Что такое нод 6 класс как найти

Для этого термина существует аббревиатура «НОД», которая имеет и другие значения, см. Нод.

Наибольшим общим делителем (НОД) для двух целых чисел m и n называется наибольший из их общих делителей[1]. Пример: для чисел 54 и 24 наибольший общий делитель равен 6.

Наибольший общий делитель существует и однозначно определён, если хотя бы одно из чисел m или n не равно нулю.

Возможные обозначения наибольшего общего делителя чисел m и n:

Понятие наибольшего общего делителя естественным образом обобщается на наборы из более чем двух целых чисел.

Связанные определения[править | править код]

Наименьшее общее кратное[править | править код]

Наименьшее общее кратное (НОК) двух целых чисел m и n — это наименьшее натуральное число, которое делится на m и n (без остатка). Обозначается НОК(m,n) или [m,n], а в английской литературе {mathrm  {lcm}}(m,n).

НОК для ненулевых чисел m и n всегда существует и связан с НОД следующим соотношением:

(m,n)cdot [m,n]=mcdot n

Это частный случай более общей теоремы: если a_{1},a_{2},dots ,a_{n} — ненулевые числа, D — какое-либо их общее кратное, то имеет место формула:

D=[a_{1},a_{2},dots ,a_{n}]cdot left({frac  {D}{a_{1}}},{frac  {D}{a_{2}}},dots ,{frac  {D}{a_{n}}}right)

Взаимно простые числа[править | править код]

Числа m и n называются взаимно простыми, если у них нет общих делителей, кроме pm 1. Для таких чисел НОД{displaystyle (m,n)=1}. Обратно, если НОД{displaystyle (m,n)=1,} то числа взаимно просты.

Аналогично, целые числа a_{1},a_{2},dots a_{k}, где kgeq 2, называются взаимно простыми, если их наибольший общий делитель равен единице.

Следует различать понятия взаимной простоты, когда НОД набора чисел равен 1, и попарной взаимной простоты, когда НОД равен 1 для каждой пары чисел из набора. Из попарной простоты вытекает взаимная простота, но не наоборот. Например, НОД(6,10,15) = 1, но любые пары из этого набора не взаимно просты.

Способы вычисления[править | править код]

Эффективными способами вычисления НОД двух чисел являются алгоритм Евклида и бинарный алгоритм.

Кроме того, значение НОД(m,n) можно легко вычислить, если известно каноническое разложение чисел m и n на простые множители:

n=p_{1}^{{d_{1}}}cdot dots cdot p_{k}^{{d_{k}}},
m=p_{1}^{{e_{1}}}cdot dots cdot p_{k}^{{e_{k}}},

где p_{1},dots ,p_{k} — различные простые числа, а d_{1},dots ,d_{k} и e_{1},dots ,e_{k} — неотрицательные целые числа (они могут быть нулями, если соответствующее простое отсутствует в разложении). Тогда НОД(n,m) и НОК[n,m] выражаются формулами:

(n,m)=p_{1}^{{min(d_{1},e_{1})}}cdot dots cdot p_{k}^{{min(d_{k},e_{k})}},
[n,m]=p_{1}^{{max(d_{1},e_{1})}}cdot dots cdot p_{k}^{{max(d_{k},e_{k})}}.

Если чисел более двух: a_{1},a_{2},dots a_{n}, их НОД находится по следующему алгоритму:

d_{2}=(a_{1},a_{2})
d_{3}=(d_{2},a_{3})

………
d_{n}=(d_{{n-1}},a_{n}) — это и есть искомый НОД.

Свойства[править | править код]

  • Основное свойство: наибольший общий делитель m и n делится на любой общий делитель этих чисел. Пример: для чисел 12 и 18 наибольший общий делитель равен 6; он делится на все общие делители этих чисел: 1, 2, 3, 6.
  • Если m делится на n, то НОД(m, n) = n. В частности, НОД(n, n) = n.
  • {displaystyle (a,b)=(a-b,b)}. В общем случае, если {displaystyle a=b*q+c}, где {displaystyle a,b,c,q} – целые числа, то {displaystyle (a,b)=(b,c)}.
  • (acdot m,acdot n)=|a|cdot (m,n) — общий множитель можно выносить за знак НОД.
  • Если D=(m,n), то после деления на D числа становятся взаимно простыми, то есть, left({{frac  {m}{D}},{frac  {n}{D}}}right)=1. Это означает, в частности, что для приведения дроби к несократимому виду надо разделить её числитель и знаменатель на их НОД.
  • Мультипликативность: если a_{1},a_{2} взаимно просты, то:
(a_{1}cdot a_{2},b)=(a_{1},b)cdot (a_{2},b)
left{acdot m+bcdot nmid a,bin mathbb{Z } right}
и поэтому (m,n) представим в виде линейной комбинации чисел m и n:

(m,n)=ucdot m+vcdot n.
Это соотношение называется соотношением Безу, а коэффициенты u и v — коэффициентами Безу. Коэффициенты Безу эффективно вычисляются расширенным алгоритмом Евклида. Это утверждение обобщается на наборы натуральных чисел — его смысл в том, что подгруппа группы mathbb {Z} , порождённая набором {a_{1},a_{2},dots ,a_{n}}, — циклическая и порождается одним элементом: НОД(a1, a2, … , an).

Вариации и обобщения[править | править код]

Понятие делимости целых чисел естественно обобщается на произвольные коммутативные кольца, такие, как кольцо многочленов или гауссовы целые числа. Однако, определить НОД(a, b) как наибольший из общих делителей a, b нельзя, так как в таких кольцах, вообще говоря, не определено отношение порядка. Поэтому в качестве определения НОД берётся его основное свойство:

Наибольшим общим делителем НОД(a, b) называется тот общий делитель, который делится на все остальные общие делители a и b.

Для натуральных чисел новое определение эквивалентно старому. Для целых чисел НОД в новом смысле уже не однозначен: противоположное ему число тоже будет НОД. Для гауссовых чисел число различных НОД возрастает до 4.

НОД двух элементов коммутативного кольца, вообще говоря, не обязан существовать. Например, для нижеследующих элементов a и b кольца {mathbb  {Z}}left[{sqrt  {-3}}right] не существует наибольшего общего делителя:

a=4=2cdot 2=left(1+{sqrt  {-3}}right)left(1-{sqrt  {-3}}right),qquad b=left(1+{sqrt  {-3}}right)cdot 2.

В евклидовых кольцах наибольший общий делитель всегда существует и определён с точностью до делителей единицы, то есть количество НОД равно числу делителей единицы в кольце.

См. также[править | править код]

  • Бинарный алгоритм вычисления НОД
  • Делимость
  • Алгоритм Евклида
  • Наименьшее общее кратное

Литература[править | править код]

  • Виноградов И. М. Основы теории чисел. М.-Л.: Гос. изд. технико-теоретической литературы, 1952, 180 с.

Примечания[править | править код]

  1. Математическая энциклопедия (в 5 томах). — М.: Советская Энциклопедия, 1982. — Т. 3. страница 857

Наибольшим общим делителем (НОД) двух целых чисел называется наибольший из их общих делителей. К примеру для чисел 12 и 8, наибольшим общим делителем будет 4.

Как найти НОД?

Способов найти НОД несколько. Мы рассмотрим один из часто используемых в математике — это нахождение НОД при помощи разложения чисел на простые множители. В общем случае алгоритм будет выглядеть следующим образом:

  1. разложить оба числа на простые множители (подробнее о разложении чисел на простые множители смотрите тут);
  2. выбрать одинаковые множители, входящие в оба разложения;
  3. найти их произведение.

Примеры нахождения наибольшего общего делителя

Рассмотрим приведенный алгоритм на конкретных примерах:

Пример 1: найти НОД 12 и 8

1. Раскладываем 12 и 8 на простые множители:

2. Выбираем одинаковые множители, которые есть в обоих разложениях. Это: 2 и 2

3. Перемножаем эти множители и получаем: 2 · 2 = 4

Ответ: НОД (8; 12) = 2 · 2 = 4.

Пример 2: найти НОД 75 и 150

Этот пример, как и предыдущий с легкостью можно высчитать в уме и вывести ответ 75, но для лучшего понимания работы алгоритма, проделаем все шаги:

1. Раскладываем 75 и 150 на простые множители:

2. Выбираем одинаковые множители, которые есть в обоих разложениях. Это: 3, 5 и 5

3. Перемножаем эти множители и получаем: 3 · 5 · 5 = 75

Ответ: НОД (75; 150) = 3 · 5 · 5 = 75.

Частный случай или взаимно простые числа

Нередко встречаются ситуации, когда оба числа взаимно простые, т.е. общий делитель равен единице. В этом случае, алгоритм будет выглядеть следующим образом:

Пример 3: найти НОД 9 и 5

1. Раскладываем 5 и 9 на простые множители:

Видим, что одинаковых множителей нет, а значит, что это частный случай (взаимно простые числа). Общий делитель — единица.

Продолжаем изучать деление. В данном уроке мы рассмотрим такие понятия, как НОД и НОК.

НОД — это наибольший общий делитель.

НОК — это наименьшее общее кратное.

Тема довольно скучная, но разобраться в ней нужно обязательно. Не понимая этой темы, не получится эффективно работать с дробями, которые являются настоящей преградой в математике.

Наибольший общий делитель

Определение. Наибольшим общим делителем чисел a и b называется наибольшее число, на которое a и b делятся без остатка.

Чтобы хорошо понять это определение, подставим вместо переменных a и b любые два числа. Например, вместо переменной a подставим число 12, а вместо переменной b — число 9. Теперь попробуем прочитать это определение:

Наибольшим общим делителем чисел 12 и 9 называется наибольшее число, на которое 12 и 9 делятся без остатка.

Из определения понятно, что речь идёт об общем делителе чисел 12 и 9. Причем делитель является наибольшим из всех существующих делителей. Этот наибольший общий делитель (НОД) нужно найти.

Для нахождения наибольшего общего делителя двух чисел, используется три способа. Первый способ довольно трудоёмкий, но зато позволяет хорошо понять суть темы и прочувствовать весь ее смысл.

Второй и третий способы довольны просты и дают возможность быстро найти НОД. Рассмотрим все три способа. А какой применять на практике — выбирать вам.

Первый способ заключается в поиске всех возможных делителей двух чисел и в выборе наибольшего из них. Рассмотрим этот способ на следующем примере: найти наибольший общий делитель чисел 12 и 9.

Сначала найдём все возможные делители числа 12. Для этого разделим 12 на все делители в диапазоне от 1 до 12. Если делитель позволит разделить 12 без остатка, то мы будем выделять его синим цветом и в скобках делать соответствующее пояснение.

12 : 1 = 12
(12 разделилось на 1 без остатка, значит 1 является делителем числа 12)

12 : 2 = 6
(12 разделилось на 2 без остатка, значит 2 является делителем числа 12)

12 : 3 = 4
(12 разделилось на 3 без остатка, значит 3 является делителем числа 12)

12 : 4 = 3
(12 разделилось на 4 без остатка, значит 4 является делителем числа 12)

12 : 5 = 2 (2 в остатке)
(12 не разделилось на 5 без остатка, значит 5 не является делителем числа 12)

12 : 6 = 2
(12 разделилось на 6 без остатка, значит 6 является делителем числа 12)

12 : 7 = 1 (5 в остатке)
(12 не разделилось на 7 без остатка, значит 7 не является делителем числа 12)

12 : 8 = 1 (4 в остатке)
(12 не разделилось на 8 без остатка, значит 8 не является делителем числа 12)

12 : 9 = 1 (3 в остатке)
(12 не разделилось на 9 без остатка, значит 9 не является делителем числа 12)

12 : 10 = 1 (2 в остатке)
(12 не разделилось на 10 без остатка, значит 10 не является делителем числа 12)

12 : 11 = 1 (1 в остатке)
(12 не разделилось на 11 без остатка, значит 11 не является делителем числа 12)

12 : 12 = 1
(12 разделилось на 12 без остатка, значит 12 является делителем числа 12)

Теперь найдём делители числа 9. Для этого проверим все делители от 1 до 9

9 : 1 = 9
(9 разделилось на 1 без остатка, значит 1 является делителем числа 9)

9 : 2 = 4 (1 в остатке)
(9 не разделилось на 2 без остатка, значит 2 не является делителем числа 9)

9 : 3 = 3
(9 разделилось на 3 без остатка, значит 3 является делителем числа 9)

9 : 4 = 2 (1 в остатке)
(9 не разделилось на 4 без остатка, значит 4 не является делителем числа 9)

9 : 5 = 1 (4 в остатке)
(9 не разделилось на 5 без остатка, значит 5 не является делителем числа 9)

9 : 6 = 1 (3 в остатке)
(9 не разделилось на 6 без остатка, значит 6 не является делителем числа 9)

9 : 7 = 1 (2 в остатке)
(9 не разделилось на 7 без остатка, значит 7 не является делителем числа 9)

9 : 8 = 1 (1 в остатке)
(9 не разделилось на 8 без остатка, значит 8 не является делителем числа 9)

9 : 9 = 1
(9 разделилось на 9 без остатка, значит 9 является делителем числа 9)

Теперь выпишем делители обоих чисел. Числа выделенные синим цветом и являются делителями. Их и выпишем:

делители числа 12 и 9

Выписав делители, можно сразу определить какой является наибольшим и общим.

Согласно определению, наибольшим общим делителем чисел 12 и 9, является число, на которое 12 и 9 делятся без остатка. Наибольшим и общим делителем чисел 12 и 9 является число 3

делители числа 12 и 9 определение НОД

И число 12 и число 9 делятся на 3 без остатка:

12 : 3 = 4

9  : 3 = 3

Значит НОД (12 и 9) = 3


Второй способ нахождения НОД

Теперь рассмотрим второй способ нахождения наибольшего общего делителя. Суть данного способа заключается в том, чтобы разложить оба числа на простые множители и перемножить общие из них.

Пример 1. Найти НОД чисел 24 и 18

Сначала разложим оба числа на простые множители:

разложение 24 и 18 на простые множители

Теперь перемножим их общие множители. Чтобы не запутаться, общие множители можно подчеркнуть.

Смотрим на разложение числа 24. Первый его множитель это 2. Ищем такой же множитель в разложении числа 18 и видим, что он там тоже есть. Подчеркиваем обе двойки:

нод 24 и 18 на простые множители шаг 2

Снова смотрим на разложение числа 24. Второй его множитель тоже 2. Ищем такой же множитель в разложении числа 18 и видим, что его там второй раз уже нет. Тогда ничего не подчёркиваем.

Следующая двойка в разложении числа 24 также отсутствует в разложении числа 18.

Переходим к последнему множителю в разложении числа 24. Это множитель 3. Ищем такой же множитель в разложении числа 18 и видим, что там он тоже есть. Подчеркиваем обе тройки:

нод 24 и 18 на простые множители шаг 3

Итак, общими множителями чисел 24 и 18 являются множители 2 и 3. Чтобы получить НОД, эти множители необходимо перемножить:

2 × 3 = 6

Значит НОД (24 и 18) = 6


Третий способ нахождения НОД

Теперь рассмотрим третий способ нахождения наибольшего общего делителя. Суть данного способа заключается в том, что числа подлежащие поиску наибольшего общего делителя раскладывают на простые множители. Затем из разложения первого числа вычеркивают множители, которые не входят в разложение второго числа. Оставшиеся числа в первом разложении перемножают и получают НОД.

Пример 1. Найти НОД чисел 28 и 16.

В первую очередь, раскладываем числа 28 и 16 на простые множители:

разложение чисел 28 и 16

Получили два разложения: 2 на 2 на 7 и 2 на 2 на 2 на 2

Теперь из разложения первого числа вычеркнем множители, которые не входят в разложение второго числа. В разложение второго числа не входит семёрка. Её и вычеркнем из первого разложения:

2 на 2 на 7 без 7

Теперь перемножаем оставшиеся множители и получаем НОД:

2 на 2 равно 4

Число 4 является наибольшим общим делителем чисел 28 и 16. Оба этих числа делятся на 4 без остатка:

28 : 4 = 7

16 : 4 = 4

 НОД (28 и 16) = 4


Пример 2. Найти НОД чисел 100 и 40

Раскладываем на множители число 100

разложение числа 100 на множители

Раскладываем на множители число 40

разложение числа 40 на множители

Получили два разложения: 2 × 2 × 5 × 5 и 2 × 2 × 2 × 5

Теперь из разложения первого числа вычеркнем множители, которые не входят в разложение второго числа. В разложение второго числа не входит одна пятерка (там только одна пятёрка). Её и вычеркнем из первого разложения

2 на 2 на 5 на 5

Перемножим оставшиеся числа:

2 на 2 на 5 равно 20

Получили ответ 20. Значит число 20 является наибольшим общим делителем чисел 100 и 40. Эти два числа делятся на 20 без остатка:

100 : 20 = 5

40 : 20 = 2

 НОД (100 и 40) = 20.


Пример 3. Найти НОД чисел 72 и 128

Раскладываем на множители число 72

разложение числа 72 на множители

Раскладываем на множители число 128

разложение числа 128 на множителиПолучили два разложения: 2 × 2 × 2 × 3 × 3 и 2 × 2 × 2 × 2 × 2 × 2 × 2.

Теперь из разложения первого числа вычеркнем множители, которые не входят в разложение второго числа. В разложение второго числа не входят две тройки (там их вообще нет). Их и вычеркнем из первого разложения:

2 на 2 на 2 на 3 на 3

Перемножим оставшиеся числа:

2 на 2 на 2 равно 8

Получили ответ 8. Значит число 8 является наибольшим общим делителем чисел 72 и 128. Эти два числа делятся на 8 без остатка:

72 : 8 = 9

128 : 8 = 16

 НОД (72 и 128) = 8


Нахождение НОД для нескольких чисел

Наибольший общий делитель можно находить и для нескольких чисел, а не только для двух. Для этого числа, подлежащие поиску наибольшего общего делителя, раскладывают на простые множители, затем находят произведение общих простых множителей этих чисел.

Например, найдём НОД для чисел 18,  24  и  36

Разложим на множители число 18

разложение числа 18 на множители

Разложим на множители число 24

разложение числа 24 на множители

Разложим на множители число 36

разложение числа 36 на множители

Получили три разложения:

разложения чисел 18 24 и 36

Теперь найдём и подчеркнём общие множители:

разложения чисел 18 24 и 36 шаг 2

Мы видим, что общие множители для чисел 18, 24 и 36 это множители 2 и 3. Эти множители входят во все три разложения. Перемножив эти множители, мы получим НОД, который ищем:

2 × 3 = 6

Получили ответ 6. Значит число 6 является наибольшим общим делителем чисел 18, 24 и 36. Эти три числа делятся на 6 без остатка:

18 : 6 = 3

24 : 6 = 4

36 : 6 = 6

 НОД (18, 24 и 36) = 6


Пример 2. Найти НОД для чисел 12, 24, 36 и 42

Разложим на простые множители каждое число. Затем найдём произведение общих простых множителей.

Разложим на множители число 12

разложение числа 12 на множители

Разложим на множители число 24

разложение числа 24 на множители

Разложим на множители число 36

разложение числа 36 на множители

Разложим на множители число 42

разложение числа 42 на множители

Получили четыре разложения:

разложения чисел 42 36 24 12 шаг 1

Теперь найдём и подчеркнём общие множители:

разложения чисел 42 36 24 12 шаг 2

Мы видим, что общие множители для чисел 12, 24, 36, и 42 это множители 2 и 3. Перемножив эти множители, мы получим НОД, который ищем:

2 × 3 = 6

Получили ответ 6. Значит число 6 является наибольшим общим делителем чисел 12, 24, 36 и 42. Эти числа делятся на 6 без остатка:

12 : 6 = 2

24 : 6 = 4

36 : 6 = 6

42 : 6 = 7

 НОД (12, 24 , 36 и 42) = 6


Наименьшее общее кратное

Из предыдущего урока мы знаем, что если какое-то число без остатка разделилось на другое, его называют кратным этого числа.

Оказывается, кратное может быть общим у нескольких чисел. И сейчас нас будет интересовать кратное двух чисел, причем оно должно быть максимально маленьким.

Определение. Наименьшее общее кратное (НОК) чисел a и b — это наименьшее число, которое кратно a и b. Другими словами, это такое маленькое число, которое делится без остатка на число a и число b.

Определение содержит две переменные a и b. Давайте подставим вместо этих переменных любые два числа. Например, вместо переменной a подставим число 9, а вместо переменной b подставим число 12. Теперь попробуем прочитать определение:

Наименьшее общее кратное (НОК) чисел 9 и 12 — это наименьшее число, которое кратно 9 и 12. Другими словами, это такое маленькое число, которое делится без остатка на число 9 и на число 12.

Из определения понятно, что наименьшее общее кратное это наименьшее число, которое делится без остатка на 9 и на 12. Это наименьшее общее кратное требуется найти.

Для нахождения наименьшего общего кратного (НОК) можно пользоваться тремя способами. Первый способ заключается в том, что можно выписать первые кратные двух чисел, а затем выбрать среди этих кратных такое число, которое будет общим для обоих чисел и маленьким. Давайте применим этот способ.

В первую очередь, найдем первые кратные для числа 9. Чтобы найти кратные для 9, нужно эту девятку поочерёдно умножить на числа от 1 до 9. Получаемые ответы будут кратными для числа 9.

Итак, начнём. Кратные будем выделять синим цветом:

нахождение кратных числа 9 вручную

Теперь находим кратные для числа 12. Для этого поочерёдно умножим число 12 на все числа 1 до 12:

нахождение кратных числа 12 вручную

Теперь выпишем кратные обоих чисел:

-5 -1 i 4 на кп

Теперь найдём общие кратные обоих чисел. Найдя, сразу подчеркнём их:

кратные чисел 9 и 12 подчеркивание

Общими кратными для чисел 9 и 12 являются кратные 36 и 72. Наименьшим же из них является 36.

Значит наименьшее общее кратное для чисел 9 и 12 это число 36. Данное число делится на 9 и 12 без остатка:

36 : 9 = 4

36 : 12 = 3

НОК (9 и 12) = 36


Второй способ нахождения НОК

Второй способ заключается в том, что числа для которых ищется наименьшее общее кратное раскладываются на простые множители. Затем выписываются множители, входящие в первое разложение, и добавляют недостающие множители из второго разложения. Полученные множители перемножают и получают НОК.

Применим данный способ для предыдущей задачи. Найдём НОК для чисел 9 и 12.

Разложим на множители число 9

разложение числа 9 на множители

Разложим на множители число 12

Выпишем первое разложение:

3 на 3 на 2 на 2 шаг 1

Теперь допишем множители из второго разложения, которых нет в первом разложении. В первом разложении нет двух двоек. Их и допишем:

3 на 3 на 2 на 2 шаг 2

Теперь перемножаем эти множители:

3 на 3 на 2 на 2 шаг 3

Получили ответ 36. Значит наименьшее общее кратное чисел 9 и 12 это число 36. Данное число делится на 9 и 12 без остатка:

36 : 9 = 4

36 : 12 = 3

НОК (9 и 12) = 36

Говоря простым языком, всё сводится к тому, чтобы организовать новое разложение куда входят оба разложения сразу. Разложением первого числа 9 являлись множители 3 и 3, а разложением второго числа 12 являлись множители 2, 2 и 3.

Наша задача состояла в том, чтобы организовать новое разложение куда входило бы разложение числа 9 и разложение числа 12 одновременно. Для этого мы выписали разложение первого числа и дописали туда множители из второго разложения, которых не было в первом разложении. В результате получили новое разложение 3 × 3 × 2 × 2. Нетрудно увидеть воочию, что в него одновременно входят разложение числа 9 и разложение числа 12

Разложение чисел 9 и 12


Пример 2. Найти НОК чисел 50 и 180

Разложим на множители число 50

разложение числа 50 на множители

Разложим на множители число 180

разложение числа 180 на множители

Выпишем первое разложение:

255233 шаг 1

Теперь допишем множители из второго разложения, которых нет первом разложении. В первом разложении нет ещё одной двойки и двух троек. Их и допишем:

255233 шаг 2

Теперь перемножаем эти множители:

255233 шаг 3

Получили ответ 900. Значит наименьшее общее кратное чисел 50 и 180 это число 900. Данное число делится на 50 и 180 без остатка:

900 : 50 = 18

900 : 180 = 5

НОК (50 и 180) = 900


Пример 3. Найти НОК чисел 8, 15 и 33

Разложим на множители число 8

разложение числа 8 на множители

Разложим на множители число 15

разложение числа 15 на множители

Разложим на множители число 33

разложение числа 33 на множители

Выпишем первое разложение:

2223511 шаг 1

Теперь допишем множители из второго и третьего разложения, которых нет первом разложении. Допишем множители 3 и 5 из второго разложения, и множитель 11 из третьего разложения:

2223511 шаг 2

Теперь перемножаем эти множители:

2223511 шаг 3

Получили ответ 1320. Значит наименьшее общее кратное чисел 8, 15 и 33 это число 1320. Данное число делится на 8, 15 и 33 без остатка:

1320 : 8 = 165

1320 : 15 = 88

1320 : 33 = 40

НОК (8, 15 и 33) = 1320


Третий способ нахождения НОК

Есть и третий способ нахождения наименьшего общего кратного. Он работает при условии, что его ищут для двух чисел и при условии, что уже найден наибольший общий делитель этих чисел.

Данный способ разумнее использовать, когда одновременно нужно найти НОД и НОК двух чисел.

К примеру, пусть требуется найти НОД и НОК чисел 24 и 12. Сначала найдем НОД этих чисел:

нок для 24 и 12 для второго способа нахождения НОК step 1

Теперь для нахождения наименьшего общего кратного чисел 24 и 12, нужно перемножить эти два числа и полученный результат разделить на их наибольший общий делитель.

Итак, перемножим числа 24 и 12

нок для 24 и 12 для второго способа нахождения НОК step 2

Разделим полученное число 288 на НОД чисел 24 и 12

нок для 24 и 12 для второго способа нахождения НОК step 3

Получили ответ 24. Значит наименьшее общее кратное чисел 24 и 12 равно 24

НОК (24 и 12) = 24


Пример 2. Найти НОД и НОК чисел 36 и 48

Найдем НОД чисел 36 и 48

нок для 36 и 48 для второго способа нахождения НОК step 1

Перемножим числа 36 и 48

нок для 36 и 48 для второго способа нахождения НОК step 2

Разделим 1728 на НОД чисел 36 и 48

нок для 36 и 48 для второго способа нахождения НОК step 3

Получили 144. Значит наименьшее общее кратное чисел 36 и 48 равно 144

НОК (36 и 48) = 144

Для проверки можно найти НОК обычным вторым способом, которым мы пользовались ранее. Если мы всё сделали правильно, то должны получить 144

нок для 36 и 48 для второго способа нахождения НОК step 4

Не расстраивайтесь, если сразу не научитесь находить НОД и НОК. Главное понимать, что это такое и как оно работает. А ошибки вполне естественны на первых порах. Как говорят: «На ошибках учимся».


Задания для самостоятельного решения

Задание 1. Найдите НОД чисел 12 и 16

Решение:

Задание 2. Найдите НОК чисел 12 и 16

Решение:

Задание 3. Найдите НОД чисел 40 и 32

Решение:

Задание 4. Найдите НОК чисел 40 и 32

Решение:

Задание 5. Найдите НОД чисел 54 и 86

Решение:

Задание 6. Найдите НОК чисел 54 и 86

Решение:

Задание 7. Найдите НОД чисел 98 и 35

Решение:

Задание 8. Найдите НОК чисел 98 и 35

Решение:

Задание 9. Найдите НОД чисел 112 и 82

Решение:

Задание 10. Найдите НОК чисел 112 и 82

Решение:

Задание 11. Найдите НОД чисел 24, 48, 64

Решение:

Задание 12. Найдите НОК чисел 24, 48, 64

Решение:

Задание 13. Найдите НОД чисел 18, 48, 96

Решение:

Задание 14. Найдите НОК чисел 18, 48, 96

Решение:

Задание 15. Найдите НОД чисел 28, 24, 76

Решение:

Задание 16. Найдите НОК чисел 28, 24, 76

Решение:


Понравился урок?
Вступай в нашу новую группу Вконтакте и начни получать уведомления о новых уроках

Возникло желание поддержать проект?
Используй кнопку ниже


Наибольший общий делитель


Наибольший общий делитель

4.3

Средняя оценка: 4.3

Всего получено оценок: 222.

4.3

Средняя оценка: 4.3

Всего получено оценок: 222.

Наибольший общий делитель – это еще один показатель, позволяющий упростить работу с дробями. Очень часто в результате вычислений получаются дроби с очень большими значениями числителя и знаменателя. Сокращать поэтапно такие числа можно, но это крайне долго, поэтому проще сразу найти НОД и сократить на него. Разберемся в теме подробнее.

Что такое НОД?

Наибольший общий делитель (НОД) ряда чисел – это наибольшее число, на которое можно без остатка разделить каждое из чисел ряда.

Это значение чаще всего используется для ряда из двух чисел. Просто потому, что сокращаются обычно два числа: числитель и знаменатель дроби. Нахождение НОД для большего количества значений не всегда оправдано, но вырабатывает навык.

Как найти НОД?

Для того, чтобы найти НОД необходимо каждое из чисел разложить на простые множители и выделить общую часть.

Специальной формулы для этого не придумали, зато есть алгоритм вычисления.

Приведем пример нахождения наибольшего общего делителя двух натуральных чисел: 540 и 252. Разложим 640 на простые множители. Последовательность действий такова:

  • Делим число на наименьший из возможных простых чисел. То есть, если число можно разделить на 2, 3 или 5, то сначала нужно делить на 5. Просто, чтобы не запутаться.
  • Получившийся результат делим на наименьшее из возможных простых чисел.
  • Повторяем деление каждого полученного результата, пока не получим простое число.

Теперь проведем ту же процедуру на практике.

  • 540 : 2=270
  • 270:2=135
  • 135 : 3 =45
  • 45 : 3=15
  • 15 : 5 = 3

Запишем результат в виде равенства 540=2*2*3*3*3*5. Для того, чтобы записать результат, нужно последнее получившееся число умножить на все делители.

Аналогично поступим с числом 252:

  • 252 : 2=126
  • 126: 2=63
  • 63 : 3=21
  • 21 : 3 = 7

Запишем результат: 252=2*2*3*3*7.

В каждом разложении есть одинаковые числа. Найдем их, это два числа 2 и два числа 3. Отличаются только 7 и 3*5.

Для того, чтобы найти НОД нужно перемножить общие множетели. То есть в произведении будет две двойки и две тройки.

НОД=2*2*3*3=36

Как можно это использовать?

Задача: сократить дробь $$252over540$$.

НОД для двух этих чисел мы уже находили, теперь просто воспользуемся уже посчитанным значением.

НОД = 36

Сократим числитель и знаменатель дроби на 36 и получим ответ.

$${252over540} ={7over15}$$ – чтобы быстро сократить, достаточно посмотреть на разложение чисел.

Если 540=2*2*3*3*3*5, а НОД=36=2*2*3*3, то 540 = 36*3*5. И если мы поделим 540 на 36, то получим 3*5=15.

Без НОД нам пришлось бы в одну длинную строку писать сокращения. К тому же, бывают случаи, когда непонятно, можно ли сократить дробь вообще. Для таких ситуаций в математике и придумали разложение чисел на простые множители и НОД.

Заключение

Что мы узнали?

Мы узнали, что такое наибольший общий делитель пары чисел, разобрались, как можно использовать показатель на практике, решили задачу на нахождение НОД и применение НОД для сокращения дробей. Поняли, что с использованием НОД можно проще и быстрее сократить громоздкие дроби, найдя НОД для числителя и знаменателя.

Тест по теме

Доска почёта

Доска почёта

Чтобы попасть сюда – пройдите тест.

    Пока никого нет. Будьте первым!

Оценка статьи

4.3

Средняя оценка: 4.3

Всего получено оценок: 222.


А какая ваша оценка?

Эта статья посвящена такому вопросу, как нахождение наибольшего общего делителя. Сначала мы объясним, что это такое, и приведем несколько примеров, введем определения наибольшего общего делителя 2, 3 и более чисел, после чего остановимся на общих свойствах данного понятия и докажем их.

Что такое общие делители

Чтобы понять, что из себя представляет наибольший общий делитель, сначала сформулируем, что вообще такое общий делитель для целых чисел.

В статье о кратных и делителях мы говорили, что у целого числа всегда есть несколько делителей. Здесь же нас интересуют делители сразу некоторого количества целых чисел, особенно общие (одинаковые) для всех. Запишем основное определение.

Определение 1

Общим делителем нескольких целых чисел будет такое число, которое может быть делителем каждого числа из указанного множества.

Пример 1

Вот примеры такого делителя: тройка будет общим делителем для чисел -12 и 9, поскольку верны равенства 9=3·3 и −12=3·(−4). У чисел 3 и -12 есть и другие общие делители, такие, как 1, −1 и −3. Возьмем другой пример. У четырех целых чисел 3, −11, −8 и 19 будет два общих делителя: 1 и -1.

Зная свойства делимости, мы можем утверждать, что любое целое число можно разделить на единицу и минус единицу, значит, у любого набора целых чисел уже будет как минимум два общих делителя.

Также отметим, что если у нас есть общий для нескольких чисел делитель b, то те же числа можно разделить и на противоположное число, то есть на -b.  В принципе, мы можем взять лишь положительные делители, тогда все общие делители также будут больше 0. Такой подход также можно использовать, однако совсем игнорировать отрицательные числа не следует.

Что такое наибольший общий делитель (НОД)

Согласно свойствам делимости, если b является делителем целого числа a, которое не равно 0, то модуль числа b не может быть больше, чем модуль a, следовательно, любое число, не равное 0, имеет конечное число делителей. Значит, число общих делителей нескольких целых чисел, хотя бы одно из которых отличается от нуля, также будет конечным, и из всего их множества мы всегда можем выделить самое большое число (ранее мы уже говорили о понятии наибольшего и наименьшего целого числа, советуем вам повторить данный материал).

В дальнейших рассуждениях мы будем считать, что хотя бы одно из множества чисел, для которых нужно найти наибольший общий делитель, будет отлично от 0. Если они все равны 0, то их делителем может быть любое целое число, а поскольку их бесконечно много, выбрать наибольшее мы не сможем. Иначе говоря, найти наибольший общий делитель для множества чисел, равных 0, нельзя.

Переходим к формулировке основного определения.

Определение 2

Наибольшим общим делителем нескольких чисел является самое большое целое число, которое делит все эти числа.

На письме наибольший общий делитель чаще всего обозначается аббревиатурой НОД. Для двух чисел его можно записать как НОД (a, b).

Пример 2

Какой можно привести пример НОД для двух целых чисел? Например, для 6 и -15 это будет 3. Обоснуем это. Сначала запишем все делители шести: ±6, ±3, ±1, а потом все делители пятнадцати: ±15, ±5, ±3 и ±1. После этого мы выбираем общие: это −3, −1, 1 и 3. Из них надо выбрать самое большое число. Это и будет 3.

Для трех и более чисел определение наибольшего общего делителя будет почти таким же.

Определение 3

Наибольшим общим делителем трех чисел и более будет самое большое целое число, которое будет делить все эти числа одновременно.

Для чисел a1, a2, …, an делитель удобно обозначать как НОД (a1, a2, …, an). Само значение делителя записывается как НОД (a1, a2, …, an) =b.

Пример 3

Приведем примеры наибольшего общего делителя нескольких целых чисел: 12, -8, 52, 16. Он будет равен четырем, значит, мы можем записать, что НОД (12, -8, 52, 16) =4.

Проверить правильность данного утверждения можно с помощью записи всех делителей этих чисел и последующего выбора наибольшего из них.

На практике часто встречаются случаи, когда наибольший общий делитель равен одному из чисел. Это происходит тогда, когда на данное число можно разделить все остальные числа (в первом пункте статьи мы привели доказательство этого утверждения).

Пример 4

Так, наибольший общий делитель чисел 60, 15 и -45 равен 15, поскольку пятнадцать делится не только на 60 и -45, но и на само себя, и большего делителя для всех этих чисел не существует.

Особый случай составляют взаимно простые числа. Они представляют собой целые числа с наибольшим общим делителем, равным 1.

Основные свойства НОД и алгоритм Евклида

У наибольшего общего делителя есть некоторые характерные свойства. Сформулируем их в виде теорем и докажем каждое из них.

Отметим, что данные свойства сформулированы для целых чисел больше нуля, а делители мы рассмотрим только положительные.

Определение 4

Числа a и b имеют наибольший общий делитель, равный НОД для b и a, то есть НОД (a, b)=НОД (b, a). Перемена мест чисел не влияет на конечный результат.

Данное свойство следует из самого определения НОД и не нуждается в доказательствах.

Определение 5

Если число a можно разделить на число b, то множество общих делителей этих двух чисел будет аналогично множеству делителей числа b, то есть НОД (a, b)=b.

Докажем это утверждение.

Доказательство 1

Если у чисел a и b есть общие делители, то на них можно разделить любое из них. В то же время если a будет кратным b, то любой делитель b будет делителем и для a, поскольку у делимости есть такое свойство, как транзитивность. Значит, любой делитель b будет общим для чисел a и b. Это доказывает, что если мы можем разделить a на b, то множество всех делителей обоих чисел совпадет с множеством делителей одного числа b. А поскольку наибольший делитель любого числа есть само это число, то наибольший общий делитель чисел a и b будет также равен b, т.е. НОД (a, b)=b. Если a=b, то НОД (a, b)=НОД (a, a)=НОД (b, b) =a=b, например, НОД (132, 132) =132.

Используя это свойство, мы можем найти наибольший общий делитель двух чисел, если одно из них можно разделить на другое. Такой делитель равен одному из этих двух чисел, на которое можно разделить второе число. К примеру, НОД (8, 24) =8, так как 24 есть число, кратное восьми.

Определение 6

Если верно равенство a=b·q+c (здесь все переменные являются целыми числами), то все общие делители двух чисел a и b будут такими же, как и у чисел b и c, то есть НОД (a, b)=НОД (b, c).

Доказательство 2

Попробуем доказать данное свойство. У нас изначально есть равенство a=b·q+c, и любой общий делитель a и b будет делить и c, что объясняется соответствующим свойством делимости. Поэтому любой общий делитель b и c будет делить a. Значит, множество общих делителей a и b совпадет с множеством делителей b и c, в том числе и наибольшие из них, значит, равенство НОД (a, b)=НОД (b, c) справедливо.

Определение 7

Следующее свойство получило название алгоритма Евклида. С его помощью можно вычислить наибольший общий делитель двух чисел, а также доказать другие свойства НОД.

Перед тем, как сформулировать свойство, советуем вам повторить теорему, которую мы доказывали в статье о делении с остатком. Согласно ей, делимое число a можно представить в виде b·q+r, причем b здесь является делителем, q – некоторым целым числом (его также называют неполным частным), а r – остатком, который удовлетворяет условию 0≤r≤b.

Допустим, у нас есть два целых числа больше 0, для которых будут справедливы следующие равенства:

a=b·q1+r1, 0<r1<bb=r1·q2+r2, 0<r2<r1r1=r2·q3+r3, 0<r3<r2r2=r3·q4+r4, 0<r4<r3⋮rk-2=rk-1·qk+rk, 0<rk<rk-1rk-1=rk·qk+1

Эти равенства заканчиваются тогда, когда rk+1 становится равен 0. Это случится обязательно, поскольку последовательность b> r1> r2> r3, … представляет собой ряд убывающих целых чисел, который может включать в себя только конечное их количество. Значит, rk является наибольшим общим делителем a и b, то есть, rk=НОД (a, b).

В первую очередь нам надо доказать, что rk – это общий делитель чисел a и b, а после этого – то, что rk является не просто делителем, а именно наибольшим общим делителем двух данных чисел.

Просмотрим список равенств, приведенный выше, снизу вверх. Согласно последнему равенству,
rk−1 можно разделить на rk. Исходя из этого факта, а также предыдущего доказанного свойства наибольшего общего делителя, можно утверждать, что rk−2 можно разделить на rk, так как
rk−1 делится на rk и rk делится на rk.

Третье снизу равенство позволяет нам сделать вывод, что rk−3 можно разделить на rk, и т.д. Второе снизу – что b делится на rk, а первое – что a делится на rk. Из всего этого заключаем, что rk – общий делитель a и b.

Теперь докажем, что rk=НОД (a, b). Что для этого нужно сделать? Показать, что любой общий делитель a и b будет делить rk. Обозначим его r0.

Просмотрим тот же список равенств, но уже сверху вниз. Исходя из предыдущего свойства, можно заключить, что r1 делится на r0, значит, согласно второму равенству r2 делится на r0. Идем по всем равенствам вниз и из последнего делаем вывод, что rk делится на r0. Следовательно, rk=НОД (a, b).

Рассмотрев данное свойство, заключаем, что множество общих делителей a и b аналогично множеству делителей НОД этих чисел. Это утверждение, которое является следствием из алгоритма Евклида, позволит нам вычислить все общие делители двух заданных чисел.

Перейдем к другим свойствам.

Определение 8

Если a и b являются целыми числами, не равными 0, то должны существовать два других целых числа u0 и v0, при которых будет справедливым равенство НОД (a, b) =a·u0+b·v0.

Равенство, приведенное в формулировке свойства, является линейным представлением наибольшего общего делителя a и b. Оно носит название соотношения Безу, а числа u0 и v0 называются коэффициентами Безу.

Доказательство 3

Докажем данное свойство. Запишем последовательность равенств по алгоритму Евклида:

a=b·q1+r1, 0<r1<bb=r1·q2+r2, 0<r2<r1r1=r2·q3+r3, 0<r3<r2r2=r3·q4+r4, 0<r4<r3⋮rk-2=rk-1·qk+rk, 0<rk<rk-1rk-1=rk·qk+1

Первое равенство говорит нам о том, что r1=a−b·q1. Обозначим 1=s1 и −q1=t1 и перепишем данное равенство в виде r1=s1·a+t1·b. Здесь числа s1 и t1 будут целыми. Второе равенство позволяет сделать вывод, что r2=b−r1·q2=b−(s1·a+t1·b) ·q2=−s1·q2·a+(1−t1·q2) ·b. Обозначим −s1·q2=s2 и 1−t1·q2=t2 и перепишем равенство как r2=s2·a+t2·b, где s2 и t2 также будут целыми. Это объясняется тем, что сумма целых чисел, их произведение и разность также представляют собой целые числа. Точно таким же образом получаем из третьего равенства r3=s3·a+t3·b, из следующего r4=s4·a+t4·b и т.д. В конце заключаем, что rk=sk·a+tk·b при целых sk и tk. Поскольку rk=НОД (a, b), обозначим sk=u0 и tk=v0, В итоге мы можем получить линейное представление НОД в требуемом виде: НОД (a, b) =a·u0+b·v0.

Определение 9

НОД (m·a, m·b) =m·НОД(a, b) при любом натуральном значении m.

Доказательство 4

Обосновать это свойство можно так. Умножим на число m обе стороны каждого равенства в алгоритме Евклида и получим, что НОД (m·a, m·b) =m·rk, а rk – это НОД (a, b). Значит, НОД (m·a, m·b) =m·НОД(a, b). Именно это свойство наибольшего общего делителя используется при нахождении НОД методом разложения на простые множители.

Определение 10

Если у чисел a и b есть общий делитель p, то НОД (a:p, b:p)=НОД(a, b):p. В случае, когда p=НОД (a, b) получим НОД (a:НОД(a, b), b:НОД (a, b)=1, следовательно, числа a:НОД(a, b) и b:НОД (a, b) являются взаимно простыми.

Поскольку a=p·(a:p) и b=p·(b:p), то, основываясь на предыдущем свойстве, можно создать равенства вида НОД(a, b)=НОД(p·(a:p), p·(b:p))=p·НОД(a:p, b:p), среди которых и будет доказательство данного свойства. Это утверждение мы используем, когда приводим обыкновенные дроби к несократимому виду.

Определение 11

Наибольшим общим делителем a1, a2, …, ak будет число dk, которое можно найти, последовательно вычисляя НОД (a1, a2)=d2, НОД (d2, a3) =d3, НОД (d3, a4) =d4, …, НОД (dk-1, ak) =dk.

Это свойство полезно при нахождении наибольшего общего делителя трех и более чисел. С помощью него можно свести это действие к операциям с двумя числами. Его основой является следствие из алгоритма Евклида: если множество общих делителей a1, a2 и a3 совпадает с множеством d2 и a3, то оно совпадет и с делителями d3. Делители чисел a1, a2, a3 и a4 совпадут с делителями d3, значит, они совпадут и с делителями d4, и т.д. В конце мы получим, что общие делители чисел a1, a2, …, ak совпадут с делителями dk, а поскольку наибольшим делителем числа dk будет само это число, то НОД (a1, a2, …, ak) =dk.

Это все, что мы хотели бы рассказать о свойствах наибольшего общего делителя.

Добавить комментарий