Частота колебаний контура как найти

Выберите подписку для получения дополнительных возможностей Kalk.Pro

Любая активная подписка отключает

рекламу на сайте

    • Доступ к скрытым чертежам
    • Безлимитные сохранения расчетов
    • Доступ к скрытым чертежам
    • Безлимитные сохранения расчетов
    • Доступ к скрытым чертежам
    • Безлимитные сохранения расчетов
    • Доступ к скрытым чертежам
    • Безлимитные сохранения расчетов

Более 10 000 пользователей уже воспользовались расширенным доступом для успешного создания своего проекта. Подробные чертежи и смета проекта экономят до 70% времени на подготовку элементов конструкции, а также предотвращают лишний расход материалов.

Подробнее с подписками можно ознакомиться здесь.

Колебательный контур LC

Колебательный контур — электрическая цепь, в которой могут возникать колебания с частотой, определяемой параметрами цепи.

Простейший колебательный контур состоит из конденсатора и катушки индуктивности, соединенных параллельно или последовательно.

– Конденсатор C – реактивный элемент. Обладает способностью накапливать и отдавать электрическую энергию.
– Катушка индуктивности L – реактивный элемент. Обладает способностью накапливать и отдавать магнитную энергию.

Рассмотрим, как возникают и поддерживаются свободные электрические колебания в параллельном контуре LC.

Основные свойства индуктивности

– Ток, протекающий в катушке индуктивности, создаёт магнитное поле с энергией .
– Изменение тока в катушке вызывает изменение магнитного потока в её витках, создавая в них ЭДС, препятствующую изменению тока и магнитного потока.

Природа электромагнитных колебаний в контуре

Период свободных колебаний контура LC можно описать следующим образом:

Если конденсатор ёмкостью C заряжен до напряжения U, потенциальная энергия его заряда составит.
Если параллельно заряженному конденсатору подключить катушку индуктивности L, в цепи пойдёт ток разряда конденсатора, создавая магнитное поле в катушке.

Внешний магнитный поток создаст ЭДС в направлении противоположном току в катушке, что будет препятствовать нарастанию тока в каждом витке, поэтому конденсатор разрядится не мгновенно, а через время t1,
которое определяется индуктивностью катушки и ёмкостью конденсатора из расчёта t1 = .
По истечении времени t1, когда конденсатор разрядится до нуля, ток в катушке и магнитная энергия будут максимальны.
Накопленная катушкой магнитная энергия в этот момент составит.
В идеальном рассмотрении, при полном отсутствии потерь в контуре, EC будет равна EL.
Таким образом, электрическая энергия конденсатора перейдёт в магнитную энергию катушки.

Далее изменение (уменьшение от максимума) магнитного потока накопленной энергии катушки будет создавать в ней ЭДС,
которая продолжит ток в том же направлении и начнётся процесс заряда конденсатора индукционным током. Уменьшаясь от максимума до нуля в течении времени t2 = t1, он перезарядит конденсатор от нулевого до максимального отрицательного значения (-U).
Так магнитная энергия катушки перейдёт в электрическую энергию конденсатора.

Описанные интервалы t1 и t2 составят половину периода полного колебания в контуре.
Во второй половине процессы аналогичны, только конденсатор будет разряжаться от отрицательного значения, а ток и магнитный поток сменят направление.
Магнитная энергия вновь будет накапливаться в катушке в течении времени t3, сменив полярность полюсов.

В течении заключительного этапа колебания (t4),
накопленная магнитная энергия катушки зарядит конденсатор до первоначального значения U
(в случае отсутствия потерь) и процесс колебания повторится.

В реальности, при наличии потерь энергии на активном сопротивлении проводников,
фазовых и магнитных потерь, колебания будут затухающими по амплитуде.
Время t1 + t2 + t3 + t4 составит период колебаний .
Частота свободных колебаний контура ƒ = 1 / T

Частота свободных колебаний является частотой резонанса контура,
на которой реактивное сопротивление индуктивности XL=2πfL равно реактивному сопротивлению ёмкости XC=1/(2πfC).


Расчёт частоты резонанса LC-контура:

Предлагается простой онлайн-калькулятор для расчёта резонансной частоты колебательного контура.

Необходимо вписать значения и кликнуть мышкой в таблице.
При переключении множителей автоматически происходит пересчёт результата.

Расчёт частоты:

Частота резонанса колебательного контура LC.
ƒ = 1/(2π√(LC))


Расчёт ёмкости:

Ёмкость для колебательного контура LC
C = 1/(4𲃲L)


Расчёт индуктивности:

Индуктивность для колебательного контура LC
L = 1/(4𲃲C)



Похожие страницы с расчётами:

Рассчитать импеданс.

Рассчитать реактивное сопротивление.

Рассчитать реактивную мощность и компенсацию.


Замечания и предложения принимаются и приветствуются!

Расчет резонансной частоты колебательного контура

Колебательный контур — электрическая цепь, содержащая катушку индуктивности, конденсатор и источник электрической энергии. При последовательном соединении элементов цепи колебательный контур называется последовательным, при параллельном − параллельным.

Колебательный контур — простейшая система, в которой могут происходить свободные электромагнитные колебания.

Резонансная частота контура определяется так называемой формулой Томсона:

ƒ = 1/(2π√(LC))

Для простоты расчета можно воспользоваться онлайн калькулятором расчета частоты резонанса колебательного контура – http://rcl-radio.ru/?p=28914

Также доступны онлайн калькуляторы для расчета ёмкости для колебательного контура и индуктивности для колебательного контура, расчет которых производится по следующим формулам:

C = 1/(4𲃲L) и L = 1/(4𲃲C)

Пример расчета резонансной частоты колебательного контура
Пример расчета резонансной частоты колебательного контура

Расчет резонансной частоты колебательного контура на сайте rcl-radio.ru

Сегодня нас интересует простейший колебательный контур, его принцип работы и применение.

За полезной информацией по другим темам переходите на наш телеграм-канал.

Колебания – процесс, повторяющийся во времени, характеризуется изменением параметров системы около точки равновесия.

Первое, что приходит на ум – это механические колебания математического или пружинного маятников. Но ведь колебания бывают и электромагнитными.

По определению колебательный контур (или LC-контур) – это электрическая цепь, в которой происходят свободные электромагнитные колебания.

Такой контур представляет собой электрическую цепь, состоящую из катушки индуктивностью L и конденсатора емкостью C. Соединены эти два элемента могут быть лишь двумя способами – последовательно и параллельно. Покажем на рисунке ниже изображение и схему простейшего колебательного контура.

Кстати! Для всех наших читателей сейчас действует скидка 10% на любой вид работы

LC-контур

 

Кстати! Для всех наших читателей сейчас действует скидка 10% на любой вид работы

Принцип действия колебательного контура

Давайте рассмотрим пример, когда сначала мы заряжаем конденсатор и замыкаем цепь. После этого в цепи начинает течь синусоидальный электрический ток. Конденсатор разряжается через катушку. В катушке при протекании через нее тока возникает ЭДС самоиндукции, направленная в сторону, противоположную току конденсатора.

Разрядившись окончательно, конденсатор благодаря энергии ЭДС катушки, которая в этот момент будет максимальна, начнет заряжаться вновь, но только в обратной полярности.

Колебания, которые происходят в контуре – свободные затухающие колебания. То есть без дополнительной подачи энергии колебания в любом реальном колебательном контуре рано или поздно прекратятся, как и любые колебания в природе.

Это обусловлено тем, что контур состоит из реальных материалов (конденсатор, катушка, провода), обладающих таким свойством, как электрическое сопротивление, и потери энергии в реальном колебательном контуре неизбежны. В противном случае это нехитрое устройство могло бы стать вечным двигателем, существование которого, как известно, невозможно. 

Затухающие колебания

 

Еще одна важная характеристика LC-контура – добротность Q. Добротность определяет амплитуду резонанса и показывает, во сколько раз запасы энергии в контуре превышают потери энергии за один период колебаний. Чем выше добротность системы, тем медленнее будут затухать колебания.

Резонанс LC-контура

Электромагнитные колебания в LC-контуре происходят с определенной частотой, которая называется резонансной Подробнее про резонанс – в нашей отдельной статье. Частоту колебаний можно менять, варьируя такие параметры контура, как емкость конденсатора C, индуктивность катушки L, сопротивление резистора R (для LCR-контура).

Как рассчитать резонансную частоту колебательного контура? Очень просто! Приведем окончательную формулу:

частота lc контура

Применение колебательного контура

Колебательный контур широко применяется на практике. На его основе строятся частотные фильтры, без него не обходится ни один радиоприемник или генератор сигналов определенной частоты.

Если вы не знаете, как подступиться к расчету LC-контура или на это совершенно нет времени, обратитесь в профессиональный студенческий сервис. Качественная и быстрая помощь в решении любых задач не заставит себя ждать!

Иван

Иван Колобков, известный также как Джони. Маркетолог, аналитик и копирайтер компании Zaochnik. Подающий надежды молодой писатель. Питает любовь к физике, раритетным вещам и творчеству Ч. Буковски.

Частота электромагнитных колебаний


Частота электромагнитных колебаний

4.4

Средняя оценка: 4.4

Всего получено оценок: 111.

4.4

Средняя оценка: 4.4

Всего получено оценок: 111.

Одним из видов колебательных процессов, широко используемых человеком, являются электромагнитные колебания. Как и у любого колебательного процесса, у электромагнитных колебаний имеется ряд характеристик. Рассмотрим такую характеристику, как частота.

Электрический колебательный контур

Простейшей электрической системой, в которой могут существовать колебания, является колебательный контур. Он состоит из параллельно соединенных конденсатора и катушки индуктивности:

Колебательный контур

Рис. 1. Колебательный контур.

Механизм возникновения колебаний в контуре основан на переходах энергии между зарядом конденсатора и магнитным полем катушки. При отсутствии потерь на нагревание и излучение эта энергия не уменьшается, и равна:

$$W=const={Li^2over 2}+{q^2over{2C}}$$,

где:

  • $W$ – полная энергия в контуре;
  • $L$ – индуктивность катушки;
  • $i$ – ток, текущий через контур;
  • $q$ – заряд конденсатора;
  • $С$ – электрическая емкость конденсатора.

Если общая энергия постоянна во времени, то производная этой энергии равна нулю, а значит:

$$left(Li^2over 2right)’ = -left(q^2over{2C}right)’$$

Физический смысл этой формулы в том, что скорость изменения энергии магнитного поля в катушке равна скорости изменения энергии заряда в конденсаторе. Знак минус означает, что при возрастании одной из этих энергий – другая убывает.

Вычислив производные, получаем:

$${Lover 2}×2ii’=-{1over 2C}×2qq’$$

Учитывая, что ток – это производная заряда, заменяем ток этой производной, а производную тока заменяем второй производной заряда. После преобразования имеем:

$$q”=-{1over LC}q$$

Данная формула полностью аналогична формуле колебаний пружинного маятника:

$$x”=-{kover m}x$$

Она имеет тоже самое решение – круговую функцию (синус или косинус), а коэффициент в правой части равен квадрату круговой частоты колебаний:

$$omega^2={1over LC}$$

Рис. 2. График электрических колебаний в контуре.

Формула Томсона

Из последнего соотношения можно получить значение периода электромагнитных колебаний:

$$T={2piover omega}={2pisqrt{LC}}$$

Данная формула впервые была получена У. Томсоном и носит его имя.

У. Томсон (Кельвин)

Рис. 3. У. Томсон (Кельвин).

Из данной формулы можно видеть, что время одного колебания (период) тем дольше, тем больше индуктивность и емкость. Это происходит потому, что большая емкость требует больше времени для полной зарядки. А большая индуктивность при изменении тока порождает большую ЭДС самоиндукции, которая, согласно правилу Ленца, направлена так, чтобы сопротивляться причине, ее порождающей. Таким образом, ток через большую индуктивность меняется медленнее, что также увеличивает период колебаний.

Во многих случаях удобнее использовать формулу частоты электромагнитных колебаний, которая получается из формулы Томсона, если учесть, что период и частота – взаимно обратны:

$$nu ={1over 2pisqrt{LC}}$$

Заключение

Что мы узнали?

Простейшей системой, в которой возможны электромагнитные колебания, является колебательный контур, состоящий из катушки индуктивности и конденсатора. Частота электромагнитных колебаний в контуре может быть получена из значений емкости конденсатора и индуктивности катушки с использованием формулы Томсона.

Тест по теме

Доска почёта

Доска почёта

Чтобы попасть сюда – пройдите тест.

    Пока никого нет. Будьте первым!

Оценка доклада

4.4

Средняя оценка: 4.4

Всего получено оценок: 111.


А какая ваша оценка?

Добавить комментарий