Что такое базис матрицы как его найти

В статье о n-мерных векторах мы пришли к понятию линейного пространства, порождаемого множеством n-мерных векторов. Теперь нам предстоит рассмотреть не менее важные понятия, такие как размерность и базис векторного пространства. Они напрямую связаны с понятием линейно независимой системы векторов, так что дополнительно рекомендуется напомнить себе основы и этой темы.

Введем некоторые определения.

Определение 1

Размерность векторного пространства – число, соответствующее максимальному количеству линейно независимых векторов в этом пространстве.

Определение 2

Базис векторного пространства – совокупность линейно независимых векторов, упорядоченная и в своей численности равная размерности пространства.

Рассмотрим некое пространство n-векторов. Размерность его соответственно равна n. Возьмем систему из n-единичных векторов:

e(1)=(1, 0,…,0)e(2)=(0, 1,…,0)e(n)=(0, 0,…,1)

Используем эти векторы в качестве составляющих матрицы A: она будет являться единичной с размерностью n на n. Ранг этой матрицы равен n. Следовательно, векторная система e(1), e(2),…, e(n) является линейно независимой. При этом к системе невозможно добавить ни одного вектора, не нарушив ее линейной независимости.

Так как число векторов в системе равно n, то размерность пространства n-мерных векторов равна n, а единичные векторы e(1), e(2),…, e(n) являются базисом указанного пространства.

Из полученного определения сделаем вывод: любая система n-мерных векторов, в которой число векторов меньше n, не является базисом пространства.

Если мы поменяем местами первый и второй вектор, получим систему векторов e(2), e(1),…, e(n). Она также будет являться базисом n-мерного векторного пространства. Составим матрицу, взяв за ее строки векторы полученной системы. Матрица может быть получена из единичной матрицы перестановкой местами первых двух строк, ранг ее будет равен n. Система e(2), e(1),…, e(n) линейно независима и является базисом n-мерного векторного пространства.

Переставив местами в исходной системе другие векторы, получим еще один базис.

Мы можем взять линейно независимую систему неединичных векторов, и она также будет представлять собой базис n-мерного векторного пространства.

Определение 3

Векторное пространство с размерностью n имеет столько базисов, сколько существует линейно независимых систем из n-мерных векторов числом n.

Плоскость является двумерным пространством – ее базисом будут два любых неколлинеарных вектора. Базисом трехмерного пространства послужат три любых некомпланарных вектора.

Рассмотрим применение данной теории на конкретных примерах.

Пример 1

Исходные данные: векторы

a=(3, -2, 1)b=(2, 1, 2)c=(3, -1, -2)

Необходимо определить, являются ли указанные векторы базисом трехмерного векторного пространства.

Решение

Для решения поставленной задачи исследуем заданную систему векторов на линейную зависимость. Составим матрицу, где строки – координаты векторов. Определим ранг матрицы.

A=323-21-112-2A=3-212123-1-2=3·1·(-2)+(-2)·2·3+1·2·(-1)-1·1·3-(-2)·2·(-2)-3·2·(-1)==-25≠0⇒Rank(A)=3

Следовательно, заданные условием задачи векторы линейно независимы, и их численность равна размерности векторного пространства – они являются базисом векторного пространства.

Ответ: указанные векторы являются базисом векторного пространства.

Пример 2

Исходные данные: векторы

a=(3, -2, 1)b=(2, 1, 2)c=(3, -1, -2)d=(0, 1, 2)

Необходимо определить, может ли указанная система векторов являться базисом трехмерного пространства.

Решение

Указанная в условии задачи система векторов является линейно зависимой, т.к. максимальное число линейно независимых векторов равно 3. Таким образом, указанная система векторов не может служить базисом трехмерного векторного пространства. Но стоит отметить, что подсистема исходной системы a=(3, -2, 1), b=(2, 1, 2), c=(3, -1, -2) является базисом.

Ответ: указанная система векторов не является базисом.

Пример 3

Исходные данные: векторы

a=(1, 2, 3, 3)b=(2, 5, 6, 8)c=(1, 3, 2, 4)d=(2, 5, 4, 7)

Могут ли они являться базисом четырехмерного пространства?

Решение

Cоставим матрицу, используя в качестве строк координаты заданных векторов

A=1233256813242547

По методу Гаусса определим ранг матрицы:

A=1233256813242547~1233010201-1101-21~~1233010200-1-100-2-1~1233010200-1-10001⇒⇒Rank(A)=4

Следовательно, система заданных векторов линейно независима и их численность равна размерности векторного пространства – они являются базисом четырехмерного векторного пространства.

Ответ: заданные векторы являются базисом четырехмерного пространства.

Пример 4

Исходные данные: векторы

a(1)=(1, 2, -1, -2)a(2)=(0, 2, 1, -3)a(3)=(1, 0, 0, 5)

Составляют ли они базис пространства размерностью 4?

Решение

Исходная система векторов линейно независима, но численность векторов в ней недостаточна, чтобы стать базисом четырехмерного пространства.

Ответ: нет, не составляют.

Разложение вектора по базису

Примем, что произвольные векторы e(1), e(2),…, e(n) являются базисом векторного n-мерного пространства. Добавим к ним некий n-мерный вектор x→: полученная система векторов станет линейно зависимой. Свойства линейной зависимости гласят, что хотя бы один из векторов такой системы может линейно выражаться через остальные. Переформулируя это утверждение, можно говорить о том, что хотя бы один из векторов линейно зависимой системы может раскладываться по остальным векторам.

Таким образом, мы пришли к формулировке важнейшей теоремы:

Определение 4

Любой вектор n-мерного векторного пространства единственным образом раскладывается по базису.

Доказательство 1

Докажем эту теорему:

зададим базис n-мерного векторного пространства – e(1), e(2),…, e(n). Сделаем систему линейно зависимой, добавив к ней n-мерный вектор x→. Этот вектор может быть линейно выражен через исходные векторы e:

x=x1·e(1)+x2·e(2)+…+xn·e(n) , где x1, x2,…, xn – некоторые числа.

Теперь докажем, что такое разложение является единственным. Предположим, что это не так и существует еще одно подобное разложение:

x=x~1e(1)+x2~e(2)+…+x~ne(n), где x~1, x~2,…, x~n – некие числа.

Отнимем от левой и правой частей этого равенства соответственно левую и правую части равенства x=x1·e(1)+x2·e(2)+…+xn·e(n) . Получим:

0=(x~1-x1)·e(1)+(x~2-x2)·e(2)+…(x~n-xn)·e(2)

Система базисных векторов e(1), e(2),…, e(n) линейно независима; по определению линейной независимости системы векторов равенство выше возможно только тогда, когда все коэффициенты (x~1-x1), (x~2-x2),…, (x~n-xn) будут равны нулю. Из чего справедливым будет: x1=x~1, x2=x~2,…, xn=x~n. И это доказывает единственный вариант разложения вектора по базису.

При этом коэффициенты x1, x2,…, xn называются координатами вектора x→ в базисе e(1), e(2),…, e(n).

Доказанная теория делает понятным выражение «задан n-мерный вектор x=(x1, x2,…, xn)»: рассматривается вектор x→ n-мерного векторного пространства, и его координаты заданы в некотором базисе. При этом также понятно, что этот же вектор в другом базисе n-мерного пространства будет иметь другие координаты.

Рассмотрим следующий пример: допустим, что в некотором базисе n-мерного векторного пространства задана система из n линейно независимых векторов

e(1)=(e1(1), e2(1),…, en(1))e(2)=(e1(2), e2(2),…, en(2))⋮e(n)=(e1(n), e2(n),…, en(n))

а также задан вектор x=(x1, x2,…, xn).

Векторы e1(1), e2(2),…, en(n) в этом случае также являются базисом этого векторного пространства.

Предположим, что необходимо определить координаты вектора x→ в базисе e1(1), e2(2),…, en(n), обозначаемые как x~1, x~2,…, x~n.

Вектор x→ будет представлен следующим образом:

x=x~1·e(1)+x~2·e(2)+…+x~n·e(n)

Запишем это выражение в координатной форме:

(x1, x2,…, xn)=x~1·(e(1)1, e(1)2,…, e(1)n)+x~2·(e(2)1, e(2)2,…, e(2)n)+…++x~n·(e(n)1, e(n)2,…, e(n)n)==(x~1e1(1)+x~2e1(2)+…+x~ne1(n), x~1e2(1)+x~2e2(2)++…+x~ne2(n), …, x~1en(1)+x~2en(2)+…+x~nen(n))

Полученное равенство равносильно системе из n линейных алгебраических выражений с n неизвестными линейными переменными x~1, x~2,…, x~n:

x1=x~1e11+x~2e12+…+x~ne1nx2=x~1e21+x~2e22+…+x~ne2n⋮xn=x~1en1+x~2en2+…+x~nenn

Матрица этой системы будет иметь следующий вид:

e1(1)e1(2)⋯e1(n)e2(1)e2(2)⋯e2(n)⋮⋮⋮⋮en(1)en(2)⋯en(n)

Пусть это будет матрица A, и ее столбцы – векторы линейно независимой системы векторов e1(1), e2(2),…, en(n). Ранг матрицы – n, и ее определитель отличен от нуля. Это свидетельствует о том, что система уравнений имеет единственное решение, определяемое любым удобным способом: к примеру, методом Крамера или матричным методом. Таким образом мы сможем определить координаты x~1, x~2,…, x~n вектора x→ в базисе e1(1), e2(2),…, en(n).

Применим рассмотренную теорию на конкретном примере.

Пример 6

Исходные данные: в базисе трехмерного пространства заданы векторы

e(1)=(1,-1,1)e(2)=(3, 2, -5)e(3)=(2, 1, -3)x=(6, 2, -7)

Необходимо подтвердить факт, что система векторов e(1), e(2), e(3) также служит базисом заданного пространства, а также определить координаты вектора х в заданном базисе.

Решение

Система векторов e(1), e(2), e(3) будет являться базисом трехмерного пространства, если она линейно независима. Выясним эту возможность, определив ранг матрицы A, строки которой – заданные векторы e(1), e(2), e(3).

Используем метод Гаусса:

A=1-1132-521-3~1-1105-803-5~1-1105-800-15

Rank (A) = 3. Таким образом, система векторов e(1), e(2), e(3) линейно независима и является базисом.

Пусть в базисе вектор x→ имеет координаты x~1, x~2, x~3. Связь этих координат определяется уравнением:

x1=x~1e1(1)+x~2e1(2)+x~3e1(3)x2=x~1e2(1)+x~2e2(2)+x~3e2(3)x3=x~1e3(1)+x~2e3(2)+x~3e3(3)

Применим значения согласно условиям задачи:

x~1+3x~2+2x~3=6-x~1+2x~2+x~3=2x~1-5x~2-3×3=-7

Решим систему уравнений методом Крамера:

∆=132-1211-5-3=-1∆x~1=632221-7-5-3=-1,     x~1=∆x~1∆=-1-1=1∆x~2=162-1211-7-3=-1,     x~2=∆x~2∆=-1-1=1∆x~3=136-1221-5-7=-1,     x~3=∆x~3∆=-1-1=1

Так, вектор x→ в базисе e(1), e(2), e(3) имеет координаты x~1=1, x~2=1, x~3=1.

Ответ: x=(1,1,1)

Связь между базисами

Предположим, что в некотором базисе n-мерного векторного пространства даны две линейно независимые системы векторов:

c(1)=(c1(1), c2(1),…, cn(1))c(2)=(c1(2), c2(2),…, cn(2))⋮c(n)=(c1(n), e2(n),…, cn(n))

И

e(1)=(e1(1), e2(1),…, en(1))e(2)=(e1(2), e2(2),…, en(2))⋮e(n)=(e1(n), e2(n),…, en(n))

Указанные системы являются также базисами заданного пространства.

Пусть c~1(1), c~2(1),…, c~n(1) – координаты вектора c(1) в базисе e(1), e(2),…, e(3), тогда связь координат будет задаваться системой линейных уравнений:

с1(1)=c~1(1)e1(1)+c~2(1)e1(2)+…+c~n(1)e1(n)с2(1)=c~1(1)e2(1)+c~2(1)e2(2)+…+c~n(1)e2(n)⋮                                                           сn(1)=c~1(1)en(1)+c~2(1)en(2)+…+c~n(1)en(n)

В виде матрицы систему можно отобразить так:

(c1(1), c2(1),…, cn(1))=(c~1(1), c~2(1),…, c~n(1))·e1(1)e2(1)…en(1)e1(2)e2(2)…en(2)⋮⋮⋮⋮e1(n)e2(n)…en(n)

Сделаем по аналогии такую же запись для вектора c(2):

(c1(2), c2(2),…, cn(2))=(c~1(2), c~2(2),…, c~n(2))·e1(1)e2(1)…en(1)e1(2)e2(2)…en(2)⋮⋮⋮⋮e1(n)e2(n)…en(n)

И, далее действуя по тому же принципу, получаем:

(c1(n), c2(n),…, cn(n))=(c~1(n), c~2(n),…, c~n(n))·e1(1)e2(1)…en(1)e1(2)e2(2)…en(2)⋮⋮⋮⋮e1(n)e2(n)…en(n)

Матричные равенства объединим в одно выражение:

c1(1)c2(1)⋯cn(1)c1(2)c2(2)⋯cn(2)⋮⋮⋮⋮c1(n)c2(n)⋯cn(n)=c~1(1)c~2(1)⋯c~n(1)c~1(2)c~2(2)⋯c~n(2)⋮⋮⋮⋮c~1(n)c~2(n)⋯c~n(n)·e1(1)e2(1)⋯en(1)e1(2)e2(2)⋯en(2)⋮⋮⋮⋮e1(n)e2(n)⋯en(n)

Оно и будет определять связь векторов двух различных базисов.

Используя тот же принцип, возможно выразить все векторы базиса e(1), e(2),…, e(3) через базис c(1), c(2),…, c(n):

e1(1)e2(1)⋯en(1)e1(2)e2(2)⋯en(2)⋮⋮⋮⋮e1(n)e2(n)⋯en(n)=e~1(1)e~2(1)⋯e~n(1)e~1(2)e~2(2)⋯e~n(2)⋮⋮⋮⋮e~1(n)e~2(n)⋯e~n(n)·c1(1)c2(1)⋯cn(1)c1(2)c2(2)⋯cn(2)⋮⋮⋮⋮c1(n)c2(n)⋯cn(n)

Дадим следующие определения:

Определение 5

Матрица c~1(1)c~2(1)⋯c~n(1)c~1(2)c~2(2)⋯c~n(2)⋮⋮⋮⋮c~1(n)c~2(n)⋯c~n(n) является матрицей перехода от базиса e(1), e(2),…, e(3)

к базису c(1), c(2),…, c(n).

Определение 6

Матрица e~1(1)e~2(1)⋯e~n(1)e~1(2)e~2(2)⋯e~n(2)⋮⋮⋮⋮e~1(n)e~2(n)⋯e~n(n) является матрицей перехода от базиса c(1), c(2),…, c(n)

к базису e(1), e(2),…, e(3).

Из этих равенств очевидно, что

c~1(1)c~2(1)⋯c~n(1)c~1(2)c~2(2)⋯c~n(2)⋮⋮⋮⋮c~1(n)c~2(n)⋯c~n(n)·e~1(1)e~2(1)⋯e~n(1)e~1(2)e~2(2)⋯e~n(2)⋮⋮⋮⋮e~1(n)e~2(n)⋯e~n(n)=10⋯001⋯0⋮⋮⋮⋮00⋯1e~1(1)e~2(1)⋯e~n(1)e~1(2)e~2(2)⋯e~n(2)⋮⋮⋮⋮e~1(n)e~2(n)⋯e~n(n)·c~1(1)c~2(1)⋯c~n(1)c~1(2)c~2(2)⋯c~n(2)⋮⋮⋮⋮c~1(n)c~2(n)⋯c~n(n)=10⋯001⋯0⋮⋮⋮⋮00⋯1 

т.е. матрицы перехода взаимообратны.

Рассмотрим теорию на конкретном примере.

Пример 7

Исходные данные: необходимо найти матрицу перехода от базиса

c(1)=(1, 2, 1)c(2)=(2, 3, 3)c(3)=(3, 7, 1)

к базису

e(1)=(3, 1, 4)e(2)=(5, 2, 1)e(3)=(1, 1, -6)

Также нужно указать связь координат произвольного вектора x→ в заданных базисах.

Решение

1. Пусть T – матрица перехода, тогда верным будет равенство:

314521111=T·121233371

Умножим обе части равенства на

121233371-1

и получим:

T=31452111-6·121233371-1

2. Определим матрицу перехода:

T=31452111-6·121233371-1==31452111-6·-18537-2-15-1-1=-2794-712012-4198

3. Определим связь координат вектора x→:

допустим, что в базисе c(1), c(2),…, c(n) вектор x→ имеет координаты x1,x2,x3, тогда:

x=(x1,x2,x3)·121233371,

а в базисе e(1), e(2),…, e(3) имеет координаты x~1,x~2,x~3, тогда:

x=(x~1,x~2,x~3)·31452111-6

Т.к. равны левые части этих равенств, мы можем приравнять и правые:

(x1,x2,x3)·121233371=(x~1,x~2,x~3)·31452111-6

Умножим обе части справа на

121233371-1

и получим:

(x1,x2,x3)=(x~1,x~2,x~3)·31452111-6·121233371-1⇔⇔(x1,x2,x3)=(x~1,x~2,x~3)·T⇔⇔(x1,x2,x3)=(x~1,x~2,x~3)·-2794-712012-4198

С другой стороны

(x~1,x~2,x~3)=(x1,x2,x3)·-2794-712012-4198

Последние равенства показывают связь координат вектора x→ в обоих базисах.

Ответ: матрица перехода

-2794-712012-4198

Координаты вектора x→ в заданных базисах связаны соотношением:

(x1,x2,x3)=(x~1,x~2,x~3)·-2794-712012-4198

или

(x~1,x~2,x~3)=(x1,x2,x3)·-2794-712012-4198-1

Фундаментальным
вопросом теории линейных пространств
является вопрос о том, можно ли, а если
можно, то как, произвольный вектор
пространства представить в виде линейной
комбинации фиксированного набора
векторов из этого пространства. Далее
мы получим ответ на этот вопрос.

Система
линейно независимых векторов
векторного пространстваназываетсябазисом
этого пространства, если любой вектор
из
может быть представлен в виде линейной
комбинации векторов этой системы, т.е.
для каждого векторасуществуют вещественные числатакие, что имеет место равенство

.

Это
равенство называется разложением
вектора

по базису
,
а числаназываютсякоординатами
вектора
относительно базиса

(или в базисе)
.

Утверждение

Базисом
линейного пространства решений
одно­родной системы является ее
фундаментальная система реше­ний.

ТЕОРЕМА
(о единственности разложения по базису).
Каждый вектор
пространстваможет быть разложен по базису

единственным
образом, т.е. координаты каждого вектора
в базисе


определяются однозначно.

Главное
значение базиса заключается в том, что
операции сложения векторов и умножения
их на числа при задании базиса превращаются
в соответствующие операции над числами
– координатами этих векторов. А именно,
справедлива следующая

ТЕОРЕМА.
При сложении
двух любых векторов линейного пространства
их координаты (относительно любого
базиса пространства) складываются; при
умножении

произвольного вектора на любое число
все координаты этого вектора умножаются
на.

Типовой
пример

Исследуем
вопрос о базисе пространства
,
введенного ранее при рассмотрении
Типовой примеров векторных пространств.
Покажем, чтоэлементовуказанного пространства образуют базис.

►Во-первых,
эти векторы линейно независимы. Проверка
линейной независимости набора
состоит в определении значений,
при которых возможно равенство

.

Но в
силу только что доказанной теоремы

,

а
последний вектор является нулевым лишь
при условии
.
Во-вторых, всякий векторзаведомо представим в виде линейной
комбинации векторов:и, значит, наборобразует базис. ◄

Векторное
пространство
называется
-мерным
,
если в нем существуютлинейно независимых векторов, а любыевекторов уже являются линейно зависимыми.
При этом числоназываетсяразмерностьюпространства.

Размерность
векторного пространства, состоящего
из одного нулевого вектора, принимается
равной нулю.

Размерность
пространства
обычно обозначают символом.

Векторное
пространство
называетсябесконечномерным, если
в нем существует любое число линейно
независимых векторов. В этом случае
пишут.

Выясним
связь между понятиями базиса и размерности
пространства.

ТЕОРЕМА.Если
– векторное пространство размерности,
то любыелинейно независимых векторов этого
пространства образуют его базис.

ТЕОРЕМА.Если векторное пространство
имеет базис, состоящий извекторов, то
.

Утверждение

Rn=n.

Типовые примеры

  1. Образуют
    ли базис в пространстве R3
    векторы
    ?

►По
определению базис составляют линейно
независимые векторы. Линейная зависимость
(или независимость) определяется исходя
из анализа равенства нулю линейной
комбинации этих векторов:

.

Последнее
векторное уравнение после записи его
по компонентам представляет собой
систему трёх однородных уравнений
относительно
.
Согласно схеме исследования линейной
зависимости векторов вычислим
определитель матрицы, составленной из
координат векторов

Определитель
системы равен нулю, следовательно, она
имеет нетривиальное решение и это
означает, что исходная группа векторов
линейно зависима и не образует базис в
R3. ◄

2.Найти
размерность и один из базисов линейного
пространства решений однородной системы:

►Представленная
система состоит из трёх уравнений и
содержит 5 неизвестных. Выпишем матрицу
системы и упростим её с помощью
элементарных преобразований, сначала
поменяв местами строки 1 и 2, а затем
вычитая новую первую строку, умноженную
на 3 и 4, соответственно из второй и
третьей строк :

Видно,
что ранг матрицы
равен 2. Следовательно, две неизвестные
являются главными, а три – свободными.
Значит ФСР системы содержит 5-2=3 линейно
независимых решения. Выберем в качестве
главных.
Это можно сделать, т.к. минор 2-го порядка,
составленный из коэффициентов при этих
неизвестных, отличен от нуля. Система,
соответствующая преобразованной
матрице, имеет вид

Отсюда,
выражая главные неизвестные через
свободные, получим общее решение

Или иначе:

.

Фундаментальная
совокупность решений является базисом
линейного пространства решений исходной
системы и в данном случае имеет вид

Размерность
искомого пространства равна 3.◄

Матрицей
перехода
от базисак базисуназывается матрица вида

где
для каждого
в
-ом
столбце стоят координатывекторав базисе.

Утверждение

Координаты
векторав базисеи координатыэтого же вектора в базисесвязаны равенством

где
– матрица перехода от базисак базису.

Утверждение.
Матрица перехода
от базисак бази­суи матрица обратного переходаот базисак базисусвязаны равенством=.

Типовые
примеры

1.Найти координаты векторав базисе,
если известно

►В
соответствии с определением матрица
перехода от базиса
к базисуесть

.

Обозначим
координаты вектора
в базисечерез,
а в базисечерез.
Искомые координатысвязаны с известными координатамиследующим соотношением:

.

Видно,
что для получения координат
необходимо вычислить матрицу, обратную.
Используя стандартную процедуру, имеем

.

Вычислим теперь координаты
:

.

  1. Найти матрицу
    перехода от базиса
    к базисупо данным разложениям этих векторов
    в базисе:

.

►Чтобы
построить матрицу
перехода
от базисак базису,
необходимо найти разложение векторовпо базису.
Сделаем это, представивв виде разложения пос неизвестными координатами, которые
требуется определить:

,

или с
учётом вида этих векторов в базисе

.

Откуда для координат
имеем

Теперь,
зная разложение
по,
выпишем матрицу:

.◄

5. Линейные оболочки
и подпространства

Подпространством линейного пространстваназывается множество векторов изтакое, что для любых двух векторовиизи любых двух вещественных чиселилинейная комбинациятакже принадлежит.

Утверждение. Подпространство само
является линейным про­странством.

Линейной оболочкойсистемы векторовназывается множество всех линейных
комбинаций векторов.
Обозначается.

Утверждение. Линейная оболочка системы
векторов является подпространством.

Пересечениемдвух подпространстви
на­зывается множество всех векторов,
принадлежащих одновре­менно и,
и
.
Обозначается
.

Суммой двух подпространстви
называется множество всех векторов,
представимых в виде,
где,
.
Обозначается
.

Утверждение. Сумма и пересечение
подпространств
и


являются линейными пространствами, и
их размерности связаны равенством

+=+.

Сумма
двух подпространств называется прямой
суммой
, если
пересечение этих подпространств состо­ит
только из нулевого вектора.

Типовой пример

Найти размерность и какой-нибудь базис
суммы и пересечения подпространств,
порождённых векторами
.

►Вычислим вначале размерность
подпространств. С этой целью установим,
являются ли линейно независимыми
векторы, порождающие данные подпространства.
Для подпространства
,
порождённого векторами,
равенство нулю линейной комбинации,
эквивалентное системе уравнений,
достигается лишь при условии.
Следовательно, векторылинейно независимы и размерность
подпространстваравна 2:.
Для подпространства,
порождённого векторами,
проводя аналогичный анализ, получим.

Вычислим теперь размерность пересечения
подпространств
и.
По определению векторы, составляющие
пересечение, принадлежат одновременно
обоим подпространствам. Произвольный
векторподпространстваявляется линейной комбинацией базисных
векторов:.
Аналогично для подпространстваимеем,
тогда условие принадлежности пересечению
естьили.

Это условие представляет собой систему
уравнений относительно коэффициентов
.
Составим матрицу системы и упростим её
с помощью элементарных преобразований:

Как видно ранг системы равен 3. Значит
ФСР состоит из одного линейно независимого
вектора. Найдём его, решив систему
уравнений, соответствующих последней
матрице, получим
,

откуда
.

Полагая свободное неизвестное
,
для остальных имеем

.
Итак, пересечение подпространствимеет
один базисный вектор

.

Размерность пересечения
.
Следовательно, в соответствии с равенством

размерность суммы подпространств
.
В качестве базиса суммы подпространств
можно взять, например, векторы,
дополненные вектором.
В линейной независимости векторовубедиться нетрудно.◄

Алгоритм нахождения базиса системы векторов

Для того чтобы найти базис системы векторов Av А2. А , необходимо:

1) составить соответствующую системе векторов однородную систему уравнений

2) привести эту систему к равносильной разрешенной системе вида

  • 3) записать базис системы векторов Б = (АрА2, . А ), включив в него векторы, соответствующие разрешенным неизвестным;
  • 4) записать разложения векторов по базису; коэффициентами разложения вектора А. по этому базису являются координаты соответствующего вектора

в разрешенной системе уравнений, т.е.

Система векторов, состоящая из п векторов, ранг которой равен г, может иметь несколько базисов. Число возможных базисов системы векторов определяется как число меньшее или равное числу сочетаний из п по г.

Пример 3.3. Найти ранг и базис системы векторов

разложения векторов по базису, перейти к новому базису и найти число возможных базисов системы.

Решение. Составим систему уравнений A t ay + А2х2 + . + А„хп = 0, которая в координатной записи имеет вид

Приведение данной системы уравнений с помощью преобразований Жордана к равносильной разрешенной приведено в ниже следующей таблице.

Разрешенная система имеет вид

В базис системы векторов включаем 1-й и 2-й векторы Б: = (AVA2), которые соответствуют разрешенным неизвестным х1 и х2. Ранг системы векторов равен числу векторов, вошедших в базис, т.е. г = 2.

Запишем разложения векторов по базису. Коэффициентами разложения вектора А3 являются координаты вектора А’3 = (3, -2), т.е. коэффициенты при х3 в разрешенной системе уравнений (в последних трех строках таблицы), они образуют столбец, расположенный под х3 А3 = ЗЛ1 – 2Аг Аналогично, коэффициентами разложения вектора А4 являются координаты вектора А’4 = (4, 1) А4 = 4Ау + 1 Ат

Для нахождения нового базиса необходимо выбрать новый разрешающий элемент. Пусть этим элементом будет элемент я94 = 1.

Как найти базис данной системы векторов

Определение базиса.Система векторов образует базис, если:

1) она линейно-независима,

2) любой вектор пространства через нее линейно выражается.

Пример 1.Базис пространства : .

2. В системе векторов базисом являются векторы: , т.к. линейно выражается через векторы .

Замечание.Чтобы найти базис данной системы векторов необходимо:

1) записать координаты векторов в матрицу,

2) с помощью элементарных преобразований привести матрицу к треугольному виду,

3) ненулевые строки матрицы будут являться базисом системы,

4) количество векторов в базисе равно рангу матрицы.

Теорема Кронекера-Капелли

Теорема Кронеккера–Капелли дает исчерпывающий ответ на вопрос о совместности произвольной системы линейных уравнений с неизвестными

Теорема Кронеккера–Капелли. Система линейных алгебраических урав­нений совместна тогда и только тогда, когда ранг расширенной матрицы системы равен рангу основной матрицы, .

Алгоритм отыскания всех решений совместной системы линейных уравнений вытекает из теоремы Кронеккера–Капелли и следующих теорем.

Теорема. Если ранг совместной системы равен числу неизвестных, то система имеет единственное решение.

Теорема. Если ранг совместной системы меньше числа неизвестных, то система имеет бесчисленное множество решений.

Алгоритм решения произвольной системы линейных уравнений:

1. Найдем ранги основной и расширенной матриц системы. Если они не равны ( ), то система несовместна (не имеет решений). Если ранги равны ( , то система совместна.

2. Для совместной системы найдем какой-нибудь минор, порядок которого определяет ранг матрицы (такой минор называют базисным). Составим новую систему из уравнений, в которых коэффициенты при неизвестных, входят в базисный минор (эти неизвестные называют главными неизвестными), остальные уравнения отбросим. Главные неизвестные с коэффициентами оставим слева, а остальные неизвестных (их называют свободными неизвестными) перенесем в правую часть уравнений.

3. Найдем выражения главных неизвестных через свободные. Получаем общее решение системы.

4. Придавая свободным неизвестным произвольные значения, получим соответствующие значения главных неизвестных. Таким образомнаходим частные решения исходной системы уравнений.

Линейное программирование. Основные понятия

Линейное программирование – это направление математического программирования, изучающее методы решения экстремальных задач, которые характеризуются линейной зависимостью между переменными и линейным критерием.

Необходимым условием постановки задачи линейного программирования являются ограничения на наличие ресурсов, величину спроса, производственную мощность предприятия и другие производственные факторы.

Сущность линейного программирования состоит в нахождении точек наибольшего или наименьшего значения некоторой функции при определенном наборе ограничений, налагаемых на аргументы и образующихсистему ограничений, которая имеет, как правило, бесконечное множество решений. Каждая совокупность значений переменных (аргументов функции F), которые удовлетворяют системе ограничений, называетсядопустимым планом задачи линейного программирования. Функция F, максимум или минимум которой определяется, называется целевой функцией задачи. Допустимый план, на котором достигается максимум или минимум функции F, называется оптимальным планом задачи.

Система ограничений, определяющая множество планов, диктуется условиями производства. Задачей линейного программирования (ЗЛП) является выбор из множества допустимых планов наиболее выгодного (оптимального).

В общей постановке задача линейного программирования выглядит следующим образом:

Имеются какие-то переменные х = (х1 , х2 , … хn ) и функция этих переменных f(x) = f (х1 , х2 , … хn ), которая носит название целевой функции. Ставится задача: найти экстремум (максимум или минимум) целевой функции f(x) при условии, что переменные x принадлежат некоторой области G:

В зависимости от вида функции f(x) и области G и различают разделы математического программирования: квадратичное программирование, выпуклое программирование, целочисленное программирование и т.д. Линейное программирование характеризуется тем, что
а) функция f(x) является линейной функцией переменных х1 , х2 , … хn
б) область G определяется системой линейных равенств или неравенств.

Математическая модель любой задачи линейного программирования включает в себя:

Векторное пространство: размерность и базис, разложение вектора по базису

В статье о n -мерных векторах мы пришли к понятию линейного пространства, порождаемого множеством n -мерных векторов. Теперь нам предстоит рассмотреть не менее важные понятия, такие как размерность и базис векторного пространства. Они напрямую связаны с понятием линейно независимой системы векторов, так что дополнительно рекомендуется напомнить себе основы и этой темы.

Введем некоторые определения.

Размерность векторного пространства – число, соответствующее максимальному количеству линейно независимых векторов в этом пространстве.

Базис векторного пространства – совокупность линейно независимых векторов, упорядоченная и в своей численности равная размерности пространства.

Рассмотрим некое пространство n -векторов. Размерность его соответственно равна n . Возьмем систему из n -единичных векторов:

e ( 1 ) = ( 1 , 0 , . . . , 0 ) e ( 2 ) = ( 0 , 1 , . . . , 0 ) e ( n ) = ( 0 , 0 , . . . , 1 )

Используем эти векторы в качестве составляющих матрицы A : она будет являться единичной с размерностью n на n . Ранг этой матрицы равен n . Следовательно, векторная система e ( 1 ) , e ( 2 ) , . . . , e ( n ) является линейно независимой. При этом к системе невозможно добавить ни одного вектора, не нарушив ее линейной независимости.

Так как число векторов в системе равно n , то размерность пространства n -мерных векторов равна n , а единичные векторы e ( 1 ) , e ( 2 ) , . . . , e ( n ) являются базисом указанного пространства.

Из полученного определения сделаем вывод: любая система n -мерных векторов, в которой число векторов меньше n , не является базисом пространства.

Если мы поменяем местами первый и второй вектор, получим систему векторов e ( 2 ) , e ( 1 ) , . . . , e ( n ) . Она также будет являться базисом n -мерного векторного пространства. Составим матрицу, взяв за ее строки векторы полученной системы. Матрица может быть получена из единичной матрицы перестановкой местами первых двух строк, ранг ее будет равен n . Система e ( 2 ) , e ( 1 ) , . . . , e ( n ) линейно независима и является базисом n -мерного векторного пространства.

Переставив местами в исходной системе другие векторы, получим еще один базис.

Мы можем взять линейно независимую систему неединичных векторов, и она также будет представлять собой базис n -мерного векторного пространства.

Векторное пространство с размерностью n имеет столько базисов, сколько существует линейно независимых систем из n -мерных векторов числом n.

Плоскость является двумерным пространством – ее базисом будут два любых неколлинеарных вектора. Базисом трехмерного пространства послужат три любых некомпланарных вектора.

Рассмотрим применение данной теории на конкретных примерах.

Исходные данные: векторы

a = ( 3 , – 2 , 1 ) b = ( 2 , 1 , 2 ) c = ( 3 , – 1 , – 2 )

Необходимо определить, являются ли указанные векторы базисом трехмерного векторного пространства.

Решение

Для решения поставленной задачи исследуем заданную систему векторов на линейную зависимость. Составим матрицу, где строки – координаты векторов. Определим ранг матрицы.

A = 3 2 3 – 2 1 – 1 1 2 – 2 A = 3 – 2 1 2 1 2 3 – 1 – 2 = 3 · 1 · ( – 2 ) + ( – 2 ) · 2 · 3 + 1 · 2 · ( – 1 ) – 1 · 1 · 3 – ( – 2 ) · 2 · ( – 2 ) – 3 · 2 · ( – 1 ) = = – 25 ≠ 0 ⇒ R a n k ( A ) = 3

Следовательно, заданные условием задачи векторы линейно независимы, и их численность равна размерности векторного пространства – они являются базисом векторного пространства.

Ответ: указанные векторы являются базисом векторного пространства.

Исходные данные: векторы

a = ( 3 , – 2 , 1 ) b = ( 2 , 1 , 2 ) c = ( 3 , – 1 , – 2 ) d = ( 0 , 1 , 2 )

Необходимо определить, может ли указанная система векторов являться базисом трехмерного пространства.

Решение

Указанная в условии задачи система векторов является линейно зависимой, т.к. максимальное число линейно независимых векторов равно 3. Таким образом, указанная система векторов не может служить базисом трехмерного векторного пространства. Но стоит отметить, что подсистема исходной системы a = ( 3 , – 2 , 1 ) , b = ( 2 , 1 , 2 ) , c = ( 3 , – 1 , – 2 ) является базисом.

Ответ: указанная система векторов не является базисом.

Исходные данные: векторы

a = ( 1 , 2 , 3 , 3 ) b = ( 2 , 5 , 6 , 8 ) c = ( 1 , 3 , 2 , 4 ) d = ( 2 , 5 , 4 , 7 )

Могут ли они являться базисом четырехмерного пространства?

Решение

Cоставим матрицу, используя в качестве строк координаты заданных векторов

A = 1 2 3 3 2 5 6 8 1 3 2 4 2 5 4 7

По методу Гаусса определим ранг матрицы:

A = 1 2 3 3 2 5 6 8 1 3 2 4 2 5 4 7

1 2 3 3 0 1 0 2 0 1 – 1 1 0 1 – 2 1

1 2 3 3 0 1 0 2 0 0 – 1 – 1 0 0 – 2 – 1

1 2 3 3 0 1 0 2 0 0 – 1 – 1 0 0 0 1 ⇒ ⇒ R a n k ( A ) = 4

Следовательно, система заданных векторов линейно независима и их численность равна размерности векторного пространства – они являются базисом четырехмерного векторного пространства.

Ответ: заданные векторы являются базисом четырехмерного пространства.

Исходные данные: векторы

a ( 1 ) = ( 1 , 2 , – 1 , – 2 ) a ( 2 ) = ( 0 , 2 , 1 , – 3 ) a ( 3 ) = ( 1 , 0 , 0 , 5 )

Составляют ли они базис пространства размерностью 4?

Решение

Исходная система векторов линейно независима, но численность векторов в ней недостаточна, чтобы стать базисом четырехмерного пространства.

Ответ: нет, не составляют.

Разложение вектора по базису

Примем, что произвольные векторы e ( 1 ) , e ( 2 ) , . . . , e ( n ) являются базисом векторного n-мерного пространства. Добавим к ним некий n -мерный вектор x → : полученная система векторов станет линейно зависимой. Свойства линейной зависимости гласят, что хотя бы один из векторов такой системы может линейно выражаться через остальные. Переформулируя это утверждение, можно говорить о том, что хотя бы один из векторов линейно зависимой системы может раскладываться по остальным векторам.

Таким образом, мы пришли к формулировке важнейшей теоремы:

Любой вектор n -мерного векторного пространства единственным образом раскладывается по базису.

Докажем эту теорему:

зададим базис n -мерного векторного пространства – e ( 1 ) , e ( 2 ) , . . . , e ( n ) . Сделаем систему линейно зависимой, добавив к ней n -мерный вектор x → . Этот вектор может быть линейно выражен через исходные векторы e :

x = x 1 · e ( 1 ) + x 2 · e ( 2 ) + . . . + x n · e ( n ) , где x 1 , x 2 , . . . , x n – некоторые числа.

Теперь докажем, что такое разложение является единственным. Предположим, что это не так и существует еще одно подобное разложение:

Отнимем от левой и правой частей этого равенства соответственно левую и правую части равенства x = x 1 · e ( 1 ) + x 2 · e ( 2 ) + . . . + x n · e ( n ) . Получим:

1 – x 1 ) · e ( 1 ) + ( x

2 – x 2 ) · e ( 2 ) + . . . ( x

Система базисных векторов e ( 1 ) , e ( 2 ) , . . . , e ( n ) линейно независима; по определению линейной независимости системы векторов равенство выше возможно только тогда, когда все коэффициенты ( x

2 – x 2 ) , . . . , ( x

n – x n ) будут равны нулю. Из чего справедливым будет: x 1 = x

n . И это доказывает единственный вариант разложения вектора по базису.

При этом коэффициенты x 1 , x 2 , . . . , x n называются координатами вектора x → в базисе e ( 1 ) , e ( 2 ) , . . . , e ( n ) .

Доказанная теория делает понятным выражение «задан n -мерный вектор x = ( x 1 , x 2 , . . . , x n ) »: рассматривается вектор x → n -мерного векторного пространства, и его координаты заданы в некотором базисе. При этом также понятно, что этот же вектор в другом базисе n -мерного пространства будет иметь другие координаты.

Рассмотрим следующий пример: допустим, что в некотором базисе n -мерного векторного пространства задана система из n линейно независимых векторов

e ( 1 ) = ( e 1 ( 1 ) , e 2 ( 1 ) , . . . , e n ( 1 ) ) e ( 2 ) = ( e 1 ( 2 ) , e 2 ( 2 ) , . . . , e n ( 2 ) ) ⋮ e ( n ) = ( e 1 ( n ) , e 2 ( n ) , . . . , e n ( n ) )

а также задан вектор x = ( x 1 , x 2 , . . . , x n ) .

Векторы e 1 ( 1 ) , e 2 ( 2 ) , . . . , e n ( n ) в этом случае также являются базисом этого векторного пространства.

Предположим, что необходимо определить координаты вектора x → в базисе e 1 ( 1 ) , e 2 ( 2 ) , . . . , e n ( n ) , обозначаемые как x

Вектор x → будет представлен следующим образом:

2 · e ( 2 ) + . . . + x

Запишем это выражение в координатной форме:

( x 1 , x 2 , . . . , x n ) = x

1 · ( e ( 1 ) 1 , e ( 1 ) 2 , . . . , e ( 1 ) n ) + x

2 · ( e ( 2 ) 1 , e ( 2 ) 2 , . . . , e ( 2 ) n ) + . . . + + x

n · ( e ( n ) 1 , e ( n ) 2 , . . . , e ( n ) n ) = = ( x

2 e 1 ( 2 ) + . . . + x

2 e 2 ( 2 ) + + . . . + x

n e 2 ( n ) , . . . , x

2 e n ( 2 ) + . . . + x

Полученное равенство равносильно системе из n линейных алгебраических выражений с n неизвестными линейными переменными x

n e 2 n ⋮ x n = x

Матрица этой системы будет иметь следующий вид:

e 1 ( 1 ) e 1 ( 2 ) ⋯ e 1 ( n ) e 2 ( 1 ) e 2 ( 2 ) ⋯ e 2 ( n ) ⋮ ⋮ ⋮ ⋮ e n ( 1 ) e n ( 2 ) ⋯ e n ( n )

Пусть это будет матрица A , и ее столбцы – векторы линейно независимой системы векторов e 1 ( 1 ) , e 2 ( 2 ) , . . . , e n ( n ) . Ранг матрицы – n , и ее определитель отличен от нуля. Это свидетельствует о том, что система уравнений имеет единственное решение, определяемое любым удобным способом: к примеру, методом Крамера или матричным методом. Таким образом мы сможем определить координаты x

n вектора x → в базисе e 1 ( 1 ) , e 2 ( 2 ) , . . . , e n ( n ) .

Применим рассмотренную теорию на конкретном примере.

Исходные данные: в базисе трехмерного пространства заданы векторы

e ( 1 ) = ( 1 , – 1 , 1 ) e ( 2 ) = ( 3 , 2 , – 5 ) e ( 3 ) = ( 2 , 1 , – 3 ) x = ( 6 , 2 , – 7 )

Необходимо подтвердить факт, что система векторов e ( 1 ) , e ( 2 ) , e ( 3 ) также служит базисом заданного пространства, а также определить координаты вектора х в заданном базисе.

Решение

Система векторов e ( 1 ) , e ( 2 ) , e ( 3 ) будет являться базисом трехмерного пространства, если она линейно независима. Выясним эту возможность, определив ранг матрицы A , строки которой – заданные векторы e ( 1 ) , e ( 2 ) , e ( 3 ) .

Используем метод Гаусса:

A = 1 – 1 1 3 2 – 5 2 1 – 3

1 – 1 1 0 5 – 8 0 3 – 5

1 – 1 1 0 5 – 8 0 0 – 1 5

R a n k ( A ) = 3 . Таким образом, система векторов e ( 1 ) , e ( 2 ) , e ( 3 ) линейно независима и является базисом.

Пусть в базисе вектор x → имеет координаты x

3 . Связь этих координат определяется уравнением:

3 e 1 ( 3 ) x 2 = x

3 e 2 ( 3 ) x 3 = x

Применим значения согласно условиям задачи:

Решим систему уравнений методом Крамера:

∆ = 1 3 2 – 1 2 1 1 – 5 – 3 = – 1 ∆ x

1 = 6 3 2 2 2 1 – 7 – 5 – 3 = – 1 , x

1 ∆ = – 1 – 1 = 1 ∆ x

2 = 1 6 2 – 1 2 1 1 – 7 – 3 = – 1 , x

2 ∆ = – 1 – 1 = 1 ∆ x

3 = 1 3 6 – 1 2 2 1 – 5 – 7 = – 1 , x

Так, вектор x → в базисе e ( 1 ) , e ( 2 ) , e ( 3 ) имеет координаты x

Ответ: x = ( 1 , 1 , 1 )

Связь между базисами

Предположим, что в некотором базисе n-мерного векторного пространства даны две линейно независимые системы векторов:

c ( 1 ) = ( c 1 ( 1 ) , c 2 ( 1 ) , . . . , c n ( 1 ) ) c ( 2 ) = ( c 1 ( 2 ) , c 2 ( 2 ) , . . . , c n ( 2 ) ) ⋮ c ( n ) = ( c 1 ( n ) , e 2 ( n ) , . . . , c n ( n ) )

e ( 1 ) = ( e 1 ( 1 ) , e 2 ( 1 ) , . . . , e n ( 1 ) ) e ( 2 ) = ( e 1 ( 2 ) , e 2 ( 2 ) , . . . , e n ( 2 ) ) ⋮ e ( n ) = ( e 1 ( n ) , e 2 ( n ) , . . . , e n ( n ) )

Указанные системы являются также базисами заданного пространства.

n ( 1 ) – координаты вектора c ( 1 ) в базисе e ( 1 ) , e ( 2 ) , . . . , e ( 3 ) , тогда связь координат будет задаваться системой линейных уравнений:

1 ( 1 ) e 1 ( 1 ) + c

2 ( 1 ) e 1 ( 2 ) + . . . + c

n ( 1 ) e 1 ( n ) с 2 ( 1 ) = c

1 ( 1 ) e 2 ( 1 ) + c

2 ( 1 ) e 2 ( 2 ) + . . . + c

n ( 1 ) e 2 ( n ) ⋮ с n ( 1 ) = c

1 ( 1 ) e n ( 1 ) + c

2 ( 1 ) e n ( 2 ) + . . . + c

В виде матрицы систему можно отобразить так:

( c 1 ( 1 ) , c 2 ( 1 ) , . . . , c n ( 1 ) ) = ( c

n ( 1 ) ) · e 1 ( 1 ) e 2 ( 1 ) … e n ( 1 ) e 1 ( 2 ) e 2 ( 2 ) … e n ( 2 ) ⋮ ⋮ ⋮ ⋮ e 1 ( n ) e 2 ( n ) … e n ( n )

Сделаем по аналогии такую же запись для вектора c ( 2 ) :

( c 1 ( 2 ) , c 2 ( 2 ) , . . . , c n ( 2 ) ) = ( c

n ( 2 ) ) · e 1 ( 1 ) e 2 ( 1 ) … e n ( 1 ) e 1 ( 2 ) e 2 ( 2 ) … e n ( 2 ) ⋮ ⋮ ⋮ ⋮ e 1 ( n ) e 2 ( n ) … e n ( n )

И, далее действуя по тому же принципу, получаем:

( c 1 ( n ) , c 2 ( n ) , . . . , c n ( n ) ) = ( c

n ( n ) ) · e 1 ( 1 ) e 2 ( 1 ) … e n ( 1 ) e 1 ( 2 ) e 2 ( 2 ) … e n ( 2 ) ⋮ ⋮ ⋮ ⋮ e 1 ( n ) e 2 ( n ) … e n ( n )

Матричные равенства объединим в одно выражение:

c 1 ( 1 ) c 2 ( 1 ) ⋯ c n ( 1 ) c 1 ( 2 ) c 2 ( 2 ) ⋯ c n ( 2 ) ⋮ ⋮ ⋮ ⋮ c 1 ( n ) c 2 ( n ) ⋯ c n ( n ) = c

n ( n ) · e 1 ( 1 ) e 2 ( 1 ) ⋯ e n ( 1 ) e 1 ( 2 ) e 2 ( 2 ) ⋯ e n ( 2 ) ⋮ ⋮ ⋮ ⋮ e 1 ( n ) e 2 ( n ) ⋯ e n ( n )

Оно и будет определять связь векторов двух различных базисов.

Используя тот же принцип, возможно выразить все векторы базиса e ( 1 ) , e ( 2 ) , . . . , e ( 3 ) через базис c ( 1 ) , c ( 2 ) , . . . , c ( n ) :

e 1 ( 1 ) e 2 ( 1 ) ⋯ e n ( 1 ) e 1 ( 2 ) e 2 ( 2 ) ⋯ e n ( 2 ) ⋮ ⋮ ⋮ ⋮ e 1 ( n ) e 2 ( n ) ⋯ e n ( n ) = e

n ( n ) · c 1 ( 1 ) c 2 ( 1 ) ⋯ c n ( 1 ) c 1 ( 2 ) c 2 ( 2 ) ⋯ c n ( 2 ) ⋮ ⋮ ⋮ ⋮ c 1 ( n ) c 2 ( n ) ⋯ c n ( n )

Дадим следующие определения:

n ( n ) является матрицей перехода от базиса e ( 1 ) , e ( 2 ) , . . . , e ( 3 )

к базису c ( 1 ) , c ( 2 ) , . . . , c ( n ) .

n ( n ) является матрицей перехода от базиса c ( 1 ) , c ( 2 ) , . . . , c ( n )

к базису e ( 1 ) , e ( 2 ) , . . . , e ( 3 ) .

[spoiler title=”источники:”]

http://megaobuchalka.ru/10/21983.html

http://zaochnik.com/spravochnik/matematika/vektory/vektornoe-prostranstvo/

[/spoiler]

Базис матрицы. Что это какое? Если это вычисляемая величина, то как вычисляется?

У матрицы нет такого понятия как базис. Есть понятие определитель матрицы, а вот базиса нет. Такое понятие существует в системе векторов. Например два вектора образуют базис, если они неколлинеарны. Три вектора образуют базис, если они не компланарны. И тогда любой вектор можно разложить по двум не коллинеарным векторам ( или по трем некомпланарным векторам), то есть найти его координаты в базисе, который образуют эти два неколлинеарных ( три некомпланарных) вектора.

автор вопроса выбрал этот ответ лучшим

Знаете ответ?

У этого термина существуют и другие значения, см. Базис (значения).

Ба́зис (др.-греч. βάσις «основа») — упорядоченный (конечный или бесконечный) набор векторов в векторном пространстве или модуле, такой, что любой вектор этого пространства может быть единственным образом представлен в виде линейной комбинации векторов из этого набора. Векторы базиса называются базисными векторами.

В случае, когда базис бесконечен, понятие «линейная комбинация» требует уточнения. Это ведёт к двум основным разновидностям определения:

В конечномерных пространствах оба определения базиса совпадают.

Происхождение термина[править | править код]

У Евклида и других древнегреческих математиков слово «базис» (βάσις, в значении основание) обозначало горизонтальное основание плоской или пространственной фигуры. Современный математический смысл этому термину придал Дедекинд в статье 1885 года.

Базис на плоскости и в трёхмерном пространстве[править | править код]

Базис на плоскости. Базисные векторы изображены голубым и оранжевым цветом, зелёный вектор может быть представлен в виде суммы базисных векторов, умноженных на некоторые коэффициенты (зелёный = −2 голубой + 1 оранжевый), называемой линейной комбинацией и, таким образом, линейно зависим от них, как и любой другой вектор этого пространства (плоскости), каждый из которых тоже может быть представлен в виде линейной комбинации голубого и оранжевого с какими-то коэффициентами.

Любой декартовой системе координат на плоскости или в трёхмерном пространстве (также и в пространстве другой размерности) может быть сопоставлен базис, состоящий из векторов, каждый из которых направлен вдоль своей координатной оси.
Это относится и к прямоугольным декартовым координатам (тогда соответствующий базис называется ортогональным), так и к косоугольным декартовым координатам (которым будет соответствовать неортогональный базис).

Часто удобно выбрать длину (норму) каждого из базисных векторов единичной, такой базис называется нормированным.

Наиболее часто базис выбирают ортогональным и нормированным одновременно, тогда он называется ортонормированным.

В любом векторном пространстве базис можно выбрать различным образом (поменяв направления его векторов или их длины, например).

Обозначения[править | править код]

Обозначение векторов базиса может быть в принципе произвольным. Часто используют какую-нибудь букву с индексом (числовым или совпадающим с названием координатной оси), например:

{vec  e}_{1},{vec  e}_{2}

или

{vec  e}_{x},{vec  e}_{y}

— типичные обозначения базиса двумерного пространства (плоскости),

Декартовы координаты в трёхмерном пространстве (левая (на рисунке слева) и правая (справа) декартовы системы координат (левый и правый базисы). Базисом, соответствующим такой системе координат, является тройка векторов, каждый из которых направлен вдоль какой-то из осей (три базисных вектора изображаются исходящими из общего начала).

{vec  e}_{1},{vec  e}_{2},{vec  e}_{3}

или

vec e_x, vec e_y, vec e_z

— трёхмерного пространства.
Для трёхмерного пространства часто по традиции используется и обозначение

{vec  i},{vec  j},{vec  k}.

Представление какого-то конкретного (любого) вектора vec a пространства в виде линейной комбинации векторов базиса (суммы базисных векторов числовыми коэффициентами), например

{vec  a}=a_{x}{vec  e}_{x}+a_{y}{vec  e}_{y}+a_{z}{vec  e}_{z}

или

{vec  a}=a_{1}{vec  e}_{1}+a_{2}{vec  e}_{2}+a_{3}{vec  e}_{3}

или, употребляя знак суммы Sigma :

{vec  a}=sum _{{i=1}}^{3}a_{i}{vec  e}_{i}

называется разложением этого вектора по этому базису.

Числовые коэффициенты (a_{x},a_{y},a_{z}) называются коэффициентами разложения, а их набор в целом — представлением (или представителем) вектора vec a в базисе {vec  e}_{x},{vec  e}_{y},{vec  e}_{z}.
(Разложение вектора по конкретному базису единственно; разложение одного и того же вектора по разным базисам — разное, то есть получается разный набор конкретных чисел, однако в результате при суммировании — как показано выше — дают один и тот же вектор).

Виды базисов[править | править код]

Базис Гамеля[править | править код]

Базис Га́меля — множество векторов в линейном пространстве, таких, что любой вектор пространства может быть представлен в виде некоторой их конечной линейной комбинации (полнота базиса), и такое представление для любого вектора единственно.

Критерием единственности решения задачи разложения вектора по полной системе векторов является линейная независимость векторов, входящих в полную систему. Линейная независимость означает, что всякая линейная комбинация векторов системы, в которой хотя бы один коэффициент ненулевой, имеет ненулевую сумму. То есть это эквивалентно единственности разложения нулевого вектора.

В случае линейных пространств, когда всякий ненулевой коэффициент обратим, линейная независимость эквивалентна невозможности выразить какой-либо вектор полной системы линейной комбинацией остальных векторов. (В более общей ситуации — модулей над кольцами — эти два свойства неэквивалентны). Невозможность выразить никакой вектор базиса через остальные означает минимальность базиса как полной системы векторов — при удалении любого из них теряется полнота.

В вопросе о существовании базисов основной является следующая лемма (доказательство этой леммы в общем случае неконструктивно и использует аксиому выбора):

Лемма. Пусть S_{1} — полная, а S_{2} — линейно независимая система векторов. Тогда система S_{1} содержит набор векторов, дополняющий S_{2} до базиса пространства V.

Доказательство

Доказательство строится на применении леммы Цорна. Рассмотрим {displaystyle S=S_{1}cup S_{2}}. Пусть L — множество всех линейно независимых подмножеств S. Это множество частично упорядочено по отношению включения.

Докажем, что объединение любой цепи линейно независимых множеств остаётся линейно независимым. Действительно, возьмём вектора {displaystyle a_{1},ldots ,a_{n}} из объединения и возьмём множества из цепи, которым эти вектора принадлежат: {displaystyle a_{1}in A_{1},ldots ,a_{n}in A_{n}}. Так как эти множества — элементы цепи, их объединение даст максимальное из них, которое линейно независимо, а значит и вектора {displaystyle a_{1},ldots ,a_{n}}, лежащие в этом множестве, также линейно независимы.

Объединение множеств цепи линейно независимо, а значит, содержится в множестве L. Применим к нему усиленную формулировку леммы Цорна, которая утверждает, что для каждого элемента из L есть максимальный элемент больший или равный ему. {displaystyle S_{2}in L}, а значит, есть такой максимальный элемент {displaystyle Bin L}, что {displaystyle S_{2}subset B}. Легко видеть, что B есть базис. Действительно, не будь B полной системой векторов, был бы вектор {displaystyle ain S_{1}}, непредставимый как линейная комбинация векторов из B. Тогда {displaystyle Bcup {a}} — линейно независимая система, а значит, {displaystyle Bcup {a}in L}, что противоречит тому, что B —— максимальный элемент L.

Следствием этой леммы являются утверждения:

  1. Каждое линейное пространство обладает базисом.
  2. Базис пространства можно выделить из любой полной системы векторов.
  3. Всякую линейно независимую систему можно дополнить до базиса пространства V.

Любые два базиса в линейном пространстве равномощны, так что мощность базиса — величина, независящая от выбора базисных векторов. Она называется размерностью пространства (обозначается dim V). Если линейное пространство имеет конечный базис, его размерность конечна и оно называется конечномерным, в противном случае его размерность бесконечна, и пространство называется бесконечномерным.

Выбранный базис линейного пространства позволяет ввести координатное представление векторов, чем подготавливается использование аналитических методов.

Линейное отображение из одного линейного пространства в другое однозначно определено, если задано на векторах какого-нибудь базиса. Комбинация этого факта с возможностью координатного представления векторов предопределяет применение матриц для изучения линейных отображений векторных пространств (в первую очередь — конечномерных). При этом многие факты из теории матриц получают наглядное представление и приобретают весьма содержательный смысл, когда они выражены на языке линейных пространств. И выбор базиса при этом служит хоть и вспомогательным, но в то же время ключевым средством.

Примеры[править | править код]

Базис Гамеля и разрывная линейная функция[править | править код]

Базис Гамеля может быть использован для построения разрывной вещественной функции, удовлетворяющей условию f(x+y)=f(x)+f(y). Пусть {r_{alpha }} — базис Гамеля множества действительных чисел mathbb {R} над полем рациональных чисел mathbb {Q} . Тогда для каждого x=k_{{alpha _{1}}}r_{{alpha _{1}}}+cdots +k_{{alpha _{n}}}r_{{alpha _{n}}} (k_{i}in {mathbb  {Q}}) положим {displaystyle f(x)=k_{alpha _{1}}f_{alpha _{1}}+cdots +k_{alpha _{n}}f_{alpha _{n}}}, где {displaystyle f_{alpha _{n}}=f(r_{alpha _{n}})} произвольные вещественные числа, не все равные нулю одновременно; например, рациональные (в этом случае функция f(x) принимает лишь рациональные значения и тем самым гарантированно не является линейной функцией {displaystyle f(x)=(ccdot x)}). Такая функция f(x) аддитивна, то есть удовлетворяет функциональному уравнению Коши f(x+y)=f(x)+f(y). Однако в общем случае, когда {displaystyle f_{alpha _{n}}neq ccdot r_{alpha _{n}}}, она отличается от линейной функции {displaystyle f(x)=ccdot x} и в силу этого является разрывной в любой точке, а также не сохраняет знак, не ограничена ни сверху, ни снизу, не монотонна, не интегрируема и не измерима на любом сколь угодно малом интервале, заполняя своими значениями на этом интервале всюдо плотно числовую ось {displaystyle left(-infty ,+infty right)}.

Базис Шаудера[править | править код]

Система векторов {e_{n}} топологического векторного пространства L называется базисом Шаудера (в честь Шаудера), если каждый элемент fin L разлагается в единственный, сходящийся к f ряд по {e_{n}}:

f=sum _{{i=1}}^{{infty }}f_{i}e_{i},

где f_{i} — числа, называемые коэффициентами разложения вектора f по базису {e_{n}}.

Чтобы подчеркнуть отличие определения базиса Гамеля для общих линейных пространств (допускаются только конечные суммы) от базиса Шаудера для топологических векторных пространств (допускается разложение в сходящийся ряд), для первого часто используют термин линейный базис, оставляя термин базис для разложений в ряды. Мощность линейного базиса называют также линейной размерностью. В конечномерных пространствах эти определения совпадают из-за конечности базиса. В бесконечномерных пространствах эти определения существенно различаются и линейная размерность может быть строго больше мощности базиса Шаудера.

Например, никакое бесконечномерное Гильбертово пространство не имеет счетного линейного базиса, хотя может иметь счетные базисы Шаудера с разложением в ряд, в том числе, ортонормированные базисы. Все ортонормированные базисы гильбертовых пространств являются базисами Шаудера, например, множество функций {1,{frac  {1}{{sqrt  {2}}}}sin(2pi nx),{frac  {1}{{sqrt  {2}}}}cos(2pi nx)mid n=1,2,dots } является базисом Шаудера в пространстве L^{2}[0,1]. В более общих банаховых пространствах понятие ортонормированного базиса неприменимо, но часто удаётся построить базисы Шаудера, не использующие ортогональности.

Пример: базис Шаудера для пространства непрерывных функций C[a, b][править | править код]

C[a,b] — банахово пространство с нормой |f|=max _{{xin [a,b]}}|f(x)|. Для разложений в ряды Фурье и обобщенные ряды Фурье по ортонормированным системам функций легко доказывается сходимость в гильбертовом пространстве L^{2}[a,b], но не в C[a,b]. Шаудер сконструировал базис Шаудера {e_{n}} для C[a,b]. Пусть {x_{0},x_{1},dots ,x_{n},dots } — плотное счетное множество точек на [a,b], x_{0}=a, x_{1}=b, остальные точки могут быть, например, всеми рациональными точками отрезка [a,b], упорядоченными произвольным образом. Положим: e_{0}=1, e_{1}=(x-a)/(b-a) — линейная функция. Определим кусочно-линейную функцию e_{n}(x) так, чтобы e_{n}(x_{i})=0 при i=0,1,dots ,n-1 и e_{n}(x_{n})=1. Точки x_{0},x_{1},x_{2},dots ,x_{{n-1}} разбивают [a,b] на n-1 отрезок. Точка x_{n} лежит строго внутри одного из них. Пусть это I_{n}=[x_{j},x_{k}] для каких-то j,kin {0,dots ,n-1} (порядок нумерации чисел x_{0},x_{1},x_{2},dots не соответствует их величине).

Разложение непрерывной функции по базису Шаудера. Показано построение L_{{5}}(x). Красным цветом на графике выделен участок, на котором L_{{5}} отличается от L_{{4}} (синяя ломаная).

Положим:

e_{n}(x)=0 вне отрезка I_{n}=[x_{j},x_{k}],
e_{n}(x)={frac  {x-x_{j}}{x_{n}-x_{j}}} при xin [x_{j},x_{n}],
e_{n}(x)={frac  {x_{k}-x}{x_{k}-x_{n}}} при xin [x_{n},x_{k}].

Полученная система кусочно-линейных «шапочек» и есть искомый базис Шаудера. Коэффициенты разложения произвольной функции f(x)in C[a,b] по этому базису выражаются по явным рекуррентным формулам через последовательность значений f(x_{i}). Частичная сумма первых n+1 членов ряда

L_{n}(x)=sum _{{i=0}}^{{n}}f_{i}e_{i}(x),

является в данном случае кусочно-линейной аппроксимацией f(x) с узлами в точках
x_{0},x_{1},x_{2},dots ,x_{{n}}; формула для коэффициентов f_{n}=f(x_{n})-L_{{n-1}}(x_{n});;;f_{0}=f(a) (см. Рис.)

Проблема базиса[править | править код]

Базисы Шаудера построены для большинства известных примеров банаховых пространств, однако проблема Банаха — Шаудера о существовании базиса Шаудера в каждом сепарабельном банаховом пространстве не поддавалась решению более 50 лет и лишь в 1972 году была решена отрицательно: существуют сепарабельные банаховы пространства без базиса Шаудера (контрпримеры Энфло[1], Шанковского, Дэви и Фигеля).

Применение в кристаллографии[править | править код]

В векторной алгебре с помощью векторного произведения и смешанного произведения определяется понятие взаимного базиса к базису в трёхмерном евклидовом пространстве и используется для доказательства некоторых утверждений, связанных со смешанным произведением и углами между векторами[2]:212-214. В кристаллографии взаимный базис называется кристаллографическим определением базиса, на основе которого определяется обратная решётка.

См. также[править | править код]

  • Репер — близкое понятие.
  • Ортогональный базис — специальный класс базисов (базисов Шаудера) для пространств со скалярным произведением (Гильбертово пространство).
  • Базис Грёбнера
  • Базис Рисса
  • Конечномерное пространство
  • Флаг (математика)

Примечания[править | править код]

  1. Per Enflo. A counterexample to the approximation problem in Banach spaces (англ.) // Acta Math.. — 1973. — Vol. 130 (1973). — P. 309-317. — doi:10.1007/BF02392270. Архивировано 20 июля 2020 года.
    перевод: Пер Энфло. Контрпример в проблеме аппроксимации в банаховом пространстве = A counterexample to the approximation problem in Banach spaces // Математика / пер. Б. С. Митягина. — 1974. — Т. 18, вып. 1. — С. 146–155.
  2. Гусятников П.Б., Резниченко С.В. Векторная алгебра в примерах и задачах. — М.: Высшая школа, 1985. — 232 с. Архивная копия от 10 января 2014 на Wayback Machine

Литература[править | править код]

  • Кутателадзе С. С., Основы функционального анализа. — 4 изд., испр. — Новосибирск: Изд-во Ин-та Математики СО РАН, 2001. — XII+354 c.

Добавить комментарий