Загрузить PDF
Загрузить PDF
С абсолютной частотой все довольно просто: она определяет, сколько раз конкретное число содержится в имеющемся наборе данных (объектов или значений). А вот относительная частота характеризует отношение количества конкретного числа в наборе данных. Другими словами, относительная частота – это отношение количества определенного числа к общему количеству чисел в наборе данных. Имейте в виду, что вычислить относительную частоту достаточно легко.
-
1
Соберите данные. Если вы решаете математическую задачу, в ее условии должен быть дан набор данных (чисел). В противном случае проведите эксперимент или исследование и соберите необходимые данные. Подумайте, в какой форме записать исходные данные.
- Например, нужно собрать данные о возрасте людей, которые посмотрели определенный фильм. Конечно, можно записать точный возраст каждого человека, но в этом случае вы получите довольно большой набор данных с 60-70 числами в пределах от 10 до 70 или 80. Поэтому лучше сгруппировать данные по категориям, таким как «Моложе 20», «20-29», «30-39» «40-49», «50-59» и «Старше 60». Получится упорядоченный набор данных с шестью группами чисел.
- Другой пример: врач собирает данные о температуре пациентов в определенный день. Если записать округленные числа, например, 37, 38, 39, то результат будет не слишком точным, поэтому здесь данные нужно представить в виде десятичных дробей.
-
2
Упорядочьте данные. Когда вы соберете данные, у вас, скорее всего, получится хаотичный набор чисел, например, такой: 1, 2, 5, 4, 6, 4, 3, 7, 1, 5, 6, 5, 3, 4, 5, 1. Такая запись кажется практически бессмысленной и с ней сложно работать. Поэтому упорядочьте числа по возрастанию (от меньшего к большему), например, так: 1,1,1,2,3,3,4,4,4,5,5,5,5,6,6,7.[1]
- Упорядочивая данные, будьте внимательны, чтобы не пропустить ни одного числа. Посчитайте общее количество чисел в наборе данных, чтобы убедиться, что вы записали все числа.
-
3
Создайте таблицу с данными. Собранные данные можно организовать в виде таблицы. Такая таблица будет включать три столбца и использоваться для вычисления относительной частоты. Столбцы обозначьте следующим образом:[2]
Реклама
-
1
Найдите количество чисел в наборе данных. Относительная частота характеризует, сколько раз конкретное число содержится в имеющемся наборе данных по отношению к общему количеству чисел. Чтобы найти относительную частоту, нужно посчитать общее количество чисел в наборе данных. Общее количество чисел станет знаменателем дроби, с помощью которой будет вычислена относительная частота.[3]
- В нашем примере набор данных содержит 16 чисел.
-
2
Найдите количество определенного числа. То есть посчитайте, сколько раз конкретное число встречается в наборе данных. Это можно сделать как для одного числа, так и для всех чисел из набора данных.[4]
- Например, в нашем примере число встречается в наборе данных три раза.
-
3
Разделите количество конкретного числа на общее количество чисел. Так вы найдете относительную частоту для определенного числа. Вычисление можно представить в виде дроби или воспользоваться калькулятором или электронной таблицей, чтобы разделить два числа.[5]
Реклама
-
1
Результаты вычислений запишите в созданную ранее таблицу. Она позволит представить результаты в наглядной форме. По мере вычисления относительной частоты результаты записывайте в таблицу напротив соответствующего числа. Как правило, значение относительной частоты можно округлить до второго знака после десятичной запятой, но это на ваше усмотрение (в зависимости от требований задачи или исследования). Помните, что округленный результат не равен точному ответу.[6]
- В нашем примере таблица относительных частот будет выглядеть следующим образом:
- x : n(x) : P(x)
- 1 : 3 : 0,19
- 2 : 1 : 0,06
- 3 : 2 : 0,13
- 4 : 3 : 0,19
- 5 : 4 : 0,25
- 6 : 2 : 0,13
- 7 : 1 : 0,06
- Итого : 16 : 1,01
-
2
Представьте числа (элементы), которых нет в наборе данных. Иногда представление чисел с нулевой частотой так же важно, как и представление чисел с ненулевой частотой. Обратите внимание на собранные данные; если между данными имеются пробелы, их нужно заполнить нулями.
- В нашем примере набор данных включает все числа от 1 до 7. Но предположим, что числа 3 нет в наборе. Возможно, это немаловажный факт, поэтому нужно записать, что относительная частота числа 3 равна 0.
-
3
Выразите результаты в процентах. Иногда результаты вычислений нужно преобразовать из десятичных дробей в проценты. Это общепринятая практика, потому что относительная частота характеризует процент случаев появления определенного числа в наборе данных. Чтобы преобразовать десятичную дробь в проценты, нужно десятичную запятую передвинуть на две позиции вправо и приписать символ процента.
- Например, десятичная дробь 0,13 равна 13%.
- Десятичная дробь 0,06 равна 6% (обратите внимание, что перед 6 стоит 0).
Реклама
Советы
- Относительная частота характеризует наличие или возникновение определенного события в наборе событий.
- Если сложить относительные частоты всех чисел из набора данных, вы получите единицу. Помните, что при сложении округленных результатов сумма не будет равна 1,0.
- Если набор данных слишком большой, чтобы обработать его вручную, воспользуйтесь программой MS Excel или MATLAB; это позволит избежать ошибок в процессе вычисления.
Реклама
Источники
Об этой статье
Эту страницу просматривали 145 121 раз.
Была ли эта статья полезной?
Мода и медиана
Модой ряда чисел называется число, наиболее часто встречающееся в данном ряду.
Обратимся снова к нашему примеру со сборной по футболу:
Чему в данном примере равна мода? Какое число наиболее часто встречается в этой выборке?
Все верно, это число ( displaystyle 181), так как два игрока имеют рост ( displaystyle 181) см; рост же остальных игроков не повторяется.
Тут все должно быть ясно и понятно, да и слово знакомое, правда?
Перейдем к медиане, ты ее должен знать из курса геометрии. Но мне не сложно напомнить, что в геометрии медиана (в переводе с латинского- «средняя») — отрезок внутри треугольника, соединяющий вершину треугольника с серединой противоположной стороны.
Ключевое слово – СЕРЕДИНА. Если ты знал это определение, то тебе легко будет запомнить, что такое медиана в статистике.
Медианой ряда чисел с нечетным числом членов называется число, которое окажется посередине, если этот ряд упорядочить (проранжировать, т.е. расположить значения в порядке убывания или возрастания).
Медианой ряда чисел с четным числом членов называется среднее арифметическое двух чисел, записанных посередине, если этот ряд упорядочить.
Ну что, вернемся к нашей выборке футболистов?
Ты заметил в определении медианы важный момент, который нам еще здесь не встречался? Конечно, «если этот ряд упорядочить»!
Для того, чтобы в ряду чисел был порядок, можно расположить значения роста футболистов как в порядке убывания, так и в порядке возрастания. Мне удобней выстроить этот ряд в порядке возрастания (от самого маленького к самому большому).
Вот, что у меня получилось:
Так, ряд упорядочили, какой еще есть важный момент в определении медианы? Правильно, четное и нечетное количество членов в выборке.
Заметил, что для четного и нечетного количества даже определения отличаются? Да, ты прав, не заметить – сложно. А раз так, то нам надо определиться, четное у нас количество игроков в нашей выборке или нечетное?
Все верно – игроков ( displaystyle 11), значит, количество нечетное! Теперь можем применять к нашей выборке менее заковыристое определение медианы для нечетного количества членов в выборке.
Ищем число, которое оказалось посередине в нашем упорядоченном ряду:
Ну вот, чисел у нас ( displaystyle 11), значит, по краям остается по пять чисел, а рост ( displaystyle 183) см будет медианой в нашей выборке.
Не так уж и сложно, правда?
Частота и относительная частота
Частота представляет собой число повторений, сколько раз за какой-то период происходило некоторое событие, проявлялось определенное свойство объекта либо наблюдаемый параметр достигал данной величины.
То есть частота определяет то, как часто повторяется та или иная величина в выборке.
Разберемся на нашем примере с футболистами. Перед нами вот такой вот упорядоченный ряд:
Частота – это число повторений какой-либо величины параметра. В нашем случае, это можно считать вот так. Сколько игроков имеет рост ( 176)?
Все верно, один игрок. Таким образом, частота встречи игрока с ростом ( 176) в нашей выборке равна ( 1).
Сколько игроков имеет рост ( 178)? Да, опять же один игрок. Частота встречи игрока с ростом ( 178) в нашей выборке равна ( 1).
Задавая такие вопросы и отвечая на них, можно составить вот такую табличку:
Ну вот, все довольно просто. Помни, что сумма частот должна равняться количеству элементов в выборке (объему выборки).
То есть в нашем примере: ( 1+1+1+2+1+1+1+1+1+1=11)
Перейдем к следующей характеристике – относительная частота.
Относительная частота – это отношение частоты к общему числу данных в ряду. Как правило, относительная частота выражается в процентах.
Обратимся опять к нашему примеру с футболистами. Частоты для каждого значения мы рассчитали, общее количество данных в ряду мы тоже знаем ( left( n=11 right)) .
Рассчитываем относительную частоту для каждого значения роста и получаем вот такую табличку:
А теперь сам составь таблицы частот и относительных частот для примера с 9-классниками, решающими задачи.
Теория вероятностей – это раздел математики, который
изучает закономерности случайных событий.
События
можно считать случайными – это те, которые могут произойти, а могут и не
произойти.
Примерами
таких событий являются: выпадение орла или решки при подбрасывании монеты;
поражение мишени или промах при стрельбе; выпадение того или иного количества
очков при бросании игрального кубика.
Пример.
Провели
испытания. 100 раз бросали игральный кубик и подсчитали, что 6 очков выпало 17
раз – частота рассматриваемого события, то есть выпадения очков.
Отношение
частоты к общему числу испытаний называют относительной частотой этого
события.
Пусть
некоторое испытание проводилось многократно в одних и тех же условиях. При этом
фиксировалось, произошло или нет некоторое интересующее нас событие А.
Если
общее число испытаний – n,
а число испытаний, при которых произошло событие А, – m. То m называют
частотой события А, частное m и n –
относительной
частотой.
Определение:
Относительной
частотой случайного события в серии испытаний называется
отношение числа испытаний, в которых это событие наступило, к числу всех
испытаний.
В
ходе исследований выяснилось, что относительная частота появления ожидаемого
события при повторении опытов в одних и тех же условиях, может оставаться
примерно одинаковой, незначительно отличаясь от некоторого числа р.
Пример.
При
подбрасывании монеты отмечают те случаи, когда выпадает орёл.
Если
монета однородна и имеет правильную геометрическую форму, то шансы выпадения
орла или решки будут примерно одинаковы. Но при
небольшом количестве бросков такой результат может не получиться.
А
вот если испытание проводиться большое количество раз, то относительная частота
выпадения орла близка к относительной частоте выпадения решки.
Многие
учёные проводили такой эксперимент.
Так,
например, английский математик Карл Пирсон бросал монету 24 тысячи раз, и
относительная частота выпадения орла оказалось равной 0,5005.
А
наш соотечественник, Всеволод Иванович Романовский, подбрасывая монету 80 тысяч
640 раз, нашёл, что относительная частота выпадения орла в его испытании была
равна 0,4923.
Заметим,
что в обоих случаях относительная частота выпадения орла очень близка к .
Говорят,
что вероятность выпадения орла при подбрасывании монеты правильной
геометрической формы равна .
Пример.
В
непрозрачном мешке лежит 7 зелёных и 12 синих кубиков. За раз можно доставать
только 1 из них. Какова вероятность того, что из мешка достанут синий кубик?
Всего
в мешке 19 кубиков. Значит, n=19.
Синий
кубик мы можем достать 12 раз. Получаем, что m=12.
Относительная
частота равна:
Вероятность
того, что из мешка достанут синий кубик, равна .
Пример.
Определить
относительную частоту появления буквы «о» в слове «достопримечательность».
Общее
число букв, то есть n=21.
А количество букв «о», то есть m=3.
Значит
относительная частота:
Пример.
Отмечая
число попаданий в корзину в каждой серии из 40 бросков, которые совершал
баскетболист, получили такие данные:
Какова
относительная вероятность попадания мяча в корзину для данного баскетболиста?
Определим
общее число бросков. Было 5 серий по 40 бросков, то есть n=200.
Сосчитаем
число попаданий в корзину:
Получили,
что m=184.
Относительная
вероятность попадания в корзину будет:
Пример.
Стрелок
совершил 50 выстрелов. Относительная частота попадания в цель оказалась равной
0,88. Сколько раз он промахнулся?
Зная
общее число выстрелов n=50
и относительную вероятность попадания p=0,88.
Найдем число попаданий в цель:
Стрелок
попал в цель 44 раза.
Найдём
число промахов
Стрелок
промахнулся 6 раз.
Абсолютная и относительная частота
Абсолютная частота
Абсолютная частота определяет как часто определенное событие происходит в ходе эксперимента. Это всегда натуральное число между нулем и общим числом попыток.
i
Подсказка
Абсолютная частота относится только к количеству частоты определенного события.
Относительная частота
Относительная частота описывает насколько велика пропорция абсолютной частоты в общем количестве экспериментов. Она вычисляется следующим образом:
$text{Относительная частота} n_i$ $=frac{text{Абсолютная частота} f_i}{text{Количество попыток} N}$
Пример
Монету подбрасывают 10 раз. 6 раз выпадает орел и 4 раза решка. Определите абсолютную и относительную частоту.
Aбсолютная частота:
$f_{10}(орел)=6$
$f_{10}(решка)=4$
Относительная частота:
$N=10$
$n_{10}(орел)=frac{6}{10}=frac{3}{5}$
$n_{10}(решка)=frac{4}{10}=frac{2}{5}$
Относительная частота и статистическая вероятность. Основные формулы и решения типовых задач
Относительная частота (частость) события А определяется равенством
где n – общее число проведенных испытаний; m – число испытаний, в которых событие А наступило (иначе – частота события А).
При статистическом определении за вероятность события принимают его относительную частоту, найденную по результатам большого числа испытаний.
Задача №1. При определении всхожести партии семян взяли пробу из 1000 единиц. Из отобранных семян не взошло 90. Какова относительная частота появления всхожего семени?
Решение. Обозначим событие: А – отобрано всхожее семя. Найдем относительную частоту события А, применив формулу (5). Общее число проведенных испытаний n = 1000. Число испытаний, в которых событие А наступило, равно m = 1000 – 90 = 910.
Относительная частота события А равна
Задача №2. Для проведения исследований на некотором поле взяли случайную выборку из 200 колосьев пшеницы. Относительная частота (частость) колосьев, имеющих по 12 колосков в колосе, оказалась равной 0,123, а по 18 колосков – 0,05. Найти для этой выборки частоты колосьев, имущих по 12 и по 18 колосков.
Решение. Рассмотрим события: A – взят колос, имеющий 12 колосков; В – взят колос, имеющий 18 колосков.
Найдем частоты и событий А и В применив формулу (5).
Обозначим через относительную частоту события A, а через относительную частоту события В. Так как число проведенных испытаний n = 200, то
Задача №3. Многолетними наблюдениями установлено, что в некоторой области ежегодно в среднем в тридцати хозяйствах из каждых ста среднегодовой удой молока от одной коровы составляет 4 100 – 4 300 кг. Какова вероятность того, что в текущем году в одном из хозяйств этой области, отобранном случайным образом, будет получен такой среднегодовой удой?
Решение. Обозначим событие: А – в текущем году в хозяйстве области, отобранном случайным образом, среднегодовой удой молока от одной коровы составит 4 100 – 4 300 кг.
Вероятность события А найдем, воспользовавшись ее статистическим определением.
Располагая статистическими данными, найдем, что относительная частота хозяйств области, в которых ежегодно имеют указанный средне-годовой удой молока от одной коровы, равна 0,3. Так как эти данные получены в результате проведения большого числа наблюдений, выполняемых в течение многих лет, то можно принять, что вероятность события А равна Р(А) = 0,3.