Арифметическая прогрессия как найти день

Арифметическая прогрессия — основные понятия

Определение

Арифметическая прогрессия — это монотонная последовательность, которая состоит из ряда чисел.

В этом ряду каждое последующее число есть результат добавления к предыдущему одного и того же числа d. В случае, если (d;>;0,) последовательность называется возрастающей, а если (d;<;0)убывающей. В ситуации, если d = 0 последовательность стационарна.

Наиболее простым примером арифметической прогрессии будет являться бесконечная последовательность натуральных чисел.

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

Число d является разностью арифметической прогрессии или шагом, а числа последовательности — членами прогрессии.

Теорема

Последовательность ({a_n}) будет являться арифметической прогрессией исключительно в тех случаях, когда любой ее член, начиная со второго, будет равняться полусумме последующего и предыдущего членов:

(a_n;=;frac{a_{n-1};+;a_{n+1}}2)

Доказательство

Если говорить об арифметической прогрессии, то для всех n = 2, 3… справедливо:

(d;=;a_n;-;a_{n-1};=;a_{n+1}-a_n)

Тогда:

(2a_n;=a_{n-1}+a_{n+1})

Откуда получается:

(a_n;=;frac{a_{n-1};+a_{n+1}}2)

Вычисление каждого следующего члена арифметической прогрессии возможно с использованием следующей формулы:

(a_n;=;a_{n-1};+;d)

Формула общего члена для расчета любого из членов прогрессии выглядит следующим образом:

(a_n;=;a_1;+;(n-1)d)

Общий вид арифметической прогрессии

Арифметической прогрессией называют числовую последовательность, которая имеет следующий вид:

(a_1,;a_1;+;d,;a_1;+2d…;a_1;+;(n;-;1)d,;…;)

Каждую арифметическую прогрессию можно задать формулой вида:

(a_n;=;kn;+;b)

Свойства и формулы арифметической прогрессии

Разность арифметической прогрессии вычисляется по следующей формуле:

(a_{n+1};-;a_n;=;d)

Существует несколько формул для нахождения членов арифметической прогрессии с номером n:

(a_n;=;a_1;+;(n;-;1)d)

(a_n;=;a_m;-;(m;-;n)d)

В обоих случаях (a_1) будет обозначать первый член прогрессии, d здесь будет являться разностью прогрессии, а a_m обозначает член арифметической прогрессии с номером m.

Характеристическое свойство арифметической прогрессии выражается следующим образом: последовательность (a_1), (a_2), (a_3), которая интерпретируется как арифметическая прогрессия Leftrightarrow для всех элементов указанной прогрессии справедливо условие:

(a_n;=;frac{a_{n-1;}+;a_{n+1}}2,;n;geq;2)

Сумма первых членов арифметической прогрессии вычисляется с использованием следующих формул:

(S_n;=;frac{a_{1;}+;a_n}2;cdot;n)

В данной формуле (a_1) является обозначением первого члена прогрессии, (a_n) — обозначением члена прогрессии с номером n, а n — обозначением суммируемых членов прогрессии.

(S_n;=;frac{2a_{1;}+;d(n-1)}2;cdot;n)

Дополнительно к предыдущим обозначениям в этой формуле d — это шаг прогрессии, а n — число суммируемых членов прогрессии.

Вывод этой формулы выглядит следующим образом:

(S_n;=;a_1;+;a_2;+;a_3;+;…;+;a_{n-2};+;a_{n-1};+;a_n)

(S_n;=;a_n;+a_{n-1};+;a_{n-2};+;…;a_3;+;a_2;+;a_1)

(2S_n;=;(a_{1;}+;a_n);+;(a_2;+;a_{n-1});+;(a_3;+;a_{n-2});+;…;+;(a_{n-1};+;a_2);+;(a_n;+;a_1))

Предоставим объяснение того, что выражения, заключенные в скобки, равны как между собой, так и выражению (a_1 + a_n):

(a_2;+;a_{n-1};=;(a_1+d);+;(a_n-d);=;a_1+a_n)

(a_3;+;a_{n-2};+;(a_2;+d);+;(a_{n-1};-;d);=;a_2;+;a_{n-1};=;a_1+a_n)

Тогда мы можем записать:

(2S_n;=(a_1;+;a_n);cdot n)

Из этого выводится формула, дающая в результате сумму первых n членов арифметической прогрессии:

(S_n;=frac{(a_1;+;a_n)}2cdot n)

Еще одно свойство арифметической прогрессии — сходность. Арифметическая прогрессия будет являться расходящейся при (d;neq0) и сходящейся при d = 0.

(lim_{nrightarrowinfty}a_n;=;left{begin{array}{c}+infty,;d>0\-infty,;d<0\a_1,;d=0end{array}right.)

Существует также связь между геометрической и арифметической прогрессиями. Если в арифметической прогрессии (a_1), (a_2), (a_3), … число a > 0, то последовательность вида (a^{a_1},;a^{a_2},;a^{a_3},;…) будет геометрической прогрессией со значением (a^d.)

Арифметическая прогрессия второго порядка

Определение

Последовательность чисел, при которой последовательность разностей образует арифметическую прогрессию, будет называться арифметической прогрессией второго порядка.

Примером такой прогрессии является последовательность квадратов натуральных чисел: 0, 1, 4, 9, 16, 25, 36… , потому что их разности будут составлять простую арифметическую прогрессию с шагом в 2: 1, 3, 5, 7, 9, 11…

Сумма квадратов арифметической прогрессии

(1^2 + 2^2 + 3^2 + … + n^2 = frac{n(n+1)(2n;+1)}6)

Это равенство справедливо для любого (nin N).

На этой странице вы узнаете

  • Как правильно расставить шары для бильярда в начале игры? 
  • Как Карл Гаусс удивил своего учителя по математике?

Считаем ли мы овец перед сном, добавляем по монетке в копилку или достаем сухарик из упаковки — каждый раз мы интуитивно применяем законы математики, которые рассмотрим в этой статье.

Понятие арифметической прогрессии 

Арифметическая прогрессия является видом «Числовых последовательностей». 

У арифметической прогрессии есть особенность: каждый следующий член отличается от предыдущего на одно и то же число. В последовательности 1, 2, 3, 4 и так далее — члены отличаются друг от друга на единицу. 

Арифметическая прогрессия — последовательность чисел, в которой каждый член, начиная со второго, равен сумме предыдущего члена и разности прогрессии. 

Разность прогрессии — то число, на которое отличаются члены прогрессии друг от друга. Разность прогрессии обозначается буквой d. 

Арифметическую прогрессию можно задать формулой. 

an+1 = an + d

Например, если мы хотим найти третий член арифметической прогрессии, то нужно воспользоваться формулой: a3 = a2 + d

Однако бывает, что известны только первый член прогрессии и ее разность. Как быть в этом случае?

Разберемся на примере. Допустим, мы читаем книгу. Количество прочитанных страниц может быть задано с помощью арифметической прогрессии, в которой разность прогрессии и первый ее член равны 1. 

Мы прочитали 10 страниц. Десятая страница будет десятым членом прогрессии. Это 1 + 1 + 1 + 1 +1 + 1 + 1 + 1 + 1 + 1 страниц, если считать их по отдельности. 

Выделим первую страницу отдельно: 1 + (1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1) = 1 + 9 = 1 + 1 * 9 

Теперь заменим десятый член прогрессии, первый член прогрессии и ее разность на буквенные обозначения: a10 = a1 + 9 * d.

Заметим, что множитель перед d на один меньше, чем порядковый номер искомого члена прогрессии. Тогда получаем: a10 = a1 + (10 — 1) * d

Мы можем вывести формулу для n-го члена прогрессии. А выглядит она так. 

an = a1 + d(n — 1)

Как правильно расставить шары для бильярда в начале игры?

Вспомним расстановку шаров в бильярде. Они ставятся в пять рядов, причем в первом ряду один шар, а в пятом — пять. 

Тогда, чтобы правильно разместить 15 шаров, нужно воспользоваться арифметической прогрессией. В каждом следующем ряду будет на один шар больше, следовательно, во втором ряду имеем 1 + 1 = 2 шара, в третьем ряду 2 + 1 = 3 шара, а в четвертом 3 + 1 = 4. 

Расставленные таким образом шары образуют форму треугольника. 

Допустим, мы хотим купить джинсы. В магазине представлены три ценовых категорий, которые отличаются друг от друга на одинаковую сумму. Мы знаем, что самые дешевые джинсы стоят 1000 рублей, а самые дорогие 3000 рублей. Как найти, сколько стоят джинсы во второй ценовой категории?

Попробуем найти разность арифметической прогрессии. 

Джинсы во второй категории будут стоить 1000 + d, а чтобы найти стоимость третьей категории, нужно прибавить разность прогрессии ко второй категории. Получаем 1000 + d + d = 1000 + 2d.

Мы знаем, что самые дорогие джинсы стоят 3000 рублей. Получаем уравнение 1000 + 2d = 3000, откуда можем выразить разность прогрессии:

(d = frac{3000 — 1000}{2} = 1000)

Тогда джинсы во второй ценовой категории будут стоить 1000 + 1000 = 2000 рублей. 

Можно ли как-то найти это значение, не прибегая к таким большим рассуждениям? Для этого достаточно найти среднее арифметическое двух соседних членов. 

(a_n = frac{a_{n-1} + a_{n+1}}{2})

Докажем это. Если рассмотреть член аn, то член до него будет равен an — 1 = an — d, а член после него an + 1 = an + d. Тогда их среднее арифметическое равно (frac{a_{n — 1} + a_{n+1}}{2} = frac{a_n — d + a_n + d}{2} = frac{2a_n}{2} = an). 

Проверим на нашей задаче. 

(a_2 = frac{a_1 + a_3}{2} = frac{1000 + 3000}{2} = frac{4000}{2} = 2000). Все верно. 

Чтобы найти разность прогрессии, достаточно вычесть из любого члена прогрессии предыдущий к нему. 

d = an+1 — an

Найдем сумму всех членов арифметической прогрессии. Разумеется, их можно сложить: a1 + a2 + a3 + … + an. Но тогда нужно вычислять все члены прогрессии, а их может быть очень много. 

В этом случае используется формула суммы арифметической прогрессии. Ее удобство в том, что используются только первый и последний член прогрессии. 

(S_n = frac{a_1 + a_n}{2} * n)

Немного преобразуем формулу: 

(S_n = frac{a_1 + a_n}{2} * n = frac{a_1 + a_1 + d(n — 1)}{2} * n = frac{2a_1 + d(n — 1)}{2} * n) — это формула суммы членов арифметической прогрессии через первый член и ее разность. 

Решим небольшую задачу. Марина решила сделать картину из страз. По схеме у нее есть 15 рядов, в каждом из которых страз на три больше, чем в предыдущем. В первом ряду 6 страз. Сколько всего страз понадобится, чтобы выложить эти ряды?

Воспользуемся формулой арифметической прогрессии. Но прежде найдем, сколько страз в последнем, пятнадцатом ряду:

a15 = 6 + 3 * (15 + 1) = 6 + 3 * 14 = 6 + 42 = 48

Тогда по формуле суммы арифметической прогрессии всего Марине понадобится: 

(S_{15} = frac{6 + 48}{2} * 15 = frac{54}{2} * 15 = 27 * 15 = 405) страз. 

Как Карл Гаусс удивил своего учителя по математике?

Карл Гаусс — немецкий математик, живший в 18–19 веках. На одном из уроков математики учитель задал сложить все цифры от 1 до 100. 

Карл Гаусс заметил, что суммы чисел с противоположных сторон одинаковые: 1 + 100 = 101, 2 + 99 = 101, 3 + 98 = 101 и так далее. Всего таких сумм получилось 50. Следовательно, быстро вычислить сумму этих цифр можно было как произведение 101 * 50. 

Такой способ работает для любой арифметической прогрессии.
Внимательно посмотрим на сумму арифметической прогрессии. Пусть a1 = 1, a100 = 100, n = 100. Тогда получаем:
(S_{100} = frac{1 + 100}{2} * 100 = 101 * 50), то есть Карл Гаусс использовал сумму арифметической прогрессии, сам того не зная. 

Виды арифметических прогрессий

Существует всего три вида арифметической прогрессии. 

1. Возрастающая арифметическая прогрессия. 

Разность прогрессии — положительное число, то есть d > 0, а каждый следующий член прогрессии больше предыдущего. 

Прогрессия 2, 4, 6, 8 является возрастающей. 

2. Убывающая арифметическая прогрессия. 

Разность прогрессии — отрицательное число, то есть d < 0, а каждый следующий член прогрессии меньше предыдущего. 

Примером убывающей арифметической прогрессии может служить 100, 95, 90, 85 и так далее.  

3. Стационарная арифметическая прогрессия. 

В этой арифметической прогрессии разность будет равна 0, то есть d = 0. Следовательно, члены прогрессии не будут отличаться друг от друга. 

Например, прогрессия 3, 3, 3, 3, 3 будет являться стационарной. 

Фактчек

  • Арифметическая прогрессия — последовательность чисел, в которой каждый член, начиная со второго, равен сумме предыдущего члена и разности прогрессии. 
  • Разность арифметической прогрессии — это число, на которое отличаются члены прогрессии. 
  • Чтобы найти n-ый член прогрессии, необходимо воспользоваться одной из трех формул: an+1 = an + d, an = a1 + d(n — 1) или (a_n = frac{a_{n-1} + a_{n+1}}{2}). 
  • Чтобы найти разность прогрессии, достаточно из любого члена прогрессии вычесть предыдущий ему член прогрессии. 
  • По формуле (S_n = frac{a_1 + a_n}{2} * n) можно найти сумму n членов прогрессии. 
  • Арифметическая прогрессия может быть убывающей, возрастающей или стационарной. 

Проверь себя

Задание 1. 
Какая прогрессия является арифметической?

  1. 3, 7, 11, 15
  2. 1, 1, 2, 3, 5
  3. 2, 4, 8, 16
  4. 1, 4, 16, 25

Задание 2. 
Первый член арифметической прогрессии равен 10, а ее разность равна -5. Найдите семнадцатый член арифметической прогрессии. 

  1. Семнадцатого члена такой арифметической прогрессии не существует
  2. 0
  3. −70
  4. −75 

Задание 3. 
Пятый член арифметической прогрессии равен 16, а седьмой член равен 20. Найдите шестой член арифметической прогрессии. 

  1. 2
  2. 18
  3. 17,5
  4. Невозможно найти шестой член арифметической прогрессии. 

Задание 4. 
Каждый день Миша катается на велосипеде, причем с каждым разом увеличивает расстояние на 2 км. В первый день он проехал 3 км. Сколько всего км проедет Миша за пять дней?

  1. 14
  2. 17
  3. 11
  4. 35

Ответы: 1. — 1 2. — 3 3. — 2 4. — 4

Определение

Арифметической прогрессией называется последовательность, каждый член которой, начиная со второго, равен предыдущему, сложенному с одним и тем же числом.

Другими словами, последовательность (аn) – арифметическая прогрессия, если для любого натурального числа n выполняется условие аn+1n+d, где d – некоторое число. Из данного равенства следует, что можно найти это число d, если вычесть из последующего члена предыдущий, то есть d = аn+1–аn. Число d называют разностью арифметической прогрессии.

Арифметической прогрессией, например, является ряд чисел 3; 8; 13; 18….., так как разница между числами равна 5, мы видим, что каждое последующее на 5 больше предыдущего.

Если известен первый член арифметической прогрессии a1 и разность d, то можно вычислить любой член арифметической прогрессии:

a2 = a1 + d;

a3 = a2 + d = a1+2d;

a4 = a3 + d = a1+3d.

Этот ряд можно продолжать до бесконечности, поэтому надо запомнить, что n-ый член арифметической прогрессии можем получить быстрее, если к первому члену прогрессии добавить (n−1) разностей, то есть:

Формула n-ого члена арифметической прогрессии

an = a1 + d(n−1)

где n – порядковый номер члена арифметической прогрессии, a1 – первый член прогрессии, d – разность арифметической прогрессии

Формулу используют, чтобы вычислить заданный член арифметической прогрессии (например, пятнадцатый, двухсотый и т.д.), если известны первый член последовательности и ее разность. Рассмотрим на примерах применение данной формулы.

Пример №1. Найти а20 арифметической прогрессии (аn), если а1=14, d=5. Составляем формулу для а20 и подставляем в нее данные: а20= a1 + d(20−1)=14+5(20−1)=109. Таким образом, мы вычислили, что на 20-ом месте в данной арифметической прогрессии стоит число 109.

Найти а7 арифметической прогрессии (аn), если а1=−8, d=−3. Аналогично работаем, составляя формулу и подставляя в нее данные значения (обращаем внимание на знаки чисел, чтобы не допустить ошибок): а7= a1 + d(7−1)= −8−3(7−1)= −26.

Дана арифметическая прогрессия 10; 12; 14;…… Найти а12. Здесь для нахождения а12 надо сначала найти разность d: d=12−10=2, то есть из последующего вычтем предыдущее. Можно было 14−12, порядок здесь не имеет значения, главное берем два соседних члена прогрессии. Теперь можем составлять формулу и находить а12: а12= a1 + d(12−1)=10+2(12−1)=32.

Утверждение

Любая арифметическая прогрессия может быть задана формулой вида an=kn+b, где k и b некоторые числа. Верно и обратное утверждение: если последовательность чисел задана формулой вида an=kn+b, где k и b некоторые числа, то она является арифметической.

Так, например, формула an=5n+1 задает арифметическую прогрессию, в которой разность d равна 1; по данной формуле можно найти любой член последовательности, например, найдем 20-ый член, подставляя в формулу число 20: a20=5×20+1=101.

Свойство арифметической прогрессии

Каждый член арифметической прогрессии, начиная со второго, равен среднему арифметическому предыдущего и последующего членов. Формула:

аn=(аn-1+ аn+1):2

Другими словами, используя данное свойство, мы можем найти член арифметической прогрессии, стоящий между двумя известными членами, без использования разности d. Рассмотрим это на примерах.

Пример №2. Найти а10 арифметической прогрессии (аn), если а9=24; а11=38. Здесь используем свойство, так как видим, что у а10 известны соседние члены. Значит, а10=(а911):2=(24+38):2=31. Таким образом, десятый член равен 31.

Дана арифметическая прогрессия …..23; х; 35. Найти х. Применяем свойство для нахождения х: х=(23+35):2=29. Для наглядности запишем, что ряд чисел выглядит так: …23; 29; 35.

Формулы суммы n первых членов арифметической прогрессии

Для нахождения суммы (обозначим ее буквой S) большого количества членов арифметической прогрессии существует формула, позволяющая это сделать быстро.

Формула суммы членов арифметической прогрессии с известными членами

Sn=
(a1+an
)n
2

В данной формуле мы видим, что для нахождения суммы нужны первый и последний член прогрессии. Но встречаются случаи, когда аn не известно, но известна разность. Тогда для нахождения суммы применяют вторую формулу.

Формула суммы членов арифметической прогрессии с первым членом и разностью

Sn=2a1+d(n1)2n

Рассмотрим на примерах применение данных формул.

Пример №3. Найти сумму первых пятидесяти членов арифметической прогрессии (аn), если а1=11, а50=39.

Для решения лучше использовать первую формулу, так как здесь есть первый и последний члены: а1=11, а50=39. Поэтому составляем формулу, подставляем в нее данные значения и вычисляем:

S50=(a1+a50
)50
2
=(11+39)502=25002=1250

Найти сумму первых десяти членов арифметической последовательности 3; 18; …. В данном случае задание можно выполнить двумя способами, как по первой формуле, так и по второй, а затем выяснить, какой способ короче, а значит, рациональнее.

Способ №1 (по первой формуле): надо найти разность d, затем десятый член прогрессии, а затем сумму:

d=18-3=15; а10=3+15(10-1)=138

S10=(a1+a10
)10
2
=(3+138)102=705

Способ №2 (по второй формуле): надо знать разность d, d=18-3=15. Теперь подставим значения во вторую формулу и сосчитаем результат:

S10=2a1+d(101)210=2×3+15(101)210=705

Результаты в обоих случаях получились у нас одинаковые. А если сравнить два способа, то видно, что второй способ быстрее, тем более что в большинстве случаев разность арифметической прогрессии можно вычислить устно.

Таким образом, выбор формулы для нахождения суммы n первых членов арифметической прогрессии зависит от заданного условия.

Задание OM1420223

Миша решил заказать себе такси. Подача машины и первые пять минут поездки в совокупности стоят 159 рублей, а стоимость каждой последующей минуты поездки фиксирована. Стоимость поездки с 6 по 15 минуту (включительно) составила 80 рублей, а с 6 по 25 минуту – 160 рублей. Найти итоговую стоимость поездки, если она длилась 1 час.


Выпишем, что мы имеем по условию задачи в левый столбец, а в правый запишем то, что из этого следует

Известно Решение
Подача и первые 5 минут – 159 руб
Стоимость с 6 по 15 минуту – 80 рублей

Стоимость с 6 по 25 минуту – 160 рублей.

Разница во времени 10 минут стоит 80 руб
Значит, 1 минута стоит 8 руб (80:10=8)
1 час – ? руб 1 час=60 мин; убираем 5 минут, которые включены в подачу машины, значит, надо найти стоимость 55 минут: 558=440 руб

Прибавляем стоимость подачи: 440+159=599 рублей

Ответ: 599

pазбирался: Даниил Романович | обсудить разбор

Задание OM1420221

В амфитеатре 12 рядов. В первом ряду 18 мест, а в каждом следующем на 2 места больше, чем в предыдущем. Сколько всего мест в амфитеатре?


Из условия задачи видно, что имеем дело с арифметической прогрессией, так как сказано, что в каждом следующем на 2 места больше, чем в предыдущем.

Выписываем, что нам известно и определяем, что нужно найти: всего 12 рядов, значит n=12; в первом ряду 18 мест, значит, а1=18; так как в каждом последующем ряду мест на 2 больше, то разность арифметической прогрессии d=2. Надо найти, сколько всего мест в амфитеатре, т.е. найти сумму арифметической прогрессии S12.

Для нахождения суммы имеем формулу Sn=a1+an2×n, то есть для нашей задачи S12=a1+a122×12. У нас нет а12, найдем его по формуле n-ого члена арифметической прогрессии: a12=a1+d(n-1)=18+2(12-1)=18+22=40. Подставим данные в формулу суммы:

S12=18+402×12=348

Следовательно, 348 мест всего в амфитеатре.

Проверка: можно проверить решение следующим способом, просто прибавляя по 2 места в каждый ряд до 12-ого, а затем сложить количество мест. Записать можно так: 18+20+22+24+26+28+30+32+34+36+38+40=348. Этим же способом, кстати, можно решить задачу, если от волнения забыли про арифметическую прогрессию.

Ответ: 348

pазбирался: Даниил Романович | обсудить разбор

Задание 14OM21R

При проведении опыта вещество равномерно охлаждали в течение 10 минут. При этом каждую минуту температура вещества уменьшалась на 80С. Найдите температуру вещества (в градусах Цельсия) через 6 минут после начала проведения опыта, если его начальная температура составляла -60С.


Можно решить данную задачу логическим путем, т.е. без формулы. Так как начальная температура была -6, а потом уменьшалась на 8 градусов в течение 6 минут, то можно сделать следующее:

-6-8=-14 через 1 минуту

-14-8=-22 через 2 минуты

-22-8=-30 через 3 минуты

-30-8=-38 через 4 минуты

-38-8=-46 через 5 минут

-46-8=-54 через 6 минут

Значит, наш ответ -540С

Вторым способом является решение по формуле n-ого члена арифметической прогрессии, которая есть также и в справочном материале, т.е. an=a1+d(n – 1). В данном случае a1=-6; d=-8, n=7 (так как ЧЕРЕЗ 6 минут). Подставим значения в формулу: a7=-61-8(7 – 1). Вычислим: a6=-6-85=-6-48=-54.

Ответ: -54

pазбирался: Даниил Романович | обсудить разбор

Задание OM1407

К концу 2008 года в городе проживало 38100 человек. Каждый год число жителей города возрастало на одну и ту же величину. В конце 2016 года в городе проживало 43620 человек. Какова была численность населения этого города к концу 2012 года?


Содержание данной задачи говорит нам о том, что здесь есть арифметическая прогрессия, так как число жителей города возрастало на одну и ту же величину.

Рассмотрим данные:

2008 г – 38100 человек

2012 г – ? человек

2016 г. – 43620 человек

Удобно решить данную задачу способом по формуле связи между любыми двумя членами арифметической прогрессии: d=anakkn , где k>n. Число d (разность прогрессии) будет являться ежегодным приростом населения.

Итак, можно вычислить прирост населения с 2008 по 2016 ежегодно:

(43620 – 38100):(2016 – 2008)= 5520:8=690 человек.

Теперь можно найти, сколько человек проживало в конце 2012 года.

38100+690(2016 – 2012)= 40860 человек

Ответ: 40860

pазбирался: Даниил Романович | обсудить разбор

Задание OM1406

Митя играет в компьютерную игру. Он начинает с 0 очков, а для перехода на следующий уровень ему нужно набрать не менее 30000 очков. После первой минуты игры добавляется 2 очка, после второй – 4 очка, после третьей – 8 очков и так далее. Таким образом, после каждой следующей минуты игры количество добавляемых очков удваивается. Через сколько минут Митя перейдет на следующий уровень?


Анализируя содержание задачи, можно сказать, что мы имеем дело с геометрической прогрессией, так как после первой минуты игры добавляется 2 очка, после второй – 4 очка, после третьей – 8, а это значит, что с каждой последующей минутой количество очков удваивается. То есть знаменатель геометрической прогрессии q равен 2, b1=2 по условию (после 1 минуты 2 очка). Так как очки суммируются, то будем использовать формулу суммы n первых членов геометрической прогрессии Sn=b1(qn1)q1, где Sn>30000, так как для перехода на следующий уровень ему нужно набрать не менее 30000 очков.

Подставляем наши данные в формулу: 2(2n1)21>30000

Упрощаем выражение: так как в знаменателе дроби получается 1, то получим 2(2n-1)>30000; делим обе части на 2: 2n-1>15000; переносим 1 в правую часть и получим: 2n>15001. Теперь надо подобрать число n, при котором будет верно наше неравенство. Делать это можно постепенно, возводя 2 в степени, а можно запомнить, что 210=1024. Тогда легко будет добраться до числа, которое меньше 15001, а это 214=16384, где 16384<15001. Следовательно, наш ответ 14 минут.

Ответ: 14

pазбирался: Даниил Романович | обсудить разбор

Задание OM1405

В течение 25 банковских дней акции компании дорожали ежедневно на одну и ту же сумму. Сколько стоила акция компании в последний день этого периода, если в 7-й день акция стоила 777 рублей, а в 12-й день – 852 рубля?


В содержании задачи есть фраза, что акции дорожали ежедневно на одну и ту же сумму, следовательно, имеем арифметическую прогрессию. Итак, определяем, что известно: в 7-й день акция стоила 777 рублей, это а7=777; в 12-й день – 852 рубля, это а12=852. Известно, что акции дорожали 25 дней, а найти надо стоимость акции в последний, т.е. в 25-ый день, значит, будем искать а25.

1 способ:

В данной арифметической прогрессии нет первого члена, не идет речь про сумму, поэтому воспользуемся формулой аn=ak+d(n – k), где n>k. Числа n и k – это порядковые номера. Составим формулу для наших данных и подставим в неё значения: а127+d(12-7); 852=777+d(12 – 7). Упростим выражение и найдем разность d, 852–777= d(12 – 7); 75= d∙5; отсюда d=75:5=15. Итак, мы нашли, что акции ежедневно дорожали на 15 рублей.

Теперь, зная число d, мы можем найти а25 через, например, а12, используя всё ту же формулу. Получаем: а2512+d(25-12); а25=852+15(25-12)=852+15∙13= 852+195=1047. Значит, 1047 рублей стоила акция в последний день.

2 способ:

Можно решить данную задачу другим способом по формуле связи между любыми двумя членами арифметической прогрессии: d=anakkn , где k>n. Составим формулу для наших а12 и а7, а затем подставим в нее данные: d=a12a7127; d=852777127=15. Теперь по этой же формуле найдем а25, связывая его с а12: d=a25a122512; 15=a2585213; найдем отсюда а25, а25=15∙13+852=1047.

Ответ: 1047

pазбирался: Даниил Романович | обсудить разбор

Задание OM1404

Грузовик перевозит партию щебня массой 176 тонн, ежедневно увеличивая норму перевозки на одно и то же число тонн. Известно, что в первый день было перевезено 6 тонн щебня. Определите, сколько тонн щебня было перевезено в последний день, если вся работа была выполнена за 11 дней.


В условии задачи встречаются слова, что норма увеличивалась на одно и то же число. И это значит, что мы имеем арифметическую прогрессию, в которой а1=6, так как в первый день перевезли 6 тонн. Далее, известно, что вся работа была выполнена за 11 дней, значит число n=11. Так как масса всего щебня равна 176, то это число является суммой нашей прогрессии, т.е. S11=176. Требуется найти, сколько тонн было перевезено в последний день, а он – 11, значит, найти надо а11.

Итак, если нам встретилась сумма арифметической прогрессии, значит, нам надо воспользоваться формулой суммы n первых членов арифметической прогрессии Sn=а1+аn2n, куда мы и подставим все данные: 176=6+а11211.

Разделим обе части на 11, получим 16= 6+а112 ; умножим 16 на 2 (правило пропорции): 32=6+а11. Отсюда найдем а11=32–6=26. Итак, мы нашли, что 26 тонн щебня было перевезено в последний день.

Ответ: 26

pазбирался: Даниил Романович | обсудить разбор

Задание OM1403

Для получения витамина D могут быть рекомендованы солнечные ванны. Загорать лучше утром до 10 часов или вечером после 17 часов. Михаилу назначили курс солнечных ванн. Михаил начинает курс с 15 минут в первый день и увеличивает время этой процедуры в каждый следующий день на 15 минут. В какой по счету день продолжительность процедуры достигнет 1 часа 15 минут?


Из содержания данной задачи видно, что время процедуры увеличивалось с каждым днем на одно и то же количество времени – на 15 минут, следовательно, это арифметическая прогрессия. Так как в первый день курс был 15 минут, то а1=15; так как время ежедневно увеличивалось на 15 минут, то значит разность d=15; зная, что продолжительность процедуры должна достигнуть 1 ч 15 мин, т.е. достигнуть 75 минут (1 час=60 мин, плюс 15 минут), то это число 75 и будет являться n членом арифметической прогрессии. Требуется найти, в какой по счету день продолжительность процедуры достигнет этих 75 минут, т.е. найдем число n.

Теперь берем формулу n члена арифметической прогрессии аn=a1+d(n – 1) и подставляем в неё наши данные: 75=15+15(n – 1); упростим данное выражение: 75-15=15(n – 1); 60=15(n – 1); разделим на 15 обе части: 4=n – 1; найдем отсюда, что n=5. Таким образом, на пятый день продолжительность процедуры достигнет 75 минут.

Ответ: 5

pазбирался: Даниил Романович | обсудить разбор

Задание OM1402

Улитка ползет от одного дерева до другого. Каждый день она проползает на одно и то же расстояние меньше, чем в предыдущий день. Известно, что за первый и последний дни улитка проползла в сумме 7,5 метров. Определите, сколько дней улитка потратила на весь путь, если расстояние между деревьями равно 60 метрам.


Анализируя содержание задачи, мы видим, что улитка проползала ежедневно на одно и то же расстояние меньше, чем в предыдущий день. А это значит, что имеем арифметическую прогрессию. По условию определяем данные: так как в первый и последний дни она проползла 7,5 м, то имеем, что а1n=7,5. Так как расстояние между деревьями равно 60 м, то имеем сумму n первых членов прогрессии, т.е. Sn=60. Так как найти надо количество дней, которое она потратила на весь путь, то искомым числом будет число n.

Зная формулу суммы n первых членов арифметической прогрессии

Sn=а1+аn2n, имеем 60=7,5  n2. Отсюда находим n, умножая сначала 60 на 2 (по определению пропорции), затем 120 делим на 7,5 и получаем, что n=16. Таким образом, улитка потратила на весь путь 16 дней.

Ответ: 16

pазбирался: Даниил Романович | обсудить разбор

Задание OM1401

При проведении химической реакции в растворе образуется нерастворимый осадок. Наблюдения показали, что каждую минуту образуется 0,2 г осадка. Найдите массу осадка (в граммах) в растворе спустя семь минут после начала реакции.


При анализе содержания задачи мы видим, что каждую минуту количество осадка увеличивается на одно и то же число, на 0,2 г. А это значит, что имеем арифметическую прогрессию, в которой первый член равен 0,2, так как по условию в первую минуту образовалось 0,2 г осадка. Разность арифметической прогрессии равна также 0,2, так как каждую минуту на это количество увеличивается количество осадков. Найти нужно седьмой член последовательности.

Итак, имеем а1=0,2; d=0,2. Ищем а7. По определению n-ого члена арифметической прогрессии имеем формулу аn=a1+d(n – 1). Подставим в нее наши данные: а7=a1+d(7 – 1)=0,2+0,2·6=1,4

Ответ: 1,4

pазбирался: Даниил Романович | обсудить разбор

Даниил Романович | Просмотров: 8.1k

Арифметическая прогрессия — коротко о главном

Определение арифметической прогрессии:

Арифметическая прогрессия — это числовая последовательность, в которой разница между соседними числами одинакова и равна ( displaystyle d).

Например:

  • ( {{a}_{1}}=3)
  • ( displaystyle {{a}_{2}}=3+d=7~Rightarrow d=7-3=4)
  • ( displaystyle {{a}_{3}}=7+4=11) и т.д.

Арифметическая прогрессия бывает возрастающей (( displaystyle d>0)) и убывающей (( displaystyle d<0)).

Формула нахождения n-ого члена арифметической прогрессии:

( {{a}_{n}}={{a}_{1}}+dleft( n-1 right)) , где ( displaystyle n)– количество чисел в прогрессии.

Как найти член прогрессии, если известны его соседние члены:

( {{text{a}}_{text{n}}}=frac{{{text{a}}_{text{n}+1}}+{{text{a}}_{text{n}-1}}}{2}) — где ( displaystyle n) – количество чисел в прогрессии.

Сумма членов арифметической прогрессии:

1-й способ: ( {{S}_{n}}=frac{left( {{a}_{1}}+{{a}_{n}} right)cdot n}{2}), где ( displaystyle n) – количество значений.

2-й способ: ( displaystyle {{s}_{n}}=frac{2{{a}_{1}}+dleft( n-1 right)}{2}cdot n), где ( displaystyle n) – количество значений.

Числовая последовательность

Итак, сядем и начнем писать какие-нибудь числа. Например: ( displaystyle 4,text{ }7,text{ }-8,text{ }13,text{ }-5,text{ }-6,text{ }0,text{ }ldots )

Писать можно любые числа, и их может быть сколько угодно (в нашем случае их ( displaystyle 7)). Сколько бы чисел мы не написали, мы всегда можем сказать, какое из них первое, какое – второе и так далее до последнего, то есть, можем их пронумеровать.

Это и есть пример числовой последовательности.

Числовая последовательность – это множество чисел, каждому из которых можно присвоить уникальный номер.

Например, для нашей последовательности:

Присвоенный номер характерен только для одного числа последовательности. Иными словами, в последовательности нет трех вторых чисел. Второе число (как и ( displaystyle n)-ное число) всегда одно.

Число с номером ( displaystyle n) называется ( displaystyle n)-ным членом последовательности.

Всю последовательность мы обычно называем какой-нибудь буквой (например, ( displaystyle a)), и каждый член этой последовательности – той же буквой с индексом, равным номеру этого члена: ( displaystyle {{a}_{1}},text{ }{{a}_{2}},text{ }…,text{ }{{a}_{10}},text{ }…,text{ }{{a}_{n}}).

Арифметическая прогрессия — определения

Допустим, у нас есть числовая последовательность, в которой разница между соседствующими числами одинакова и равна d.

Например:

( begin{array}{l}{{a}_{1}}=3\{{a}_{2}}=3+d=7~~~Rightarrow ~d=7-3=4\{{a}_{3}}=7+4=11end{array})

Такая числовая последовательность называется арифметической прогрессией.

Термин «прогрессия» был введен римским автором Боэцием еще в 6 веке и понимался в более широком смысле, как бесконечная числовая последовательность.

Название «арифметическая» было перенесено из теории непрерывных пропорций, которыми занимались древние греки.

Арифметическая прогрессия – это числовая последовательность, каждый член которой равен предыдущему, сложенному с одним и тем же числом. Это число называется разностью арифметической прогрессии и обозначается d.

Попробуй определить, какие числовые последовательности являются арифметической прогрессией, а какие нет:

  • ( displaystyle 3;text{ }6;text{ }9;text{ }12;text{ }15;text{ }17ldots )
  • ( displaystyle 1;text{ }12;text{ }23;text{ }34;text{ }45text{ }ldots )
  • ( displaystyle -5;text{ }-1;text{ }3;text{ }7;text{ }11;text{ }15ldots )
  • ( displaystyle -6;text{ }5;text{ }17;text{ }28;text{ }39ldots )

Разобрался? Сравним наши ответы:

Является арифметической прогрессией – 2, 3.

Не является арифметической прогрессией – 1, 4.

Вернемся к заданной прогрессии (( displaystyle 3;text{ }7;text{ }11;text{ }15;text{ }19ldots )) и попробуем найти значение ее 6-го члена.

Существует два способа его нахождения.

Нахождения n-ого члена арифметической прогрессии

Способ I

Мы можем прибавлять к предыдущему значению числа прогрессии ( d=4) , пока не дойдем до ( displaystyle 6)-го члена прогрессии. Хорошо, что суммировать нам осталось немного – всего три значения:

( begin{array}{l}{{a}_{4}}=11+4=15\{{a}_{5}}=15+4=19\{{a}_{6}}=19+4=23end{array})

Итак, 6-ой член описанной арифметической прогрессии равен 23.

Способ II

А что если нам нужно было бы найти значение ( displaystyle 140)-го члена прогрессии? Суммирование заняло бы у нас не один час, и не факт, что мы не ошиблись бы при сложении чисел.

А теперь очень важно! Чтобы облегчить себе работу, нужно найти закономерность, потом описать ее формулой и потом пользоваться этой формулой, чтобы вычислять в разы быстрее.

Это и есть математика!

Важно научиться находить закономерности, а потом уже запоминать формулы. Потому что, даже если ты забудешь формулу, ты сможешь ее вывести. И, самое главное, ты сможешь проверить подходит та или иная формула для решения задачи, а не просто подставлять их как обезьянка. 

Давай попробуем вывести формулу. Это легко и тебе понравится! Чтобы найти закономерности, надо пользоваться тем, что мы знаем.

Что мы знаем?

  • У нас есть арифметическая прогрессия: 3, 7, 11, 15, 19 и т.д.
  • У нас есть номера прогрессии: 1, 2, 3, 4, 5, и т.д.
  • Мы все время прибавляем 4, значит разница прогрессии d = 4.

Чему равен 2-й член арифметической прогрессии? Попробуй сначала написать числами, а потом в более общем виде, заменив числа буквами.

7=3+4 или 7=3+d

Закономерности пока не видны. Ок. Идем дальше. Чему равен 3-й член арифметической прогрессии?

11=3+4+4 или 11=3+d+d

Похоже что вырисовывается закономерность! Чтобы узнать значение 2-го члена прогрессии, мы прибавляли одно d, а чтобы узнать 3-го — два d! Иными словами, нам надо прибавлять каждый раз на одно d меньше, чем номер члена прогрессии.

Давай проверим? Чему равен 4-й член арифметической прогрессии?

15=3+4+4+4 или 15=3+d+d+d

Бинго! Закономерность подтверждается. Теперь осталось описать закономерность формулой и пользоваться ею!

Если нам нужно найти значение числа прогрессии с порядковым номером n, мы прибавляем к первому члену арифметической прогрессии число d, которое на одно значение меньше порядкового номера искомого числа. 

А теперь запомни эту формулу и используй ее для быстрого счета. А если забудешь — то легко выведешь.

Например, посмотрим, из чего складывается значение ( displaystyle 4)-го члена данной арифметической прогрессии:

( begin{array}{l}{{a}_{4}}={{a}_{1}}+dleft( 4-1 right)\{{a}_{4}}=3+4left( 4-1 right)=15end{array})

Попробуй самостоятельно найти таким способом значение члена ( displaystyle n=6) данной арифметической прогрессии.

Рассчитал? Сравни свои записи с ответом:

( begin{array}{l}{{a}_{6}}={{a}_{1}}+dleft( 6-1 right)\{{a}_{6}}=3+4left( 6-1 right)=3+4cdot 5=3+20=23end{array})

Обрати внимание, что у тебя получилось точно такое же число, как и в предыдущем способе, когда мы последовательно прибавляли ( displaystyle d) к предыдущему значению членов арифметической прогрессии.

Попробуем «обезличить» данную формулу – приведем ее в общий вид и получим:

( {{a}_{n}}={{a}_{1}}+dleft( n-1 right)) – уравнение арифметической прогрессии.

Кстати, таким образом мы можем посчитать и ( displaystyle 140)-ой член данной арифметической прогрессии (да и ( displaystyle 169)-ый тоже можем, да и любой другой вычислить совсем несложно).

Попробуй посчитать значения ( displaystyle 140)-го и ( displaystyle 169)-го членов, применив полученную формулу.

( begin{array}{l}…\{{a}_{140}}={{a}_{1}}+dleft( 140-1 right)\{{a}_{140}}=3+4left( 140-1 right)=3+4cdot 139=3+556=559\{{a}_{169}}={{a}_{1}}+dleft( 169-1 right)\{{a}_{169}}=3+4left( 169-1 right)=3+4cdot 168=3+672=675end{array})

Возрастающие и убывающие арифметические прогрессии

Возрастающие – прогрессии, в которых каждое последующее значение членов больше предыдущего. 

Например:

( displaystyle begin{array}{l}4;text{ }6;text{ }8;text{ }10;text{ }12\-2;text{ }4;text{ }10;text{ }16;text{ }20end{array})

Убывающие – прогрессии, в которых каждое последующее значение членов меньше предыдущего. 

Например:

( displaystyle begin{array}{l}12;text{ }10;text{ }8;text{ }6;text{ }4\4;text{ }0;text{ }-4;text{ }-8;text{ }-12.end{array})

Выведенная формула применяется в расчете членов как в возрастающих, так и в убывающих членах арифметической прогрессии.

Проверим это на практике.

Нам дана арифметическая прогрессия, состоящая из следующих чисел: ( displaystyle 13;text{ }8;text{ }4;text{ }0;text{ }-4.)

Проверим, какое получится ( displaystyle 4)-ое число данной арифметической прогрессии, если при его расчете использовать нашу формулу:

( {{text{a}}_{text{n}}}={{text{a}}_{1}}+text{d}left( text{n}-1 right))

Заметим, что так как арифметическая прогрессия убывающая, то значение ( displaystyle d) будет отрицательным, ведь каждый последующий член меньше предыдущего.

( displaystyle d=8-13=-5)

( {{a}_{4}}={{a}_{1}}+dleft( 4-1 right))

Так как ( displaystyle d=-5), то:
( {{a}_{4}}=13-5left( 4-1 right)=13-15=-2)

Таким образом, мы убедились, что формула действует как в убывающей, так и в возрастающей арифметической прогрессии.

Попробуй самостоятельно найти ( displaystyle 140)-ой и ( displaystyle 169)-ый члены этой арифметической прогрессии.

Сравним полученные результаты:

( begin{array}{l}{{a}_{140}}={{a}_{1}}+dleft( 140-1 right)\{{a}_{140}}=13-5left( 140-1 right)=13-5cdot 139=13-695=-682\{{a}_{169}}={{a}_{1}}+dleft( 169-1 right)\{{a}_{169}}=13-5left( 169-1 right)=13-5cdot 168=13-840=-827end{array})

Свойство арифметической прогрессии (или как найти n-й член прогрессии, зная соседние)

Усложним задачу — выведем свойство арифметической прогрессии.

Допустим, нам дано такое условие:

( displaystyle 4;text{ }x;text{ }12ldots ) — арифметическая прогрессия, найти значение ( displaystyle x).

Легко, скажешь ты и начнешь считать по уже известной тебе формуле:

( {{a}_{n}}={{a}_{1}}+dleft( n-1 right))

Пусть ( displaystyle {{a}_{1}}=4), а ( displaystyle {{a}_{3}}=12), тогда:

( displaystyle begin{array}{l}{{a}_{3}}={{a}_{1}}+dleft( 3-1 right)\12=4+2d~~Rightarrow ~d=frac{12-4}{2}=4\{{a}_{2}}=x={{a}_{1}}+d\{{a}_{2}}=x=4+4=8end{array})

Абсолютно верно.

Получается, мы сначала находим ( displaystyle d), потом прибавляем его к первому числу и получаем искомое ( displaystyle x).

Если прогрессия представлена маленькими значениями, то ничего сложного в этом нет, а если нам в условии даны числа ( displaystyle 4024;~x;6072)?

Согласись, есть вероятность ошибиться в вычислениях.

А теперь подумай, можно ли решить эту задачу в одно действие с использованием какой-либо формулы?

Конечно да, и именно ее мы попробуем сейчас вывести.

Обозначим искомый член арифметической прогрессии как ( {{text{a}}_{text{n}}}), формула его нахождения нам известна – это та самая формула, выведенная нами в начале:

( {{a}_{n}}={{a}_{1}}+dleft( n-1 right)), тогда:

  • предыдущий член прогрессии это ( {{a}_{n}}-d): ( {{a}_{n-1}}={{a}_{1}}+dleft( n-1 right)-d)
  • последующий член прогрессии это ( {{a}_{n}}+d): ( {{a}_{n+1}}={{a}_{1}}+dleft( n-1 right)+d)

Просуммируем предыдущий и последующий члены прогрессии:

( {{a}_{1}}+dleft( n-1 right)-d+{{{a}}_{1}}+text{d}left( text{n}-1 right)+text{d}=2left( {{a}_{1}}+dleft( n-1 right) right)text{ }!!~!!text{ })

Получается, что сумма предыдущего и последующего членов прогрессии – это удвоенное значение члена прогрессии, находящегося между ними.

Иными словами, чтобы найти значение члена прогрессии при известных предыдущих и последовательных значениях, необходимо сложить их и разделить на ( 2).

( {{a}_{n}}=frac{{{a}_{n+1}}+{{a}_{n-1}}}{2}) – свойство членов арифметической прогрессии.

Попробуем посчитать значение ( x), используя выведенную формулу:

( x=frac{4+12}{2}=8)

Все верно, мы получили это же число. Закрепим материал.

Посчитай значение ( x) для прогрессии ( displaystyle 4024;~x;6072) самостоятельно, ведь это совсем несложно.

( x=frac{4024+6072}{2}=5048)

Молодец! Ты знаешь о прогрессии почти все!

Осталось узнать только одну формулу, которую по легендам без труда вывел для себя один из величайших математиков всех времен, «король математиков» – Карл Гаусс…

Сумма первых n членов арифметической прогрессии

Когда Карлу Гауссу было 9 лет, учитель, занятый проверкой работ учеников других классов, задал на уроке следующую задачу:

«Сосчитать сумму всех натуральных чисел от ( displaystyle 1) до ( displaystyle 40) (по другим источникам до ( displaystyle 100)) включительно».

Каково же было удивление учителя, когда один из его учеников (это и был Карл Гаусс) через минуту дал правильный ответ на поставленную задачу, при этом, большинство одноклассников смельчака после долгих подсчетов получили неправильный результат…

Юный Карл Гаусс заметил некоторую закономерность, которую без труда заметишь и ты.

Допустим, у нас есть арифметическая прогрессия, состоящая из ( displaystyle 6)-ти членов: ( displaystyle 6;text{ }8;text{ }10;text{ }12;text{ }14;text{ }16…)

Нам необходимо найти сумму данных ( displaystyle 6) членов арифметической прогрессии.

Конечно, мы можем вручную просуммировать все значения, но что делать, если в задании необходимо будет найти сумму ( displaystyle 100) ее членов, как это искал Гаусс?

Изобразим заданную нам прогрессию. Присмотрись внимательно к выделенным числам и попробуй произвести с ними различные математические действия.

Попробовал? Что ты заметил? Правильно! Их суммы равны

А теперь ответь, сколько всего наберется таких пар в заданной нам прогрессии?

Конечно, ровно половина всех чисел, то есть ( frac{6}{2}=3).

Исходя из того, что сумма двух членов арифметической прогрессии равна ( 22), а подобных равных пар ( 3), мы получаем, что общая сумма равна:

( displaystyle Stext{ }=text{ }22cdot 3text{ }=text{ }66).

Таким образом, формула для суммы первых ( displaystyle n) членов любой арифметической прогрессии будет такой:

( displaystyle {{S}_{n}}=frac{left( {{a}_{1}}+{{a}_{n}} right)cdot n}{2}), где ( displaystyle n) – количество значений.

В некоторых задачах нам неизвестен ( displaystyle n)-й член, но известна разность прогрессии. Попробуй подставить в формулу суммы, формулу ( displaystyle n)-го члена. ( {{a}_{n}}={{a}_{1}}+dleft( n-1 right))

Что у тебя получилось?

( displaystyle {{S}_{n}}=frac{2{{a}_{1}}+dleft( n-1 right)}{2}cdot n), где ( displaystyle n) – количество значений.

Молодец! Теперь вернемся к задаче, которую задали Карлу Гауссу: посчитай самостоятельно, чему равна сумма ( displaystyle 40) чисел, начиная от ( displaystyle 1)-го, и сумма ( displaystyle 100) чисел начиная от ( displaystyle 1)-го.

Сколько у тебя получилось?

У Гаусса получилось, что сумма ( displaystyle 100 ) членов равна ( displaystyle 5050), а сумма ( displaystyle 40 ) членов ( displaystyle 820).

Так ли ты решал?

  • ( {{S}_{40}}=frac{left( 1+40 right)cdot 40}{2}=frac{41cdot 40}{2}=frac{1640}{2}=820)
  • ( {{S}_{100}}=frac{left( 1+100 right)cdot 100}{2}=frac{101cdot 100}{2}=5050)

На самом деле формула суммы членов арифметической прогрессии была доказана древнегреческим ученым Диофантом еще в 3 веке, да и на протяжении всего этого времени остроумные люди вовсю пользовались свойствами арифметической прогрессии.

Например, представь Древний Египет и самую масштабную стройку того времени – строительство пирамиды… На рисунке представлена одна ее сторона.

Где же здесь прогрессия скажешь ты? Посмотри внимательно и найди закономерность в количестве песчаных блоков в каждом ряде стены пирамиды.

Чем не арифметическая прогрессия? Посчитай, сколько всего блоков необходимо для строительства одной стены, если в основание кладется ( displaystyle 6) блочных кирпичей.

Надеюсь, ты не будешь считать, водя пальцем по монитору, ты же помнишь последнюю формулу и все, что мы говорили об арифметической прогрессии?

В данном случае прогрессия выглядит следующим образом:

( displaystyle 6;text{ }5;text{ }4;text{ }3;text{ }2; 1).

Разность арифметической прогрессии ( displaystyle ~=text{ }dtext{ }=text{ }-1).

Количество членов арифметической прогрессии ( displaystyle=6).

Подставим в последние формулы наши данные (посчитаем количество блоков 2 способами).

Разность арифметической прогрессии ( displaystyle ~=text{ }dtext{ }=text{ }-1).

Количество членов арифметической прогрессии ( displaystyle=6).

Подставим в последние формулы наши данные (посчитаем количество блоков 2 способами).

Способ 1.

( begin{array}{l}{{S}_{n}}=frac{left( {{a}_{1}}+{{a}_{n}} right)cdot n}{2}\~~{{S}_{6}}=frac{left( 6+1 right)cdot 6}{2}=frac{7cdot 6}{2}=21\~end{array})

Способ 2.

( displaystyle {{S}_{n}}=frac{2{{a}_{1}}+dleft( n-1 right)}{2}cdot n)

( {{S}_{n}}=frac{2cdot 6+1left( 6-1 right)}{2}cdot 6=frac{12+5cdot 6}{2}=frac{7cdot 6}{2}=frac{42}{2}=21)

А теперь можно и на мониторе посчитать: сравни полученные значения с тем количеством блоков, которое есть в нашей пирамиде.

Сошлось?

Молодец, ты освоил сумму ( displaystyle n)-ных членов арифметической прогрессии.

Конечно, из ( displaystyle 6) блоков в основании пирамиду не построишь, а вот из ( displaystyle 60)?

Попробуй рассчитать, сколько необходимо песчаных кирпичей, чтобы построить стену с таким условием.

Справился?

Верный ответ – ( displaystyle 1830) блоков:

( begin{array}{l}{{S}_{n}}=frac{left( {{a}_{1}}+{{a}_{n}} right)cdot n}{2}\{{S}_{60}}=frac{left( 60+1 right)cdot 60}{2}=frac{61cdot 60}{2}=61cdot 30=1830.end{array})

У этого термина существуют и другие значения, см. Прогрессия.

Арифмети́ческая прогре́ссия — числовая последовательность вида

{displaystyle a_{1}, a_{1}+d, a_{1}+2d, ldots , a_{1}+(n-1)d, ldots  ,}

то есть последовательность чисел (членов прогрессии), в которой каждое число, начиная со второго, получается из предыдущего добавлением к нему постоянного числа d (шага, или разности прогрессии):

{displaystyle a_{n}=a_{n-1}+d.}[1]

Любой член арифметической прогрессии равен первому её члену, сложенному с произведением разности прогрессии на число членов, предшествующих определяемому, т. е. он выражается формулой[2]:

{displaystyle a_{n}=a_{1}+(n-1)d.}

Арифметическая прогрессия является монотонной последовательностью. При d>0 она является возрастающей, а при d<0 — убывающей. Если d=0, то последовательность будет стационарной. Эти утверждения следуют из соотношения a_{n+1}-a_n=d для членов арифметической прогрессии.

Свойства[править | править код]

Общий член арифметической прогрессии[править | править код]

Член арифметической прогрессии с номером n может быть найден по формулам

a_n=a_1+(n-1)d
{displaystyle a_{n}=a_{m}-(m-n)d}

где a_{1} — первый член прогрессии, d — её разность, a_m — член арифметической прогрессии с номером m.

Доказательство формулы общего члена арифметической прогрессии

Пользуясь соотношением a_{n+1}=a_n+d выписываем последовательно несколько членов прогрессии, а именно:

a_2=a_1+d

a_3=a_2+d=a_1+d+d=a_1+2d

a_4=a_3+d=a_1+2d+d=a_1+3d

a_5=a_4+d=a_1+3d+d=a_1+4d

Заметив закономерность, делаем предположение, что a_n=a_1+(n-1)d. С помощью математической индукции покажем, что предположение верно для всех n in mathbb N:

База индукции (n=1) :

a_1=a_1+(1-1)d=a_1 — утверждение истинно.

Переход индукции:

Пусть наше утверждение верно при n=k, то есть a_k=a_1+(k-1)d. Докажем истинность утверждения при n=k+1:

a_{k+1}=a_k+d=a_1+(k-1)d+d=a_1+kd

Итак, утверждение верно и при n=k+1. Это значит, что a_n=a_1+(n-1)d для всех n in mathbb N.

Отметим, что в формулах общего члена n-й член прогрессии есть линейная функция. Об этом говорит следующая теорема.

Доказательство

Необходимость. Пусть {displaystyle left{a_{n}right}} арифметическая прогрессия. Тогда, как было уже показано, a_n=a_1+(n-1)d, то есть {displaystyle a_{n}=nd+a_{1}-d}. Так как {displaystyle fleft(xright)=ax+b} есть линейная функция и {displaystyle xin mathbb {N} }, это значит, что {displaystyle a=d} и {displaystyle b=a_{1}-d}, т. е. a_n — линейная функция, где {displaystyle fleft(nright)=nd+a_{1}-d}.

Достаточность. Пусть a_n есть линейная функция, т. е. {displaystyle a_{n}=acdot x+b}. Так как {displaystyle xin mathbb {N} } и {displaystyle x=n}, то {displaystyle a_{n}=acdot n+b}, тогда {displaystyle a_{n+1}=acdot left(n+1right)+b}.
Рассмотрим {displaystyle a_{n+1}-a_{n}=left(acdot left(n+1right)+bright)-left(an+bright)}.
Отсюда следует, что {displaystyle a_{n+1}-a_{n}=a}, где a — величина постоянная. Тогда {displaystyle a_{n+1}=a_{n}+a}, а это значит по определению, что {displaystyle left{a_{n}right}} — арифметическая прогрессия.

Суммы членов арифметической прогрессии с равными суммами номеров равны, т. е. {displaystyle a_{n}+a_{m}=a_{k}+a_{l}Longleftrightarrow n+m=k+lquad vert ;forall left(n,,m,,k,,lin mathbb {N} right)}.

Характеристическое свойство арифметической прогрессии[править | править код]

Последовательность a_1, a_2, a_3, ldots есть арифметическая прогрессия Longleftrightarrow для любого её элемента выполняется условие

{displaystyle a_{n}={dfrac {a_{n-1}+a_{n+1}}{2}},ngeqslant 2.}

Доказательство характеристического свойства арифметической прогрессии

Необходимость.

Поскольку a_1, a_2, a_3, ldots — арифметическая прогрессия, то для n geqslant 2 выполняются соотношения:

a_n=a_{n-1}+d

a_n=a_{n+1}-d.

Сложив эти равенства и разделив обе части на 2, получим {displaystyle a_{n}={dfrac {a_{n-1}+a_{n+1}}{2}}}.

Достаточность.

Имеем, что для каждого элемента последовательности, начиная со второго, выполняется a_n=frac{a_{n-1}+a_{n+1}}2. Следует показать, что эта последовательность есть арифметическая прогрессия. Преобразуем эту формулу к виду a_{n+1}-a_n=a_n-a_{n-1}. Поскольку соотношения верны при всех n geqslant 2, с помощью математической индукции покажем, что a_2-a_1=a_3-a_2=ldots =a_n-a_{n-1}=a_{n+1}-a_n.

База индукции (n=2) :

a_2-a_1=a_3-a_2 — утверждение истинно.

Переход индукции:

Пусть наше утверждение верно при n=k, то есть a_2-a_1=a_3-a_2=ldots =a_k-a_{k-1}=a_{k+1}-a_k. Докажем истинность утверждения при n=k+1:

a_{k+1}-a_{k}=a_{k+2}-a_{k+1}

Но по предположению индукции следует, что a_2-a_1=a_3-a_2=ldots =a_k-a_{k-1}=a_{k+1}-a_k. Получаем, что a_2-a_1=a_3-a_2=ldots =a_k-a_{k-1}=a_{k+1}-a_k=a_{k+2}-a_{k+1}

Итак, утверждение верно и при n=k+1. Это значит, что a_n=frac{a_{n-1}+a_{n+1}}2, n geqslant 2 Rightarrow a_2-a_1=a_3-a_2=ldots =a_n-a_{n-1}=a_{n+1}-a_n.

Обозначим эти разности через d. Итак, a_2-a_1=a_3-a_2=ldots =a_n-a_{n-1}=a_{n+1}-a_n=d, а отсюда имеем a_{n+1}=a_n+d для n in mathbb N. Поскольку для членов последовательности a_1, a_2, a_3, ldots выполняется соотношение a_{n+1}=a_n+d, то это есть арифметическая прогрессия.

Тождество арифметической прогрессии[править | править код]

Доказательство тождества арифметической прогрессии

С помощью формулы общего члена выразим k-й, l-й, m-й члены:

{displaystyle a_{k}=a_{1}+(k-1)d,quad a_{l}=a_{1}+(l-1)d,quad a_{m}=a_{1}+(m-1)d.}

Вычитая почленно из первого равенства второе, а из второго третьего, получим:

{displaystyle a_{k}-a_{l}=(k-l)d,quad a_{l}-a_{m}=(l-m)d.}

Выражая из этих равенств d и приравнивая полученные выражения, получим:

{displaystyle {dfrac {a_{k}-a_{l}}{k-l}}={dfrac {a_{l}-a_{m}}{l-m}}.}

По основному свойству пропорции:

{displaystyle (l-m)(a_{k}-a_{l})=(k-l)(a_{l}-a_{m}).}

Откуда следует доказываемое тождество:

{displaystyle (k-l)a_{m}+(m-k)a_{l}+(l-m)a_{k}=0.}

Следствие 1. Всякий член арифметической прогрессии вырази́м[5] через любую пару других членов.

Доказательство

Преобразовав тождество арифметической прогрессии

{displaystyle (k-l)a_{m}+(m-k)a_{l}+(l-m)a_{k}=0}

к виду

{displaystyle a_{m}={dfrac {(l-m)a_{k}+(m-k)a_{l}}{l-k}},}

можно заметить, что m-й член есть линейная комбинация двух других членов (a_{{k}} и {displaystyle a_{l}}), поскольку оно равносильно

{displaystyle a_{m}={dfrac {l-m}{l-k}}a_{k}+{dfrac {m-k}{l-k}}a_{l}.}

Следствие 2. Для того, чтобы число {displaystyle a_{m}} являлось членом данной арифметической прогрессии с членами a_{{k}} и {displaystyle a_{l}}, необходимо и достаточно, чтобы было натуральным число

{displaystyle m={dfrac {(a_{l}-a_{m})k+(a_{m}-a_{k})l}{a_{l}-a_{k}}}.}

Формулировка ещё одного признака арифметической прогрессии.

Следствие 3 [критерий]. Числовая последовательность является арифметической прогрессией в том и только в том случае, если выполняется тождество арифметической прогрессии для всех членов данной последовательности. Другими словами, чтобы каждый член был вырази́м через любую пару остальных членов последовательности.

{displaystyle left{a_{n}right}~-~div Longleftrightarrow left(k-lright)a_{m}+left(m-kright)a_{l}+left(l-mright)a_{k}=0mid forall k,forall l,forall min mathbb {N} .}

Доказательство

Необходимость. Утверждение

{displaystyle left{a_{n}right}~-~div Rightarrow left(k-lright)a_{m}+left(m-kright)a_{l}+left(l-mright)a_{k}=0mid forall k,forall l,forall min mathbb {N} }

очевидно (см. доказательство тождества арифметической прогрессии).

Достаточность. Докажем, что

{displaystyle left{a_{n}right}~-~div Leftarrow left(k-lright)a_{m}+left(m-kright)a_{l}+left(l-mright)a_{k}=0mid forall k,forall l,forall min mathbb {N} .}

Равенство

{displaystyle (k-l)a_{m}+(m-k)a_{l}+(l-m)a_{k}=0}

можно преобразовать к виду

{displaystyle (l-m)(a_{k}-a_{l})=(k-l)(a_{l}-a_{m}).}

Если все три номера различны, тогда

{displaystyle {dfrac {a_{k}-a_{l}}{k-l}}={dfrac {a_{l}-a_{m}}{l-m}}.}

Обозначим выражение, например, в левой части равенства за d, то есть

{displaystyle d={dfrac {a_{k}-a_{l}}{k-l}}.}

Откуда можно прийти к следующему предложению:

{displaystyle a_{k}=a_{l}+{left(k-lright)}d.}

Наконец, методом математической индукции, например, по l нетрудно убедиться, что данное соотношение описывает именно арифметическую прогрессию.

Действительно, при l=1 (база индукции) получаем формулу общего члена арифметической прогрессии:

{displaystyle a_{k}=a_{1}+{left(k-1right)}d.}

Предположим истинность утверждения (для l): формула {displaystyle a_{k}=a_{l}+{left(k-lright)}d} характеризует арифметическую прогрессию. Тогда покажем, что и при l+1 формула верна для арифметической прогрессии (переход, или шаг, индукции). Рассмотрим левую часть формулы

{displaystyle a_{k}=a_{l+1}+{left(k-left(l+1right)right)}d.}

По предположению индукции ({displaystyle a_{k}=a_{l}+{left(k-lright)}d}) заменим a_{k} на выражение {displaystyle a_{l}+{left(k-lright)}d}. Итак, получим следующее:

{displaystyle a_{l}+{left(k-lright)}d=a_{l+1}+{left(k-left(l+1right)right)}d.}

Методом тождественных преобразований имеем равносильное предложение

{displaystyle a_{l+1}=a_{l}+d.}

А это, в свою очередь, рекуррентное соотношение для арифметической прогрессии.

Значит, по принципу математической индукции можно утвердать, что для всякого l соотношение {displaystyle a_{k}=a_{l}+{left(k-lright)}d} верно только и только для членов арифметической прогрессии.

Аналогичные рассуждения проводятся для формулы {displaystyle d={dfrac {a_{l}-a_{m}}{l-m}}}.

Данное следствие целиком и полностью считается доказанным.

Сумма первых n членов арифметической прогрессии[править | править код]

Сумма первых n членов арифметической прогрессии {displaystyle S_{n}=sum _{i=1}^{n}a_{i}=a_{1}+a_{2}+ldots +a_{n}} может быть найдена по формулам

{displaystyle S_{n}={dfrac {a_{1}+a_{n}}{2}}cdot n} , где a_{1} — первый член прогрессии, a_n — член с номером n, n — количество суммируемых членов.
{displaystyle S_{n}={dfrac {a_{1}+a_{n}}{2}}cdot ({dfrac {a_{n}-a_{1}}{a_{2}-a_{1}}}+1)} — где a_{1} — первый член прогрессии, a_{2} — второй член прогрессии {displaystyle ,a_{n}} — член с номером n.
{displaystyle S_{n}={dfrac {2a_{1}+d(n-1)}{2}}cdot n} , где a_{1} — первый член прогрессии, d — разность прогрессии, n — количество суммируемых членов.
{displaystyle S_{n}=a_{frac {n+1}{2}}cdot n}, если n — нечётное натуральное число.
Доказательство
Запишем сумму двумя способами:

S_n=a_1+a_2+a_3+ ldots +a_{n-2}+a_{n-1}+a_n

S_n=a_n+a_{n-1}+a_{n-2}+ ldots +a_3+a_2+a_1 — та же сумма, только слагаемые идут в обратном порядке.

Теперь сложим оба равенства, последовательно складывая в правой части слагаемые, которые стоят на одной вертикали:

2S_n=(a_1+a_n)+(a_2+a_{n-1})+(a_3+a_{n-2})+ ldots +(a_{n-2}+a_3)+(a_{n-1}+a_2)+(a_n+a_1)

Покажем, что все слагаемые (все скобки) полученной суммы равны между собой. В общем виде каждое слагаемое можно подать в виде a_i+a_{n-i+1}, i=1,2,ldots,n. Воспользуемся формулой общего члена арифметической прогрессии:

a_i+a_{n-i+1}=a_1+(i-1)d+a_1+(n-i+1-1)d=2a_1+(n-1)d, i=1,2,ldots,n

Получили, что каждое слагаемое не зависит от i и равно 2a_1+(n-1)d. В частности, a_1+a_n=2a_1+(n-1)d. Поскольку таких слагаемых n, то

{displaystyle 2S_{n}=(a_{1}+a_{n})cdot nRightarrow S_{n}={dfrac {a_{1}+a_{n}}{2}}cdot n}

Третья формула для суммы получается подстановкой 2a_1+(n-1)d вместо a_1+a_n. Что и так непосредственно следует из выражения для общего члена.

Замечание:

Вместо a_1+a_n в первой формуле для суммы можно взять любое из других слагаемых a_i+a_{n-i+1}, i=2,3,ldots,n, так как они все равны между собой.

Формулировка ещё одного факта: для всякой арифметической прогрессии при любом n выполняется равенство:

{displaystyle S_{2n}=S_{n}+{dfrac {1}{3}}S_{3n}.}

Примечание: S_{k} — сумма k первых членов арифметической прогрессии.

Доказательство

1. Очевидно, что {displaystyle {dfrac {S_{2n}}{2n}}-{dfrac {S_{n}}{n}}={dfrac {a_{1}+a_{2n}-left(a_{1}+a_{n}right)}{2}}={dfrac {a_{2n}-a_{n}}{2}},} или {displaystyle S_{2n}-2S_{n}=ncdot (a_{2n}-a_{n}).}

Прибавим к обеим частям S_{n} и получим, что {displaystyle S_{2n}-S_{n}=S_{n}+ncdot (a_{2n}-a_{n}).}

2. Покажем, что {displaystyle S_{n}+ncdot (a_{2n}-a_{n})={dfrac {1}{3}}S_{3n}.}

Это так, поскольку можно написать верное равенство:

{displaystyle {dfrac {S_{3n}}{3n}}-{dfrac {S_{n}}{n}}={dfrac {a_{3n}-a_{n}}{2}}.} Из него следует, что {displaystyle {dfrac {S_{3n}}{3}}=S_{n}+{dfrac {a_{3n}-a_{n}}{2}}cdot n.}

3. Теперь докажем, что {displaystyle a_{2n}-a_{n}={dfrac {a_{3n}-a_{n}}{2}}.}
Перепишем последнее как {displaystyle a_{2n}={dfrac {a_{3n}+a_{n}}{2}}.}

Но гораздо лучше представить это равенство в виде {displaystyle a_{2n}={dfrac {a_{2n+1}+a_{2n-1}}{2}}.} Видно, что это характеристическое свойство арифметической прогрессии.
Значит, действительно {displaystyle a_{2n}-a_{n}={dfrac {a_{3n}-a_{n}}{2}}.}

4. А следовательно, {displaystyle S_{n}+ncdot (a_{2n}-a_{n})={dfrac {1}{3}}S_{3n}.}

5. Тем самым, {displaystyle S_{2n}=S_{n}+{dfrac {1}{3}}S_{3n},} что и требовалось доказать.

Предыдущее свойство имеет обобщение.

Для любых натуральных k, l, m выполняется комплементарное свойство сумм:

{displaystyle {dfrac {l-m}{k}}cdot S_{k}+{dfrac {m-k}{l}}cdot S_{l}+{dfrac {k-l}{m}}cdot S_{m}=0.}

Ещё один признак арифметической прогрессии.

Сумма членов арифметической прогрессии от n-го до m-го[править | править код]

Сумма членов арифметической прогрессии с номерами от n до m {displaystyle S_{m,n}=sum _{i=n}^{m}a_{i}=a_{n}+a_{n+1}+ldots +a_{m}} может быть найдена по формулам

{displaystyle S_{m,n}={dfrac {a_{m}+a_{n}}{2}}cdot (m-n+1)} , где a_m — член с номером m, a_n — член с номером n, {displaystyle (m-n+1)} — количество суммируемых членов.

{displaystyle S_{m,n}={dfrac {2a_{n}+dleft(m-nright)}{2}}cdot left(m-n+1right),}

где a_n — член с номером n, d — разность прогрессии, {displaystyle (m-n+1)} — количество суммируемых членов.

Произведение членов арифметической прогрессии[править | править код]

Произведением первых n членов арифметической прогрессии {displaystyle left{a_{n}right}} называется произведение от a_{1} до a_n, то есть выражение вида {displaystyle prod limits _{i=1}^{n}a_{i}=a_{1}cdot a_{2}cdot a_{3}cdot ldots cdot a_{n-2}cdot a_{n-1}cdot a_{n}.} Обозначение: P_{n}.

Свойство произведения:

Число множителей-скобок {displaystyle {left(a_{frac {n+1}{2}}^{2}-{left[idright]}^{2}right)}} равно {displaystyle {dfrac {n-1}{2}}}, а в самом произведении {displaystyle a_{frac {n+1}{2}}cdot prod limits _{i=1}^{frac {n-1}{2}}{left(a_{frac {n+1}{2}}^{2}-{left[idright]}^{2}right)}} их составляет {displaystyle {dfrac {n+1}{2}}} «штук».[10]

Сходимость арифметической прогрессии[править | править код]

Арифметическая прогрессия a_1, a_2, a_3, ldots расходится при dne 0 и сходится при d=0. Причём

lim_{nrightarrowinfty} a_n=left{ begin{matrix} +infty, d>0 \ -infty, d<0  \ a_1, d=0 end{matrix} right.

Доказательство
Записав выражение для общего члена и исследуя предел lim_{nrightarrowinfty} (a_1+(n-1)d), получаем искомый результат.

Связь между арифметической и геометрической прогрессиями[править | править код]

Пусть a_1, a_2, a_3, ldots — арифметическая прогрессия с разностью d и число a>0. Тогда последовательность вида a^{a_1}, a^{a_2}, a^{a_3}, ldots есть геометрическая прогрессия со знаменателем a^d.

Доказательство
Проверим характеристическое свойство для образованной геометрической прогрессии:

sqrt{a^{a_{n-1}}cdot a^{a_{n+1}}}= a^{a_n}, ngeqslant 2

Воспользуемся выражением для общего члена арифметической прогрессии:

sqrt{a^{a_{n-1}}cdot a^{a_{n+1}}}=sqrt{a^{a_1+(n-2)d}cdot a^{a_1+nd}}=sqrt{a^{2a_1+2(n-1)d}}=sqrt{(a^{a_1+(n-1)d})^2}=a^{a_1+(n-1)d}=a^{a_n}, ngeqslant 2

Итак, поскольку характеристическое свойство выполняется, то a^{a_1}, a^{a_2}, a^{a_3}, ldots — геометрическая прогрессия. Её знаменатель можно найти, например, из соотношения q=frac{a^{a_2}}{a^{a_1}}=frac{a^{a_1+d}}{a^{a_1}}=a^d.

Следствие: если последовательность положительных чисел образует геометрическую прогрессию, то последовательность их логарифмов образует арифметическую прогрессию.

Арифметические прогрессии высших порядков[править | править код]

Арифметической прогрессией второго порядка называется такая последовательность чисел, что последовательность их разностей сама образует простую арифметическую прогрессию. Примером может служить последовательность квадратов натуральных чисел:

1, 4, 9, 16, 25, 36, …

разности которых образуют простую арифметическую прогрессию с разностью 2:

3, 5, 7, 9, 11, …

Треугольные числа {displaystyle 1,3,6,10,15,ldots } также образуют арифметическую прогрессию второго порядка, их разности образуют простую арифметическую прогрессию {displaystyle 2,3,4,5,ldots }

Тетраэдральные числа {displaystyle 1,4,10,20,35,ldots } образуют арифметическую прогрессию третьего порядка, их разности являются треугольными числами.

Аналогично определяются и прогрессии более высоких порядков. В частности, последовательность n-ных степеней образует арифметическую прогрессию n-го порядка.

Если left[a_{{i}}right]_{{1}}^{{n}} — арифметическая прогрессия порядка m, то существует многочлен P_{{m}}(i)=c_{{m}}i^{{m}}+...+c_{{1}}i+c_{{0}}, такой, что для всех iin left{1,....nright} выполняется равенство a_{{i}}=P_{{m}}(i)[11]

Примеры[править | править код]

{displaystyle T_{n}=sum _{i=1}^{n}i=1+2+3+ldots +n={frac {n(n+1)}{2}}}

Формула для разности[править | править код]

Если известны два члена арифметической прогрессии, а также их номера в ней, то можно найти разность как

{displaystyle {mathit {d={frac {a_{m}-a_{n}}{m-n}}}}}.

Сумма чисел от 1 до 100[править | править код]

Согласно легенде, школьный учитель математики юного Гаусса, чтобы занять детей на долгое время, предложил им сосчитать сумму чисел от 1 до 100. Гаусс заметил, что попарные суммы с противоположных концов одинаковы: 1+100=101, 2+99=101 и т. д., и мгновенно получил результат: 5050.
Действительно, легко видеть, что решение сводится к формуле

frac{n(n+1)}2

то есть к формуле суммы первых n чисел натурального ряда.

См. также[править | править код]

  • Геометрическая прогрессия
  • Арифметико-геометрическая прогрессия

Примечания[править | править код]

  1. Такое соотношение называют рекуррентным соотношением первого порядка. Поэтому арифметическая прогрессия есть множество последовательностей, задающихся именно таким образом.
  2. Фильчаков П. Ф. Глава II. Алгебра и элементарные функции. Функции натурального аргумента (§ 75. Арифметическая прогрессия) // Справочник по элементарной математике: для поступающих в вузы : книга / под ред. чл.-кор. АН УССР П. Ф. Фильчакова. — Киев : «Наукова думка», 1972. — С. 303. — 528 с. — 400 000 экз. — УДК 51 (08)(G).
  3. Шахмейстер А. Х. Прогрессии. Арифметическая прогрессия // Множества. Функции. Последовательности. Прогрессии : книга / А. Х. Шахмейстер, под общ. ред. Б. Г. Зива. — 2-е изд., испр. и доп. — СПб. : «Петроглиф» : «Виктория плюс» ; М. : Издательство МЦНМО, 2008. — С. 135. — 296 с. : илл. — (Математика. Элективные курсы). — 3000 экз. — ББК 22.141я71.6. — УДК 373.167.1:512(G). — ISBN 978-5-94057-423-1. — ISBN 978-5-98712-027-9. — ISBN 978-5-91673-006-7.
  4. Соотношение между любыми тремя членами арифметической прогрессии и их номерами (Мусинов В. А.) // Материалы студенческой научной сессии Института математики и информатики МПГУ. 2021–2022 учебный год : сборник статей / под общ. ред. Е. С. Крупицына. — М.: МПГУ, 2022. — С. 91—93. — 156 с. — ISBN 978-5-4263-1109-1, ББК 22.1я431+32.81я431+22.1р30я431+74.262.21я431+74.263.2я431.
  5. Это означает, что выражаемый член есть комбинация любых двух других членов данной последовательности, причём эта комбинация составлена с помощью арифметических операций и конечного набора символов. Для арифметической последовательности такая комбинация будет линейной.
  6. Шахмейстер А. Х. Прогрессии. Арифметическая прогрессия // Множества. Функции. Последовательности. Прогрессии : книга / А. Х. Шахмейстер, под общ. ред. Б. Г. Зива. — 2-е изд., испр. и доп. — СПб. : «Петроглиф» : «Виктория плюс» ; М. : Издательство МЦНМО, 2008. — С. 141. — 296 с. : илл. — (Математика. Элективные курсы). — 3000 экз. — ББК 22.141я71.6. — УДК 373.167.1:512(G). — ISBN 978-5-94057-423-1. — ISBN 978-5-98712-027-9. — ISBN 978-5-91673-006-7.
  7. Из доказательства необходимости следует, что {displaystyle S_{n}=an^{2}+bn}, поэтому, если {displaystyle S_{n}=an^{2}+bn+c}, то необходимо сделать проверку. Например, если {displaystyle S_{n}=2n^{2}-n-6} — сумма первых n членов последовательности, то такая последовательность НЕ является арифметической прогрессией. А последовательность, заданная суммой {displaystyle S_{n}=2n^{2}-n} первых n членов, будет арифметической прогрессией.
  8. При n=1 произведение P_{n} равно {displaystyle a_{frac {1+1}{2}}=a_{1}}, что безусловно верно.
  9. Эту формулу удобно использовать для выполнения итераций в программном коде, так как результат зависит от значения только двух величин: постоянного числа — разности, и члена, стоящего ровно по середине между первым и n-м членом.
  10. Пример применения формулы.
    Пусть {displaystyle div left{a_{n}right}:quad underbrace {27} _{a_{1}},;underbrace {20} _{a_{2}},;underbrace {13} _{a_{3}},;underbrace {6} _{a_{4}},;underbrace {-1} _{a_{5}}}, где {displaystyle d=-7}.

    По формуле {displaystyle P_{n}=a_{frac {n+1}{2}}cdot prod limits _{i=1}^{frac {n-1}{2}}{left(a_{frac {n+1}{2}}^{2}-{left[idright]}^{2}right)}} найдём произведение пяти первых членов. Количество сомножителей должно равняться {displaystyle {dfrac {5+1}{2}}=3}. Причём первым сомножителем будет {displaystyle a_{frac {5+1}{2}}=a_{3}=13}.

    Далее {displaystyle prod limits _{i=1}^{frac {5-1}{2}}{left(a_{frac {5+1}{2}}^{2}-{left[idright]}^{2}right)}=prod limits _{i=1}^{2}{left(a_{3}^{2}-{left[idright]}^{2}right)}=}{displaystyle ={left(a_{3}^{2}-{left[dright]}^{2}right)}cdot {left(a_{3}^{2}-{left[2dright]}^{2}right)}={left(169-49right)}cdot {left(169-4cdot 49right)}=}{displaystyle =120cdot {left(-27right)}}.

    Наконец, {displaystyle P_{n}=13cdot 120cdot {left(-27right)}=-42120}.
  11. Бронштейн, 1986, с. 139.

Литература[править | править код]

  • Бронштейн И. Н., Семендяев К. А. Справочник по математике для инженеров и учащихся втузов. — М.: Наука, 1986. — 544 с.

Ссылки[править | править код]

  • Арифметическая прогрессия // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). — СПб., 1890. — Т. II. — С. 98.

Добавить комментарий