Ctgx как найти корни

Тригонометрические уравнения — формулы, решения, примеры

Равенство, содержащее неизвестную под знаком тригонометрической функции (`sin x, cos x, tg x` или `ctg x`), называется тригонометрическим уравнением, именно их формулы мы и рассмотрим дальше.

Простейшие тригонометрические уравнения

Простейшими называются уравнения `sin x=a, cos x=a, tg x=a, ctg x=a`, где `x` — угол, который нужно найти, `a` — любое число. Запишем для каждого из них формулы корней.

1. Уравнение `sin x=a`.

При `|a|>1` не имеет решений.

При `|a| leq 1` имеет бесконечное число решений.

Формула корней: `x=(-1)^n arcsin a + pi n, n in Z`

2. Уравнение `cos x=a`

При `|a|>1` — как и в случае с синусом, решений среди действительных чисел не имеет.

При `|a| leq 1` имеет бесконечное множество решений.

Формула корней: `x=pm arccos a + 2pi n, n in Z`

Частные случаи для синуса и косинуса в графиках.

3. Уравнение `tg x=a`

Имеет бесконечное множество решений при любых значениях `a`.

Формула корней: `x=arctg a + pi n, n in Z`

4. Уравнение `ctg x=a`

Также имеет бесконечное множество решений при любых значениях `a`.

Формула корней: `x=arcctg a + pi n, n in Z`

Формулы корней тригонометрических уравнений в таблице

Для синуса:Для косинуса:Для тангенса и котангенса:Формулы решения уравнений, содержащих обратные тригонометрические функции:

Методы решения тригонометрических уравнений

Решение любого тригонометрического уравнения состоит из двух этапов:

  • с помощью тригонометрических формул преобразовать его до простейшего;
  • решить полученное простейшее уравнение, используя выше написанные формулы корней и таблицы.

Рассмотрим на примерах основные методы решения.

Алгебраический метод.

В этом методе делается замена переменной и ее подстановка в равенство.

Пример. Решить уравнение: `2cos^2(x+frac pi 6)-3sin(frac pi 3 — x)+1=0`

Решение. Используя формулы приведения, имеем:

`2cos^2(x+frac pi 6)-3cos(x+frac pi 6)+1=0`,

делаем замену: `cos(x+frac pi 6)=y`, тогда `2y^2-3y+1=0`,

находим корни: `y_1=1, y_2=1/2`, откуда следуют два случая:

1. `cos(x+frac pi 6)=1`, `x+frac pi 6=2pi n`, `x_1=-frac pi 6+2pi n`.

2. `cos(x+frac pi 6)=1/2`, `x+frac pi 6=pm arccos 1/2+2pi n`, `x_2=pm frac pi 3-frac pi 6+2pi n`.

Ответ: `x_1=-frac pi 6+2pi n`, `x_2=pm frac pi 3-frac pi 6+2pi n`.

Разложение на множители.

Пример. Решить уравнение: `sin x+cos x=1`.

Решение. Перенесем влево все члены равенства: `sin x+cos x-1=0`. Используя формулы двойного угла, преобразуем и разложим на множители левую часть:

`sin x — 2sin^2 x/2=0`,

`2sin x/2 cos x/2-2sin^2 x/2=0`,

`2sin x/2 (cos x/2-sin x/2)=0`,

  1. `sin x/2 =0`, `x/2 =pi n`, `x_1=2pi n`.
  2. `cos x/2-sin x/2=0`, `tg x/2=1`, `x/2=arctg 1+ pi n`, `x/2=pi/4+ pi n`, `x_2=pi/2+ 2pi n`.

Ответ: `x_1=2pi n`, `x_2=pi/2+ 2pi n`.

Приведение к однородному уравнению

Вначале нужно данное тригонометрическое уравнение привести к одному из двух видов:

`a sin x+b cos x=0` (однородное уравнение первой степени) или `a sin^2 x + b sin x cos x +c cos^2 x=0` (однородное уравнение второй степени).

Потом разделить обе части на `cos x ne 0` — для первого случая, и на `cos^2 x ne 0` — для второго. Получим уравнения относительно `tg x`: `a tg x+b=0` и `a tg^2 x + b tg x +c =0`, которые нужно решить известными способами.

Пример. Решить уравнение: `2 sin^2 x+sin x cos x — cos^2 x=1`.

Решение. Запишем правую часть, как `1=sin^2 x+cos^2 x`:

`2 sin^2 x+sin x cos x — cos^2 x=` `sin^2 x+cos^2 x`,

`2 sin^2 x+sin x cos x — cos^2 x -` ` sin^2 x — cos^2 x=0`

`sin^2 x+sin x cos x — 2 cos^2 x=0`.

Это однородное тригонометрическое уравнение второй степени, разделим его левую и правую части на `cos^2 x ne 0`, получим:

`tg^2 x+tg x — 2=0`. Введем замену `tg x=t`, в результате `t^2 + t — 2=0`. Корни этого уравнения: `t_1=-2` и `t_2=1`. Тогда:

  1. `tg x=-2`, `x_1=arctg (-2)+pi n`, `n in Z`
  2. `tg x=1`, `x=arctg 1+pi n`, `x_2=pi/4+pi n`, ` n in Z`.

Ответ. `x_1=arctg (-2)+pi n`, `n in Z`, `x_2=pi/4+pi n`, `n in Z`.

Переход к половинному углу

Пример. Решить уравнение: `11 sin x — 2 cos x = 10`.

Решение. Применим формулы двойного угла, в результате: `22 sin (x/2) cos (x/2) -` `2 cos^2 x/2 + 2 sin^2 x/2=` `10 sin^2 x/2+10 cos^2 x/2`

`4 tg^2 x/2 — 11 tg x/2 +6=0`

Применив описанный выше алгебраический метод, получим:

  1. `tg x/2=2`, `x_1=2 arctg 2+2pi n`, `n in Z`,
  2. `tg x/2=3/4`, `x_2=arctg 3/4+2pi n`, `n in Z`.

Ответ. `x_1=2 arctg 2+2pi n, n in Z`, `x_2=arctg 3/4+2pi n`, `n in Z`.

Введение вспомогательного угла

В тригонометрическом уравнении `a sin x + b cos x =c`, где a,b,c — коэффициенты, а x — переменная, разделим обе части на `sqrt `:

Коэффициенты в левой части имеют свойства синуса и косинуса, а именно сумма их квадратов равна 1 и их модули не больше 1. Обозначим их следующим образом: `frac a>=cos varphi`, ` frac b> =sin varphi`, `frac c>=C`, тогда:

`cos varphi sin x + sin varphi cos x =C`.

Подробнее рассмотрим на следующем примере:

Пример. Решить уравнение: `3 sin x+4 cos x=2`.

Решение. Разделим обе части равенства на `sqrt <3^2+4^2>`, получим:

`3/5 sin x+4/5 cos x=2/5`.

Обозначим `3/5 = cos varphi` , `4/5=sin varphi`. Так как `sin varphi>0`, `cos varphi>0`, то в качестве вспомогательного угла возьмем `varphi=arcsin 4/5`. Тогда наше равенство запишем в виде:

`cos varphi sin x+sin varphi cos x=2/5`

Применив формулу суммы углов для синуса, запишем наше равенство в следующем виде:

`x+varphi=(-1)^n arcsin 2/5+ pi n`, `n in Z`,

`x=(-1)^n arcsin 2/5-` `arcsin 4/5+ pi n`, `n in Z`.

Ответ. `x=(-1)^n arcsin 2/5-` `arcsin 4/5+ pi n`, `n in Z`.

Дробно-рациональные тригонометрические уравнения

Это равенства с дробями, в числителях и знаменателях которых есть тригонометрические функции.

Пример. Решить уравнение. `frac <1+cos x>=1-cos x`.

Решение. Умножим и разделим правую часть равенства на `(1+cos x)`. В результате получим:

Учитывая, что знаменатель равным быть нулю не может, получим `1+cos x ne 0`, `cos x ne -1`, ` x ne pi+2pi n, n in Z`.

Приравняем к нулю числитель дроби: `sin x-sin^2 x=0`, `sin x(1-sin x)=0`. Тогда `sin x=0` или `1-sin x=0`.

  1. `sin x=0`, `x=pi n`, `n in Z`
  2. `1-sin x=0`, `sin x=-1`, `x=pi /2+2pi n, n in Z`.

Учитывая, что ` x ne pi+2pi n, n in Z`, решениями будут `x=2pi n, n in Z` и `x=pi /2+2pi n`, `n in Z`.

Ответ. `x=2pi n`, `n in Z`, `x=pi /2+2pi n`, `n in Z`.

Тригонометрия, и тригонометрические уравнения в частности, применяются почти во всех сферах геометрии, физики, инженерии. Начинается изучение в 10 классе, обязательно присутствуют задания на ЕГЭ, поэтому постарайтесь запомнить все формулы тригонометрических уравнений — они вам точно пригодятся!

Впрочем, даже запоминать их не нужно, главное понять суть, и уметь вывести. Это не так и сложно, как кажется. Убедитесь сами, просмотрев видео.

Отбор корней в тригонометрическом уравнение

В этой статье и постараюсь объяснить 2 способа отбора корней в тригонометрическом уравнение: с помощью неравенств и с помощью тригонометрической окружности. Перейдем сразу к наглядному примеру и походу дела будем разбираться.

а) Решить уравнение sqrt(2)cos^2x=sin(Pi/2+x)
б) Найдите все корни этого уравнения, принадлежащие промежутку [-7Pi/2; -2Pi]

Решим пункт а.

Воспользуемся формулой приведения для синуса sin(Pi/2+x) = cos(x)

sqrt(2)cos^2x – cosx = 0

cosx(sqrt(2)cosx – 1) = 0

x1 = Pi/2 + Pin, n ∈ Z

sqrt(2)cosx – 1 = 0

x2 = arccos(sqrt(2)/2) + 2Pin, n ∈ Z
x3 = -arccos(sqrt(2)/2) + 2Pin, n ∈ Z

x2 = Pi/4 + 2Pin, n ∈ Z
x3 = -Pi/4 + 2Pin, n ∈ Z

Решим пункт б.

1) Отбор корней с помощью неравенств

Здесь все делается просто, полученные корни подставляем в заданный нам промежуток [-7Pi/2; -2Pi], находим целые значения для n.

-7Pi/2 меньше или равно Pi/2 + Pin меньше или равно -2Pi

Сразу делим все на Pi

-7/2 меньше или равно 1/2 + n меньше или равно -2

-7/2 – 1/2 меньше или равно n меньше или равно -2 – 1/2

-4 меньше или равно n меньше или равно -5/2

Целые n в этом промежутку это -4 и -3. Значит корни принадлежащие этому промежутку буду Pi/2 + Pi(-4) = -7Pi/2, Pi/2 + Pi(-3) = -5Pi/2

Аналогично делаем еще два неравенства

-7Pi/2 меньше или равно Pi/4 + 2Pin меньше или равно -2Pi
-15/8 меньше или равно n меньше или равно -9/8

Целых n в этом промежутке нет

-7Pi/2 меньше или равно -Pi/4 + 2Pin меньше или равно -2Pi
-13/8 меньше или равно n меньше или равно -7/8

Одно целое n в этом промежутку это -1. Значит отобранный корень на этом промежутку -Pi/4 + 2Pi*(-1) = -9Pi/4.

Значит ответ в пункте б: -7Pi/2, -5Pi/2, -9Pi/4

2) Отбор корней с помощью тригонометрической окружности

Чтобы пользоваться этим способом надо понимать как работает эта окружность. Постараюсь простым языком объяснить как это понимаю я. Думаю в школах на уроках алгебры эта тема объяснялась много раз умными словами учителя, в учебниках сложные формулировки. Лично я понимаю это как окружность, которую можно обходить бесконечное число раз, объясняется это тем, что функции синус и косинус периодичны.

Обойдем раз против часовой стрелки

Обойдем 2 раза против часовой стрелки

Обойдем 1 раз по часовой стрелки (значения будут отрицательные)

Вернемся к нашем вопросу, нам надо отобрать корни на промежутке [-7Pi/2; -2Pi]

Чтобы попасть к числам -7Pi/2 и -2Pi надо обойти окружность против часовой стрелки два раза. Для того, чтобы найти корни уравнения на этом промежутке надо прикидывать и подставлять.

Рассмотри x = Pi/2 + Pin. Какой приблизительно должен быть n, чтобы значение x было где-то в этом промежутке? Подставляем, допустим -2, получаем Pi/2 – 2Pi = -3Pi/2, очевидно это не входит в наш промежуток, значит берем меньше -3, Pi/2 – 3Pi = -5Pi/2, это подходит, попробуем еще -4, Pi/2 – 4Pi = -7Pi/2, также подходит.

Рассуждая аналогично для Pi/4 + 2Pin и -Pi/4 + 2Pin, находим еще один корень -9Pi/4.

Сравнение двух методов.

Первый способ (с помощью неравенств) гораздо надежнее и намного проще для пониманию, но если действительно серьезно разобраться с тригонометрической окружностью и со вторым методом отбора, то отбор корней будет гораздо быстрее, можно сэкономить около 15 минут на экзамене.

РЕШЕНИЕ ПРОСТЕЙШИХ ТРИГОНОМЕТРИЧЕСКИХ УРАВНЕНИЙ

Простейшими тригонометрическими уравнениями называют уравнения

Чтобы рассуждения по нахождению корней этих уравнений были более наглядными, воспользуемся графиками соответствующих функций.

19.1. Уравнение cos x = a

Объяснение и обоснование

  1. Корни уравненияcosx=a.

При |a| > 1 уравнение не имеет корней, поскольку |cos x| ≤ 1 для любого x (прямая y = a на рисунке из пункта 1 таблицы 1 при a > 1 или при a 1 уравнение не имеет корней, поскольку |sin x| ≤ 1 для любого x (прямая y = a на рисунке 1 при a > 1 или при a n arcsin a + 2πn, n Z (3)

2.Частые случаи решения уравнения sin x = a.

Полезно помнить специальные записи корней уравнения при a = 0, a = -1, a = 1, которые можно легко получить, используя как ориентир единичную окружность (рис 2).

Учитывая, что синус равен ординате соответствующей точки единичной окружности, получаем, что sin x = 0 тогда и только тогда, когда соответствующей точкой единичной окружности является точка C или тока D. Тогда

Аналогично sin x = 1 тогда и только тогда, когда соответствующей точкой единичной окружности является точка A, следовательно,

Также sin x = -1 тогда и только тогда, когда соответствующей точкой единичной окружности является точка B, таким образом,

Примеры решения задач

Замечание. Ответ к задаче 1 часто записывают в виде:

19.3. Уравнения tg x = a и ctg x = a

Объяснение и обоснование

1.Корни уравнений tg x = a и ctg x = a

Рассмотрим уравнение tg x = a. На промежутке функция y = tg x возрастает (от -∞ до +∞). Но возрастающая функция принимает каждое свое значение только в одной точке ее области определения, поэтому уравнение tg x = a при любом значении a имеет на этом промежутке только один корень, который по определению арктангенса равен: x1 = arctg a и для этого корня tg x = a.

Функция y = tg x периодическая с периодом π, поэтому все остальные корни отличаются от найденного на πn (n Z). Получаем следующую формулу корней уравнения tg x = a:

При a=0 arctg 0 = 0, таким образом, уравнение tg x = 0 имеет корни x = πn (n Z).

Рассмотрим уравнение ctg x = a. На промежутке (0; π) функция y = ctg x убывает (от +∞ до -∞). Но убывающая функция принимает каждое свое значение только в одной точке ее области определения, поэтому уравнение ctg x = a при любом значении a имеет на этом промежутке только один корень, который по определению арккотангенса равен: x1=arсctg a.

Функция y = ctg x периодическая с периодом π, поэтому все остальные корни отличаются от найденного на πn (n Z). Получаем следующую формулу корней уравнения ctg x = a:

таким образом, уравнение ctg x = 0 имеет корни

Примеры решения задач

Вопросы для контроля

  1. Какие уравнения называют простейшими тригонометрическими?
  2. Запишите формулы решения простейших тригонометрических уравнений. В каких случаях нельзя найти корни простейшего тригонометрического уравнения по этим формулам?
  3. Выведите формулы решения простейших тригонометрических уравнений.
  4. Обоснуйте формулы решения простейших тригонометрических уравнений для частных случаев.

Упражнения

Решите уравнение (1-11)

Найдите корни уравнения на заданном промежутке (12-13)

[spoiler title=”источники:”]

http://reshimvse.com/article.php?id=100

http://ya-znau.ru/znaniya/zn/280

[/spoiler]

РЕШЕНИЕ ПРОСТЕЙШИХ ТРИГОНОМЕТРИЧЕСКИХ УРАВНЕНИЙ

Простейшими тригонометрическими уравнениями называют уравнения

cos x = a, sin x = a, tg x = a, ctg x = a.

Чтобы рассуждения по нахождению корней этих уравнений были более наглядными, воспользуемся графиками соответствующих функций.

19.1. Уравнение cos x = a

Таблица 1

Объяснение и обоснование

  1. Корни уравнения cos x = a.

При |a| > 1 уравнение не имеет корней, поскольку |cos x| ≤ 1 для любого x (прямая y = a на рисунке из пункта 1 таблицы 1 при a > 1 или при a < -1 не пересекает график функции y = cos x).

Пусть | a | ≤ 1. Тогда прямая y = a пересекает график функции y = cos x (рис. из пункта 1 табл. 1). На промежутке [0; π] функция y = cos x убывает от 1 до -1. Но убывающая функция принимает каждое свое значение только в одной точке ее области определения, поэтому уравнение cos x = a имеет на этом промежутке только один корень, который по определению арккосинуса равен: x1 = arccos a (и для этого корня cos x = a).

Косинус – четная функция, поэтому на промежутке [-π; 0] уравнение cos x = a также имеет только один корень – число, противоположное x1, то есть                x2 = – arccos a.

Таким образом, на промежутке [-π; π] (длиной 2π) уравнение cos x = a при |a| ≤ 1 имеет только корни x = ±arccos a.

Функция y = cos x периодическая с периодом 2π, поэтому все остальные корни отличаются от найденных на n (n ∈  Z). Получаем следующую формулу корней уравнения cos x = a при |a| ≤ 1:

x = ±arccos a + 2πn, n ∈  Z         (1)

  1. Частые случаи решения уравнения cos x = a.

Полезно помнить специальные записи корней уравнения cos x = a при a = 0, a = -1, a = 1, которые можно легко получить, используя как ориентир единичную окружность.

Поскольку косинус равен абсциссе соответствующей точки единичной окружности, получаем, что cos x = 0 тогда и только тогда, когда соответствующей точкой единичной окружности является точка А или точка В (рис. из пункта 2 табл. 1). Тогда

Аналогично cos x = 1 тогда и только тогда, когда соответствующей точкой единичной окружности является точка С, следовательно, x = 2πk, k ∈  Z.

Также cos x = -1 тогда и только тогда, когда соответствующей точкой единичной окружности является точка D, таким образом, x = п + 2πk, k ∈  Z

Примеры решения задач

19.2. Уравнение sin x = a

Таблица 2

Объяснение и обоснование

1.Корни уравнения sin x = a.

При |a| > 1 уравнение не имеет корней, поскольку |sin x| ≤ 1 для любого x (прямая y = a на рисунке 1 при a > 1 или при a < -1 не пересекает график функции y = sin x).

Рисунок 1

Пусть |a| ≤ 1. Тогда прямая y = a пересекает график функции y = sin x (рис. 1). На промежутке  функция y = sin x возрастает от -1 до 1. Но возрастающая функция принимает каждое свое значение только в одной точке ее области определения, поэтому уравнение sin x = a имеет на этом промежутке только один корень, который по определению арксинуса равен: x1 = arcsin a (и для этого корня sin x = a).

На промежутке  функция y = sin x убывает от 1 до -1. Но убывающая функция принимает каждое свое значение только в одной точке ее области определения, поэтому уравнение sin x = a имеет на этом промежутке только один корень x2 = π – arcsin a (рис. 1). Для проверки правильности записи значения второго корня x2 заметим, что x2 = π – x1, тогда sin x2 = sin (π- x1) = sin x1 = a. То есть x2 – корень уравнения sin x = a.

Таким образом на промежутке   (длиной 2π) уравнение sin x = a при |a| ≤ 1 имеет только корни x1 = arcsin a, x2 = π – arcsin a.

Функция y = sin x периодическая с периодом 2π, поэтому все остальные корни отличаются от найденных k (k Z). Получаем следующие формулы корней уравнения sin x = a при |a| ≤ 1:

x=arcsin a + 2πk, k ∈  Z.            (1)

x= π – arcsin a + 2πk, k ∈  Z.      (2)

Все значения корней уравнения sin x = a при |a| ≤ 1, которые дают формулы (1) и (2), можно записать с помощью одной формулы

x=(-1)n arcsin a + 2πn, n ∈  Z      (3)

Действительно, из формулы (3) при четном n = 2k получаем x = arcsin a + 2πk – формулу (1), а при нечетном n = 2k +1 – формулу x= – arcsin a + π(2k+1)= π – arcsin a + 2πk, то есть формулу (2).

2.Частые случаи решения уравнения sin x = a.

Рисунок 2

Полезно помнить специальные записи корней уравнения при a = 0, a = -1, a = 1, которые можно легко получить, используя как ориентир единичную окружность (рис 2).

Учитывая, что синус равен ординате соответствующей точки единичной окружности, получаем, что sin x = 0 тогда и только тогда, когда соответствующей точкой единичной окружности является точка C или тока D. Тогда

Аналогично sin x = 1 тогда и только тогда, когда соответствующей точкой единичной окружности является точка A, следовательно,

Также sin x = -1 тогда и только тогда, когда соответствующей точкой единичной окружности является точка B, таким образом,

Примеры решения задач

Замечание. Ответ к задаче 1 часто записывают в виде:

 

19.3. Уравнения tg x = a и ctg x = a

Объяснение и обоснование

1.Корни уравнений tg x = a и ctg x = a

Рассмотрим уравнение tg x = a. На промежутке  функция y = tg x возрастает (от -∞ до +∞). Но возрастающая функция принимает каждое свое значение только в одной точке ее области определения, поэтому уравнение tg x = a при любом значении a имеет на этом промежутке только один корень, который по определению арктангенса равен: x1 = arctg a и для этого корня tg x = a.

Функция y = tg x периодическая с периодом π, поэтому все остальные корни отличаются от найденного на πn (n ∈  Z). Получаем следующую формулу корней уравнения tg x = a:

При a=0 arctg 0 = 0, таким образом, уравнение tg x = 0 имеет корни x = πn (n ∈  Z).

Рассмотрим уравнение ctg x = a. На промежутке (0; π) функция y = ctg x убывает (от +∞ до -∞). Но убывающая функция принимает каждое свое значение только в одной точке ее области определения, поэтому уравнение ctg x = a при любом значении a имеет на этом промежутке только один корень, который по определению арккотангенса равен: x1=arсctg a.

Функция y = ctg x периодическая с периодом π, поэтому все остальные корни отличаются от найденного на πn (n ∈  Z). Получаем следующую формулу корней уравнения ctg x = a:

При a = 0

 

таким образом, уравнение ctg x = 0 имеет корни

 

Примеры решения задач

Вопросы для контроля

  1. Какие уравнения называют простейшими тригонометрическими?
  2. Запишите формулы решения простейших тригонометрических уравнений. В каких случаях нельзя найти корни простейшего тригонометрического уравнения по этим формулам?
  3. Выведите формулы решения простейших тригонометрических уравнений.
  4. Обоснуйте формулы решения простейших тригонометрических уравнений для частных случаев.

Упражнения

Решите уравнение (1-11)

Найдите корни уравнения на заданном промежутке (12-13)

Тригонометрические уравнения на ЕГЭ

В данной статье остановимся кратко на решении задач C1 из ЕГЭ по математике. Эти задания представляют собой уравнения, которые требуется, во-первых, решить (то есть найти их решения, причем все), во-вторых, осуществить отбор решений по тому или иному ограничению. В последние годы на ЕГЭ по математике в заданиях C1 школьникам предлагаются для решения тригонометрические уравнения, поэтому в данной статье разобраны только они. Примеры структурированы по методам решения уравнений, от самых элементарных, до достаточно сложных.

Прежде чем перейти к разбору конкретных тригонометрических уравнений, вспомним основные формулы тригонометрии. Приведем их здесь в справочном виде.

Основные формулы тригонометрии

Основные тригонометрические формулы

Решение простейших тригонометрических уравнений

Решение простейших тригонометрических уравнений

Решение простейших тригонометрических уравнений

Пример 1. Найдите корни уравнения

    [ cosleft(4x+frac{pi}{4}right)=-frac{sqrt{2}}{2}, ]

принадлежащие промежутку [-pi;pi).

Решение. Используем вторую формулу на рисунке. Здесь и далее полагаем k,,nin Z (на всякий случай, эта запись означает, что числа n и k принадлежат множеству целых чисел):

    [ 4x+frac{pi}{4}=pmoperatorname{arccos left(-frac{sqrt{2}}{2}right)}+2pi k. ]

Другими словами, нам нужно подобрать такое число из промежутка [0;2pi], косинус которого был бы равен -frac{sqrt{2}}{2}. Это число frac{3pi}{4}. Используя это, получаем:

    [ 4x+frac{pi}{4} = pmfrac{3pi}{4}+2pi kLeftrightarrow left[begin{array}{l}x = frac{pi}{8}+frac{pi k}{2}, \ x = -frac{pi}{4}+frac{pi n}{2}.end{array}right. ]

Вообще, значения тригонометрических функций от основных аргументов нужно знать. Их совсем чуть-чуть:

Синусы, косинусы, тангенсы и котангенсы таблица значений

Таблица значений тригонометрических функций

Хотя на самом деле запоминать их вовсе не обязательно. Существует очень простой алгоритм, используя который, можно в уме легко вычислять значения тригонометрических функций всех основных аргументов. Просто у каждого он свой. Придумайте его и для себя. Просто посмотрите на эту таблицу. Числа в ней расположены не случайным образом, определенная закономерность есть, постарайтесь ее найти.

Итак, вернемся к нашему заданию. Из полученных серий выбираем только те ответы, которые принадлежат промежутку [-pi;pi). Воспользуемся для этого методом двойных неравенств. Вы помните, что k и n — целые числа:

1) -pileqslantfrac{pi}{8}+frac{pi k}{2}<pi Leftrightarrow  -1leqslant frac{1}{8}+frac{k}{2}<1Leftrightarrow  -frac{9}{4}leqslant k<frac{7}{4}Leftrightarrow  k = -2,,-1,,0,,1Leftrightarrow x=-frac{7pi}{8},,-frac{3pi}{8},,frac{pi}{8},,frac{5pi}{8}.

2) -pileqslant -frac{pi}{4}+frac{pi k}{2}<pi Leftrightarrow -1leqslant -frac{1}{4}+frac{k}{2}<1Leftrightarrow-frac{3}{2}leqslant k<frac{5}{2}Leftrightarrow k = -1,,0,,1,,2Leftrightarrow x=-frac{3pi}{4},,-frac{pi}{4},,frac{pi}{4},,frac{3pi}{4}.

Задача для самостоятельного решения №1. Найдите корни уравнения sinleft(frac{4x}{3}+frac{pi}{6}right) =-frac{1}{2}, принадлежащие промежутку [-2pi;2pi).

Показать ответ

Ответ:

left {-frac{pi}{4}+frac{3pi k}{2},,-frac{3pi}{4}+frac{3pi n}{2}right}.

-frac{7pi}{4},, -frac{3pi}{4},, -frac{pi}{4},, frac{3pi}{4},, frac{5pi}{4}.

Решение линейных тригонометрических уравнений

Пример 2. Найдите корни уравнения

    [ sin x+sqrt{3}cos x=1, ]

принадлежащие промежутку [-2pi;4pi].

Решение. Подобные уравнения решаются один весьма интересным, на мой взгляд, способом. Разделим обе части на 2, уравнение тогда примет вид:

    [ frac{1}{2}sin x+frac{sqrt{3}}{2}cos x = 1. ]

Подберем такое число, синус которого равен frac{1}{2}, а косинус равен frac{sqrt{3}}{2}. Например, пусть это будет число frac{pi}{6}. С учетом этого перепишем уравнение в виде:

    [ sinfrac{pi}{6}sin x+cosfrac{pi}{6}cos x=frac{1}{2}. ]

Присмотревшись, слева от знака равенства усматриваем разложение косинуса разности x и frac{pi}{6}. Это и есть ключ к решению. Имеем:

    [ cosleft(x-frac{pi}{6}right)=frac{1}{2}Leftrightarrow x-frac{pi}{6}=pmfrac{pi}{3}+2pi kLeftrightarrow ]

    [ left[begin{array}{l}x-frac{pi}{6}=frac{pi}{3}+2pi k, \ x-frac{pi}{6}=-frac{pi}{3}+2pi nend{array}right.Leftrightarrowleft[begin{array}{l}x=frac{pi}{2}+2pi k, \ x=-frac{pi}{6}+2pi n.end{array}right. ]

Осуществляем отбор решений, входящих в промежуток [-2pi;4pi).:

1) -2pileqslantfrac{pi}{2}+2pi kleqslant 4pi Leftrightarrow  -2leqslant frac{1}{2}+2kleqslant 4Leftrightarrow  -frac{5}{4}leqslant kleqslant frac{7}{4}Leftrightarrow  k = -1,,0,,1Leftrightarrow x=-frac{3pi}{2},,frac{pi}{2},,frac{5pi}{2}.

2) -2pileqslant-frac{pi}{6}+2pi nleqslant 4pi Leftrightarrow  -2leqslant -frac{1}{6}+2nleqslant 4Leftrightarrow  -frac{11}{12}leqslant nleqslant frac{25}{12}Leftrightarrow  n = 0,,1,, 2Leftrightarrow x=-frac{pi}{6},,frac{11pi}{6},,frac{23pi}{6}.

Задача для самостоятельного решения №2. Найдите корни уравнения sqrt{3}sin x+cos x=1, принадлежащие промежутку [-3pi;3pi].

Показать ответ

Ответ:

left {2pi k,, frac{2pi}{3}+2pi nright}.

0,,-2pi,,-frac{4pi}{3},, frac{2pi}{3},, 2pi,, frac{8pi}{3}.

Решение тригонометрических уравнений методом замены переменной

Пример 3. Дано уравнение operatorname{tg}^2 x+5operatorname{tg} x+6=0.

а) Решите уравнение.

б) Укажите корни, принадлежащие отрезке left[-2pi;-frac{pi}{2}right].

Решение. Сразу оговорим ограничения, накладываемые на переменную x в этом уравнении: xnefrac{pi}{2}+pi n. Откуда взялось это ограничение? Правильно, функция y=operatorname{tg} x не существует при этих значениях x. Используем замену переменной: t=operatorname{tg} x. Тогда уравнение принимает вид:

    [ t^2+5t+6=0Leftrightarrowleft[begin{array}{l}t=-3, \t=-2.end{array}right. ]

Переходим к обратной замене:

    [ left[begin{array}{l}operatorname{tg}x = -3,\ operatorname{tg}x = -2end{array}right.Leftrightarrow left[begin{array}{l}x = -operatorname{arctg} 3+pi k, \ x=-operatorname{arctg} 2+pi n.end{array}right. ]

Осуществляем отбор решений. Проведем его на этот раз с использованием единичной окружности.

Решение тригонометрического уравнения, содержащего тангенсы, с помощью единичной окружности

Отбор корней с помощью единичной окружности

Из рисунка видно, что в интересующий нас промежуток входят только два значения из этих серий: -operatorname{arctg} 2-pi, -operatorname{arctg} 3-pi. Обратите внимание на один существенный момент. На рисунке точки -2 и -3 принадлежат оси тангенсов, а точки -operatorname{arctg} 2, -operatorname{arctg} 3, -operatorname{arctg} 2-pi и -operatorname{arctg} 3-pi — единичной окружности. Очень важно понимать, зачем это нужно для решения данной задачи.

Ответ: -operatorname{arctg} 2-pi, -operatorname{arctg} 3-pi.

Задача для самостоятельного решения №3. Дано уравнение 6cos^2x-7cos x-5=0.

a) Решите уравнение.

б) Укажите корни, принадлежащие отрезку [-pi;2pi].

Показать ответ

Ответ:

left {pmfrac{2pi}{3}+2pi k right}.

-frac{2pi}{3},,frac{2pi}{3},,frac{4pi}{3}.

Решение тригонометрических уравнений методом разложения на множители

Пример 4. Дано уравнение

    [ sin 2x=2sin x-cos x+1. ]

a) Решите уравнение.

б) Укажите корни, принадлежащие отрезку left[-2pi; -frac{pi}{2}right].

Решение. Равносильными преобразования приводим уравнение к виду:

    [ sin 2x=2sin x-cos x+1Leftrightarrow ]

    [ 2sin xcos x-2sin x+cos x-1=0Leftrightarrow ]

    [ 2sin x(cos x-1)+cos x-1 =0Leftrightarrow ]

    [ (cos x-1)(2sin x+1) = 0Lefrightarrow left[begin{array}{l}cos x-1=0, \ 2sin x+1=0end{array}right.Leftrightarrow ]

    [ left[begin{array}{l}cos x=1, \ sin x=-frac{1}{2} end{array}right.Leftrightarrowleft[begin{array}{l}x=2pi k, \ x=-frac{pi}{6}+2pi n, \ x=-frac{5pi}{6}+2pi z.end{array}right. ]

Осуществляем отбор решений с помощью единичной окружности.

Отбор решений с помощью единичной окружности решение задачи C1

Отбор решений с помощью единичной окружности

Из рисунка видно, что в интересующий нас промежуток входят только два значения из всех этих серий: -frac{5pi}{6},,-2pi.

Задача для самостоятельного решения №4. Дано уравнение

    [ 3sin 2x-4cos x+3sin x-2=0. ]

а) Решите уравнение.

б) Укажите корни, принадлежащие отрезку left[frac{pi}{2};frac{3pi}{2}right].

Показать ответ

Ответ:

left {operatorname{arcsin}frac{2}{3}+2pi k,, pi-operatorname{arcsin}frac{2}{3}+2pi n,,pmfrac{2pi}{3}+2pi zright}.

frac{2pi}{3},,pi-operatorname{arcsin}frac{2}{3},,frac{4pi}{3}.

Комбинированные уравнения

При решении уравнений этого типа важно обращать внимание на область допустимых значений входящих в него переменных. Именно поэтому составители вариантов ЕГЭ не просят учеников осуществлять отбор решений из полученных серий ответов. Решение этих уравнений само собой подразумевает выполнение данной математической операции.

Пример 5. Решите уравнение:

    [ sqrt{1-2sin 3xsin 7x}=sqrt{cos 10x}. ]

Решение. Данное уравнение эквивалентно следующей системе:

    [ begin{cases}1-2sin 3xsin 7x=cos 10x, \ cos 10xgeqslant 0.end{cases} ]

Обратите внимание! Писать, что 1-2sin 3xsin 7xgeqslant 0, нет никакой необходимости, поскольку по условию это выражение равно выражению cos 10x, которое, в свою очередь, больше или равно нулю.

Решаем первое уравнение системы:

    [ 1-2sin 3xsin 7x=cos (7x+10x)Leftrightarrow ]

    [ 1-2sin 3xsin 7x=cos 3xcos 7x-sin 3xsin 7xLeftrightarrow ]

    [ 1=cos 3xcos 7x+sin 3xsin 7xLeftrightarrow cos 4x=1. ]

    [ cos 10x = 1Leftrightarrow 4x=2pi kLeftrightarrow x = frac{pi k}{2}. ]

Нужно, чтобы cos 10xgeqslant 0, поразмыслив, понимаем, что поэтому из полученной серии ответов нам подходят только x=pi k.

Ответ: pi k.

Задача для самостоятельного решения №5. Решите уравнение: sqrt{sin 3x}=sqrt{1+2sin 4xcos x}.

Показать ответ

Ответ: left{frac{3pi}{10}+2pi k,, frac{7pi}{10}+2pi n,, frac{3pi}{2}+2pi mright}.

Пример 6. Решите уравнение:

    [ frac{2sin^2 x-sinleft(frac{3pi}{2}+xright)-1}{sqrt{sin x}}=0. ]

Решение. Данное уравение равносильно системе:

    [ begin{cases}2sin^2 x-sinleft(frac{3pi}{2}+xright)-1=0, \ sin x>0end{cases}Leftrightarrow ]

    [ begin{cases}2cos^2 x-cos x-1=0,\ sin x>0end{cases}Leftrightarrow ]

    [ begin{cases}left[begin{array}{l}cos x = 1, \ cos x =-frac{1}{2},end{array} \ sin x >0right.end{cases}Leftrightarrow begin{cases}left[begin{array}{l}x=2pi k, \ x=pmfrac{2pi}{3}+2pi n,end{array} \ sin x >0right.end{cases} ]

Тригонометрическая функция синус положительна в первой и второй координатной четвертях, поэтому из полученных серий выбираем только эту: x=frac{2pi}{3}+2pi k.

Раз уж мы с этим столкнулись, не лишним будет повторить, какие знаки принимают тригонометрические функций в различных координатных четвертях:

Знаки тригонометрических функций по координатным четвертям

Знаки функций, входящих в тригонометрические уравнения, по координатным четвертям

Ответ: frac{2pi}{3}+2pi k.

Задача для самостоятельного решения №6. Решите уравнение: frac{cos 2x+cos x}{1+sqrt{sin x}}=0.

Показать ответ

Ответ: pi+2pi k,,frac{pi}{3}+2pi n.

Пример 7. Решите уравнение:

    [ frac{sin 2x}{|cos x|}=2sin x-2. ]

Решение. Область допустимых значения уравнения определяется условием: cos xne 0, то есть xnefrac{pi}{2}+pi n. Разобьем решение на два случая:

1) Пусть cos x>0, тогда уравнение принимает вид:

    [ frac{2sin xcos x}{cos x} = 2sin x-2Leftrightarrow ]

    [ 2sin x=2sin x-2Leftrightarrow 0=-2. ]

Последнее равенство неверно, поэтому в данном случае решений у уравнения не будет.

2) Пусть cos x<0, тогда уравнение принимает вид:

    [ -frac{2sin xcos x}{cos x} = 2sin x-2Leftrightarrow ]

    [ sin x = frac{1}{2}Leftrightarrow left[begin{array}{l}x = frac{pi}{6}+2pi k, \ x=frac{5pi}{6}+2pi n.end{array}right. ]

Условию cos x<0 удовлетворяет только последняя серия.

Ответ: x=frac{5pi}{6}+2pi n.

Задача для самостоятельного решения №7. Решите уравнение: operatorname{ctg} x+operatorname{tg} 2x = 0.

Показать ответ

Ответ: frac{pi}{2}+pi n.

ЕГЭ по математике 2012 позади, все в ожидании результатов, которые обещали объявить во вторник 19 июня. Сейчас уже поздно желать высоких баллов на экзаменах нынешним выпускникам. Но вот пожелать успехов сегодняшним десятиклассникам я возможности не упущу. Удачи вам в подготовке и помните, что чем раньше она начнется, тем лучше будут результаты на экзамене.

Математический софизм о важности размерностей величин

Репетитор математики
Сергей Валерьевич

P. S. Уважаемые гости! Пожалуйста, не пишите в комментариях заявки на решение ваших уравнений. К сожалению, на это у меня совершенно нет времени. Такие сообщения будут удалены. Пожалуйста, ознакомьтесь со статьёй. Возможно, в ней вы найдёте ответы на вопросы, которые не позволили вам решить своё задание самостоятельно.

Содержание

  1. Простейшие тригонометрические уравнения
  2. Формулы корней тригонометрических уравнений в таблице
  3. Методы решения тригонометрических уравнений
  4. Решение линейных тригонометрических уравнений
  5. Решение тригонометрических уравнений методом замены переменной
  6. Алгебраический метод.
  7. Разложение на множители.
  8. Приведение к однородному уравнению
  9. Переход к половинному углу
  10. Введение вспомогательного угла
  11. Дробно-рациональные тригонометрические уравнения
  12. Комбинированные уравнения
  13. Примеры с решениями
  14. Пример №1
  15. Пример №2
  16. Пример №3
  17. Пример №4
  18. Пример №5
  19. Пример №6
  20. Пример №7
  21. Пример №8
  22. Пример №9
  23. Пример №10
  24. Пример №11
  25. Пример №12

Простейшие тригонометрические уравнения

Простейшими называются уравнения `sin x=a, cos x=a, tg x=a, ctg x=a`, где `x` — угол, который нужно найти, `a` — любое число. Запишем для каждого из них формулы корней.

  • Уравнение `sin x=a`.

При `|a|>1` не имеет решений.

При `|a| leq 1` имеет бесконечное число решений.

Формула корней: `x=(-1)^n arcsin a + pi n, n in Z`

Таблица арксинусов

Таблица арксинусов

  • Уравнение `cos x=a`

При `|a|>1` — как и в случае с синусом, решений среди действительных чисел не имеет.

При `|a| leq 1` имеет бесконечное множество решений.

Формула корней: `x=pm arccos a + 2pi n, n in Z`

Таблица арккосинусов

Таблица арккосинусов

Частные случаи для синуса и косинуса в графиках.частные случаи

  • Уравнение `tg x=a`

Имеет бесконечное множество решений при любых значениях `a`.

Формула корней: `x=arctg a + pi n, n in Z`

Таблица арктангенсов

Таблица арктангенсов

  • Уравнение `ctg x=a`

Также имеет бесконечное множество решений при любых значениях `a`.

Формула корней: `x=arcctg a + pi n, n in Z`

Таблица арккотангенсов

Таблица арккотангенсов

Формулы корней тригонометрических уравнений в таблице

Для синуса:формулы корней для синуса
Для косинуса:формулы корней для косинуса
Для тангенса и котангенса:формулы корней для тангенса, котангенса
Формулы решения уравнений, содержащих обратные тригонометрические функции:

обратные функции

Методы решения тригонометрических уравнений

Решение любого тригонометрического уравнения состоит из двух этапов:

  • с помощью тригонометрических формул преобразовать его до простейшего;
  • решить полученное простейшее уравнение, используя выше написанные формулы корней и таблицы.

Рассмотрим на примерах основные методы решения.

Решение линейных тригонометрических уравнений

Пример 2. Найдите корни уравнения

[ sin x+sqrt{3}cos x=1, ]

принадлежащие промежутку [-2pi;4pi].

Решение. Подобные уравнения решаются один весьма интересным, на мой взгляд, способом. Разделим обе части на 2
, уравнение тогда примет вид:

[ frac{1}{2}sin x+frac{sqrt{3}}{2}cos x = 1. ]

Подберем такое число, синус которого равен frac{1}{2},а косинус равен frac{sqrt{3}}{2}.
Например, пусть это будет число frac{pi}{6}. С учетом этого перепишем уравнение в виде:

[ sinfrac{pi}{6}sin x+cosfrac{pi}{6}cos x=frac{1}{2}. ]

Присмотревшись, слева от знака равенства усматриваем разложение косинуса разности xи frac{pi}{6}.
Это и есть ключ к решению. Имеем:

[ cosleft(x-frac{pi}{6}right)=frac{1}{2}Leftrightarrow x-frac{pi}{6}=pmfrac{pi}{3}+2pi kLeftrightarrow ]

[ left[begin{array}{l}x-frac{pi}{6}=frac{pi}{3}+2pi k,  x-frac{pi}{6}=-frac{pi}{3}+2pi nend{array}right.Leftrightarrowleft[begin{array}{l}x=frac{pi}{2}+2pi k,  x=-frac{pi}{6}+2pi n.end{array}right. ]

Осуществляем отбор решений, входящих в промежуток [-2pi;4pi).:

Задача для самостоятельного решения №2. Найдите корни уравнения sqrt{3}sin x+cos x=1,принадлежащие промежутку [-3pi;3pi].

Ответ:

left {2pi k,, frac{2pi}{3}+2pi nright}.

0,,-2pi,,-frac{4pi}{3},, frac{2pi}{3},, 2pi,, frac{8pi}{3}.

Решение тригонометрических уравнений методом замены переменной

Пример 3. Дано уравнение operatorname{tg}^2 x+5operatorname{tg} x+6=0.

  • Решите уравнение.
  • Укажите корни, принадлежащие отрезке left[-2pi;-frac{pi}{2}right].

Решение. Сразу оговорим ограничения, накладываемые на переменную xв этом уравнении: xnefrac{pi}{2}+pi n.
Откуда взялось это ограничение? Правильно, функция y=operatorname{tg} xне существует при этих значениях x.
Используем замену переменной: t=operatorname{tg} x.
Тогда уравнение принимает вид:

[ t^2+5t+6=0Leftrightarrowleft[begin{array}{l}t=-3, t=-2.end{array}right. ]

Переходим к обратной замене:

[ left[begin{array}{l}operatorname{tg}x = -3, operatorname{tg}x = -2end{array}right.Leftrightarrow left[begin{array}{l}x = -operatorname{arctg} 3+pi k,  x=-operatorname{arctg} 2+pi n.end{array}right. ]

Осуществляем отбор решений. Проведем его на этот раз с использованием единичной окружности.

Решение тригонометрического уравнения, содержащего тангенсы, с помощью единичной окружности

Отбор корней с помощью единичной окружности

Из рисунка видно, что в интересующий нас промежуток входят только два значения из этих серий: -operatorname{arctg} 2-pi, -operatorname{arctg} 3-pi.
Обратите внимание на один существенный момент. На рисунке точки -2
и -3принадлежат оси тангенсов, а точки -operatorname{arctg} 2,
-operatorname{arctg} 3,
-operatorname{arctg} 2-piи -operatorname{arctg} 3-pi— единичной окружности. Очень важно понимать, зачем это нужно для решения данной задачи.

Ответ: -operatorname{arctg} 2-pi, -operatorname{arctg} 3-pi.

Задача для самостоятельного решения №3. Дано уравнение 6cos^2x-7cos x-5=0.

  • Решите уравнение.
  • Укажите корни, принадлежащие отрезку [-pi;2pi].

Ответ:

left {pmfrac{2pi}{3}+2pi k right}.

-frac{2pi}{3},,frac{2pi}{3},,frac{4pi}{3}.

Алгебраический метод.

В этом методе делается замена переменной и ее подстановка в равенство.

Пример. Решить уравнение: `2cos^2(x+frac pi 6)-3sin(frac pi 3 — x)+1=0`

Решение. Используя формулы приведения, имеем:

`2cos^2(x+frac pi 6)-3cos(x+frac pi 6)+1=0`,

делаем замену: `cos(x+frac pi 6)=y`, тогда `2y^2-3y+1=0`,

находим корни: `y_1=1, y_2=1/2`, откуда следуют два случая:

  1.  `cos(x+frac pi 6)=1`, `x+frac pi 6=2pi n`, `x_1=-frac pi 6+2pi n`.
  2. `cos(x+frac pi 6)=1/2`, `x+frac pi 6=pm arccos 1/2+2pi n`, `x_2=pm frac pi 3-frac pi 6+2pi n`.

Ответ: `x_1=-frac pi 6+2pi n`, `x_2=pm frac pi 3-frac pi 6+2pi n`.

Разложение на множители.

Пример. Решить уравнение: `sin x+cos x=1`.

Решение. Перенесем влево все члены равенства: `sin x+cos x-1=0`. Используя формулы двойного угла, преобразуем и разложим на множители левую часть:

`sin x — 2sin^2  x/2=0`,

`2sin  x/2 cos  x/2-2sin^2  x/2=0`,

`2sin  x/2 (cos  x/2-sin  x/2)=0`,

  1. `sin  x/2 =0`,  `x/2 =pi n`,  `x_1=2pi n`.
  2. `cos  x/2-sin  x/2=0`, `tg  x/2=1`, `x/2=arctg 1+ pi n`, `x/2=pi/4+ pi n`, `x_2=pi/2+ 2pi n`.

Ответ: `x_1=2pi n`, `x_2=pi/2+ 2pi n`.

Приведение к однородному уравнению

Вначале нужно данное тригонометрическое уравнение привести к одному из двух видов:

`a sin x+b cos x=0` (однородное уравнение первой степени) или `a sin^2 x + b sin x cos x +c cos^2 x=0` (однородное уравнение второй степени).

Потом разделить обе части на `cos x ne 0` — для первого случая, и на `cos^2 x ne 0` — для второго. Получим уравнения относительно `tg  x`:  `a  tg  x+b=0` и `a  tg^2 x + b  tg  x +c =0`, которые нужно решить известными способами.

Пример. Решить уравнение: `2 sin^2 x+sin x cos x — cos^2 x=1`.

Решение. Запишем правую часть, как `1=sin^2 x+cos^2 x`:

`2 sin^2 x+sin x cos x — cos^2 x=` `sin^2 x+cos^2 x`,

`2 sin^2 x+sin x cos x — cos^2 x -` ` sin^2 x — cos^2 x=0`

`sin^2 x+sin x cos x — 2 cos^2 x=0`.

Это однородное тригонометрическое уравнение второй степени, разделим его левую и правую части на `cos^2 x ne 0`, получим:

`frac {sin^2 x}{cos^2 x}+frac{sin x cos x}{cos^2 x} — frac{2 cos^2 x}{cos^2 x}=0`

`tg^2 x+tg x — 2=0`. Введем замену `tg x=t`, в результате `t^2 + t — 2=0`. Корни этого уравнения: `t_1=-2` и `t_2=1`. Тогда:

  1. `tg x=-2`, `x_1=arctg (-2)+pi n`, `n in Z`
  2. `tg x=1`, `x=arctg 1+pi n`, `x_2=pi/4+pi n`, ` n in Z`.

Ответ. `x_1=arctg (-2)+pi n`, `n in Z`, `x_2=pi/4+pi n`, `n in Z`.

Переход к половинному углу

Пример. Решить уравнение: `11 sin x — 2 cos x = 10`.

Решение. Применим формулы двойного угла, в результате: `22 sin (x/2) cos (x/2) -` `2 cos^2 x/2 + 2 sin^2 x/2=` `10 sin^2 x/2+10 cos^2 x/2`

`4 tg^2 x/2 — 11 tg x/2 +6=0`

Применив описанный выше алгебраический метод, получим:

  1. `tg x/2=2`, `x_1=2 arctg 2+2pi n`, `n in Z`,
  2. `tg x/2=3/4`, `x_2=arctg 3/4+2pi n`, `n in Z`.

Ответ. `x_1=2 arctg 2+2pi n, n in Z`, `x_2=arctg 3/4+2pi n`, `n in Z`.

Введение вспомогательного угла

В тригонометрическом уравнении `a sin x + b cos x =c`, где a,b,c — коэффициенты, а x — переменная, разделим обе части на `sqrt {a^2+b^2}`:

`frac a{sqrt {a^2+b^2}} sin x +` `frac b{sqrt {a^2+b^2}} cos x =` `frac c{sqrt {a^2+b^2}}`.

Коэффициенты в левой части имеют свойства синуса и косинуса, а именно сумма их квадратов равна 1 и их модули не больше 1. Обозначим их следующим образом: `frac a{sqrt {a^2+b^2}}=cos varphi`, ` frac b{sqrt {a^2+b^2}} =sin varphi`, `frac c{sqrt {a^2+b^2}}=C`, тогда:

`cos varphi sin x + sin varphi cos x =C`.

Подробнее рассмотрим на следующем примере:

Пример. Решить уравнение: `3 sin x+4 cos x=2`.

Решение. Разделим обе части равенства на `sqrt {3^2+4^2}`, получим:

`frac {3 sin x} {sqrt {3^2+4^2}}+` `frac{4 cos x}{sqrt {3^2+4^2}}=` `frac 2{sqrt {3^2+4^2}}`

`3/5 sin x+4/5 cos x=2/5`.

Обозначим `3/5 = cos varphi` , `4/5=sin varphi`. Так как `sin varphi>0`, `cos varphi>0`, то в качестве вспомогательного угла возьмем `varphi=arcsin  4/5`. Тогда наше равенство запишем в виде:

`cos varphi sin x+sin varphi cos x=2/5`

Применив формулу суммы углов для синуса, запишем наше равенство в следующем виде:

`sin (x+varphi)=2/5`,

`x+varphi=(-1)^n arcsin  2/5+ pi n`, `n in Z`,

`x=(-1)^n  arcsin  2/5-` `arcsin  4/5+ pi n`, `n in Z`.

Ответ. `x=(-1)^n arcsin  2/5-` `arcsin  4/5+ pi n`, `n in Z`.

Дробно-рациональные тригонометрические уравнения

Это равенства с дробями, в числителях и знаменателях которых есть тригонометрические функции.

Пример. Решить уравнение. `frac {sin x}{1+cos x}=1-cos x`.

Решение. Умножим и разделим правую часть равенства на `(1+cos x)`. В результате получим:

`frac {sin x}{1+cos x}=` `frac {(1-cos x)(1+cos x)}{1+cos x}`

`frac {sin x}{1+cos x}=` `frac {1-cos^2 x}{1+cos x}`

`frac {sin x}{1+cos x}=` `frac {sin^2 x}{1+cos x}`

`frac {sin x}{1+cos x}-` `frac {sin^2 x}{1+cos x}=0`

`frac {sin x-sin^2 x}{1+cos x}=0`

Учитывая, что знаменатель равным быть нулю не может, получим `1+cos x ne 0`, `cos x ne -1`, ` x ne pi+2pi n, n in Z`.

Приравняем к нулю числитель дроби: `sin x-sin^2 x=0`, `sin x(1-sin x)=0`. Тогда `sin x=0` или `1-sin x=0`.

  1. `sin x=0`, `x=pi n`, `n in Z`
  2. `1-sin x=0`, `sin x=-1`, `x=pi /2+2pi n, n in Z`.

Учитывая, что ` x ne pi+2pi n, n in Z`, решениями будут `x=2pi n, n in Z` и `x=pi /2+2pi n`, `n in Z`.

Ответ. `x=2pi n`, `n in Z`, `x=pi /2+2pi n`, `n in Z`.

Тригонометрия, и тригонометрические уравнения в частности, применяются почти во всех сферах геометрии, физики, инженерии. Начинается изучение в 10 классе, обязательно присутствуют задания на ЕГЭ, поэтому постарайтесь запомнить все формулы тригонометрических уравнений — они вам точно пригодятся!

Впрочем, даже запоминать их не нужно, главное понять суть, и уметь вывести. Это не так и сложно, как кажется. Убедитесь сами, просмотрев видео.

Комбинированные уравнения

При решении уравнений этого типа важно обращать внимание на область допустимых значений входящих в него переменных. Именно поэтому составители вариантов ЕГЭ не просят учеников осуществлять отбор решений из полученных серий ответов. Решение этих уравнений само собой подразумевает выполнение данной математической операции.

Пример 5. Решите уравнение:

[ sqrt{1-2sin 3xsin 7x}=sqrt{cos 10x}. ]

Решение. Данное уравнение эквивалентно следующей системе:

[ begin{cases}1-2sin 3xsin 7x=cos 10x,  cos 10xgeqslant 0.end{cases} ]

Обратите внимание! Писать, что 1-2sin 3xsin 7xgeqslant 0,
нет никакой необходимости, поскольку по условию это выражение равно выражению cos 10x,
которое, в свою очередь, больше или равно нулю.

Решаем первое уравнение системы:

[ 1-2sin 3xsin 7x=cos (7x+10x)Leftrightarrow ]

[ 1-2sin 3xsin 7x=cos 3xcos 7x-sin 3xsin 7xLeftrightarrow ]

[ 1=cos 3xcos 7x+sin 3xsin 7xLeftrightarrow cos 4x=1. ]

[ cos 10x = 1Leftrightarrow 4x=2pi kLeftrightarrow x = frac{pi k}{2}. ]

Нужно, чтобы cos 10xgeqslant 0,
поразмыслив, понимаем, что поэтому из полученной серии ответов нам подходят только x=pi k.

Ответ:pi k.

Задача для самостоятельного решения №5. Решите уравнение: sqrt{sin 3x}=sqrt{1+2sin 4xcos x}.

Показать ответОтвет: left{frac{3pi}{10}+2pi k,, frac{7pi}{10}+2pi n,, frac{3pi}{2}+2pi mright}.
Пример 6. Решите уравнение:

[ frac{2sin^2 x-sinleft(frac{3pi}{2}+xright)-1}{sqrt{sin x}}=0. ]

Решение. Данное уравение равносильно системе:

[ begin{cases}2sin^2 x-sinleft(frac{3pi}{2}+xright)-1=0,  sin x>0end{cases}Leftrightarrow ]

[ begin{cases}2cos^2 x-cos x-1=0, sin x>0end{cases}Leftrightarrow ]

[ begin{cases}left[begin{array}{l}cos x = 1,  cos x =-frac{1}{2},end{array}  sin x >0right.end{cases}Leftrightarrow begin{cases}left[begin{array}{l}x=2pi k,  x=pmfrac{2pi}{3}+2pi n,end{array}  sin x >0right.end{cases} ]

Тригонометрическая функция синус положительна в первой и второй координатной четвертях, поэтому из полученных серий выбираем только эту: x=frac{2pi}{3}+2pi k.

Раз уж мы с этим столкнулись, не лишним будет повторить, какие знаки принимают тригонометрические функций в различных координатных четвертях:

Знаки тригонометрических функций по координатным четвертям

Знаки функций, входящих в тригонометрические уравнения, по координатным четвертям

Ответ:frac{2pi}{3}+2pi k.

Задача для самостоятельного решения №6. Решите уравнение: frac{cos 2x+cos x}{1+sqrt{sin x}}=0.

Показать ответОтвет: pi+2pi k,,frac{pi}{3}+2pi n.
Пример 7. Решите уравнение:

[ frac{sin 2x}{|cos x|}=2sin x-2. ]

Решение. Область допустимых значения уравнения определяется условием: cos xne 0,
то есть xnefrac{pi}{2}+pi n.
Разобьем решение на два случая:

  • Пусть cos x>0,
    тогда уравнение принимает вид:

[ frac{2sin xcos x}{cos x} = 2sin x-2Leftrightarrow ]

[ 2sin x=2sin x-2Leftrightarrow 0=-2. ]

Последнее равенство неверно, поэтому в данном случае решений у уравнения не будет.

  • Пусть cos x<0,
    тогда уравнение принимает вид:

[ -frac{2sin xcos x}{cos x} = 2sin x-2Leftrightarrow ]

[ sin x = frac{1}{2}Leftrightarrow left[begin{array}{l}x = frac{pi}{6}+2pi k,  x=frac{5pi}{6}+2pi n.end{array}right. ]

Условию cos x<0
удовлетворяет только последняя серия.

Ответ: x=frac{5pi}{6}+2pi n.

Задача для самостоятельного решения №7. Решите уравнение: operatorname{ctg} x+operatorname{tg} 2x = 0.

Ответ: frac{pi}{2}+pi n.

Примеры с решениями

Пример №1

Решить уравнение Простейшие тригонометрические уравнения примеры с решением

Решение:

По формуле (4) находим Простейшие тригонометрические уравнения примеры с решением
где Простейшие тригонометрические уравнения примеры с решением
Отсюда следует, что

Простейшие тригонометрические уравнения примеры с решением

Пример №2

Решить уравнение Простейшие тригонометрические уравнения примеры с решением

Решение:

Согласно формуле (2) получаем

Простейшие тригонометрические уравнения примеры с решением

откуда Простейшие тригонометрические уравнения примеры с решением
Так как правая часть этого равенства должна быть неотрицательной, то Простейшие тригонометрические уравнения примеры с решением
может принимать только значения Простейшие тригонометрические уравнения примеры с решением
Отсюда находим

Простейшие тригонометрические уравнения примеры с решением

Пример №3

Решить уравнение Простейшие тригонометрические уравнения примеры с решением

Решение:

Применяя формулу (6), находим

Простейшие тригонометрические уравнения примеры с решением

откуда Простейшие тригонометрические уравнения примеры с решением

Пример №4

Решить уравнение Простейшие тригонометрические уравнения примеры с решением

Решение:

При Простейшие тригонометрические уравнения примеры с решением
получим квадратное уравнение Простейшие тригонометрические уравнения примеры с решением
имеющее корни Простейшие тригонометрические уравнения примеры с решением
Так как Простейшие тригонометрические уравнения примеры с решением
Простейшие тригонометрические уравнения примеры с решением
то исходное уравнение равносильно уравнению Простейшие тригонометрические уравнения примеры с решением
откуда находим Простейшие тригонометрические уравнения примеры с решением

Ответ.Простейшие тригонометрические уравнения примеры с решением

Пример №5

Решить уравнение Простейшие тригонометрические уравнения примеры с решением

Решение:

Пусть Простейшие тригонометрические уравнения примеры с решением
тогда Простейшие тригонометрические уравнения примеры с решением
и уравнение примет вид

Простейшие тригонометрические уравнения примеры с решениемилиПростейшие тригонометрические уравнения примеры с решениемоткуда находим Простейшие тригонометрические уравнения примеры с решением
Если Простейшие тригонометрические уравнения примеры с решениемто Простейшие тригонометрические уравнения примеры с решениемПростейшие тригонометрические уравнения примеры с решениема если Простейшие тригонометрические уравнения примеры с решениемто Простейшие тригонометрические уравнения примеры с решением

Ответ. Простейшие тригонометрические уравнения примеры с решением

Пример №6

Решить уравнение Простейшие тригонометрические уравнения примеры с решением

Решение:

Полагая Простейшие тригонометрические уравнения примеры с решениемполучаем уравнение Простейшие тригонометрические уравнения примеры с решениемимеющее корни Простейшие тригонометрические уравнения примеры с решением
Простейшие тригонометрические уравнения примеры с решением
Исходное уравнение равносильно совокупности уравнений Простейшие тригонометрические уравнения примеры с решением
Простейшие тригонометрические уравнения примеры с решением
откуда находим две серии корней:

Простейшие тригонометрические уравнения примеры с решением

Пример №7

Решить уравнение Простейшие тригонометрические уравнения примеры с решением

Решение:

Данное уравнение равносильно каждому из уравнений Простейшие тригонометрические уравнения примеры с решениемоткуда Простейшие тригонометрические уравнения примеры с решением

Пример №8

Решить уравнение Простейшие тригонометрические уравнения примеры с решением

Решение:

Разделив обе части уравнения на Простейшие тригонометрические уравнения примеры с решением, получим равносильное уравнение Простейшие тригонометрические уравнения примеры с решением
имеющее корни Простейшие тригонометрические уравнения примеры с решением, Простейшие тригонометрические уравнения примеры с решением
Исходное уравнение, равносильное совокупности уравнений Простейшие тригонометрические уравнения примеры с решением
и Простейшие тригонометрические уравнения примеры с решениемимеет две серии корней: Простейшие тригонометрические уравнения примеры с решением
Простейшие тригонометрические уравнения примеры с решением

Замечание. К уравнению вида (13) сводится уравнение

Простейшие тригонометрические уравнения примеры с решением

Для этого достаточно воспользоваться тождеством

Простейшие тригонометрические уравнения примеры с решением

Пример №9

Решить уравнение Простейшие тригонометрические уравнения примеры с решением

Решение:

Это уравнение равносильно каждому из следующих уравнений :

Простейшие тригонометрические уравнения примеры с решением

Значит, исходное уравнение не имеет корней.

Пример №10

Решить уравнение Простейшие тригонометрические уравнения примеры с решением

Решение:

Полагая Простейшие тригонометрические уравнения примеры с решениемпреобразуем уравнение к виду

Простейшие тригонометрические уравнения примеры с решением

Разложив левую часть полученного уравнения на множители, приходим к уравнению Простейшие тригонометрические уравнения примеры с решением
Если Простейшие тригонометрические уравнения примеры с решением, то Простейшие тригонометрические уравнения примеры с решением, откуда Простейшие тригонометрические уравнения примеры с решением
Если Простейшие тригонометрические уравнения примеры с решениемто Простейшие тригонометрические уравнения примеры с решением
Простейшие тригонометрические уравнения примеры с решением
Простейшие тригонометрические уравнения примеры с решениемоткуда Простейшие тригонометрические уравнения примеры с решением

Ответ.Простейшие тригонометрические уравнения примеры с решением

Пример №11

Решить уравнение Простейшие тригонометрические уравнения примеры с решением

Решение:

Полагая Простейшие тригонометрические уравнения примеры с решениеми используя формулу Простейшие тригонометрические уравнения примеры с решением
преобразуем уравнение к виду Простейшие тригонометрические уравнения примеры с решениемили Простейшие тригонометрические уравнения примеры с решениемоткуда Простейшие тригонометрические уравнения примеры с решением
Следовательно, Простейшие тригонометрические уравнения примеры с решениемоткуда Простейшие тригонометрические уравнения примеры с решением

Ответ.Простейшие тригонометрические уравнения примеры с решением

Пример №12

Решить уравнениеПростейшие тригонометрические уравнения примеры с решением

Решение:

Полагая Простейшие тригонометрические уравнения примеры с решениеми используя формулу Простейшие тригонометрические уравнения примеры с решениемполучаем уравнение Простейшие тригонометрические уравнения примеры с решениемимеющее корни Простейшие тригонометрические уравнения примеры с решением
Следовательно, Простейшие тригонометрические уравнения примеры с решениемоткуда Простейшие тригонометрические уравнения примеры с решением

Ответ.Простейшие тригонометрические уравнения примеры с решением

Привет, самый лучший ученик во Вселенной!

Сегодня мы с тобой изучим, как решать одну из разновидностей уравнений – тригонометрические. Мы решим 39(!) примеров, от самых простых, до самых сложных.

И станем на шаг ближе к заветной цели – сдать ЕГЭ по математике так, чтобы поступить в ВУЗ мечты!

Поехали!

Тригонометрические уравнения — коротко о главном

Тригонометрическое уравнение – это уравнение, в котором неизвестная находится строго под знаком тригонометрической функции.

Существует два способа решения тригонометрических уравнений:

Первый способ – с использованием формул.

Второй способ – через тригонометрическую окружность.

Тригонометрическая окружность позволяет измерять углы, находить их синусы, косинусы и прочее.

Чтобы уметь решать тригонометрические уравнения необходимо знать как минимум следующее:

  • что такое синус, косинус, тангенс, котангенс;
  • какие знаки принимает та или иная тригонометрическая функция в разных четвертях тригонометрической окружности;
  • какие из этих функций нечётные, а какие – чётные;
  • знание значений тригонометрических функций в основных углах 1 четверти.

Если ты что-то не знаешь, повтори следующие разделы:

  • Синус, косинус, тангенс и котангенс угла и числа
  • Тригонометрическая окружность
  • Формулы тригонометрии

Этого будет вполне достаточно. Если это по ходу моего повествования окажется не так, то не сердись, придётся вспомнить что-нибудь ещё, не упомянутое здесь.

Простейшие тригонометрические уравнения

Что же это такое, как ты думаешь? Является ли, например, уравнение

( displaystyle frac{2}{2{x}-11}=frac{1}{3})

тригонометрическим?

Ты и сам прекрасно понимаешь, что нет! Потому что ни одной тригонометрической функции ( displaystyle left( sin x,cos x,tg x,ctg x right)) в нём и в помине нет!

А что насчёт вот такого уравнения?

( displaystyle sin2x+3x=2)

И опять ответ отрицательный!

Это так называемое уравнение смешанного типа.

Оно содержит как тригонометрическую составляющую, так и линейную (( displaystyle 3x)).

Некоторые типы подобных уравнений мы будем с тобой решать в следующих раздела этой статьи.

Но вернёмся к вопросу: «Что же такое тригонометрические уравнения?»

Тригонометрические уравнения –это уравнения, в которых неизвестная находится строго под знаком тригонометрической функции!

Например:

  • ( displaystyle 6co{{s}^{2}}x+5sin{x}-7=0)
  • ( displaystyle sinpi sqrt{x}=-1)
  • ( displaystyle frac{3}{5}sinx+frac{4}{5}cosx=1) и т.д.

Однако для начала мы не будем решать сложные и иногда неприступные тригонометрические уравнения, а ограничимся самыми простыми уравнениями вида:

  • ( displaystyle sinfleft( x right)=a)
  • ( displaystyle cosfleft( x right)=a)
  • ( displaystyle tgfleft( x right)=a)
  • ( displaystyle ctgfleft( x right)=a)

Где ( displaystyle a) – некоторое постоянное число.

Например: ( displaystyle 0,5;~1;~-1;pi ; ~1-sqrt{3};~1000) и т. д.

( displaystyle fleft( x right)) – некоторая функция, зависящая от искомой переменной ( displaystyle x), например ( displaystyle fleft( x right)=x,~fleft( x right)=2-x,~fleft( x right)=frac{pi x}{7}) и т. д.

Такие уравнения называются простейшими!

Основная цель решения ЛЮБОГО тригонометрического уравнения – это свести его к виду простейшего!

Для этого, как правило, используют аппарат, который я описал в разделе «Формулы тригонометрии«

Так что очень важно, я бы даже сказал, жизненно необходимо научиться решать простейшие уравнения, ибо они – фундамент для решения сложных примеров.

Как часто тригонометрические уравнения встречаются на ЕГЭ?

Тригонометрические уравнения могут встретиться до четырех раз в заданиях ЕГЭ. Это может быть:

  • Задача №5 (простейшее тригонометрическое уравнение – встречается время от времени);
  • Задача №10 (задача с прикладным содержанием, которая включает в себя решение тригонометрического уравнения – встречается изредка);
  • Задача №12 (она на производную, но в конечном счёте сводится к решению простейшего тригонометрического уравнения – ЧАСТО ВСТРЕЧАЕТСЯ В ЕГЭ)
  • Задача №13 – даёт 2 первичных балла – (решение тригонометрического уравнения средней или высокой сложности – ОЧЕНЬ ЧАСТО, ПРАКТИЧЕСКИ ВСЕГДА!)

Так что, как ты понимаешь, при некоторых раскладах, навык решения данного вида уравнений может добавить в твою копилку аж 5 первичных баллов из 32!

Два способа решения тригонометрических уравнений – через формулы и по кругу

В принципе, я не могу сказать, что легче: держать в голове, как строится круг, или помнить 4 формулы.

Тут решать тебе самому, однако я всё же предпочитаю решать данные уравнения через формулы, поэтому здесь я буду описывать именно этот метод.

Вначале мы начнём с «самых простейших» из простейших уравнений вида:

  • ( displaystyle text{sinx}=text{a}),
  • ( displaystyle text{cosx}=text{a}),
  • ( displaystyle text{tgx}=text{a}),
  • ( displaystyle text{ctgx}=text{a}).

Я хочу сразу оговориться вот о чем, будь внимателен:

Уравнения вида: ( displaystyle sinfleft( x right)=a)( displaystyle cosfleft( x right)=a) имеют смысл только тогда, когда ( displaystyle -1le text{a}le 1)

Уравнения вида: ( displaystyle text{tgx}=text{a}), ( displaystyle text{ctgx}=text{a}) имеют смысл уже при всех значениях ( displaystyle text{a}).

То есть, тебе не надо знать вообще никаких формул, чтобы спокойно ответить, что уравнения, например:

( displaystyle sinx=1000)

( displaystyle cosleft( 3{x}-sinleft( x right) right)=2)

( displaystyle sinleft( 2{{x}^{2}}-2x+1 right)=-3)

Корней не имеют!!!

Почему?

Потому что они «не попадают» в промежуток от минус единицы до плюс единицы.

Ещё раз скажу: внимательно обдумай эти слова, они уберегут тебя от многих глупых ошибок!!!

Для остальных же случаев тригонометрические формулы такие как в этой таблице.

( displaystyle A) ( displaystyle a) ( displaystyle -1) ( displaystyle 0) ( displaystyle 1)
( displaystyle sin x=A) ( displaystyle {{left( -1 right)}^{n}}arcsin alpha +pi n) ( displaystyle -frac{pi }{2}+2pi n) ( displaystyle pi n) ( displaystyle frac{pi }{2}+2pi n)
( displaystyle cos x=A) ( displaystyle pm arccos alpha +2pi n) ( displaystyle pi +2pi n) ( displaystyle frac{pi }{2}+pi n) ( displaystyle 2pi n)
( displaystyle tgx=A) ( displaystyle arctgalpha +pi n) ( displaystyle -frac{pi }{4}+pi n) ( displaystyle pi n) ( displaystyle frac{pi }{4}+pi n)
( displaystyle ctgx=A) ( displaystyle arcctgalpha +pi n) ( displaystyle frac{3pi }{4}+pi n) ( displaystyle frac{pi }{2}+pi n) ( displaystyle frac{pi }{4}+pi n)

На самом деле в этой таблице данных немного больше, чем нужно.

Тебе нужно лишь запомнить первые два её столбца, другие столбцы – частные случаи решения тригонометрических уравнений.

Я, допустим, никогда не утруждаю себя их запоминанием, а вывожу ответ из основных формул.

Глядя на таблицу, не возникло ли у тебя пары вопросов?

У меня бы возникли вот какие:

Что такое ( displaystyle n) и что такое, например ( displaystyle arcsinalpha ~left( arccosalpha ,~arctgalpha ,~arcctgalpha right))?

Отвечаю на все по порядку:

( displaystyle n) – это любое целое число ( displaystyle left( 0,text{ }1,text{ }-1,text{ }2,text{ }-2,text{ }ldots .text{ } right)).

В чем уникальная особенность тригонометрических уравнений перед всеми остальными, которые ты изучал?

ОНИ ИМЕЮТ БЕСКОНЕЧНОЕ КОЛИЧЕСТВО КОРНЕЙ!!!

И число ( displaystyle n) и служит для обозначения этой «бесконечности».

Конечно, вместо ( displaystyle n) можно писать любую другую букву, только не забывай добавить в ответе: ( displaystyle nin Z) – что означает, что ( displaystyle n) – есть любое целое число.

Теперь насчёт арксинуса и других «арок». Вообще, так записываются обратные тригонометрические функции и понимать, скажем, ( displaystyle arcsinalpha ) надо как «угол, синус которого равен ( displaystyle alpha )«

  • ( displaystyle arcsinalpha)– угол, синус которого равен ( displaystyle alpha)
  • ( displaystyle arccosalpha)– угол, косинус которого равен ( displaystyle alpha)
  • ( displaystyle alpha)( displaystyle arctgalpha)– угол, тангенс которого равен ( displaystyle alpha)
  • ( displaystyle alpha)( displaystyle arcctgalpha) – угол, котангенс которого равен ( displaystyle alpha)

Например,

  • ( displaystyle arcsin left( 0 right)=0,)
  • ( displaystyle arccos left( frac{sqrt{2}}{2} right)=frac{pi }{4},)
  • ( displaystyle arctgleft( 1 right)=frac{pi }{4},)
  • ( displaystyle arcsin left( 0,5 right)=frac{pi }{6},)
  • ( displaystyle arccos left( frac{sqrt{3}}{2} right)=frac{pi }{6},)
  • ( displaystyle arctgleft( sqrt{3} right)=frac{pi }{3})

то есть,

Алгоритм вычисления арксинусов и других «арок»

  • Смотрим на то, что стоит под «аркой» – какое там число
  • Смотрим, какая у нас «арка» – для синуса ли, или для косинуса, тангенса или котангенса
  • Смотрим, чему равен угол (1 четверти), для которого синус, косинус, тангенс, котангенс равен числу, стоящему под аркой
  • Записываем ответ

Вот простой пример вычисления аркосинуса:

( displaystyle arccos left( frac{sqrt{3}}{2} right))

Решение:

  • Под аркой число ( displaystyle frac{sqrt{3}}{2})
  • Арка для функции – косинус!
  • Косинус какого угла равен ( displaystyle frac{sqrt{3}}{2})? Угла ( displaystyle frac{pi }{6}) (или ( displaystyle 30) градусов!)
  • Тогда ( displaystyle arccos left( frac{sqrt{3}}{2} right)=frac{pi }{6})

Сам посчитай:

  • ( displaystyle arctgleft( frac{1}{sqrt{3}} right))
  • ( displaystyle arcsin left( frac{sqrt{3}}{2} right))

Ответы:

( displaystyle frac{pi }{6}) и ( displaystyle frac{pi }{3}).

Если «арка» берется от отрицательного числа?

Всё ли я сказал про «арки»? Почти что да! Остался вот какой момент.

Что делать, если «арка» берётся от отрицательного числа?

Лезть в таблицу – как бы не так! Для арок выполняются следующие формулы:

  • ( displaystyle text{arcsin}left( -alpha right)=-text{arcsin}alpha )
  • ( displaystyle text{arctg}left( -alpha right)=-text{arctg}alpha )

И внимание!!!

  • ( displaystyle text{arcctg}left( -alpha right)=text{ }!!pi!!text{ }-text{arcctg}alpha )
  • ( displaystyle text{arccos}left( -alpha right)=text{ }!!pi!!text{ }-text{arccos}alpha )

Чтобы запомнить, ориентируемся на обычные тригонометрические функции: грубо говоря, синус и тангенс мы смотрим на тригонометрической окружности по вертикальной оси, а косинус и котангенс – по горизонтальной.

Соответственно, для арксинуса и арктангенса выбираем две четверти по вертикали: первую и четвёртую (минусик выносится из аргумента и ставится перед функцией), а для арккосинуса и арккотангенса – по горизонтали: первую и вторую.

В первой и второй четвертях аргумент уже не может быть отрицательным, поэтому и получаются формулы не совсем похожими.

Ну всё, теперь мы можем приступать к решению простейших уравнений!

Решение 11-ти простейших тригонометрических уравнений

Уравнение 1. ( displaystyle sinleft( x right)=0,5)

Запишу по определению:

( displaystyle x={{left( -1 right)}^{n}}arcsin left( 0,5 right)+pi n,~nin Z)

Всё готово, осталось только упростить, посчитав значение арксинуса.

Уравнение 2. ( displaystyle sinleft( x right)=-frac{sqrt{3}}{2})

Снова по определению:

Тогда запишу

( displaystyle x={{left( -1 right)}^{n}}arcsin left( -frac{sqrt{3}}{2} right)+pi n,~nin Z)

Так оставлять нельзя! Вначале вынесу «минус» из арксинуса!

Уравнение 3. ( displaystyle sinleft( x right)=frac{pi }{2})

Пример-ловушка! Невнимательный ученик бы записал ответ в лоб:

( displaystyle x={{left( -1 right)}^{n}}arcsin left( frac{pi }{2} right)+pi n,~nin Z)

Или того хуже:

( displaystyle x={{left( -1 right)}^{n}}cdot 1+pi n,~nin Z)

Так как ( displaystyle sin left( frac{pi }{2} right)=1)

Но ты же внимательно читал мои пространные рассуждения, не так ли? И ты ведь не напишешь такую чушь? И ты понял, в чем здесь подвох?

А подвох вот в чем:

Уравнение 4. ( displaystyle sinleft( x right)=-0,1)

По определению:

( displaystyle x={{left( -1 right)}^{n}}arcsin left( -0,1 right)+pi n,~nin Z)

Или вынесем минус (как в примере 2):

( displaystyle x={{left( -1 right)}^{n+1}}arcsin left( 0,1 right)+pi n,~nin Z)

На этом стоп! Такого числа как 0,1 нет в таблице значений тригонометрических функций, поэтому оставим всё как есть:

Ответ( displaystyle x={{left( -1 right)}^{n+1}}arcsin left( 0,1 right)+pi n,~nin Z)

Уравнение 5. ( displaystyle cosleft( x right)=1)

И снова по определению (теперь для уравнения другого вида)

( displaystyle x=pm arccos1+2pi n,~nin Z)

Чему равен угол, косинус которого равен ( displaystyle 1)?

Этот угол равен( displaystyle 0)!

( displaystyle x=pm 0+2pi n,~nin Z)

Тогда нет смысла прибавлять или вычитать ноль, всё равно это ноль.

( displaystyle x=2pi n,~nin Z)

Получили формулу, которая есть в таблице решений тригонометрических уравнений!

Ответ( displaystyle x=2pi n,~nin Z)

Уравнение 6. ( displaystyle cosleft( x right)=-frac{1}{sqrt{2}})

По определению:

( displaystyle x=pm arccos left( -frac{1}{sqrt{2}} right)+2pi n,~nin Z)

Прежде всего вынесем «минус» по правилам для арккосинуса:

( displaystyle x=pm left( pi -arccos left( frac{1}{sqrt{2}} right) right)+2pi n,~nin Z)

Вот так и никак иначе выносится минус, запомни это!

Теперь арккосинус.

Не во всех таблицах есть значение ( displaystyle frac{1}{sqrt{2}}), но во всех есть ( displaystyle frac{sqrt{2}}{2})!!!

А теперь, внимание, ловкость рук и никакого мошенничества!

Уравнение 7. ( displaystyle cosleft( x right)=frac{pi }{4})

( displaystyle cosleft( x right)=frac{pi }{4})

Ещё один пример-обманка! Хотя данное уравнение решения имеет, ибо:

( displaystyle frac{pi }{4}=frac{3,14}{4}<1)

Тогда по определению:

( displaystyle x=pm arccos left( frac{pi }{4} right)+2pi n,~nin Z)

Но из этого никак не следуетчто ( displaystyle arccos left( frac{text{ }!!pi!!text{ }}{4} right)=frac{sqrt{2}}{2})!!!!!! 

Запомни, арккосинус – это угол, его аргумент (начинка) – это число, а выход – угол!!!

Ты когда-нибудь встречал в своей практике такой странный угол как ( displaystyle frac{sqrt{2}}{2})?!

Вот и я нет. Поэтому оставим как есть!

Ответ: ( displaystyle x=pm arccos left( frac{pi }{4} right)+2pi n,~nin Z)

Уравнение 8. ( displaystyle cosleft( x right)=-sqrt{2})

Всё просто: ( displaystyle -sqrt{2}<-1)

… и решений данное уравнение не имеет.

Уравнение 9. ( displaystyle tgleft( x right)=sqrt{2})

Запишем по определению:

( displaystyle x=arctgsqrt{2}+pi n,~nin Z)

( displaystyle arctgsqrt{2}) – не табличное значение, поэтому ответ сохраняем неизменным.

Обрати внимание, что в отличие от уравнений с синусом и косинусом, здесь мне не уже важно, какое у меня число стоит в правой части уравнения.

Уравнение 10. ( displaystyle ctgleft( x right)=-sqrt{3})

Снова по определению:

( displaystyle x=arсctgleft( -sqrt{3} right)+pi n,~nin Z)

Без проблем выносим минус из арккотангенса:

Уравнение 11. ( displaystyle ctgleft( x right)=1)

По формуле: ( displaystyle x=arcctg1+pi n,~nin Z).

Котангенс какого угла равен ( displaystyle 1)?

Это угол ( displaystyle frac{pi }{4}).

Ответ: ( displaystyle x=frac{pi }{4}+pi n,~nin Z).

Ну как, материал не кажется тебе слишком сложным? Я надеюсь, что нет. Теперь давай порешаем для закрепления чуть более сложные задачки.

Решение 3-х более сложных уравнений

Уравнение 12. Най­ди­те корни урав­не­ния: ( displaystyle cosfrac{8pi x}{6}=frac{sqrt{3}}{2}). В от­ве­те за­пи­ши­те наи­боль­ший от­ри­ца­тель­ный ко­рень.

Логика простая: будем поступать так, как поступали раньше не взирая на то, что теперь у тригонометрических функций стал более сложный аргумент!

Если бы мы решали уравнение вида:

( displaystyle cost=frac{sqrt{3}}{2})

То мы бы записали вот такой ответ:

( displaystyle t=pm arccosfrac{sqrt{3}}{2}+2pi n,~nin Z)

Или (так как ( displaystyle arccosfrac{sqrt{3}}{2}=frac{pi }{6}))

( displaystyle t=pm frac{pi }{6}+2pi n,~nin Z)

Но теперь в роли ( displaystyle t) у нас выступаем вот такое выражение: ( displaystyle t=frac{8pi x}{6})

Тогда можно записать:

( displaystyle frac{8pi x}{6}=pm frac{pi }{6}+2pi n)

Наша с тобою цель – сделать так, чтобы слева стоял просто ( displaystyle x), без всяких «примесей»!

Давай постепенно от них избавляться!

Вначале уберём знаменатель при ( displaystyle x): для этого домножим наше равенство на ( displaystyle 6):

( displaystyle frac{6cdot 8pi x}{6}=6cdot left( pm frac{pi }{6}+2pi n right))

( displaystyle 8pi x=pm frac{6pi }{6}+12pi n)

( displaystyle 8pi x=pm pi +12pi n)

Теперь избавимся от ( displaystyle pi ), разделив на него обе части:

( displaystyle 8x=pm 1+12n)

Теперь избавимся от восьмёрки:

( displaystyle frac{8x}{8}=pm frac{1}{8}+frac{12n}{8})

( displaystyle x=pm frac{1}{8}+frac{3n}{2})

Полученное выражение можно расписать как 2 серии решений (по аналогии с квадратным уравнением, где мы либо прибавляем, либо вычитаем дискриминант)

( displaystyle x=frac{1}{8}+frac{3n}{2})

или

( displaystyle x=-frac{1}{8}+frac{3n}{2})

Нам нужно найти наибольший отрицательный корень! Ясно, что надо перебирать ( displaystyle n).

Рассмотрим вначале первую серию:

Уравнение 13. Найдите корни уравнения: ( displaystyle cosfrac{pi left( {x}-7 right)}{3}=frac{1}{2}). В ответ за­пи­ши­те наи­боль­ший от­ри­ца­тель­ный ко­рень.

Опять решаем, не взирая на сложный аргумент косинуса:

( displaystyle frac{pi left( {x}-7 right)}{3}=pm arccosfrac{1}{2}+2pi n,~nin Z)

( displaystyle frac{pi left( {x}-7 right)}{3}=pm frac{pi }{3}+2pi n,~nin Z)

Теперь снова выражаем ( displaystyle x) слева:

Умножаем обе стороны на ( displaystyle 3)

( displaystyle frac{3pi left( {x}-7 right)}{3}=pm frac{3pi }{3}+2cdot 3pi n,~nin Z)

( displaystyle pi left( {x}-7 right)=pm pi +6pi n,~nin Z)

Делим обе стороны на ( displaystyle pi)

( displaystyle frac{pi left( {x}-7 right)}{pi }=pm frac{pi }{pi }+frac{6pi n}{pi },~nin Z)

( displaystyle ~{x}-7=pm 1+6n,~nin Z)

Всё, что осталось, – это перенести ( displaystyle 7) вправо, изменив её знак с минуса на плюс.

( displaystyle x=7pm 1+6n,~nin Z)

У нас опять получается 2 серии корней, одна с ( displaystyle +1), а другая с ( displaystyle -1).

( displaystyle x=8+6n,~nin Z)

или

( displaystyle x=6+6n,~nin Z)

Нам нужно найти наибольший отрицательный корень. Рассмотрим первую серию:

Уравнение 14. Ре­ши­те урав­не­ние ( displaystyle tgfrac{pi x}{4}=-1). В от­ве­те на­пи­ши­те наи­боль­ший от­ри­ца­тель­ный ко­рень.

Решаем, не взирая на сложный аргумент тангенса.

Вот, вроде бы ничего сложного, не так ли?

( displaystyle frac{pi x}{4}=arctgleft( -1 right)+pi n)

( displaystyle frac{pi x}{4}=-arctgleft( 1 right)+pi n)

( displaystyle frac{pi x}{4}=-frac{pi }{4}+pi n)

Как и раньше, выражаем ( displaystyle x) в левой части:

( displaystyle frac{4pi x}{4}=-frac{4pi }{4}+4pi n)

( displaystyle pi x=-pi +4pi n)

( displaystyle frac{pi x}{pi }=-frac{pi }{pi }+frac{4pi n}{pi })

( displaystyle x=-1+4n)

Ну вот и замечательно, здесь вообще всего одна серия корней! Опять найдём наибольший отрицательный.

Ясно, что он получается, если положить ( displaystyle n=0). И корень этот равен ( displaystyle -1).

Ответ: ( displaystyle -1)

Теперь попробуй самостоятельно решить следующие задачи.

Решение 3-х примеров для самостоятельной работы

  • Ре­ши­те урав­не­ние ( displaystyle sinfrac{pi x}{3}=0,5). В от­ве­те на­пи­ши­те наи­мень­ший по­ло­жи­тель­ный ко­рень.
  • Ре­ши­те урав­не­ние ( displaystyle tgfrac{pi left( {x}-6 right)}{6}=frac{1}{sqrt{3}}). В от­ве­те на­пи­ши­те наи­мень­ший по­ло­жи­тель­ный ко­рень.
  • Ре­ши­те урав­не­ние ( displaystyle sinfrac{pi left( 2{x}-3 right)}{6}=-0,5). В от­ве­те на­пи­ши­те наи­мень­ший по­ло­жи­тель­ный ко­рень.

Готов? Проверяем. Я не буду подробно описывать весь алгоритм решения, мне кажется, ему и так уделено достаточно внимания выше.

Ну что же, теперь ты умеешь решать простейшие тригонометрические уравнения! Сверься с решениями и ответами:

Ну что, всё правильно? Ох уж эти гадкие синусы, с ними всегда какие-то беды!

Эти знания помогут тебе решать многие задачи, с которыми ты столкнёшься в экзамене.

Если же ты претендуешь на оценку «5», то тебе просто необходимо перейти к чтению статьи для среднего уровня, которая будет посвящена решению более сложных тригонометрических уравнений.

СРЕДНИЙ УРОВЕНЬ СЛОЖНОСТИ

В этой части статьи я опишу решение тригонометрических уравнений более сложного типа и объясню, как производить отбор их корней. Здесь я буду опираться на следующие темы:

  • Тригонометрические уравнения для начального уровня (см. выше)
  • Формулы тригонометрии

Рекомендую тебе прежде ознакомиться с ними, прежде чем приступать к чтению и разбору этого чтива. Итак, все готово? Прекрасно. Тогда вперед.

Более сложные тригонометрические уравнения – это основа задач повышенной сложности. В них требуется как решить само уравнение в общем виде, так и найти корни этого уравнения, принадлежащие некоторому заданному промежутку.

Решение тригонометрических уравнений сводится к двум подзадачам:

  • Решение уравнения
  • Отбор корней

Следует отметить, что второе требуется не всегда, но все же в большинстве примеров требуется производить отбор. А если же он не требуется, то тебе скорее можно посочувствовать – это значит, что уравнение достаточно сложное само по себе.

Мой опыт разбора задач повышенной сложности показывает, что они как правило делятся на вот такие 4 категории.

Четыре категории задач повышенной сложности

  • Уравнения, сводящиеся к разложению на множители.
  • Уравнения, сводящиеся к виду ( displaystyle tgx=a).
  • Уравнения, решаемые заменой переменной.
  • Уравнения, требующие дополнительного отбора корней из-за иррациональности или знаменателя.

Говоря по-простому: если тебе попалось одно из уравнений первых трех типов, то считай, что тебе повезло. Для них как правило дополнительно нужно подобрать корни, принадлежащие некоторому промежутку.

Если же тебе попалось уравнение 4 типа, то тебе повезло меньше: с ним нужно повозиться подольше и повнимательнее, зато довольно часто в нем не требуется дополнительно отбирать корни.

Тем не менее данный тип уравнений я буду разбирать в разделе для продвинутых, а эту посвящу решению уравнений первых трех типов.

Уравнения, сводящихся к разложению на множители

Самое важное, что тебе нужно помнить, чтобы решать уравнения этого типа, это:

  • Формулы приведения
  • Синус, косинус двойного угла

Как показывает практика, как правило, этих знаний достаточно. Давай обратимся к примерам.

Уравнения, сводящиеся к разложению с помощью синуса двойного угла:

Уравнение 18. Ре­ши­те урав­не­ние ( displaystyle sin2x=text{sin}left( frac{pi }{2}+x right)). Най­ди­те все корни этого урав­не­ния, при­над­ле­жа­щие от­рез­ку ( displaystyle left[ -frac{7pi }{2},-frac{5pi }{2} right])

Здесь, как я и обещал, работают формулы приведения:

( displaystyle sin left( frac{pi }{2}+x right)=cosx)

Тогда мое уравнение примет вот такой вид:

( displaystyle sin2x=cosx)

Что дальше? А дальше обещанный мною второй пункт программы – синус двойного угла:

( displaystyle sin2x=2sinxcosx)

Тогда мое уравнение примет следующую форму:

( displaystyle 2sinxcosx=cosx)

Недальновидный ученик мог бы сказать: а теперь я сокращу обе части на ( displaystyle cosx), получаю простейшее уравнение ( displaystyle 2sinx=1) и радуюсь жизни! И будет горько заблуждаться!

Запомни!

Никогда нельзя сокращать обе части тригонометрического уравнения на функцию, содержащую неизвестную! Таки образом ты теряешь корни!

Так что же делать? Да все просто, переносить все в одну сторону и выносить общий множитель:

( displaystyle 2sinxcosx-cosx=0)

( displaystyle cosxleft( 2sinx-1 right)=0)

Ну вот, на множители разложили, ура! Теперь решаем:

( displaystyle cosx=0) или ( displaystyle 2sinx=1)

Первое уравнение имеет корни:

( displaystyle x=frac{pi }{2}+pi n).

А второе:

( displaystyle x={{left( -1 right)}^{n}}frac{pi }{6}+pi n)

На этом первая часть задачи решена. Теперь нужно отобрать корни. 

Уравнения, сводящиеся к разложению на множители с помощью формул приведения

Уравнение 19. Решите уравнение ( displaystyle 2si{{n}^{2}}x=cos left( frac{3pi }{2}-x right)). Най­ди­те все корни этого урав­не­ния, при­над­ле­жа­щие от­рез­ку ( displaystyle left[ -frac{5pi }{2},-pi right]).

Решение:

Опять пресловутые формулы приведения:

( displaystyle cos left( frac{3pi }{2}-x right)=-sinx)

( displaystyle 2si{{n}^{2}}x=-sinx)

Опять не вздумай сокращать!

( displaystyle 2si{{n}^{2}}x+sinx=0)

( displaystyle sinxleft( 2sinx+1 right)=0)

Откуда:

( displaystyle sinx=0) или ( displaystyle 2sinx+1=0,~sinx=-frac{1}{2})

Первое уравнение имеет корни:

( displaystyle x=pi n)

А второе:

( displaystyle x={{left( -1 right)}^{n+1}}frac{pi }{6}+pi n)

Теперь снова поиск корней.

Уравнение 20. Решите уравнение ( displaystyle sqrt{2}sin left( frac{3pi }{2}-x right)cdot sinx=cosx)
Най­ди­те все корни этого урав­не­ния, при­над­ле­жа­щие промежутку ( displaystyle left[ frac{pi }{2},frac{3pi }{2} right]).

И снова формула приведения:

( displaystyle ~sin left( frac{3pi }{2}-x right)=-cosx)

( displaystyle -sqrt{2}cosxsinx=cosx)

( displaystyle -sqrt{2}cosxsinx-cosx=0)

( displaystyle sqrt{2}cosxsinx+cosx=0)

( displaystyle cosxleft( sqrt{2}sinx+1 right)=0)

( displaystyle cosx=0) или ( displaystyle sqrt{2}sinx+1=0)

( displaystyle sinx=-frac{1}{sqrt{2}})

Первая серия корней:

( displaystyle x=frac{pi }{2}+pi n).

Вторая серия корней:

Уравнение 20. Ре­ши­те урав­не­ние ( displaystyle 2sin2x=4cosx-sinx+1)
Ука­жи­те корни урав­не­ния, при­над­ле­жа­щие от­рез­ку ( displaystyle left[ -5pi ,-4pi right])

Довольно хитрая группировка на множители (применю формулу синуса двойного угла):

( displaystyle 2cdot 2sinxcosx=4cosx-sinx+1)

( displaystyle 4sinxcosx-4cosx+sinx-1=0)

( displaystyle 4cosxleft( sinx-1 right)+left( sinx-1 right)=0)

( displaystyle left( 4cosx+1 right)left( sinx-1 right)=0)

тогда ( displaystyle 4cosx+1=0) или ( displaystyle left( sinx-1 right)=0)

( displaystyle cosx=-frac{1}{4}) или ( displaystyle sinx=1)

( displaystyle x=pm left( pi -arccosfrac{1}{4} right)+2pi n) или ( displaystyle x={{left( -1 right)}^{n}}frac{pi }{2}+pi n)

Это общее решение. Теперь надо отбирать корни. Беда в том, что мы не можем сказать точное значение угла, косинус которого равен одной четверти. Поэтому я не могу просто так избавиться от арккосинуса – вот такая досада!

Что я могу сделать?

Я могу прикинуть, что так как ( displaystyle frac{1}{4}<0,5), то ( displaystyle arccosfrac{1}{4}>frac{pi }{3}).

( displaystyle frac{pi }{2}>arccosfrac{1}{4}>frac{pi }{3})

Составим таблицу: промежуток: ( displaystyle left[ -5pi ;~-4pi right])

Уравнение 21. Ре­ши­те урав­не­ние ( displaystyle sin2x-2sqrt{3}si{{n}^{2}}x+4cosx-4sqrt{3}sinx=0). Най­ди­те все корни этого урав­не­ния, при­над­ле­жа­щие про­ме­жут­ку ( displaystyle ~left[ -frac{pi }{2},pi right]).

Уравнение пугающего вида. Однако решается довольно просто путем применения формулы синуса двойного угла:

( displaystyle 2sinxcosx-2sqrt{3}si{{n}^{2}}x+4cosx-4sqrt{3}sinx=0)

Сократим на 2:

( displaystyle sinxcosx-sqrt{3}si{{n}^{2}}x+2cosx-2sqrt{3}sinx=0)

Сгруппируем первое слагаемое со вторым и третье с четвертым и вынесем общие множители:

( displaystyle sinxleft( cosx-sqrt{3}sinx right)+2left( cosx-sqrt{3}sinx right)=0)

( displaystyle left( sinx+2 right)left( cosx-sqrt{3}sinx right)=0)

( displaystyle sinx+2=0) или ( displaystyle cosx-sqrt{3}sinx=0)

Ясно, что первое уравнение корней не имеет, а теперь рассмотрим второе:

( displaystyle cosx-sqrt{3}sinx=0)

Вообще я собирался чуть позже остановиться на решении таких уравнений, но раз уж подвернулось, то делать нечего, надо решать…

Уравнения, сводящиеся к виду tgx=a

Ну вот, теперь самое время переходить ко второй порции уравнений, тем более, что я уже и так проболтался в чем состоит решение тригонометрических уравнений нового типа.

Но не лишним будет повторить, что уравнение вида

( displaystyle text{acosx}+text{bsinx}=0text{ }!!~!!text{ }left( text{a},text{b}ne 0 right))

Решается делением обеих частей на косинус:

( displaystyle text{a}frac{text{cosx}}{text{cosx}}+text{b}frac{text{sinx}}{text{cosx}}=0)

( displaystyle text{a}+text{btgx}=0)

( displaystyle text{tgx}=-frac{text{a}}{text{b}})

Таким образом, решить уравнение вида

( displaystyle text{acosx}+text{bsinx}=0 )

все равно, что решить

( displaystyle text{tgx}=-frac{text{a}}{text{b}})

Мы только что рассмотрели, как это происходит на практике. Однако давай решим еще и вот такие примеры.

Разбор 3-х примеров для закрепления материала

Уравнение 22. Ре­ши­те урав­не­ние ( displaystyle sinx+si{{n}^{2}}frac{x}{2}=co{{s}^{2}}frac{x}{2}). Ука­жи­те корни урав­не­ния, при­над­ле­жа­щие от­рез­ку ( displaystyle left[ -2pi ,-frac{pi }{2} right]).

Решение:

Ну совсем простое. Перенесем ( displaystyle si{{n}^{2}}frac{x}{2}) вправо и применим формулу косинуса двойного угла:

( displaystyle sinx=co{{s}^{2}}frac{x}{2}-si{{n}^{2}}frac{x}{2})

( displaystyle sinx=cosx)

Ага! Уравнение вида:

 ( displaystyle acosx+bsinx=0).

Делю обе части на ( displaystyle cosx)

( displaystyle frac{sinx}{cosx}=frac{cosx}{cosx})

( displaystyle tgx=1)

( displaystyle x=frac{pi }{4}+pi n)

Делаем отсев корней:

Уравнение 23. Ре­ши­те урав­не­ние ( displaystyle cosx={{left( cosfrac{x}{2}-sinfrac{x}{2} right)}^{2}}-1). Ука­жи­те корни урав­не­ния, при­над­ле­жа­щие про­ме­жут­ку ( displaystyle left[ frac{pi }{2},2pi right]).

Все тоже довольно тривиально: раскроем скобки справа:

( displaystyle cosx=co{{s}^{2}}frac{x}{2}-2sinfrac{x}{2}cosfrac{x}{2}+si{{n}^{2}}frac{x}{2}-1)

Основное тригонометрическое тождество:

( displaystyle co{{s}^{2}}frac{x}{2}+si{{n}^{2}}frac{x}{2}=1)

Синус двойного угла:

( displaystyle 2sinfrac{x}{2}cosfrac{x}{2}=sinx)

Окончательно получим:

Уравнение 24. Ре­ши­те урав­не­ние ( displaystyle sqrt{3}sin2x+3cos2x=0). Най­ди­те все корни этого урав­не­ния, при­над­ле­жа­щие от­рез­ку ( displaystyle left[ frac{3pi }{2},3pi right]).

Уравнение решается сразу же, достаточно поделить обе части на ( displaystyle cos2x):

( displaystyle sqrt{3}tg2x+3=0)

( displaystyle sqrt{3}tg2x=-3)

( displaystyle tg2x=-frac{3}{sqrt{3}})

( displaystyle 2x=-frac{pi }{3}+pi n)

( displaystyle x=-frac{pi }{6}+frac{pi n}{2})

Отсев корней:

( displaystyle n) ( displaystyle x=-frac{pi }{6}+frac{pi n}{2})
( displaystyle 3) ( displaystyle -frac{pi }{6}+frac{3pi }{2}) — маленький недолет на ( displaystyle frac{pi }{6})
( displaystyle 4) ( displaystyle -frac{pi }{6}+2pi =frac{11pi }{6}) — попал!
( displaystyle 5) ( displaystyle -frac{pi }{6}+frac{5pi }{2}=frac{7pi }{3}) — снова в яблочко!
( displaystyle 6) ( displaystyle -frac{pi }{6}+3pi =frac{17pi }{6}) — и снова удача на нашей стороне!
( displaystyle 7) ( displaystyle -frac{pi }{12}+frac{7pi }{2}) — на сей раз уже перелет!

Ответ: ( displaystyle frac{11pi }{6};frac{14pi }{6};frac{17pi }{6}).

Так или иначе, нам еще предстоит встретиться с уравнениями того вида, которые мы только что разобрали. Однако нам еще рано закругляться: остался еще один «пласт» уравнений, которые мы не разобрали. Итак:

Решение тригонометрических уравнений заменой переменной

Здесь все прозрачно: смотрим пристально на уравнение, максимально его упрощаем, делаем замену, решаем, делаем обратную замену!

На словах все очень легко. Давай посмотрим на деле:

Уравнение 25. Решить уравнение: ( displaystyle 4co{{s}^{4}}x-4co{{s}^{2}}x+1=0). Най­ди­те все корни этого урав­не­ния, при­над­ле­жа­щие от­рез­ку ( displaystyle left[ -2pi ,-pi right]).

Ну что же, здесь замена сама напрашивается к нам в руки!

( displaystyle t=co{{s}^{2}}x)

Тогда наше уравнение превратится вот в такое:

Уравнение 26. Ре­ши­те урав­не­ние ( displaystyle 6si{{n}^{2}}x+sin2x=2). Ука­жи­те корни дан­но­го урав­не­ния, при­над­ле­жа­щие про­ме­жут­ку ( displaystyle left[ frac{3pi }{2},frac{5pi }{2} right]). 

Решение:

Здесь замена сразу не видна, более того, она не очень очевидна. Давай вначале подумаем: а что мы можем сделать?

Можем, например, представить

( displaystyle sin2x=2sinxcosx)

А заодно и

( displaystyle 2=2si{{n}^{2}}x+2co{{s}^{2}}x)

Тогда мое уравнение примет вид:

( displaystyle 6si{{n}^{2}}x+2sinxcosx=2si{{n}^{2}}x+2co{{s}^{2}}x)

( displaystyle 4si{{n}^{2}}x+2sinxcosx-2co{{s}^{2}}x=0)

( displaystyle 2si{{n}^{2}}x+sinxcosx-co{{s}^{2}}x=0)

А теперь внимание, фокус:

Давай разделим обе части уравнения на ( displaystyle co{{s}^{2}}x):

( displaystyle 2frac{si{{n}^{2}}x}{co{{s}^{2}}x}+frac{sinxcosx}{co{{s}^{2}}x}-frac{co{{s}^{2}}x}{co{{s}^{2}}x}=0)

( displaystyle 2t{{g}^{2}}x+tgx-1=0)

Внезапно мы с тобой получили квадратное уравнение относительно ( displaystyle tgx)!

Сделаем замену ( displaystyle t=tgx), тогда получим:

( displaystyle 2{{t}^{2}}+t-1=0)

Уравнение имеет следующие корни:

( displaystyle {{t}_{1}}=-1,{{t}_{2}}=frac{1}{2})

Отсюда:

( displaystyle tgx=-1).

( displaystyle x=-frac{pi }{4}+pi n)

Или

( displaystyle tgx=frac{1}{2}).

( displaystyle x=arctgfrac{1}{2}+pi n)

Неприятная вторая серия корней, но ничего не поделаешь!

Производим отбор корней на промежутке ( displaystyle left[ frac{3pi }{2},frac{5pi }{2} right]).

Нам также нужно учитывать, что:

Уравнение 27. Ре­ши­те урав­не­ние ( displaystyle frac{1}{t{{g}^{2}}x}+frac{3}{sinx}+3=0). Най­ди­те все корни этого урав­не­ния, при­над­ле­жа­щие про­ме­жут­ку ( displaystyle left[ 2pi ,frac{7pi }{2} right]).

Решение:

Здесь нужно держать ухо востро: у нас появились знаменатели, которые могут быть нулевыми! Поэтому надо быть особо внимательными к корням!

Прежде всего, мне нужно преобразовать уравнение так, чтобы я мог сделать подходящую замену. Я не могу придумать сейчас ничего лучше, чем переписать тангенс через синус и косинус:

( displaystyle t{{g}^{2}}x=frac{si{{n}^{2}}x}{co{{s}^{2}}x})

( displaystyle frac{co{{s}^{2}}x}{si{{n}^{2}}x}+frac{3}{sinx}+3=0)

Теперь я перейду от косинуса к синусу по основному тригонометрическому тождеству:

( displaystyle frac{1-si{{n}^{2}}x}{si{{n}^{2}}x}+frac{3}{sinx}+3=0)

И, наконец, приведу все к общему знаменателю:

( displaystyle frac{1-si{{n}^{2}}x}{si{{n}^{2}}x}+frac{3sinx}{si{{n}^{2}}x}+frac{3si{{n}^{2}}x}{si{{n}^{2}}x}=0)

( displaystyle frac{1-si{{n}^{2}}x+3sinx+3si{{n}^{2}}x}{si{{n}^{2}}x}=0)

( displaystyle frac{2si{{n}^{2}}x+3sinx+1}{si{{n}^{2}}x}=0)

Теперь я могу перейти к уравнению:

( displaystyle 2si{{n}^{2}}x+3sinx+1=0)

Но при ( displaystyle si{{n}^{2}}xne 0) (то есть при ( displaystyle xne pi n)).

Теперь все готово для замены: ( displaystyle t=sin x)

Уравнение 28. Решите уравнение ( displaystyle 4si{{n}^{2}}x+8sin left( frac{3pi }{2}+x right)+1=0)
Най­ди­те все корни этого урав­не­ния, при­над­ле­жа­щие от­рез­ку ( displaystyle left[ -3pi ,-frac{3pi }{2} right]).

Работаем по формулам приведения:

( displaystyle sin left( frac{3pi }{2}+x right)=-cosx)

Подставляем в уравнение:

( displaystyle 4si{{n}^{2}}x+8left( -cosx right)+1=0)

Перепишем все через косинусы, чтобы удобнее было делать замену:

( displaystyle 4left( 1-co{{s}^{2}}x right)-8cosx+1=0)

( displaystyle -4co{{s}^{2}}x-8cosx+5=0)

( displaystyle 4co{{s}^{2}}x+8cosx-5=0)

Теперь легко сделать замену:

( displaystyle t=cosx)

( displaystyle 4{{t}^{2}}+8t-5=0)

( displaystyle {{t}_{1}}=-frac{5}{2},{{t}_{2}}=frac{1}{2})

Ясно, что ( displaystyle {{t}_{1}}=-frac{5}{2}) — посторонний корень, так как уравнение ( displaystyle cosx=-frac{5}{2}) решений не имеет.

Уравнение 30. Ре­ши­те урав­не­ние ( displaystyle t{{g}^{2}}x+left( 1+sqrt{3} right)tgx+sqrt{3}=0)
Ука­жи­те корни этого урав­не­ния, при­над­ле­жа­щие от­рез­ку ( displaystyle left[ frac{5pi }{2},4pi right]).

Здесь замена видна сразу: ( displaystyle t=tgx)

( displaystyle {{t}^{2}}+left( 1+sqrt{3} right)t+sqrt{3}=0)

( displaystyle {{t}_{1}}=-1,~{{t}_{2}}=-sqrt{3})

Тогда ( displaystyle tgx=-1) или ( displaystyle tgx=-sqrt{3})

( displaystyle x=-frac{pi }{4}+pi n)

или

( displaystyle x=-frac{pi }{3}+pi n)

Отбор корней на промежутке ( displaystyle left[ frac{5pi }{2},4pi right]):

( displaystyle n)

( displaystyle x=-frac{pi }{4}+pi n)

( displaystyle x=-frac{pi }{3}+pi n)

( displaystyle 3)

( displaystyle x=frac{11pi }{4}) — подходит!

( displaystyle x=frac{8pi }{3}) — подходит!

( displaystyle 4)

( displaystyle x=frac{15pi }{4}) — подходит!

( displaystyle x=frac{11pi }{3}) — подходит!

( displaystyle 5)

( displaystyle x=frac{19pi }{4}) — много!

( displaystyle x=frac{14pi }{3}) — тоже много!

Ответ: ( displaystyle frac{11pi }{4}; frac{8pi }{3}; frac{15pi }{4}; frac{11pi }{3})

Ну вот, теперь все! Но решение тригонометрических уравнений на этом не заканчивается, за бортом у нас остались самые сложные случаи: когда в уравнениях присутствует иррациональность или разного рода «сложные знаменатели».

Как решать подобные задания мы рассмотрим далее в разделе для продвинутого уровня.

ПРОДВИНУТЫЙ УРОВЕНЬ СЛОЖНОСТИ

Уравнения, требующие дополнительного отбора корней из-за иррациональности и знаменателя

В дополнение к рассмотренным в предыдущих двух статьях тригонометрическим уравнениям, рассмотрим еще один класс уравнений, которые требуют еще более внимательного анализа.

Данные тригонометрические примеры содержат либо иррациональность, либо знаменатель, что делает их анализ более сложным

Тем не менее ты вполне можешь столкнуться с данными уравнениями на ЕГЭ (и получить за них максимальное количество баллов!).

Однако нет худа без добра: для таких уравнений уже, как правило, не ставится вопрос о том, какие из его корней принадлежат заданному промежутку.

Давай не будем ходить вокруг да около, а сразу тригонометрические примеры.

Уравниние 31. Решить уравнение ( displaystyle frac{2si{{n}^{2}}x+sinx}{2cosx-sqrt{3}}=0~) и найти те корни, которые принадлежат отрезку ( displaystyle left[ -frac{3pi }{2},0 right]).

Решение:

У нас появляется знаменатель, который не должен быть равен нулю! Тогда решить данное уравнение – это все равно, что решить систему

( displaystyle left{ begin{array}{l}2si{{n}^{2}}x+sinx=0\2cosx-sqrt{3}ne 0end{array} right.)

Решим каждое из уравнений:

( displaystyle 2si{{n}^{2}}x+sinx=0)

( displaystyle sinxleft( 2sinx+1 right)=0)

( displaystyle sinx=0) или ( displaystyle sinx=-frac{1}{2})

( displaystyle x=pi n) или ( displaystyle x={{left( -1 right)}^{n+1}}frac{pi }{6}+pi n)

А теперь второе:

( displaystyle 2cosx-sqrt{3}ne 0)

( displaystyle xne pm frac{pi }{6}+2pi n)

или ( displaystyle xne frac{pi }{6}+2pi n), ( displaystyle xne -frac{pi }{6}+2pi n)

Теперь давай посмотрим на серию:

Уравнение 32. Решите уравнение: ( displaystyle left( sinx-frac{sqrt{3}}{2} right)sqrt{3{{x}^{2}}-7x+4}=0)

Решение:

Ну хотя бы не надо отбирать корни и то хорошо! Давай вначале решим уравнение, не взирая на иррациональность:

( displaystyle sinx=frac{sqrt{3}}{2})

( displaystyle x={{left( -1 right)}^{n}}frac{pi }{3}+pi n)

( displaystyle 3{{x}^{2}}-7x+4=0)

( displaystyle {{x}_{1}}=1,{{x}_{2}}=frac{4}{3})

И что, это все? Нет, увы, так было бы слишком просто! Надо помнить, что под корнем могут стоять только неотрицательные числа. Тогда:

( displaystyle 3{{x}^{2}}-7x+4ge 0)

Решение этого неравенства:

Уравнение 33. ( displaystyle left( 2{{x}^{2}}-5x+2 right)sqrt{cosx-sqrt{3}sinx}=0)

Как и раньше: вначале решим каждое отдельно, а потом подумаем, что же мы наделали.

( displaystyle 2{{x}^{2}}-5x+2=0)

( displaystyle {{x}_{1}}=2,~{{x}_{2}}=0,5)

Теперь второе уравнение:

( displaystyle cosx-sqrt{3}sinx=0)

( displaystyle tgx=frac{1}{sqrt{3}})

( displaystyle x=frac{pi }{6}+pi n)

Теперь самое сложное – выяснить, не получаются ли отрицательные значения под арифметическим корнем, если мы подставим туда корни из первого уравнения:

( displaystyle cos2-sqrt{3}sin2)

Число ( displaystyle 2) надо понимать как ( displaystyle 2) радианы.

Так как ( displaystyle 1) радиана – это примерно ( displaystyle 57) градусов, то ( displaystyle 2) радианы – порядка ( displaystyle 114) градусов. Это угол второй четверти.

Косинус второй четверти имеет какой знак? Минус. А синус? Плюс. Так что можно сказать про выражение

( displaystyle cos2-sqrt{3}sin2)?

Оно меньше нуля!

( displaystyle cos2-sqrt{3}sin2<0)

А значит ( displaystyle 2) – не является корнем уравнения.

Теперь черед ( displaystyle frac{1}{2}).

( displaystyle cosfrac{1}{2}-sqrt{3}sinfrac{1}{2})

Сравним это число с нулем.

Уравнение 34. ( displaystyle left( 4co{{s}^{2}}x-4cosx-3 right)sqrt{-6sinx}=0)

Решение:

( displaystyle 4co{{s}^{2}}x-4cosx-3=0)

( displaystyle t=cosx)

( displaystyle 4{{t}^{2}}-4t-3=0)

( displaystyle {{t}_{1}}=-0,5;{{t}_{2}}=1,5) – корень ( displaystyle {{t}_{2}}) не годится, ввиду ограниченности косинуса

( displaystyle cosx=-0,5)

( displaystyle x=pm frac{2pi }{3}+2pi n)

Теперь второе:

Уравнение 35. ( displaystyle frac{cos2x+sinx}{sqrt{text{sin}left( x-frac{pi }{4} right)}}=0)

Ну, ничего не поделаешь – поступаем так, как и раньше.

( displaystyle cos2x+sinx=0)

( displaystyle 1-2si{{n}^{2}}x+sinx=0)

( displaystyle 2si{{n}^{2}}x-sinx-1=0)

( displaystyle t=sinx)

( displaystyle 2{{t}^{2}}-t-1=0)

( displaystyle {{t}_{1}}=-0,5,{{t}_{2}}=1)

( displaystyle sinx=-0,5) или ( displaystyle sinx=1)

( displaystyle x={{left( -1 right)}^{n+1}}frac{pi }{6}+pi n) или ( displaystyle x={{left( -1 right)}^{n}}frac{pi }{2}+pi n)

Теперь работаем со знаменателем:

( displaystyle text{sin}left( x-frac{pi }{4} right)ge 0)

Я не хочу решать тригонометрическое неравенство, а потому поступлю хитро: возьму и подставлю в неравенство мои серии корней:

Уравнение 36. ( displaystyle sqrt{9-{{x}^{2}}}cosx=0)

Первое уравнение: ( displaystyle 9-{{x}^{2}}=0)

( displaystyle x=3) или ( displaystyle x=-3)

ОДЗ корня:

( displaystyle 9-{{x}^{2}}ge 0)

( displaystyle xin left[ -3;3 right])

Второе уравнение:

Уравнение 37. ( displaystyle frac{2si{{n}^{2}}x-sinx}{2cosx-sqrt{3}}=0)

( displaystyle 2si{{n}^{2}}x-sinx=0)

( displaystyle sinxleft( 2sinx-1 right)=0)

( displaystyle sinx=0) или ( displaystyle sinx=0,5)

( displaystyle x=pi n) или ( displaystyle x={{left( -1 right)}^{n}}frac{pi }{6}+pi n)

Но ( displaystyle 2cosx-sqrt{3}ne 0)

( displaystyle cosxne frac{sqrt{3}}{2})

( displaystyle xne pm frac{pi }{6}+2pi n)

Рассмотрим ( displaystyle x={{left( -1 right)}^{n}}frac{pi }{6}+pi n). 

Если ( displaystyle n) – четное, то

( displaystyle x=frac{pi }{6}+2pi k) – не подходит!

Если ( displaystyle n) – нечетное, ( displaystyle n=2k+1): 

( displaystyle x=-frac{pi }{6}+2pi k+pi =frac{5pi }{6}+2pi k) – подходит!

Значит, наше уравнение имеет такие серии корней:

( displaystyle x=pi n) или ( displaystyle x=frac{5pi }{6}+2pi n)

Отбор корней на промежутке ( displaystyle left[ frac{3pi }{2},3pi right]):

( displaystyle n) ( displaystyle 1) ( displaystyle 2) ( displaystyle 3)
( displaystyle x=pi n) ( displaystyle pi )— не подходит ( displaystyle 2pi ) – подходит ( displaystyle 3pi ) – подходит
( displaystyle x=frac{5pi }{6}+2pi n) ( displaystyle frac{5pi }{6}+2pi =frac{17pi }{6}) – подходит ( displaystyle frac{5pi }{6}+4pi ) – много много

Ответ: ( displaystyle 3pi ), ( displaystyle 2pi ), ( displaystyle frac{17pi }{6}).

Уравнение 38. ( displaystyle left( 2co{{s}^{2}}x-cosx right)sqrt{-11tgx}=0)

( displaystyle 2co{{s}^{2}}x-cosx=0)

( displaystyle cosxleft( 2cosx-1 right)=0)

( displaystyle cosx=0~)или ( displaystyle 2cosx-1=0)

Так как ( displaystyle tgx=frac{sinx}{cosx}), то при ( displaystyle cosx=0~) тангенс не определен. Тут же отбрасываем эту серию корней!

( displaystyle 2cosx-1=0)

( displaystyle cosx=0,5)

( displaystyle x=pm frac{pi }{3}+2pi n)

Вторая часть:

( displaystyle -11tgx=0)

( displaystyle x=pi n)

В то же время по ОДЗ требуется, чтобы

( displaystyle tgxle 0)

Проверяем найденные в первом уравнении корни:

( displaystyle tgleft( pm frac{pi }{3}+2pi n right)le 0)

Если знак ( displaystyle +):

( displaystyle tgleft( frac{pi }{3}+2pi n right)le 0)

( displaystyle frac{pi }{3}+2pi n) – углы первой четверти, где тангенс положительный. Не подходит!

Если знак ( displaystyle —):

( displaystyle tgleft( -frac{pi }{3}+2pi n right)le 0)

( displaystyle -frac{pi }{3}+2pi n) – угол четвертой четверти. Там тангенс отрицательный. Подходит. Записываем ответ:

Ответ: ( displaystyle x=pi n), ( displaystyle x=-frac{pi }{3}+2pi n).

Мы вместе разобрали в этой статье сложные тригонометрические примеры, но тебе стоит прорешать уравнения самому.

Подготовка к ЕГЭ на 90+

Алексей Шевчук — ведущий мини-групп

математика, информатика, физика

+7 (905) 541-39-06 — WhatsApp/Телеграм для записи

alexei.shevchuk@youclever.org — email для записи

  • тысячи учеников, поступивших в лучшие ВУЗы страны
  • автор понятного всем учебника по математике ЮКлэва (с сотнями благодарных отзывов);
  • закончил МФТИ, преподавал на малом физтехе;
  • репетиторский стаж — c 2003 года;
  • в 2021 году сдал ЕГЭ (математика 100 баллов, физика 100 баллов, информатика 98 баллов — как обычно дурацкая ошибка:);
  • отзыв на Профи.ру: «Рейтинг: 4,87 из 5. Очень хвалят. Такую отметку получают опытные специалисты с лучшими отзывами».

Добавить комментарий