Что как найти неизвестное уменьшаемое

Математика, 3 класс

Урок № 3.Решение уравнений с неизвестным уменьшаемым.

Решение уравнений с неизвестным вычитаемым

Перечень вопросов, рассматриваемых в теме:

– Что такое уравнение?

– Как найти неизвестное уменьшаемое?

– Как найти неизвестное вычитаемое?

Глоссарий по теме:

Уравнение – равенство с неизвестным.

Уменьшаемое – компонент вычитания. Число, из которого производят вычитание.

Вычитаемое – компонент вычитания. Число, с помощью которого вычитают.

Разность – результат вычитания.

Основная и дополнительная литература по теме урока:

  1. Моро М. И., Бантова М. А. и др. Математика 3 класс. Учебник для общеобразовательных организаций М.; Просвещение, 2017. – с. 8-9.
  2. Моро М. И., Волкова С. И. Математика. Рабочая тетрадь 3 класс. Часть 1. М.; Просвещение, 2016. – с. 7.
  3. М. И. Моро, С. И. Волкова. Для тех, кто любит математику 3 класс. Учебное пособие для общеобразовательных организаций. М.; Просвещение, 2018. – с. 4-6.

Теоретический материал для самостоятельного изучения

Рассмотрим группы уравнений. Чем они отличаются?

В первой группе записана сумма чисел. Неизвестный компонент в уравнениях – слагаемое.

Вспомним: чтобы найти неизвестное слагаемое, надо из суммы вычесть известное слагаемое. В первом уравнение х = 29; во втором – х = 23.

Во второй группе уравнений записана разность чисел. Компоненты вычитания: уменьшаемое, вычитаемое. Результат вычитания – разность. Неизвестным в уравнениях может быть уменьшаемое или вычитаемое.

Рассмотрим рисунок и составим равенства

8 – 6 = 2 2 + 6 = 8 8 – 2 = 6

Вывод: если к разности прибавить вычитаемое, то получим уменьшаемое.

Это правило позволит решать уравнения, в которых неизвестное число – уменьшаемое.

Вывод: если из уменьшаемого вычесть разность, то получим вычитаемое.

Это правило позволит решать уравнения, в которых неизвестное число – вычитаемое.

При решении любого уравнения обязательно пользуемся алгоритмом решения уравнения.

Алгоритм:

  1. Прочитать уравнение и определить компоненты действий;
  2. Определить неизвестный компонент;
  3. Вспомнить правило для его нахождения;
  4. Применить это правило;
  5. Выполнить вычисления;
  6. Записать ответ;
  7. Выполнить проверку правильности решения.

Применим знания в решении уравнений.

Х – 36 = 40

В уравнение неизвестно уменьшаемое. Вспоминаем правило: чтобы найти уменьшаемое, нужно к разности прибавить вычитаемое. Применяем правило и вычисляем.

Х = 40 + 36

Х = 76

Необходимо выполнить проверку.

76 – 36 = 40

Производим вычисления в левой части равенства.

40 = 40

Уравнение решено верно.

Решим следующее уравнение.

82 – х = 5

В уравнение неизвестно вычитаемое. Вспоминаем правило для его нахождения: чтобы найти неизвестное вычитаемое, надо из уменьшаемого вычесть разность.

Применяем правило и производим вычисление.

Х = 82 – 5

Х = 77

Выполняем проверку.

82 – 77 = 5

5 = 5

Выполним тренировочные задания.

1. Выберите значения х, которые получатся при решении уравнения:

Х – 28 = 40

Х = 16;

Х = 68;

Х = 12.

Правильный ответ:

Х = 68.

2. Образуйте пары: компоненты вычитания – их названия. Соедините линиями.

Правильный ответ:

В последнее время Интернет просто ломится от желающих поделиться секретами простого обучения школьников любого возраста. Больше достаётся малышам. Один советует не учить таблицу умножения, а выполнять умножение многозначных чисел диковинным японским способом — при помощи подсчёта точек пересечения прямых.

Как же находить уменьшаемое и вычитаемое?

При этом советующий не думает о последствиях, ведь надо будет учить не только умножению, но и делению, где используется умножение, а также действиям с обыкновенными и десятичными дробями.

https://zen.yandex.ru/media/shevkin/tablica-umnojeniia-bolshe-ne-nujna-5f8dee7cb5e4d5370eefe9f6

Второй предлагает складывать и вычитать обыкновенные дроби по правилу «бабочки».

Как же находить уменьшаемое и вычитаемое?

И при этом не задумывается о громоздкости вычислений даже в простом примере: 5/36 + 7/72.

https://zen.yandex.ru/media/tehno_chtivo/genialnyi-metod-slojeniia-drobei-i-ego-podvodnye-kamni-5f5f94295622142b93db0f92

Разумеется, я прокомментировал и это предложение. Критикуя, предложил, как надо учить сложению и вычитанию дробей самым традиционным способом — без лайфхаков, вызывающих у читателей этих лайфхаков оглушительные восторги.

https://zen.yandex.ru/media/shevkin/sovet-protiv-laifhaka-5f5a36b98279b40946603e1a

Про ролик, прославивший молодого учителя миллионными просмотрами, написала МК (10.09.2020) и блогер, указавший на “подводные камни” метода на примере 4/6 + 2/12 = 60/72. Блогер решил задачу проще: 4/6 + 2/12 = 10/12, но не заметил ещё более простого решения: 4/6 + 2/12 = 4/6 + 1/6 = 5/6.

Хорошо, что у него были внимательные читатели. Вот и решайте, чему надо учить: тупо применять единственный алгоритм, показанный учителем, или учить анализировать ситуацию и поступать по ситуации.

На днях я прочитал на Дзене предложение некоей KUMONo-мамы об упрощении запоминания правил нахождения уменьшаемого и вычитаемого. Вот начало статьи Как находить уменьшаемое и вычитаемое — Простая техника запоминания для малышей.

«Ваши первоклашки уравнения уже решают по Петерсон? Ну второклашки-то уж точно!

Малыши, не знакомые с отрицательными числами, решают уравнения, запоминая адские правила про «сложить разность и вычитаемое».

Ага, осталось только запомнить, что из них что…

Я, кстати, в школе была отличницей и прекрасно знала математику… и до сих пор помню, как чудовищно сложно (и, главное, в 1-2 классе непонятно, ради чего) было запомнить эти слова: вычитаемое, уменьшаемое…»

https://zen.yandex.ru/media/kumon/kak-nahodit-umenshaemoe-i-vychitaemoe-prostaia-tehnika-zapominaniia-dlia-malyshei-5f85864fa144c35a271d1920

Итак, мама видит проблему в том, что ребёнку, не знающему отрицательных чисел, трудно запомнить термины «уменьшаемое» и «вычитаемое». Она старается помочь, называя уменьшаемое, вычитаемое и разность одинаково — «числа».

Неужели так сложно донести до ребёнка, наученного вычитать, что при вычитании первое число уменьшается, его называют уменьшаемое? Это надо делать обязательно, так как развитие понятийного мышления, если хотите, научного мышления, предполагает использования терминов для обозначения изучаемых объектов. Станет ли ребёнку легче учиться, если мы избавим его от заучивания двух терминов из десяти, используемых для обозначения компонентов арифметических действий? Ребёнок и дальше будет обходиться без терминологии и называть словом «числа» каждое из чисел в следующих равенствах?

4 + 3 = 7
6 – 1 = 5
3 ∙ 2 = 6
8 : 4 = 2

Без терминов, которыми советчица пользуется, ребёнку станет легче выражать свои мысли и описывать свои действия? Чем же именно? Или термины знать всё-таки надо, но трудно запомнить, какое действие надо выполнить при поиске неизвестного компонента?

Раскрою секрет: обсуждаемые здесь термины гораздо важнее для развития речи и мышления школьника, чем для изучения математики, так как в старших классах эти правила уже не используются. Там говорят о переносе слагаемого в другую часть уравнения с противоположным знаком, о прибавлении к двум частям уравнения одного и того же числа, об умножении (делении) обеих частей уравнения на одно и то же число. Очевидно, что с этого нельзя начинать в начальной школе. А вот приучать малыша использовать речевые «шаблоны»: «чтобы найти… надо…» полезно именно для развития речи и мышления обучаемого.

В чём суть предложения KUMONo-мамы? Она записывает на листке уравнение х – 6 = 22 «на нахождение уменьшаемого», далее пишет: «Скажите ребенку, что числа стоят рядышком — так просто представить, что они ВМЕСТЕ, так и просят сложиться, чтобы стать ещё поближе друг к другу».

Интересный аргумент! А в уравнении x ∙ 2 = 6 числа 2 и 6 стоят так же близко. Они тоже будут просить сложиться? Ведь основание для выбора действия (они близко) одно и то же. А вот и рисунок, советующий ребёнку действие, а под ним умилительная запись с использованием тех самых терминов, которые детям трудно запомнить.

Вычитаемое и разность так близко... и хотят сложиться еще больше... такой вот романтИк ❤️❤️❤️
Вычитаемое и разность так близко… и хотят сложиться еще больше… такой вот романтИк ❤️❤️❤️

Что из этого поймёт ребёнок ещё вопрос, и поймёт ли?

Ещё изобретательнее KUMONo-мама объясняет нахождение вычитаемого. Она пишет на листке уравнение 12 – x = 7 «на нахождение вычитаемого». Далее пишет: «Предложите ребенку представить, что минус пытается выыыытянуться и дотянуться до ближайшего числа:

Минус пытается дотянуться до разности
Минус пытается дотянуться до разности

Теперь можно вычесть и получить вычитаемое.

Осталось только запомнить, как искать слагаемые. Если знаете такие же техники про них — обязательно напишите в комментариях».

Наша советчица ещё не придумала, как объяснять поиск неизвестного слагаемого. А там ещё неизвестные множители, делимое и делитель…

Но ещё больше, чем советы блогерши, меня огорчили «лайки» и восторги читателей.

Я оставил краткий комментарий: «Прекрасные примеры того, как не надо учить детей. Пытаясь придумать про “рядышком” и “выыыытянуть” автор хочет дать детям какой-то рецепт, никак не связанный с математикой. Не проще ли показывать связь операций на очевидных примерах?

1 + 2 = 3.

Накроем пальцем (монеткой…) первое слагаемое:

x + 2 = 3.

Каким действием можно найти спрятанное слагаемое?

И вопреки мнению автора, надо формулировать: чтобы найти неизвестное слагаемое, надо из суммы вычесть известное слагаемое.

Также со вторым слагаемым, уменьшаемым,… всего шесть правил. Это и развитие речи, и развитие наблюдательности, умения замечать закономерности».

Развиваю мысль. В начале 80-х годов прошлого века я недолго увлекался идеей использования опорных конспектов (В.Ф. Шаталов). В 5 классе у меня был такой опорный конспект, возникавший в процессе работы с классом.

Как же находить уменьшаемое и вычитаемое?

Глядя на него, ребята лучше запоминали упомянутые выше термины (первая буква термина стоит над числом), а также действия, с помощью которых находится неизвестная компонента (знак действия под числом). Ребята на отметку сдавали мне зачёт — формулировали каждое правило и приводили пример на его применение, я уточнял: а как называется это число, а это? Первые сдавшие зачёт увлечённо и строго экзаменовали одноклассников…

Может быть, и в начальной школе стоит попробовать применить этот опорный конспект? Только надо двигаться постепенно. Изучили сложение и вычитание — учим правила нахождения неизвестных слагаемого, уменьшаемого и вычитаемого.

Вместо заключения. Говорят, что лечить и учить умеет каждый. Не знаю, как насчёт лечить, но желающих учить — хоть отбавляй. Это явление, к сожалению, подстёгивают наши «учёные», твердящие из каждого утюга: «учитель утратил монополию на знание». Ну и чего хорошего мы дождёмся от этой утраты? От появления новых непрофессиональных желающих “сеять разумное, доброе, вечное”? Чему радуемся? Много ли пользы получим от непрофессионалов?

Чтобы научиться быстро и успешно решать уравнения, нужно начать с самых простых правил и примеров. В первую очередь надо научиться решать уравнения, слева у которых стоит разность, сумма, частное или произведение некоторых чисел с одним неизвестным, а справа другое число. Иными словами, в этих уравнениях есть одно неизвестное слагаемое и либо уменьшаемое с вычитаемым, либо делимое с делителем и т.д. Именно об уравнениях такого типа мы с вами поговорим.

Эта статья посвящена основным правилам, позволяющим найти множители, неизвестные слагаемые и др. Все теоретические положения будем сразу пояснять на конкретных примерах.

Нахождение неизвестного слагаемого

Допустим, у нас есть некоторое количество шариков в двух вазах, например, 9. Мы знаем, что во второй вазе 4 шарика. Как найти количество во второй? Запишем эту задачу в математическом виде, обозначив число, которое нужно найти, как x. Согласно первоначальному условию, это число вместе с 4 образуют 9, значит, можно записать уравнение 4+x=9. Слева у нас получилась сумма с одним неизвестным слагаемым, справа – значение этой суммы. Как найти x? Для этого надо использовать правило:

Определение 1

Для нахождения неизвестного слагаемого надо вычесть известное из суммы.

В данном случае мы придаем вычитанию смысл, который является обратным смыслу сложения. Иначе говоря, есть определенная связь между действиями сложения и вычитания, которую можно в буквенном виде выразить так: если a+b=c, то c−a=b и c−b=a, и наоборот, из выражений c−a=b и c−b=a можно вывести, что a+b=c.

Зная это правило, мы можем найти одно неизвестное слагаемое, используя известное и сумму. Какое именно слагаемое мы знаем, первое или второе, в данном случае неважно. Посмотрим, как применить данное правило на практике.

Пример 1

Возьмем то уравнение, что у нас получилось выше: 4+x=9. Согласно правилу, нам нужно вычесть из известной суммы, равной 9, известное слагаемое, равное 4. Вычтем одно натуральное число из другого: 9-4=5. Мы получили нужное нам слагаемое, равное 5.

Обычно решения подобных уравнений записывают следующим образом:

  1. Первым пишется исходное уравнение.
  2. Далее мы записываем уравнение, которое получилось после того, как мы применили правило вычисления неизвестного слагаемого.
  3. После этого пишем уравнение, которое получилось после всех действий с числами.

Такая форма записи нужна для того, чтобы проиллюстрировать последовательную замену исходного уравнения равносильными и отобразить процесс нахождения корня. Решение нашего простого уравнения, приведенного выше, правильно будет записать так:

4+x=9,x=9−4,x=5.

Мы можем проверить правильность полученного ответа. Подставим то, что у нас получилось, в исходное уравнение и посмотрим, выйдет ли из него верное числовое равенство. Подставим 5 в 4+x=9 и получим: 4+5=9. Равенство 9=9 верное, значит, неизвестное слагаемое было найдено правильно. Если бы равенство оказалось неверным, то нам следовало бы вернуться к решению и перепроверить его, поскольку это знак допущенной ошибки. Как правило, чаще всего это бывает вычислительная ошибка или применение неверного правила.

Нахождение неизвестного вычитаемого или уменьшаемого

Как мы уже упоминали в первом пункте, между процессами сложения и вычитания существует определенная связь. С ее помощью можно сформулировать правило, которое поможет найти неизвестное уменьшаемое, когда мы знаем разность и вычитаемое, или же неизвестное вычитаемое через уменьшаемое или разность. Запишем эти два правила по очереди и покажем, как применять их при решении задач.

Определение 2

Для нахождения неизвестного уменьшаемого надо прибавить вычитаемое к разности.

Пример 2

Например, у нас есть уравнение x-6=10. Неизвестно уменьшаемое. Согласно правилу, нам надо прибавить к разности 10 вычитаемое 6, получим 16. То есть исходное уменьшаемое равно шестнадцати. Запишем все решение целиком:

x−6=10,x=10+6,x=16.

Проверим получившийся результат, добавив получившееся число в исходное уравнение: 16-6=10. Равенство 16-16 будет верным, значит, мы все подсчитали правильно.

Переходим к следующему правилу.

Определение 3

Для нахождения неизвестного вычитаемого надо вычесть разность из уменьшаемого.

Пример 3

Воспользуемся правилом для решения уравнения 10-x=8. Мы не знаем вычитаемого, поэтому нам надо из 10 вычесть разность, т.е. 10-8=2. Значит, искомое вычитаемое равно двум. Вот вся запись решения:

10-x=8,x=10-8,x=2.

Сделаем проверку на правильность, подставив двойку в исходное уравнение. Получим верное равенство 10-2=8 и убедимся, что найденное нами значение будет правильным.

Перед тем, как перейти к другим правилам, отметим, что существует правило переноса любых слагаемых из одной части уравнения в другую с заменой знака на противоположный. Все приведенные выше правила ему полностью соответствуют.

Нахождение неизвестного множителя

Посмотрим на два уравнения: x·2=20 и 3·x=12. В обоих нам известно значение произведения и один из множителей, необходимо найти второй. Для этого нам надо воспользоваться другим правилом.

Определение 4

Для нахождения неизвестного множителя нужно выполнить деление произведения на известный множитель.

Данное правило базируется на смысле, который является обратным смыслу умножения. Между умножением и делением есть следующая связь: a·b=c при a и b, не равных 0, c: a=b, c: b=c и наоборот.

Пример 4

Вычислим неизвестный множитель в первом уравнении, разделив известное частное 20 на известный множитель 2. Проводим деление натуральных чисел и получаем 10. Запишем последовательность равенств:

x·2=20x=20:2x=10.

Подставляем десятку в исходное равенство и получаем, что 2·10=20. Значение неизвестного множителя было выполнено правильно.

Уточним, что в случае, если один из множителей нулевой, данное правило применять нельзя. Так, уравнение x·0=11 с его помощью решить мы не можем. Эта запись не имеет смысла, поскольку для решения надо разделить 11 на 0, а деление на нуль не определено. Подробнее о подобных случаях мы рассказали в статье, посвященной линейным уравнениям.

Когда мы применяем это правило, мы, по сути, делим обе части уравнения на другой множитель, отличный от 0. Существует отдельное правило, согласно которому можно проводить такое деление, и оно не повлияет на корни уравнения, и то, о чем мы писали в этом пункте, с ним полностью согласовано.

Нахождение неизвестного делимого или делителя

Еще один случай, который нам нужно рассмотреть, – это нахождение неизвестного делимого, если мы знаем делитель и частное, а также нахождение делителя при известном частном и делимом. Сформулировать это правило мы можем с помощью уже упомянутой здесь связи между умножением и делением.

Определение 5

Для нахождения неизвестного делимого нужно умножить делитель на частное.

Посмотрим, как применяется данное правило.

Пример 5

Решим с его помощью уравнение x:3=5. Перемножаем между собой известное частное и известный делитель и получаем 15, которое и будет нужным нам делимым.

Вот краткая запись всего решения:

x:3=5,x=3·5,x=15.

Проверка показывает, что мы все подсчитали верно, ведь при делении 15 на 3 действительно получается 5. Верное числовое равенство – свидетельство правильного решения.

Указанное правило можно интерпретировать как умножение правой и левой части уравнения на одинаковое отличное от 0 число. Это преобразование никак не влияет на корни уравнения.

Переходим к следующему правилу.

Определение 6

Для нахождения неизвестного делителя нужно разделить делимое на частное.

Пример 6

Возьмем простой пример – уравнение 21:x=3. Для его решения разделим известное делимое 21 на частное 3 и получим 7. Это и будет искомый делитель. Теперь оформляем решение правильно:

21:x=3,x=21:3,x=7.

Удостоверимся в верности результата, подставив семерку в исходное уравнение. 21:7=3, так что корень уравнения был вычислен верно.

Важно отметить, что это правило применимо только для случаев, когда частное не равно нулю, ведь в противном случае нам опять же придется делить на 0. Если же частным будет нуль, возможны два варианта. Если делимое также равно нулю и уравнение выглядит как 0:x=0, то значение переменной будет любым, то есть данное уравнение имеет бесконечное число корней. А вот уравнение с частным, равным 0, с делимым, отличным от 0, решений иметь не будет, поскольку таких значений делителя не существует. Примером может быть уравнение 5:x=0, которое не имеет ни одного корня.

Последовательное применение правил

Зачастую на практике встречаются более сложные задачи, в которых правила нахождения слагаемых, уменьшаемых, вычитаемых, множителей, делимых и частных нужно применять последовательно. Приведем пример.

Пример 7

У нас есть уравнение вида 3·x+1=7. Вычисляем неизвестное слагаемое 3·x, отняв от 7 единицу. Получим в итоге 3·x=7−1, потом 3·x=6. Это уравнение решить очень просто: делим 6 на 3 и получаем корень исходного уравнения.

Вот краткая запись решения еще одного уравнения (2·x−7):3−5=2:

(2·x−7):3−5=2,(2·x−7):3=2+5,(2·x−7):3=7,2·x−7=7·3,2·x−7=21,2·x=21+7,2·x=28,x=28:2,x=14.

Инфоурок


Начальные классы

Другие методич. материалыПамятка. Решение уравнений. Нахождение неизвестного слагаемого, уменьшаемого, вычитаемого.

Памятка. Решение уравнений. Нахождение неизвестного слагаемого, уменьшаемого, вычитаемого.

Скачать материал

без ожидания

Скачать материал

без ожидания

  • Сейчас обучается 103 человека из 31 региона

  • Сейчас обучается 642 человека из 77 регионов

аудиоформат

  • Сейчас обучается 144 человека из 51 региона

Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:

6 256 383 материала в базе

  • Выберите категорию:

  • Выберите учебник и тему

  • Выберите класс:

  • Тип материала:

    • Все материалы

    • Статьи

    • Научные работы

    • Видеоуроки

    • Презентации

    • Конспекты

    • Тесты

    • Рабочие программы

    • Другие методич. материалы

Найти материалы

Другие материалы

  • 21.06.2017
  • 1022
  • 1
  • 21.06.2017
  • 1472
  • 4
  • 21.06.2017
  • 427
  • 0
  • 21.06.2017
  • 381
  • 0
  • 21.06.2017
  • 460
  • 0
  • 21.06.2017
  • 605
  • 1
  • 21.06.2017
  • 274
  • 0

Вам будут интересны эти курсы:

  • Курс повышения квалификации «Возрастные особенности детей младшего школьного возраста»

  • Курс повышения квалификации «Роль педагога в реализации концепции патриотического воспитания школьников в образовательном процессе в свете ФГОС»

  • Курс повышения квалификации «Воспитание и социализация учащихся в условиях реализации ФГОС»

  • Курс повышения квалификации «Актуальные проблемы обучения детей с нарушением слуха в образовательных организациях общего и среднего профессионального образования»

  • Курс повышения квалификации «Сопровождение детского отдыха: от вожатого до руководителя детского лагеря»

  • Курс профессиональной переподготовки «Организация инклюзивного обучения в сфере образования»

  • Курс повышения квалификации «Психолого-педагогические аспекты развития мотивации учебной деятельности младших школьников в рамках реализации ФГОС НОО»

  • Курс повышения квалификации «Теория и практика инклюзивного обучения в образовательной организации в условиях реализации ФГОС»

  • Курс профессиональной переподготовки «Тьюторское сопровождение обучающихся в системе инклюзивного образования»

  • Курс повышения квалификации «Содержательные аспекты профессионального и личностного развития педагогических работников в рамках реализации профессионального стандарта»

  • Курс повышения квалификации «Применение современных педагогических технологий в образовательном процессе в условиях реализации ФГОС»

  • Курс повышения квалификации «Методика преподавания курса «Шахматы» в общеобразовательных организациях в рамках ФГОС НОО»

  • Курс профессиональной переподготовки «Инклюзивное образование в начальной школе»

  • Скачать материал (медленно)

    Настоящий материал опубликован пользователем Сафронова Ольга Николаевна. Инфоурок является
    информационным посредником и предоставляет пользователям возможность размещать на сайте
    методические материалы. Всю ответственность за опубликованные материалы, содержащиеся в них
    сведения, а также за соблюдение авторских прав несут пользователи, загрузившие материал на сайт

    Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с
    сайта, Вы можете оставить жалобу на материал.

    Удалить материал

  • Сафронова Ольга Николаевна

    • На сайте: 7 лет и 10 месяцев
    • Подписчики: 15
    • Всего просмотров: 70767
    • Всего материалов:

      38

Балакирева Татьяна Евгеньевна

Памятка по нахождению неизвестных компонентов действий.

Скачать:

Предварительный просмотр:

Выучи названия компонентов действий и правила нахождения неизвестных компонентов:

  1. Сложение: слагаемое, слагаемое, сумма. Чтобы найти неизвестное слагаемое, нужно из суммы вычесть известное слагаемое.
  1. Вычитание: уменьшаемое, вычитаемое, разность. Чтобы найти уменьшаемое, нужно к вычитаемому прибавить разность. Чтобы найти вычитаемое, нужно из уменьшаемого вычесть разность.
  1. Умножение: множитель, множитель, произведение. Чтобы найти неизвестный множитель, нужно произведение разделить на известный множитель.
  1. Деление: делимое, делитель, частное. Чтобы найти делимое, нужно делитель умножить на частное. Чтобы найти делитель, нужно делимое разделить на частное.

Выучи названия компонентов действий и правила нахождения неизвестных компонентов:

  1. Сложение: слагаемое, слагаемое, сумма. Чтобы найти неизвестное слагаемое, нужно из суммы вычесть известное слагаемое.
  1. Вычитание: уменьшаемое, вычитаемое, разность. Чтобы найти уменьшаемое, нужно к вычитаемому прибавить разность. Чтобы найти вычитаемое, нужно из уменьшаемого вычесть разность.
  1. Умножение: множитель, множитель, произведение. Чтобы найти неизвестный множитель, нужно произведение разделить на известный множитель.
  1. Деление: делимое, делитель, частное. Чтобы найти делимое, нужно делитель умножить на частное. Чтобы найти делитель, нужно делимое разделить на частное.

По теме: методические разработки, презентации и конспекты

  • Мне нравится 

 
 

Добавить комментарий