Биссектриса смежного угла как найти

Смежные углы в геометрии

15 июня 2022

Два угла называются смежными, если у них общая вершина, общая сторона, а две других стороны образуют прямую.

В этом уроке:

  1. Что такое смежные углы
  2. Основное свойство смежных углов
  3. Биссектрисы смежных углов
  4. Тренировочные задачи

Это довольно простая, но очень важная тема.

1. Что такое смежные углы

Возьмём прямую $AB$ и отметим на ней точку $M$. Получим развёрнутый угол $AMB:$

Развёрнутый угол

Проведём из точки $M$ луч $MN$, не совпадающий с лучами $MA$ и $MB$.

Смежный угол

Получим два новых угла: $angle AMN$ и $angle BMN$. Эти углы и называются смежными.

Определение. Два угла называются смежными, если у них одна общая сторона, а две других образуют прямую (или, что то же самое, являются дополнительными лучами).

Обратите внимание: чтобы углы стали смежными, им недостаточно просто иметь общую сторону. Вот эти углы — не смежные, хотя они и имеют общую сторону:

Углы с общей стороной

А вот дальше — смежные, хотя и расположены немного непривычно:

Нестандартные смежные углы

Часто смежные углы возникают в точке пересечения прямых. Например, при пересечении двух прямых

Пересечение двух прямых

образуется четыре пары смежных углов: $angle ASM$ и $angle ASN$; $angle BSM$ и $angle MSN$; $angle ASN$ и $angle BSN$; наконец, $angle ASM$ и $angle BSM$.

2. Основное свойство внешних углов

У смежных углов есть замечательное свойство, которое будет преследовать нас на протяжении всей геометрии, до конца 11 класса.

Теорема. Сумма смежных углов равна 180°.

Доказательство. Рассмотрим смежные углы $AMN$ и $BMN$ с общей стороной $MN$:

Смежный угол

Поскольку луч $MN$ делит угол $AMB$ на смежные углы $AMN$ и $BMN$, по основному свойству углов

[angle AMB=angle AMN+angle BMN]

Но угол $AMB$ — развёрнутый, поэтому

[angle AMN+angle BMN={180}^circ ]

Другими словами, если один угол равен $alpha $, то смежный с ним равен ${180}^circ -alpha $. Или если известно, что углы $alpha $ и $beta $ — смежные, то $alpha +beta ={180}^circ $.

Казалось бы, элементарные рассуждения, но их вполне достаточно, чтобы решать большой класс задач.

Задача 1. Найдите угол, смежный с углом $ABC$, если:

  1. $angle ABC={36}^circ $.
  2. $angle ABC={121}^circ $.

Решение

1) Обозначим смежный угол $DBC=x$. Он будет тупым:

Смежный угол 36 градусов

Тогда $x=180-36=144$.

2) Обозначим смежный угол $DBC=x$. Он будет острым:

Смежный угол 121 градус

Тогда $x=180-121=59$.

Немного усложним задачу.

Задача 2. Найдите смежные углы, если:

  1. один из них на 68° больше другого.
  2. один из них в 5 раз больше другого.
  3. их градусные меры относятся как 5 : 4.

Решение.

1) Пусть один из углов равен $x$. Тогда другой (очевидно, больший) будет равен $x+68$.

Один смежный угол на 68 больше другого

Поскольку углы смежные, их сумма равна 180 градусов:

[begin{align}2x+68&=180 \ 2x&=112 \ x&=56 end{align}]

Итак, один угол равен 56 градусов. Тогда другой равен $x+68=124$ градуса.

2) Пусть меньший угол равен $x$. Тогда смежный с ним равен $5x$.

Один смежный угол в 5 раз больше другого

Сумма смежных углов равна 180 градусов, поэтому

[begin{align}5x+x&=180 \ 6x&=180 \ x&=30 end{align}]

Мы нашли меньший угол — он равен 30 градусов. Тогда второй угол равен $5x=150$ градусов.

3) В задачах с отношениями величинам удобно обозначать их кратными некоторой переменной. Например, если углы относятся как 5 к 4, то пусть величина одного угла будет $5x$, а другого — $4x$.

Смежные углы относятся как 5 к 4

Сумма смежных углов вновь равна 180 градусов:

[begin{align}5x+4x&=180 \ 9x&=180 \ x&=20 end{align}]

Поэтому сами углы равны $4x=80$ и $5x=100$ градусов.

3. Биссектрисы смежных углов

Вновь рассмотрим смежные углы $AMN$ и $BMN$:

Смежный угол

Построим биссектрису $MC$ угла $AMN$ и биссектрису $MD$ угла $BMN$:

Биссектрисы смежных углов

Если $angle AMC=x$ и $angle BMD=y$, то $angle AMN=2x$ и $angle BMN=2y$. Это смежные углы, поэтому

[begin{align}2x+2y&={180}^circ \ x+y&={90}^circ end{align}]

Получается, что биссектрисы смежных углов всегда пересекаются под углом 90°. Этот факт известен далеко не всем ученикам. Хотя он вполне может встретиться, например, на ЕГЭ.

Задача 3. Углы $ABC$ и $MBC$ смежные, $angle ABC={70}^circ $. Луч $BD$ принадлежит углу $ABC$, причём $angle ABD={40}^circ $. Найдите угол между биссектрисами углов $CBD$ и $MBC$.

Решение. Изобразим все углы на рисунке:

Смежный угол 40 и биссектрисы

Видим, что углы $ABD$ и $MBD$ — смежные. Следовательно

[begin{align}angle MBD&={180}^circ -angle ABD= \ &={180}^circ -{40}^circ ={140}^circ end{align}]

Синим цветом отмечены биссектрисы углов $CBD$ и $MBC$. Обозначим величину углов переменными: $angle CBD=2x$, $angle MBD=2y$. Но $angle MBD=angle MBC+angle CBD$, поэтому

[begin{align}2x+2y&=140 \ x+y&=70 end{align}]

Это и есть искомый угол между биссектрисами. Он равен 70 градусов.

Задача 4. Дан треугольник $ABC$. Лучи $AM$ и $CN$ лежат на одной прямой со стороной $AB$ (см. рисунок). Известно, что $angle MAC+angle ABC={180}^circ $. Докажите, что $angle MAC=angle NBC$.

Треугольник ABC и смежные углы

Пусть $angle ABC=x$. Тогда из условия следует, что $angle MAC={180}^circ -x$.

С другой стороны, углы $ABC$ и $NBC$ смежные, поэтому $angle NBC={180}^circ -x$.

Получается, что углы $MAC$ и $NBC$ равны одному и тому же выражению. Следовательно, $angle MAC=angle NBC$, что и требовалось доказать.

Смотрите также:

  1. Что такое вертикальные углы
  2. Перпендикулярные прямые — определение и свойства
  3. Правила комбинаторики в задаче B6
  4. Метод координат в пространстве
  5. Четырехугольная пирамида: как найти координаты вершин
  6. Задача B4 про три дороги — стандартная задача на движение

Зависит ли угол, который образуют между собой биссектрисы смежных углов, от градусных мер этих углов?

Утверждение.

Биссектрисы смежных углов перпендикулярны.

bissektrisyi smezhnyih uglov  Дано:  ∠AOD и ∠DOB — cмежные,

OF — биссектриса ∠AOD,

OK — биссектриса ∠DOB

Доказать:

    [OF bot OK]

Доказательство:

Так как сумма смежных углов равна 180º, то ∠AOD+∠DOB=180º.

Так как OF — биссектриса ∠AOD, то

    [angle FOD = frac{1}{2}angle AOD.]

Так как OK — биссектриса ∠DOB, то

    [angle DOK = frac{1}{2}angle DOB.]

Отсюда,

    [angle FOD + angle DOK = frac{1}{2}angle AOD + frac{1}{2}angle DOB = ]

    [ = frac{1}{2}(angle AOD + angle DOB) = frac{1}{2} cdot {180^o} = {90^o}.]

bissektrisyi smezhnyih uglov perpendikulyarnyi Таким образом, мы доказали, что угол между биссектрисами смежных углов не зависит от градусной меры смежных углов и всегда равен 90º, то есть, биссектрисы смежных углов перпендикулярны.

Задача.

ugol mezhdu bissektrisami smezhnyih uglov   Найти угол между биссектрисами смежных углов, один из которых на 100º больше другого.

Решение:

Так как биссектрисы смежных углов перпендикулярны, ∠FOK=90º.

(Находить градусные меры смежных углов не требуется).

Ответ: 90º.

Опубликовано 3 года назад по предмету
Геометрия
от zmurshik

постройте биссектрисы смежных углов. найдите градусную меру угла между этими биссектрисами

  1. Ответ

    Ответ дан
    TeoremaSin

    Так как смежные углы в сумме дают 180°, то градусная мера угла между ними будет равна 1/2 от первого угла + 1/2 от второго. И в сумме это всегда будет давать 90°.
    Ответ: 90°

Самые новые вопросы

Julia2101

Математика – 3 года назад

Решите уравнения:
а) 15 4 ∕19 + x + 3 17∕19 = 21 2∕19;
б) 6,7x – 5,21 = 9,54

na2005stud

Информатика – 3 года назад

Помогите решить задачи на паскаль.1)
дан массив случайных чисел (количество элементов
вводите с клавиатуры). найти произведение всех элементов массива.2)
дан массив случайных чисел (количество элементов
вводите с клавиатуры). найти сумму четных элементов массива.3)
дан массив случайных чисел (количество элементов
вводите с клавиатуры). найти максимальный элемент массива.4)
дан массив случайных чисел (количество элементов
вводите с клавиатуры). найти максимальный элемент массива среди элементов,
кратных 3.

Оксаночка1233

География – 3 года назад

Почему япония – лидер по выплавке стали?

Анимешка2

Математика – 3 года назад

Чему равно: 1*(умножить)х?     0*х?

laraizotova

Русский язык – 3 года назад

В каком из предложений пропущена одна (только одна!) запятая?1.она снова умолкла, точно некий внутренний голос приказал ей замолчать и посмотрела в зал. 2.и он понял: вот что неожиданно пришло к нему, и теперь останется с ним, и уже никогда его не покинет. 3.и оба мы немножко удовлетворим свое любопытство.4.впрочем, он и сам только еле передвигал ноги, а тело его совсем застыло и было холодное, как камень. 5.по небу потянулись облака, и луна померкла. 

Информация

Посетители, находящиеся в группе Гости, не могут оставлять комментарии к данной публикации.

Голосование за лучший ответ

Лев Ватлин

Знаток

(371)


9 лет назад

Если есть биссектриса самого угла, то биссектриса угла, смежного с ним, будем первой биссектрисе перпендикулярна

пятачок

Мастер

(1724)


9 лет назад

биссектрисы двух смежных углов взаимно перпендикулярны так что проводить надо под углом 90 градусов

ХУДОЖНИК

Искусственный Интеллект

(282695)


9 лет назад

Смотрите вот здесьhttp://pm298.ru/reshenie/febr.php

Биссектрисы смежных углов перпендикулярны

Анна Малкова

Пусть alpha и beta – смежные углы, l_1 – биссектриса угла alpha, l_2 – биссектриса угла beta. Докажем, что l_1 perp l_2.

Смежные углы – это углы, имеющие общую сторону, и их сумма равна 180^{circ}. Так как углы alpha и beta – смежные, angle AOC+ angle COB=180^{circ}.

angle DOC= frac{1}{2}alpha,

angle COE= frac{1}{2}beta

angle DOC + angle COE = frac{1}{2} left ( alpha + beta right )=frac{1}{2}cdot 180 ^{circ} = 90^{circ}

angle DOE = 90^{circ}.

Значит, l_1 perp l_2, что и требовалось доказать.

Легко доказать также, что биссектрисы односторонних углов при параллельных прямых и секущей – перпендикулярны. Сделайте это самостоятельно.

Полезные следствия, применяемые в решении задач ЕГЭ:

Биссектрисы углов параллелограмма, прилежащих к одной стороне, перпендикулярны.

Биссектрисы углов трапеции, прилежащих к боковой стороне, перпендикулярны.

Задача ЕГЭ по теме «Биссектрисы односторонних углов»

Найдите угол между биссектрисами углов параллелограмма, прилежащих к одной стороне. Ответ дайте в градусах.

Биссектрисы углов параллелограмма, прилежащих к одной стороне, перпендикулярны. Угол между ними равен 90 ^{circ}

Благодарим за то, что пользуйтесь нашими публикациями.
Информация на странице «Биссектрисы смежных углов перпендикулярны» подготовлена нашими авторами специально, чтобы помочь вам в освоении предмета и подготовке к ЕГЭ и ОГЭ.
Чтобы успешно сдать необходимые и поступить в высшее учебное заведение или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими материалами из данного раздела.

Публикация обновлена:
08.05.2023

Добавить комментарий