxltfracpi2\ 0leq arccosxltfracpi2 end{cases} Leftrightarrow begin{cases} x=cos(arctgx)\ -1leq xleq 1\ 0leq x\ 0lt xleq 1 end{cases} Leftrightarrow begin{cases} x=cos(arctgx)\ 0lt xlt 1 end{cases} $$ Для решения можно воспользоваться готовой формулой для (cos(arctgx)).
Выведем её. Пуcть (arctgx=varphi). Тогда (x=tgvarphi) и $$ cos(arctgx)=cosvarphi=sqrt{frac{1}{1+tg^2varphi}}=sqrt{frac{1}{1+x^2}} $$ Получаем уравнение: $$ x=sqrt{frac{1}{1+x^2}}Rightarrow x^2=frac{1}{1+x^2}Rightarrow x^2(1+x^2)=1Rightarrow x^4+x^2-1=0 $$ $$ D=1+4=5, x^2=frac{-1pmsqrt{5}}{2} $$ Квадрат числа не может быть отрицательным. Остаётся корень (x^2=frac{sqrt{5}-1}{2})
Откуда (x=pmsqrt{frac{sqrt{5}-1}{2}})
По условию (0lt xlt 1). Получаем (x=sqrt{frac{sqrt{5}-1}{2}})
Ответ: (sqrt{frac{sqrt{5}-1}{2}})
б) (arccos^2x+arcsin^2x=frac{5pi^2}{36})
Используем формулу для суммы: (arccosx+arcsinx=fracpi2)
Получаем: begin{gather*} arccos^2x+left(fracpi2-arccosxright)^2=frac{5pi^2}{36}\ arccos^2x+frac{pi^2}{4}-pi arccosx+arccos^2x=frac{5pi^2}{36}\ 2arccos^2x-pi arccosx+frac{pi^2}{9}=0\ D=(-pi)^2-4cdot 2cdot frac{pi^2}{9}=pi^2-frac89pi^2=frac{pi^2}{9}\ arccosx=frac{pipmfracpi3}{4}Rightarrow left[ begin{array} {l l} arccosx_1=fracpi6\ arccosx_2=fracpi3 end{array} right. Rightarrow left[ begin{array} {l l} x_1=cosfracpi6=frac{sqrt{3}}{2}\ x_2=cosfracpi3=frac12 end{array} right. end{gather*} Ответ: (left{frac12; frac{sqrt{3}}{2}right})
в) (arcsinfrac{sqrt{3x+2}}{2}=arcctgsqrt{frac{2}{x+1}})
ОДЗ определяется ограничением для арксинуса: ( -1leq frac{sqrt{3x+2}}{2}leq 1)
Арксинус ограничен (-fracpi2leq arcsinfrac{sqrt{3x+2}}{2}leqfracpi2), арккотангенс (0leq arcctgsqrt{frac{2}{x+1}}ltpi)
Т.к. по условию они равны, ограничение сужается до (0leq arcctgsqrt{frac{2}{x+1}}ltfracpi2) и (0leq arcsinfrac{sqrt{3x+2}}{2}ltfracpi2). begin{gather*} arcsinfrac{sqrt{3x+2}}{2}=arcctgsqrt{frac{2}{x+1}}Leftrightarrow begin{cases} frac{sqrt{3x+2}}{2}=sinleft(arcctgsqrt{frac{2}{x+1}}right)\ -1leqfrac{sqrt{3x+2}}{2}leq 1\ 0leq arcsinfrac{sqrt{3x+2}}{2}ltfracpi2\ 0leq arcctgsqrt{frac{2}{x+1}}ltfracpi2 end{cases} Leftrightarrow\ Leftrightarrow begin{cases} frac{sqrt{3x+2}}{2}=sinleft(arcctgsqrt{frac{2}{x+1}}right)\ -1leqfrac{sqrt{3x+2}}{2}leq 1\ 0leq frac{sqrt{3x+2}}{2}lt 1\ 0leq sqrt{frac{2}{x+1}} end{cases} Leftrightarrow begin{cases} frac{sqrt{3x+2}}{2}=sinleft(arcctgsqrt{frac{2}{x+1}}right)\ 0leq frac{sqrt{3x+2}}{4}lt 1\ frac{4}{x+1}geq 0 end{cases} end{gather*} Для ОДЗ получаем: $$ begin{cases} 0leq 3x+2lt 4\ x+1gt 0 end{cases} Rightarrow begin{cases} -2leq 3x lt 2\ xgt -1 end{cases} Rightarrow begin{cases} -frac23leq x lt frac23\ xgt -1 end{cases} Rightarrow -frac23leq xltfrac23 $$ ОДЗ: (-frac23leq xlt frac23)
Выведем формулу для синуса арккотангенса.
Пусть (arcctgx=varphi Rightarrow x=ctgvarphi)
Тогда (sin(arcctgx)=sinvarphi=sqrt{frac{1}{1+ctg^2varphi}}=sqrt{frac{1}{1+x^2}})
Правая часть уравнения: $$ sinleft(arcctgsqrt{frac{2}{x+1}}right)= sqrt{frac{1}{1+left(sqrt{frac{2}{x+1}}right)}}= sqrt{frac{1}{1+frac{2}{x+1}}}=sqrt{frac{x+1}{x+3}} $$ Подставляем: begin{gather*} frac{sqrt{3x+2}}{2}=sqrt{frac{x+1}{x+3}}Rightarrow frac{3x+2}{4}=frac{x+1}{x+3}Rightarrow (3x+2)(x+3)=4(x+1)Rightarrow\ Rightarrow 3x^2+11x+6=4x+4Rightarrow 3x^2+7x+2=0\ D=49-4cdot 3cdot 2=25\ x=frac{-7pm5}{6}Rightarrow left[ begin{array} {l l} x_1=-2 – text{ не подходит по ОДЗ}\ x_2=-frac13 end{array} right. end{gather*} Ответ: (-frac13)
Арктангенс — обратная тригонометрическая функция. Общепринятое обозначение арктангенса — arctg x. При этом довольно часто, особенно в зарубежной литературе можно встретить иное обозначение — arctan x.
Арктангенс калькулятор
Калькулятор арктангенса
Как пользоваться калькулятором арктангенса
Введите значение тангенса угла и нажмите кнопку посчитать. В результате вы получите значение арктангенса выраженное в градусах и радианах.
Что такое арктангенс
Арктангенс числа x — это значение угла в радианах, для которого справедливо равенство tg a = m.
К примеру, что такое arctg 1? Это угол в радианах, тангенс которого равен 1.
Ваша оценка
[Оценок: 9093 Средняя: 3.8]
Арктангенс Автор admin средний рейтинг 3.8/5 – 9093 рейтинги пользователей