Что такое общий множитель как найти

Как найти общий множитель

Для решения уравнений высших порядков существует множество способов. Иногда целесообразно совмещать их, чтобы добиться результата. Например, при разложении на множители и группировке часто используют метод нахождения общего множителя группы двучленов и вынесения его за скобки.

Как найти общий множитель

Инструкция

Определение общего множителя многочлена требуется при упрощении громоздких выражений, а также при решении уравнений высших степеней. Этот метод имеет смысл, если степень многочлена не ниже второй. При этом общим множителем может быть не только двучлен первой степени, но и более высоких степеней.

Чтобы найти общий множитель слагаемых многочлена, необходимо выполнить ряд преобразований. Простейший двучлен или одночлен, который можно вынести за скобки, будет одним из корней многочлена. Очевидно, что в случае, когда многочлен не имеет свободного члена, будет неизвестное в первой степени – корень многочлена, равный 0.

Более сложным для поиска общего множителя является случай, когда свободный член не равен нулю. Тогда применимы способы простого подбора или группировки. Например, пусть все корни многочлена рациональные, при этом все коэффициенты многочлена – целые числа:y^4 + 3·y³ – y² – 9·y – 18.

Выпишите все целочисленные делители свободного члена. Если у многочлена есть рациональные корни, то они находятся среди них. В результате подбора получаются корни 2 и -3. Значит, общими множителями этого многочлена будут двучлены (y – 2) и (y + 3).

Очевидно, что степень оставшегося многочлена при этом понизится с четвертой до второй. Чтобы получить его, проведите деление исходного многочлена последовательно на (y – 2) и (y + 3). Выполняется это подобно делению чисел, в столбик.

Метод вынесения общего множителя является одним из составляющих разложения на множители. Описанный выше способ применим, если коэффициент при старшей степени равен 1. Если это не так, то сначала необходимо выполнить ряд преобразований. Например:2y³ + 19·y² + 41·y + 15.

Выполните замену вида t = 2³·y³. Для этого умножьте все коэффициенты многочлена на 4:2³·y³ + 19·2²·y² + 82·2·y + 60. После замены: t³ + 19·t² + 82·t + 60. Теперь для поиска общего множителя применим вышеописанный способ.

Кроме того, эффективным методом поиска общего множителя является группировка элементов многочлена. Особенно он полезен, когда первый способ не работает, т.е. у многочлена нет рациональных корней. Однако реализация группировки не всегда бывает очевидной. Например:У многочлена y^4 + 4·y³ – y² – 8·y – 2 нет целых корней.

Воспользуйтесь группировкой:y^4 + 4·y³ – y² – 8·y – 2 = y^4 + 4·y³ – 2·y² + y² – 8·y – 2 = (y^4 – 2·y²) + (4·y³ – 8·y) + y² – 2 = (y² – 2)*(y² + 4·y + 1).Общий множитель элементов этого многочлена (y² – 2).

Войти на сайт

или

Забыли пароль?
Еще не зарегистрированы?

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Как привести к общему знаменателю?

Для приведения дробей к общему знаменателю надо:

  1. найти наименьшее общее кратное знаменателей этих дробей (наименьший общий знаменатель);
  2. разделить наименьший общий знаменатель на знаменатели данных дробей, т. е. …
  3. умножить числитель и знаменатели каждой дроби на ее дополнительный множитель.

Какой общий знаменатель у чисел 18 и 12?

НОК 12,18 равняется 2⋅2⋅3⋅3=36 2 ⋅ 2 ⋅ 3 ⋅ 3 = 36 .

Как найти общий множитель дроби?

0:355:53Рекомендуемый клип · 59 сек.Как найти общий знаменатель. Математика 6 класс простоYouTubeНачало рекомендуемого клипаКонец рекомендуемого клипа

Что такое общий числитель?

Общий делитель нескольких целых чисел — это такое число, которое может быть делителем каждого числа из указанного множества. Например, у чисел 12 и 8 общими делителями будут 4 и 1. Чтобы это проверить, напишем верные равенства: 8 = 4 * 2 и 12 = 3 * 4. Любое число можно разделить на 1 и на само себя.

Как легко найти общий знаменатель?

Если вы хотите использовать НОД для решения задачи, сначала перемножьте знаменатели между собой. Разделите полученное значение на НОД. Получив результат перемножения знаменателей, разделите его на вычисленный вами НОД. Полученное число будет наименьшим общим знаменателем (НОЗ).

Как привести к общему знаменателю при сложении?

Чтобы сложить две дроби с одинаковыми положительными знаменателями, надо сложить их числители, а знаменатель оставить прежним. Чтобы сложить две дроби с разными знаменателями, надо привести их к общему положительному знаменателю и сложить полученные дроби.

Как найти наименьший общий знаменатель?

Для того, чтобы найти наименьший общий знаменатель двух дробей, нужно найти методом подбора наименьшее общее число, которое бы делилось и на первый, и на второй знаменатель. После этого нужно умножить каждую дробь на такое число, чтобы в знаменателе этих дробей получилось найденное нами наименьшее общее число.

Как быстро найти общий знаменатель?

Если вы хотите использовать НОД для решения задачи, сначала перемножьте знаменатели между собой. Разделите полученное значение на НОД. Получив результат перемножения знаменателей, разделите его на вычисленный вами НОД. Полученное число будет наименьшим общим знаменателем (НОЗ).

Какой общий знаменатель у чисел 24 и 36?

Двадцать четыре и тридцать шесть При делении 24 на 36 образуется остаток 24. При умножении 24 на 36 образуется число 864. Наибольший общий делитель: 12 . Наименьшим общим кратным (НОК) является число 72.

Что такое общий знаменатель?

Определение. Общий знаменательэто любое положительное общее кратное всех знаменателей данных дробей. Иными словами, общим знаменателем некоторого набора обыкновенных дробей является любое натуральное число, которое делится на все знаменатели данных дробей.

Что такое НОД 6 класс?

Наибольшее натуральное число, на которое делятся без остатка числа m и n, называют наибольшим общим делителем этих чисел. Обозначают: НОД(m; n). Так, в задаче НОД(45; 60) = 15. Наибольший общий делитель нескольких натуральных чисел можно найти, не выписывая все делители этих чисел.

Как у дробей найти общий знаменатель?

Находим наименьшее общее кратное знаменателей дробей. НОК(12, 8) = 24. Это число и будет новым знаменателем. Чтобы знаменатели обеих дробей стали равны 24, числитель и знаменатель первой дроби нужно домножить на 2 = 24:12, а числитель и знаменатель второй дроби — на 3 = 24:8.

Как найти общий знаменатель с разными знаменателями?

Множители записываем над числителем дроби справа сверху. Числитель и знаменатель каждой дроби умножаем на свой дополнительный множитель, пользуясь основным свойством дроби. После умножения в знаменателях обеих дробей должен получиться наименьший общий знаменатель.

Как сложить доли?

Сложение обыкновенных дробей.

  1. привести дроби к наименьшему общему знаменателю;
  2. сложить числители дробей, а знаменатель оставить без изменений;
  3. сократить полученную дробь;
  4. Если получилась неправильная дробь преобразовать неправильную дробь в смешанную.

Как сложить числа с разными знаменателями?

Чтобы сложить две дроби с разными знаменателями, надо привести их к общему положительному знаменателю и сложить полученные дроби. Чтобы вычесть две дроби с одинаковым положительными знаменателями, надо из числителя уменьшаемого вычесть числитель вычитаемого, а знаменатель оставить прежним.

Как найти общий знаменатель в уравнении?

3. Дробные рациональные уравнения

  1. найти общий знаменатель дробей, входящих в уравнение;
  2. умножить обе части уравнения на общий знаменатель;
  3. решить получившееся целое уравнение;
  4. исключить из его корней те, которые обращают в ноль общий знаменатель.

Как найти общий знаменатель дробей 5 класс?

2:063:30Рекомендуемый клип · 47 сек.ОБЩИЙ ЗНАМЕНАТЕЛЬ ДРОБЕЙ 5 и 6 класс математика — YouTubeYouTube

Вынесение общего множителя за скобки основано на распределительном законе.

Чтобы найти общий множитель, необходимо:

1) определить коэффициент общего множителя, то есть число, на которое делятся все коэффициенты одночленов;
2) определить общую буквенную часть для всех членов многочлена;
3) общий множитель получится путём произведения коэффициента и общей буквенной части, полученных в первом и втором пунктах, его выносим за скобки.

Пример:

разложить на множители

25t4n−20t2

.

Решение.

1. Определим коэффициент общего множителя, найдя НОД коэффициентов (25) и (20) : (5).
2. Найдём общую буквенную часть с минимальным показателем степени:

t2

.
3. Общий множитель получим, вычислив произведение коэффициента и общей буквенной части, т. е.

5t2

 — общий множитель, его выносим за скобки.

Finding the greatest common factor, or GCF, of two numbers is useful in many situations in math, but particularly when it comes to simplifying fractions. If you’re struggling with this or finding common denominators, learning two methods for finding common factors will help you achieve what you’re setting out to do. First, though, it’s a good idea to learn about the basics of factors; then, you can look at two approaches for finding common factors. Finally, you can look at how to apply your knowledge to simplify a fraction.

What Is a Factor?

Factors are the numbers you multiply together to produce another number. For example, 2 and 3 are factors of 6, because 2 × 3 = 6. Similarly, 3 and 3 are factors of 9, because 3 × 3 = 9. As you may know, prime numbers are numbers that have no factors other than themselves and 1. So 3 is a prime number, because the only two whole numbers (integers) that can multiply together to give 3 as an answer are 3 and 1. In the same way, 7 is a prime number, and so is 13.

Because of this, it’s often helpful to break down a number into “prime factors.” This means finding all of the prime number factors of another number. It basically breaks the number down into its fundamental “building blocks,” which is a useful step towards finding the greatest common factor of two numbers and is also invaluable when it comes to simplifying square roots.

Finding the Greatest Common Factor: Method One

The simplest method for finding the greatest common factor of two numbers is to simply list all of the factors of each number and look for the highest number that both of them share. Imagine that you want to find the highest common factor of 45 and 60. First, look at the different numbers you can multiply together to produce 45.

The easiest way to start is with the two you know will work, even for a prime number. In this case, we know 1 × 45 = 45, so we know 1 and 45 are factors of 45. These are the first and last factors of 45, so you can just fill in from there. Next, work out whether 2 is a factor. This is easy, because any even number will be divisible by 2, and any odd number won’t. So we know that 2 isn’t a factor of 45. What about 3? You should be able to spot that 3 is a factor of 45, because 3 × 15 = 45 (you can always build on what you know to work this out, for example, you’ll know that 3 × 12 = 36, and adding threes to this leads you to 45).

Next, is 4 a factor of 45? No – you know 11 × 4 = 44, so it can’t be! Next, what about 5? This is another easy one, because any number ending in 0 or 5 is divisible by 5. And with this, you can easily spot that 5 × 9 = 45. But 6 is no good because 7 × 6 = 42 and 8 × 6 = 48. From this you can also see that 7 and 8 aren’t factors of 45. We already know 9 is, and it’s easy to see that 10 and 11 aren’t factors. Continue this process, and you’ll spot that 15 is a factor, but nothing else is.

So the factors of 45 are: 1, 3, 5, 9, 15 and 45.

For 60, you run through the exact same process. This time the number is even (so you know 2 is a factor) and divisible by 10 (so 5 and 10 are both factors), which makes things a bit easier. After going through the process again, you should see that the factors of 60 are: 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30 and 60.

Comparing the two lists shows that 15 is the greatest common factor of 45 and 60. This method can be time consuming, but it’s simple and it will always work. You can also start at any high common factor you can spot straight away, and then simply look for higher factors of each number.

Finding the Greatest Common Factor: Method Two  

The second method of finding the GCF for two numbers is to use prime factors. The process of prime factorization is a little easier and more structured than finding every factor. Let’s go through the process for 42 and 63.

The process of prime factorization basically involves breaking the number down until you’re only left with prime numbers. It’s best to start with the smallest prime (two) and work from there. So for 42, it’s easy to see that 2 × 21 = 42. Then work from 21: Is 2 a factor? No. Is 3? Yes! 3 × 7 = 21, and 3 and 7 are both prime numbers. This means the prime factors of 42 are 2, 3 and 7. The first “break” used 2 to get to 21, and the second broke this down into 3 and 7. You can check this by multiplying all of your factors together and checking you get the original number: 2 × 3 × 7 = 42.

For 63, 2 isn’t a factor, but 3 is, because 3 × 21 = 63. Again, 21 breaks down into 3 and 7 – both prime – so you know the prime factors! Checking shows that 3 × 3 × 7 = 63, as required.

You find the highest common factor by looking at which prime factors the two numbers have in common. In this case, 42 has 2, 3 and 7, and 63 has 3, 3 and 7. They have 3 and 7 in common. To find the highest common factor, multiply all of the common prime factors together. In this case, 3 × 7 = 21, so 21 is the greatest common factor of 42 and 63.

The previous example can be solved more quickly this way too. Because 45 is divisible by three (3 × 15 = 45), and 15 is also divisible by three (3 × 5 = 15), the prime factors of 45 are 3, 3 and 5. For 60, it’s divisible by two (2 × 30 = 60), 30 is divisible by two as well (2 × 15 = 30), and then you’re left with 15, which we know has three and five as prime factors, leaving 2, 2, 3 and 5. Comparing the two lists, three and five are the common prime factors, so the greatest common factor is 3 × 5 = 15.

In the event that there are three or more common prime factors, you multiply them all together in the same way to find the greatest common factor.

Simplifying Fractions With Common Factors

If you’re presented with a fraction like 32/96, it can make any calculations that come after it very complicated unless you can spot a way to simplify the fraction. Finding the lowest common factor of 32 and 96 will tell you the number to divide both by, to get a simpler fraction. In this case:

32 = 2 × 16 \ 16 = 2 × 2 × 2 × 2 \ text{So } 32 = 2^5 = 2 × 2 × 2 × 2 × 2

For 96, the process gives:

96 = 48 × 2 \ 48 = 24 × 2 \ 24 = 12 × 2 \ 12 = 6 × 2 \ 6 = 3 × 2 \ text{So } 96 = 2^5 × 3 = 2 × 2 × 2 × 2 × 2 × 3

It should be clear that 25 = 32 is the highest common factor. Dividing both parts of the fraction by 32 gives:

frac{32}{96} = frac{1}{3}

Finding common denominators is a similar process. Imagine that you had to add the fractions 15/45 and 40/60. We know from the first example that 15 is the highest common factor of 45 and 60, so we can immediately express them as 5/15 and 10/15. Since 3 × 5 = 15, and both numerators are also divisible by five, we can divide both parts of both fractions by five to get 1 /3 and 2/3. Now they are much easier to add and see that

frac{15}{45} + frac{40}{60} = 1

Добавить комментарий