Что такое гипербола? Как построить гиперболу? (Для школьников (7-11 классов)).
Математическая гипербола.
Функция заданная формулой (y=frac{k}{x}), где к неравно 0. Число k называется коэффициентом обратной пропорциональности.
Определение гиперболы.
График функции (y=frac{k}{x}) называют гиперболой. Где х является независимой переменной, а у — зависимой.
Что нужно знать, чтобы построить гиперболу?
Теперь обсудим свойства гиперболы:
1. Ветви гиперболы. Если k>o, то ветви гиперболы находятся в 1 и 3 четверти. Если k<0, то ветви гиперболы находятся во 2 и 4 четверти.
гипербола, где k>0 ветви гиперболы находятся в 1 и 3 четверти
гипербола, где k<0 ветви гиперболы находятся во 2 и 4 четверти
2.Асимптоты гиперболы. Чтобы найти асимптоты гиперболы необходимо,иногда, уравнение гиперболы упростить. Рассмотрим на примере:
Пример №1:
$$y=frac{1}{x}$$
Знаменатель не может равняться 0, потому что на 0 делить нельзя, поэтому х не равен 0.
$$yneqcolor{red} {frac{1}{x}}+0$$
(frac{1}{x}) дробь отбрасываем, для того чтобы найти вторую асимптоту.
Остается простое число
y≠0 это вторая асимптота.
И так, асимптоты x≠0 и y≠0 в данном примере совпадают с осями координат OX и OY.
k=1, значит гипербола будет находится в первой и третьей четверти. k всегда находится в числители.
Построим примерный график гиперболы.
Пример №2:
$$y=frac{1}{x+2}-1$$
Находим первую асимптоту.
Знаменатель не может равняться 0, потому что на 0 делить нельзя, поэтому х+2 неравен 0.
х+2≠0
х≠-2 это первая асимптота
Находим вторую асимптоту.
$$y=color{red} {frac{1}{x+2}}-1$$
Дробь (color{red} {frac{1}{x+2}}) отбрасываем
Остается y≠ -1 это вторая асимптота.
Строим примерный график, отмечаем асимптоты (красным проведены прямые х≠-2 и y≠-1):
Пример №3:
$$begin{align*}
&y=frac{2+x}{1+x} \\
&y=frac{color{red} {1+1}+x}{1+x} \\
&y=frac{1}{1+x}+frac{1+x}{1+x}\\
&y=frac{1}{1+x}+1\\
&y=frac{1}{color{red} {1+x}}+1
end{align*}$$
Находим первую асимптоту.
Знаменатель не может равняться 0, потому что на 0 делить нельзя, поэтому 1+х неравен 0.
1+х≠0
х≠-1 это первая асимптота.
Находим вторую асимптоту.
$$y=color{red}{frac{1}{1+x}}+1$$
(color{red}{frac{1}{1+x}}) Дробь убираем.
Остается y≠1 это вторая асимптота.
Строим примерный график, отмечаем асимптоты (красным проведены прямые х≠-1 и y≠1):
3. У гиперболы есть центр симметрии относительно начала координат. Рассмотрим на примере:
$$y=frac{1}{x}$$
Возьмем точку А(1;1) с координатами, которая находится на графике у=1/х. На этом же графике лежит точка B(-1;-1). Видно, что точка А симметрична точке В относительна начала координат.
4. Оси симметрии гиперболы. У гиперболы две оси симметрии. Рассмотрим пример:
$$y=frac{1}{x}$$
Первой осью симметрии является прямая y=x. Посмотрим точки (0,5;2) и (2;0,5) и еще точки (-0,5;-2) и (-2;-0,5). Эти точки расположены по разные стороны данной прямой, но на равных расстояниях от нее, они симметричны относительно этой прямой.
Вторая ось симметрии это прямая y=-x.
5. Гипербола нечетная функция.
$$f(-x)=frac{1}{-x}=-frac{1}{x}=-f(x)$$
6. Область определения гиперболы и область значения гиперболы. Область определения смотрим по оси х. Область значения смотрим по оси у. Рассмотрим на примере:
$$y=frac{-1}{x-1}-1$$
а) Находим первую асимптоту.
Знаменатель не может равняться 0, потому что на 0 делить нельзя, поэтому x-1 неравен 0.
x-1≠0
х≠1 это первая асимптота.
Находим вторую асимптоту.
$$y=color{red} {frac{-1}{x-1}}-1$$
Дробь (color{red} {frac{-1}{x-1}}) удаляем.
Остается y≠ -1 это вторая асимптота.
б) k=-1, значит ветви гиперболы будут находится во второй и четвертой четверти.
в) Возьмем несколько дополнительных точек и отметим их на графике.
х=0 y=0
x=-1 y=-0,5
x=2 y=-2
x=3 y=-1,5
г) Область определения смотрим по оси х. Графика гиперболы не существует по асимптоте х≠1, поэтому область определения будет находится
х ∈ (-∞;1)U(1;+∞).
д) Область значения смотрим по оси y. График гиперболы не существует по асимптоте y≠ -1, поэтому область значения будет находится
y ∈ (-∞;-1)U(-1;+∞).
е) функция возрастает на промежутке x ∈ (-∞;1)U(1;+∞).
7. Убывание и возрастание функции гиперболы. Если k>0, функция убывающая. Если k<0 функция возрастающая.
8. Для более точного построения взять несколько дополнительных точек. Пример смотреть в пункте №6.
Подписывайтесь на канал на YOUTUBE и смотрите видео, подготавливайтесь к экзаменам по математике и геометрии с нами.
реклама
Асимптоты гиперболы
Пусть Г – какая-нибудь
линия, М – переменная точка на ней, а –
некоторая прямая. Если возможно такое
движение точки М по линии Г, что:
-
точка М уходит в
бесконечность; -
при этом расстояние
от точки М до прямой а стремится к нулю,
–
то говорят, что линия
Г ассимптотически приближается к прямой
а. Прямая а в таком случае называется
асимптотой линии Г.
Асимптотами гиперболы
называются прямые, имеющие уравнения:
и
.
(3)
Эти прямые являются
диагоналями основного прямоугольника.
Построим гиперболу
и
рассмотрим какую-нибудь точку М(х;у),
лежащую на гиперболе в первом квадранте.
Выясним, как в первом
квадранте по мере возрастания х будет
изменяться расстояние от точки М
гиперболы до асимптоты
.
Обозначим через N точку асимптоты с
абсциссой х: N(x;Y), где Y=.
Тогда
(4)
Так как а
х, то в скобках первое слагаемое всегда
больше второго, следовательно, Y-y>0, а
это означает, что при одной и той же
абсциссе точка гиперболы лежит под
соответствующей точкой асимптоты.
Преобразовав неравенство
(4):
,
(5)
убеждаемся, что длина
отрезка MN по мере возрастания х
уменьшается, и когда х неограниченно
растет, MN стремится к нулю. Так как MN
больше расстояния МК от точки M до
асимптоты, то при этом МК и подавно
стремится к нулю.
Аналогичное рассуждение
можно провести в любом квадранте.
Итак, прямые
в
смысле определения асимптот к графику
функции являются асимптотами гиперболы
.
При построении гиперболы
обычно строят основной прямоугольник
и проводят асимптоты, так как они
позволяют точнее вычерчивать гиперболу.
Равнобочная гипербола
Возьмем каноническое
уравнение гиперболы
.
В случае, когда а=b,
уравнение гиперболы имеет вид
или
х2
– у2
= а2.
(6)
Гипербола, у которой
полуоси а и b равны, называется равнобочной
гиперболой.
Уравнение (6) называется уравнением
равнобочной гиперболы. Так как основной
прямоугольник этой гиперболы является
квадратом, то асимптоты равнобочной
гиперболы будут перпендикулярны друг
другу. (Рис. 5)
Рис. 5
Сопряженная гипербола
Рассмотрим уравнение
.
(7)
Представим уравнение
(7) в следующем виде:
.
(8)
Очевидно, что уравнение
(8) представляет собой уравнение гиперболы,
у которой действительной осью является
ось ординат, а мнимой – ось абсцисс.
Построим основной
прямоугольник, проведем асимптоты и
построим гиперболу (7). Далее в той же
системе координат построим (пунктиром)
(Рис. 6) гиперболу
Рис. 6
Очевидно, что гиперболы
и
имеют
общие асимптоты. Такие гиперболы
называются сопряженными.
Выведем теперь уравнение
гиперболы, асимптотами которой служат
оси координат. Возьмем уравнение
равнобочной гиперболы х2
– у2
= а2
и рассмотрим уравнение этой гиперболы
в новой системе координат Х`OY`, полученной
из старой поворотом осей координат на
угол =(Рис.
2).
Используя для этого
формулы поворота осей координат:
х = х`cos
– y`sin;
y = x`sin
+ y`cos,
подставим значения х,
у в уравнение гиперболы:
х2
– у2
= а2.
Получим:
.
(9)
Обозначая
,
получим х`y`=c.
Уравнение равнобочной
гиперболы, для которой координатные
оси ОХ и OY являются асимптотами, будет
иметь вид:
ху = с
или
.
Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
Загрузить PDF
Загрузить PDF
Асимптоты гиперболы – это прямые, проходящие через центр гиперболы. Гипербола приближается к асимптотам, но никогда не пересекает (и даже не касается) их. Найти уравнения асимптот можно двумя способами, которые помогут понять саму концепцию асимптот.
-
1
Запишите каноническое уравнение гиперболы. Рассмотрим простейший пример – гиперболу, центр которой расположен в начале координат. В этом случае каноническое уравнение гиперболы имеет вид: x2/a2 – y2/b2 = 1 (когда ветви гиперболы направлены вправо или влево) или y2/b2 – x2/a2 = 1 (когда ветви гиперболы направлены вверх или вниз).[1]
Имейте в виду, что в этом уравнении «х» и «у» – это переменные, а «а» и «b» – постоянные (то есть числа).- Пример 1: x2/9 – y2/16 = 1
- Некоторые преподаватели и авторы учебников меняют местами постоянные «а» и «b».[2]
Поэтому изучите данное вам уравнение, чтобы понять, что к чему. Не стоит просто запоминать уравнение – в этом случае вы ничего не поймете, если переменные и/или постоянные будут обозначены другими символами.
-
2
Приравняйте каноническое уравнение к нулю (а не к единице). Новое уравнение описывает обе асимптоты, но чтобы получить уравнение каждой асимптоты, придется приложить некоторые усилия.[3]
- Пример 1: x2/9 – y2/16 = 0
-
3
Разложите на множители новое уравнение. Разложите на множители левую часть уравнения. Вспомните, как раскладывать на множители квадратное уравнение, и читайте дальше.
- Конечное уравнение (то есть уравнение, разложенное на множители) будет иметь вид (__ ± __)(__ ± __) = 0.
- При перемножении первых членов (внутри каждой пары скобок) должен получиться член x2/9, поэтому из этого члена извлеките квадратный корень, и результат запишите вместо первого пробела внутри каждой пары скобок:(x/3 ± __)(x/3 ± __) = 0
- Аналогично извлеките квадратный корень из члена y2/16, и результат запишите вместо второго пробела внутри каждой пары скобок: (x/3 ± y/4)(x/3 ± y/4) = 0
- Вы нашли все члены уравнения, поэтому внутри одной пары скобок между членами напишите знак плюс, а внутри второй – знак минус, чтобы при перемножении соответствующие члены сокращались: (x/3 + y/4)(x/3 – y/4) = 0
-
4
Приравняйте каждый двучлен (то есть выражение внутри каждой пары скобок) к нулю и вычислите «y». Так вы найдете два уравнения, которые описывают каждую асимптоту.
- Пример 1: Так как (x/3 + y/4)(x/3 – y/4) = 0, то x/3 + y/4 = 0 и x/3 – y/4 = 0
- Перепишите уравнение следующим образом: x/3 + y/4 = 0 → y/4 = – x/3 → y = – 4x/3
- Перепишите уравнение следующим образом: x/3 – y/4 = 0 → – y/4 = – x/3 → y = 4x/3
-
5
Выполните описанные действия с гиперболой, уравнение которой отличается от канонического. В предыдущем шаге вы нашли уравнения асимптот гиперболы с центром в начале координат. Если центр гиперболы находится в точке с координатами (h,k), то она описывается следующим уравнением: (x – h)2/a2 – (y – k)2/b2 = 1 или (y – k)2/b2 – (x – h)2/a2 = 1. Это уравнение также можно разложить на множители. Но в этом случае не трогайте двучлены (x – h) и (y – k) до тех пор, пока не придете к последнему шагу.
- Пример 2: (x – 3)2/4 – (y + 1)2/25 = 1
- Приравняйте это уравнение к 0 и разложите его на множители:
- ((x – 3)/2 + (y + 1)/5)((x – 3)/2 – (y + 1)/5) = 0
- Приравняйте каждый двучлен (то есть выражение внутри каждой пары скобок) к нулю и вычислите «y», чтобы найти уравнения асимптот:
- (x – 3)/2 + (y + 1)/5 = 0 → y = –5/2x + 13/2
- ((x – 3)/2 – (y + 1)/5) = 0 → y = 5/2x – 17/2
Реклама
-
1
Обособьте член y2 на левой стороне уравнения гиперболы. Применяйте этот метод в том случае, когда уравнение гиперболы дано в квадратичной форме. Даже если дано каноническое уравнение гиперболы, этот метод позволит лучше понять концепцию асимптот. Обособьте y2 или (y – k)2 на левой стороне уравнения.
- Пример 3: (y + 2)2/16 – (x + 3)2/4 = 1
- К обеим частям уравнения прибавьте «х», а затем умножьте обе части на 16:
- (y + 2)2 = 16(1 + (x + 3)2/4)
- Упростите полученное уравнение:
- (y + 2)2 = 16 + 4(x + 3)2
-
2
Извлеките квадратный корень из каждой части уравнения. При этом не упрощайте правую часть уравнения, так как при извлечении квадратного корня получаются два результата – положительный и отрицательный (например, -2 * -2 = 4, поэтому √4 = 2 и √4 = -2). Чтобы привести оба результата, используйте символ ±.
- √((y + 2)2) = √(16 + 4(x + 3)2)
- (y+2) = ± √(16 + 4(x + 3)2)
-
3
Уясните понятие асимптоты. Сделайте это до того, как перейти к следующему шагу. Асимптота – это прямая, к которой приближается гипербола с ростом значений «х». Гипербола никогда не пересечет асимптоту, но с увеличением «х» гипербола приблизится к асимптоте на бесконечно малое расстояние.
-
4
Преобразуйте уравнение с учетом больших значений «х». Как правило, при работе с уравнениями асимптот учитываются только большие значения «х» (то есть такие значения, которые стремятся к бесконечности). Поэтому в уравнении можно пренебречь определенными константами, так как по сравнению с «х» их вклад невелик. Например, если переменная «х» равна нескольким миллиардам, то прибавление числа (константы) 3 окажет мизерное влияние на значение «х».
- В уравнении (y+2) = ± √(16 + 4(x + 3)2) при стремлении «x» к бесконечности постоянной 16 можно пренебречь.
- При больших значениях «х» (y+2) ≈ ± √(4(x + 3)2)
-
5
Вычислите «у», чтобы найти уравнения асимптот. Избавившись от констант, можно упростить подкоренное выражение. Помните, что в ответе нужно записать два уравнения – одно со знаком плюс, а второе со знаком минус.
- y + 2 = ±√(4(x+3)^2)
- y + 2 = ±2(x+3)
- y + 2 = 2x + 6 и y + 2 = -2x – 6
- y = 2x + 4 и y = -2x – 8
Реклама
Советы
- Помните, что уравнение гиперболы и уравнения ее асимптот всегда включают постоянные (константы).
- Равносторонняя гипербола – это гипербола, в уравнении которой а = b = с (константа).
- Если дано уравнение равносторонней гиперболы, сначала преобразуйте его в каноническую форму, а затем найдите уравнения асимптот.
Реклама
Предупреждения
- Помните, что ответ не всегда записывается в канонической форме.
Реклама
Об этой статье
Эту страницу просматривали 91 673 раза.
Была ли эта статья полезной?
Свойства гиперболы
1) Область определения и область значений
По аналитическому заданию функции видно, что х ≠-a, поскольку знаменатель дроби не может ровняться нулю. Таким образом получим:
D(f)=(-∞;-а) U (-a;+∞)
Область значений
Е(f)=(-∞;+∞)
2) Нули функции
Если b=0, то график функции не пересекает ось ОХ;
Если b≠0, то гипербола имеет одну точку пересечения с ОХ:*
x=-(k+ab)/b
3) Промежутки знакопостоянства
Рассмотрим только 2 простых случая, остальные случаи вы можете рассмотреть аналитически самостоятельно по алгоритму из раздела Свойства функций -> Знакопостоянство
Случай 1: a=0, b=0, k>0
f(x)>0, при x ∈ (0; +∞)
f(x)<0, при x ∈ (-∞;0)
Случай 1: a=0, b=0, k<0
f(x)<0, при x ∈ (0; +∞)
f(x)>0, при x ∈ (-∞;0)
4) Промежутки монотонности
Аналогично с промежутками знакопостоянства рассмотрим только 2 случая
Случай 1: a=0, b=0, k>0
Функция убывает при
x ∈ (-∞;0) U (0; +∞)
Функция возрастает при
x ∈ (-∞;0) U (0; +∞)
5) Четность и нечетность
Функция является нечетной при a=0, b=0, то есть если имеет вид y=k/x
Обратная пропорциональность — коротко о главном
Определение:
Функция, описывающая обратную пропорциональность, – это функция вида ( displaystyle y=frac{k}{x-a}+b ), где ( kne 0), ( xne 0) и ( xne а)
По-другому эту функцию называют обратной зависимостью.
Область определения и область значений функции:
( Dleft( y right)=left( -infty ;0 right)cup left( 0;+infty right)) или, что то же самое, ( Dleft( y right)=mathbb{R}backslash left{ 0 right})
( Eleft( y right)=left( -infty ;0 right)cup left( 0;+infty right)) или ( Eleft( y right)=mathbb{R}backslash left{ 0 right}).
График обратной пропорциональности (зависимости) – гипербола.
Коэффициент ( displaystyle k)
( displaystyle k) – отвечает за «пологость» и направление графика. Чем больше этот коэффициент, тем дальше от начала координат располагается гипербола, и, следовательно, она менее круто «поворачивает» (см. рисунок).
Знак коэффициента ( displaystyle k) влияет на то, в каких четвертях расположен график:
если ( displaystyle k>0), то ветви гиперболы расположены в ( displaystyle I) и ( displaystyle III) четвертях;
если ( displaystyle k<0), то во ( displaystyle II) и ( displaystyle IV).
Коэффициент ( displaystyle a)
Если внимательно посмотреть на знаменатель, видим, что ( displaystyle a) – это такое число, которому не может равняться ( displaystyle x).
То есть ( x=a) – это вертикальная асимптота, то есть вертикаль, к которой стремится график функции
Коэффициент ( b)
Число ( b) отвечает за смещение графика функции вверх на величину ( b), если ( b>0), и смещение вниз, если ( b<0).
Следовательно, ( y=b) – это горизонтальная асимптота.
Алгоритм построения графика функции ( displaystyle y=frac{k}{x-a}+b)
- Определяем коэффициенты ( displaystyle k), ( displaystyle a) и ( displaystyle b).
- Строим график функции ( displaystyle y=frac{k}{x}) (сначала по 3-4 точкам правую ветвь, потом симметрично рисуем левую ветвь).
- График должен быть сдвинут вправо на ( displaystyle a). Но проще двигать не график, а оси, так что ось ( displaystyle Oy) сдвигаем влево на ( displaystyle a).
- График должен быть сдвинут вверх на ( displaystyle b). Но проще двигать не график, а оси, так что ось ( displaystyle Ox) сдвигаем вниз на ( displaystyle b).
- Старые оси (прямые, которые служили нам осями в пункте 2) оставляем в виде пунктирных линий. Это теперь просто вертикальная и горизонтальная асимптоты.
Что такое функция
Ты помнишь, что функция – это определенного рода зависимость?
Если ты еще не читал тему «Функции», настоятельно рекомендую бросить все и прочитать, ведь нельзя изучать какую-либо конкретную функцию, не понимая, что это такое – функция.
Также очень полезно перед началом этой темы освоить две более простые функции: линейную и квадратичную.
Там ты закрепишь понятие функции и научишься работать с коэффициентами и графиками.
Ну и на всякий случай немного повторим…
Функция – это правило, по которому каждому элементу одного множества (аргументу) ставится в соответствие некоторый (единственный!) элемент другого множества (множества значений функции).
То есть, если у тебя есть функция ( y=fleft( x right)), это значит что каждому допустимому значению переменной ( x) (которую называют «аргументом») соответствует одно значение переменной ( y) (называемой «функцией»).
Что значит «допустимому значению»?
Если не можешь ответить на этот вопрос, еще раз вернись к теме «Функции»!
Все дело в понятии «область определения»: для некоторых функций не все аргументы можно подставить в зависимость. Например, для функции ( y=sqrt{x}) отрицательные значения аргумента ( x) – недопустимы.
Функция, описывающая обратную зависимость
Это функция вида ( displaystyle y=frac{k}{x}), где ( kne 0).
По-другому ее называют обратной пропорциональностью: увеличение аргумента вызывает пропорциональное уменьшение функции.
Давай определим область определения. Чему может быть равен ( x)? Или, по-другому, чему он не может быть равен?
Единственное число, на которое нельзя делить – это ( 0), поэтому ( xne 0):
( Dleft( y right)=left( -infty ;0 right)cup left( 0;+infty right))
или, что то же самое,
( Dleft( y right)=mathbb{R}backslash left{ 0 right})
Такая запись означает, что ( x) может быть любым числом, кроме ( 0).
- Знак «( mathbb{R})» обозначает множество действительных чисел, то есть всех возможных чисел.
- Знаком «( backslash )» обозначается исключение чего-нибудь из этого множества (аналог знака «минус»).
- Число ( 0) в фигурных скобках означает просто число ( 0).
Получается, что из всех возможных чисел мы исключаем ( 0)).
Множество значений функции, оказывается, точно такое же: ведь если ( kne 0), то на что бы мы его не делили, ( 0) не получится:
( Eleft( y right)=left( -infty ;0 right)cup left( 0;+infty right)) или ( Eleft( y right)=mathbb{R}backslash left{ 0 right}).
Также возможны некоторые вариации формулы ( y=frac{k}{x}). Например, ( y=frac{k}{x+a}) – это тоже функция, описывающая обратную зависимость.
Определи самостоятельно область определения и область значений этой функции. Должно получиться:
- ( Dleft( y right)=left( -infty ;-a right)cup left( -a;+infty right))
- ( Eleft( y right)=left( -infty ;0 right)cup left( 0;+infty right)).
Давай посмотрим на такую функцию: ( displaystyle y=frac{x-5}{{{x}^{2}}-25}).
Является ли она обратной зависимостью?
На первый взгляд сложно сказать: ведь при увеличении ( x) увеличивается и знаменатель дроби, и числитель, так что непонятно, будет ли функция уменьшаться, и если да, то будет ли она уменьшаться пропорционально?
Чтобы понять это, нам необходимо преобразовать выражение таким образом, чтобы в числителе не было переменной:
( displaystyle y=frac{x-5}{{{x}^{2}}-25}=frac{x-5}{left( x-5 right)left( x+5 right)}=frac{1}{x+5},text{ }xne 5).
Действительно, мы получили обратную зависимость, но с оговоркой: ( xne 5).
Почему так? А потому, что выражение ( left( x-5 right)) было в исходном выражении в знаменателе, поэтому если мы возьмём значение ( x=5) и подставим его в исходную функцию (а ведь именно её нам нужно исследовать), то что мы получим?
Ноль, делённый на ноль. Но ведь на ноль нельзя делить ничего, даже другой ноль. Поэтому ( x) никак не может быть равен ( 5).
Но почему тогда мы также не пишем ( xne -5)? Оно ведь тоже в знаменателе!
А всё потому, что оно как было в знаменателе, так там и осталось, следовательно мы и так видим, что такое значение икса невозможно.
А поэтому — зачем лишний раз писать? Да-да, математики — народ ленивый, без надобности напрягаться не станут:)
Решения
Пример 1
( displaystyle y=1-frac{3}{x+2})
Пример 2
Здесь нужно вспомнить, как квадратный трехчлен раскладывается на множители (это подробно описано в теме «Разложение на множители»).
Напомню, что для этого надо найти корни соответствующего квадратного уравнения: ( displaystyle {{x}^{2}}+4{x}-5=0).
Я найду их устно с помощью теоремы Виета: ( displaystyle {{x}_{1}}=-5), ( displaystyle {{x}_{2}}=1). Как это делается? Ты можешь научиться этому, прочитав тему «Квадратные уравнения».
Итак, получаем: ( displaystyle {{x}^{2}}+4{x}-5=left( x+5 right)left( x-1 right)), следовательно:
( displaystyle y=frac{x+5}{left( x+5 right)left( x-1 right)}=frac{1}{x-1},text{ }xne -5)
Пример 3
Ты уже попробовал решить сам? В чем загвоздка?
Наверняка в том, что в числителе у нас ( displaystyle 2x), а в знаменателе – просто ( displaystyle x).
Это не беда. Нам нужно будет сократить на ( displaystyle left( x+2 right)), поэтому в числителе следует вынести ( displaystyle 2) за скобки (чтобы в скобках ( displaystyle x) получился уже без коэффициента):
( displaystyle y=frac{2{x}-3}{x+1}=frac{2left( x-frac{3}{2} right)}{x+1}=2cdot frac{x-1,5}{x+1}=2cdot frac{x+1-1-1,5}{x+1}=…) дальше сам.
Ответ: ( displaystyle y=2-frac{5}{x+1}).
График обратной пропорциональности
Как всегда, начнем с самого простого случая: ( displaystyle y=frac{1}{x}).
Составим таблицу.
Таблица обратной пропорциональности (зависимости)
( displaystyle mathbf{x}) | ( displaystyle -3) | ( displaystyle -2) | ( displaystyle -1) | ( displaystyle -0,5) | ( displaystyle 0,5) | ( displaystyle 1) | ( displaystyle 2) | ( displaystyle 3) | ( displaystyle 4) |
( displaystyle mathbf{y}) | ( displaystyle -frac{1}{3}) | ( displaystyle -frac{1}{2}) | ( displaystyle -1) | ( displaystyle -2) | ( displaystyle 2) | ( displaystyle ;1) | ( displaystyle frac{1}{2}) | ( displaystyle frac{1}{3}) | ( displaystyle frac{1}{4}) |
Нарисуем точки на координатной плоскости:
Теперь их надо плавно соединить, но как?
Видно, что точки в правой и левой частях образуют будто бы несвязанные друг с другом кривые линии. Так оно и есть.
Это график гиперболы и выглядит он так:
Этот график называется «гипербола» (есть что-то похожее на «параболу» в этом названии, правда?). Как и у параболы, у гиперболы две ветки, только они не связаны друг с другом.
Каждая из них стремится своими концами приблизиться к осям ( displaystyle Ox) и ( displaystyle Oy), но никогда их не достигает. Если посмотреть на эту же гиперболу издалека, получится такая картина:
Оно и понятно: так как ( displaystyle xne 0), график не может пересекать ось ( displaystyle Oy). Но и ( displaystyle yne 0), так что график никогда не коснется и оси ( displaystyle Ox).
Ну что же, теперь посмотрим на что влияют коэффициенты.
На что влияют коэффициенты
Рассмотрим такие функции:
( displaystyle y=frac{1}{x};text{ }y=frac{2}{x};text{ }y=frac{4}{x};text{ }y=-frac{1}{x};text{ }y=-frac{3}{x}):
Ух ты, какая красота!
Все графики построены разными цветами, чтобы легче было их друг от друга отличать.
Итак, на что обратим внимание в первую очередь?
Например, на то, что если у функции перед дробью стоит минус, то график переворачивается, то есть симметрично отображается относительно оси ( displaystyle Ox).
Второе: чем больше число в знаменателе, тем дальше график «убегает» от начала координат.
А что, если функция выглядит сложнее, например, ( displaystyle y=frac{1}{x-1}+2)?
В этом случае гипербола будет точно такой же, как обычная ( displaystyle y=frac{1}{x}), только она немного сместится. Давай думать, куда?
Чему теперь не может быть равен ( x)? Правильно, ( xne 1). Значит, график никогда не достигнет прямой ( x=1).
А чему не может быть равен ( y)? Теперь ( yne 2). Значит, теперь график будет стремиться к прямой ( y=2), но никогда ее не пересечет.
Итак, теперь прямые ( x=1) и ( y=2) выполняют ту же роль, которую выполняют координатные оси для функции ( displaystyle y=frac{1}{x}).
Такие прямые называются асимптотами (линии, к которым график стремится, но не достигает их):
Более подробно о том, как строятся такие графики, мы выучим чуть позже.
А теперь попробуй решить несколько примеров для закрепления.
Обратная пропорциональность в жизни
Где же нам встречается такая функция на практике? Примеров множество. Самый распространенный – это движение: чем больше скорость, с которой мы движемся, тем меньшее время нам потребуется, чтобы преодолеть одно и то же расстояние.
И правда, вспомним формулу скорости: ( displaystyle v=frac{S}{t}), где ( v) – скорость, ( t) – время в пути, ( S) – расстояние (путь).
Отсюда можно выразить время: ( displaystyle t=frac{S}{v})
Пример:
Человек едет на работу со средней скоростью ( 40) км/ч, и доезжает за ( 1) час. Сколько минут он потратит на эту же дорогу, если будет ехать со скоростью ( 60) км/ч?
Решение:
Вообще, такие задачи ты уже решал в 5 и 6 классе. Ты составлял пропорцию:
( displaystyle 60) км/ч – ( 60) мин.
( displaystyle 60) км/ч – ( x) мин.
Далее ты определял, что это обратная пропорциональность, так как чем больше скорость, тем меньше время. Значит, чтобы решить эту пропорцию, нужно поделить числа «крест-накрест»:
( displaystyle frac{40}{x}=frac{60}{60}text{ }Rightarrow text{ }x=40)(мин).
То есть понятие обратной пропорциональности тебе уже точно знакомо. Вот и вспомнили. А теперь то же самое, только по-взрослому: через функцию.
Функция (то есть зависимость) времени в минутах от скорости:
( displaystyle tleft( v right)=frac{S}{v}).
Известно, что ( tleft( 40 right)=60), тогда:
( frac{S}{40}=60text{ }Rightarrow text{ }S=40cdot 60=2400).
Нужно найти ( tleft( 60 right)):
( displaystyle tleft( 60 right)=frac{2400}{60}=40) (мин).
Теперь придумай сам несколько примеров из жизни, в которых присутствует обратная пропорциональность.
Придумал? Молодец, если да. Удачи!
Принципы построения графика обратной пропорциональности (гиперболы)
Теперь давай научимся строить простейшую гиперболу – ( displaystyle y=frac{k}{x}).
Достаточно помнить, как она выглядит, и тогда нам хватит всего трех-четырех точек.
Например, построим гиперболу ( displaystyle y=frac{3}{x}).
Составим таблицу из ( 4) точек, которые принадлежат одной ветке (например, правой):
( x) | ( frac{1}{2}) | ( displaystyle 1) | ( displaystyle 3) | ( displaystyle 6) |
( y) | ( displaystyle 6) | ( displaystyle 3) | ( displaystyle 1) | ( frac{1}{2}) |
Отмечаем точки на рисунке:
Проводим через них плавную линию, которая краями приближается к осям:
Это одна ветвь гиперболы
Проверить правильность построения этой кривой можно так: она должна быть симметрична относительно биссектрисы угла между осями координат:
Отлично, осталось вспомнить, что собой представляет вторая ветвь?
Это точно такая же кривая, расположенная симметрично относительно начала координат. То есть как будто оси теперь направлены не снизу вверх и слева направо, а наоборот: сверху вниз и справа налево, и мы рисуем ту же самую ветвь гиперболы.
Вот:
Еще один полезный факт.
Посмотри на красные точки на графике. Видно, что их абсцисса совпадает с ординатой. Так вот, эти абсцисса с ординатой равны ( sqrt{k}) для правой ветви гиперболы, и ( -sqrt{k}) для левой.
Для функций, у которых ( k) – точный квадрат (например, ( 1), ( 4) или ( displaystyle frac{1}{4})), эту точку, относительно которой ветвь гиперболы симметрична, будет очень легко поставить.
В этом случае достаточно даже трех точек, чтобы построить график.
Например, построим график функции ( displaystyle y=frac{4}{x})
Как и в прошлый раз, начнем с правой ветви.
Точка симметрии: ( displaystyle x=y=2). Выберем еще одну точку, например, ( displaystyle x=1), ( displaystyle y=4). У третьей точки координаты будут наоборот: ( displaystyle x=4), ( displaystyle y=1).
Рисуем:
И теперь симметрично отображаем эту ветвь в третью координатную четверть:
Теперь выясним, что будет, если ( displaystyle k<0)?
Очень просто: если есть график функции с таким же по величине, но положительным ( displaystyle k), то нужно просто отразить его относительно оси ( displaystyle Ox)
То есть правая ветвь теперь будет ниже оси ( displaystyle Ox) (в ( displaystyle IV) четверти), а левая – выше (в ( displaystyle III) четверти).
Принцип построения же останется прежним:
Ну что же, осталось объединить все то, что мы уже выяснили в один алгоритм: