Ранее я описал, как принимать решения с учетом ограничивающих факторов. Цель таких решений – определить ассортимент продукции (производственный план), максимально увеличивающий прибыль компании. Решение заключалось в том, чтобы распределить ресурсы между продуктами согласно маржинальной прибыли, полученной на единицу ограниченных ресурсов, при соблюдении любых других ограничений, таких как максимальный или минимальный спрос на отдельные виды продукции. [1]
Если ограничивающий фактор один (например, дефицитный станок), решение может быть найдено с применением простых формул (см. ссылку в начале статьи). Если же ограничивающих факторов несколько, применяется метод линейного программирования.
Линейное программирование – это название, данное комбинации инструментов используемых в науке об управлении. Этот метод решает проблему распределения ограниченных ресурсов между конкурирующими видами деятельности с тем, чтобы максимизировать или минимизировать некоторые численные величины, такие как маржинальная прибыль или расходы. В бизнесе он может использоваться в таких областях как планирование производства для максимального увеличения прибыли, подбор комплектующих для минимизации затрат, выбор портфеля инвестиций для максимизации доходности, оптимизация перевозок товаров в целях сокращения расстояний, распределение персонала с целью максимально увеличить эффективность работы и составление графика работ в целях экономии времени.
Скачать заметку в формате Word, рисунки в формате Excel
Линейное программирование предусматривает построение математической модели рассматриваемой задачи. После чего решение может быть найдено графически (рассмотрено ниже), с использованием Excel (будет рассмотрено отдельно) или специализированных компьютерных программ. [2]
Пожалуй, построение математической модели – наиболее сложная часть линейного программирования, требующая перевода рассматриваемой задачи в систему переменных величин, уравнений и неравенств – процесс, в конечном итоге зависящий от навыков, опыта, способностей и интуиции составителя модели.
Рассмотрим пример построения математической модели линейного программирования
Николай Кузнецов управляет небольшим механическим заводом. В будущем месяце он планирует изготавливать два продукта (А и В), по которым удельная маржинальная прибыль оценивается в 2500 и 3500 руб., соответственно.
Изготовление обоих продуктов требует затрат на машинную обработку, сырье и труд (рис. 1). На изготовление каждой единицы продукта А отводится 3 часа машинной обработки, 16 единиц сырья и 6 единиц труда. Соответствующие требования к единице продукта В составляют 10, 4 и 6. Николай прогнозирует, что в следующем месяце он может предоставить 330 часов машинной обработки, 400 единиц сырья и 240 единиц труда. Технология производственного процесса такова, что не менее 12 единиц продукта В необходимо изготавливать в каждый конкретный месяц.
Рис. 1. Использование и предоставление ресурсов
Николай хочет построить модель с тем, чтобы определить количество единиц продуктов А и В, которые он доложен производить в следующем месяце для максимизации маржинальной прибыли.
Линейная модель может быть построена в четыре этапа.
Этап 1. Определение переменных
Существует целевая переменная (обозначим её Z), которую необходимо оптимизировать, то есть максимизировать или минимизировать (например, прибыль, выручка или расходы). Николай стремится максимизировать маржинальную прибыль, следовательно, целевая переменная:
Z = суммарная маржинальная прибыль (в рублях), полученная в следующем месяце в результате производства продуктов А и В.
Существует ряд неизвестных искомых переменных (обозначим их х1, х2, х3 и пр.), чьи значения необходимо определить для получения оптимальной величины целевой функции, которая, в нашем случае является суммарной маржинальной прибылью. Эта маржинальная прибыль зависит от количества произведенных продуктов А и В. Значения этих величин необходимо рассчитать, и поэтому они представляют собой искомые переменные в модели. Итак, обозначим:
х1 = количество единиц продукта А, произведенных в следующем месяце.
х2 = количество единиц продукта В, произведенных в следующем месяце.
Очень важно четко определить все переменные величины; особое внимание уделите единицам измерения и периоду времени, к которому относятся переменные.
Этап. 2. Построение целевой функции
Целевая функция – это линейное уравнение, которое должно быть или максимизировано или минимизировано. Оно содержит целевую переменную, выраженную с помощью искомых переменных, то есть Z выраженную через х1, х2… в виде линейного уравнения.
В нашем примере каждый изготовленный продукт А приносит 2500 руб. маржинальной прибыли, а при изготовлении х1 единиц продукта А, маржинальная прибыль составит 2500 * х1. Аналогично маржинальная прибыль от изготовления х2 единиц продукта В составит 3500 * х2. Таким образом, суммарная маржинальная прибыль, полученная в следующем месяце за счет производства х1 единиц продукта А и х2 единиц продукта В, то есть, целевая переменная Z составит:
Z = 2500 * х1 + 3500 *х2
Николай стремится максимизировать этот показатель. Таким образом, целевая функция в нашей модели:
Максимизировать Z = 2500 * х1 + 3500 *х2
Этап. 3. Определение ограничений
Ограничения – это система линейных уравнений и/или неравенств, которые ограничивают величины искомых переменных. Они математически отражают доступность ресурсов, технологические факторы, условия маркетинга и иные требования. Ограничения могут быть трех видов: «меньше или равно», «больше или равно», «строго равно».
В нашем примере для производства продуктов А и В необходимо время машинной обработки, сырье и труд, и доступность этих ресурсов ограничена. Объемы производства этих двух продуктов (то есть значения х1 их2) будут, таким образом, ограничены тем, что количество ресурсов, необходимых в производственном процессе, не может превышать имеющееся в наличии. Рассмотрим ситуацию со временем машинной обработки. Изготовление каждой единицы продукта А требует трех часов машинной обработки, и если изготовлено х1, единиц, то будет потрачено З * х1, часов этого ресурса. Изготовление каждой единицы продукта В требует 10 часов и, следовательно, если произведено х2 продуктов, то потребуется 10 * х2 часов. Таким образом, общий объем машинного времени, необходимого для производства х1 единиц продукта А и х2 единиц продукта В, составляет 3 * х1 + 10 * х2. Это общее значение машинного времени не может превышать 330 часов. Математически это записывается следующим образом:
3 * х1 + 10 * х2 ≤ 330
Аналогичные соображения применяются к сырью и труду, что позволяет записать еще два ограничения:
16 * х1 + 4 * х2 ≤ 400
6 * х1 + 6 * х2 ≤ 240
Наконец следует отметить, что существует условие, согласно которому должно быть изготовлено не менее 12 единиц продукта В:
х2 ≥ 12
Этап 4. Запись условий неотрицательности
Искомые переменные не могут быть отрицательными числами, что необходимо записать в виде неравенств х1 ≥ 0 и х2 ≥ 0. В нашем примере второе условия является избыточным, так как выше было определено, что х2 не может быть меньше 12.
Полная модель линейного программирования для производственной задачи Николая может быть записана в виде:
Максимизировать: Z = 2500 * х1 + 3500 *х2
При условии, что: 3 * х1 + 10 * х2 ≤ 330
16 * х1 + 4 * х2 ≤ 400
6 * х1 + 6 * х2 ≤ 240
х2 ≥ 12
х1 ≥ 0
Рассмотрим графический метод решения задачи линейного программирования.
Этот метод подходит только для задач с двумя искомыми переменными. Модель, построенная выше, будет использована для демонстрации метода.
Оси на графике представляют собой две искомые переменные (рис. 2). Не имеет значения, какую переменную отложить вдоль, какой оси. Важно выбрать масштаб, который в конечном итоге позволит построить наглядную диаграмму. Поскольку обе переменные должны быть неотрицательными, рисуется только I-й квадрант.
Рис. 2. Оси графика линейного программирования
Рассмотрим, например, первое ограничение: 3 * х1 + 10 * х2 ≤ 330. Это неравенство описывает область, лежащую ниже прямой: 3 * х1 + 10 * х2 = 330. Эта прямая пересекает ось х1 при значении х2 = 0, то есть уравнение выглядит так: 3 * х1 + 10 * 0 = 330, а его решение: х1 = 330 / 3 = 110
Аналогично вычисляем точки пересечения с осями х1 и х2 для всех условий-ограничений:
Область допустимых значений | Граница допустимых значений | Пересечение с осью х1 | Пересечение с осью х2 |
3 * х1 + 10 * х2 ≤ 330 | 3 * х1 + 10 * х2 = 330 | х1 = 110; х2 = 0 | х1 = 0; х2 = 33 |
16 * х1 + 4 * х2 ≤ 400 | 16 * х1 + 4 * х2 = 400 | х1 = 25; х2 = 0 | х1 = 0; х2 = 100 |
6 * х1 + 6 * х2 ≤ 240 | 6 * х1 + 6 * х2 = 240 | х1 = 40; х2 = 0 | х1 = 0; х2 = 40 |
х2 ≥ 12 | х2 = 12 | не пересекает; идет параллельно оси х1 | х1 = 0; х2 = 12 |
Графически первое ограничение отражено на рис. 3.
Рис. 3. Построение области допустимых решений для первого ограничения
Любая точка в пределах выделенного треугольника или на его границах будет соответствовать этому ограничению. Такие точки называются допустимыми, а точки за пределами треугольника называются недопустимыми.
Аналогично отражаем на графике остальные ограничения (рис. 4). Значения х1 и х2 на или внутри заштрихованной области ABCDE будут соответствовать всем ограничениям модели. Такая область называется областью допустимых решений.
Рис. 4. Область допустимых решений для модели в целом
Теперь в области допустимых решений необходимо определить значения х1 и х2, которые максимизируют Z. Для этого в уравнении целевой функции:
Z = 2500 * х1 + 3500 *х2
разделим (или умножим) коэффициенты перед х1 и х2 на одно и тоже число, так чтобы получившиеся значения попали в диапазон, отражаемый на графике; в нашем случае такой диапазон – от 0 до 120; поэтому коэффициенты можно разделить на 100 (или 50):
Z = 25х1 + 35х2
затем присвоим Z значение равное произведению коэффициентов перед х1 и х2 (25 * 35 = 875):
875 = 25х1 + 35х2
и, наконец, найдем точки пересечения прямой с осями х1 и х2:
Уравнение целевой функции | Пересечение с осью х1 | Пересечение с осью х2 |
875 = 25х1 + 35х2 | х1 = 35; х2 = 0 | х1 = 0; х2 = 25 |
Нанесем это целевое уравнение на график аналогично ограничениям (рис. 5):
Рис. 5. Нанесение целевой функции (черная пунктирная линия) на область допустимых решений
Значение Z постоянно на всем протяжении линии целевой функции. Чтобы найти значения х1 и х2, которые максимизируют Z, нужно параллельно переносить линию целевой функции к такой точке в границах области допустимых решений, которая расположена на максимальном удалении от исходной линии целевой функции вверх и вправо, то есть к точке С (рис. 6).
Рис. 6. Линия целевой функции достигла максимума в пределах области допустимых решений (в точке С)
Можно сделать вывод, что оптимальное решение будет находиться в одной из крайних точек области принятия решения. В какой именно, будет зависеть от угла наклона целевой функции и от того, какую задачу мы решаем: максимизации или минимизации. Таким образом, не обязательно чертить целевую функцию – все, что необходимо, это определить значения х1 и х2 в каждой из крайних точек путем считывания с диаграммы или путем решения соответствующей пары уравнений. Найденные значения х1 и х2 затем подставляются в целевую функцию для расчета соответствующей величины Z. Оптимальным решением является то, при котором получена максимальная величина Z при решении задачи максимизации, и минимальная – при решении задачи минимизации.
Определим, например значения х1 и х2 в точке С. Заметим, что точка С находится на пересечении линий: 3х1 + 10х2 = 330 и 6х1 + 6х2 = 240. Решение этой системы уравнений дает: х1 = 10, х2 = 30. Результаты расчета для всех вершин области допустимых решений приведены в таблице:
Точка | Значение х1 | Значение х2 | Z = 2500х1 + 3500х2 |
А | 22 | 12 | 97 000 |
В | 20 | 20 | 120 000 |
С | 10 | 30 | 130 000 |
D | 0 | 33 | 115 500 |
E | 0 | 12 | 42 000 |
Таким образом, Николай Кузнецом должен запланировать на следующий месяц производство 10 изделий А и 30 изделий В, что позволит ему получить маржинальную прибыль в размере 130 тыс. руб.
Кратко суть графического метода решения задач линейного программирования можно изложить следующим образом:
- Начертите на графике две оси, представляющие собою два параметра решения; нарисуйте только I-й квадрант.
- Определите координаты точек пересечения всех граничных условий с осями, подставляя в уравнения граничных условий поочередно значения х1 = 0 и х2 = 0.
- Нанести линии ограничений модели на график.
- Определите на графике область (называемую допустимой областью принятия решения), которая соответствует всем ограничениям. Если такая область отсутствует, значит, модель не имеет решения.
- Определите значения искомых переменных в крайних точках области принятия решения, и в каждом случае рассчитайте соответствующее значение целевой переменной Z.
- Для задач максимизации решение – точка, в которой Z максимально, для задач минимизации, решение – точка, в которой Z минимально.
[1] Настоящая заметка написана по материалам CIMA.
[2] См., например, здесь.
Содержание:
Исследование различных процессов, в том числе и экономических, обычно начинается с их моделирования, т.е. отражения реального процесса через математические соотношения. При этом составляются уравнения или неравенства, которые связывают различные показатели (переменные) исследуемого процесса, образуя систему ограничений. В этих процессах выделяются такие переменные, меняя которые можно получить оптимальное значение основного показателя данной системы (прибыль, доход, затраты и т.д.). Соответствующие методы, позволяющие решать указанные задачи, объединяются под общим названием «математическое программирование» или математические методы исследования операций.
Математическое программирование включает в себя такие разделы математики, как линейное, нелинейное и динамическое программирование. Сюда же относят и стохастическое программирование, теорию игр, теорию массового обслуживания, теорию управления запасами и некоторые другие.
Математическое программирование – это раздел высшей математики, посвященный решению задач, связанных с нахождением экстремумов функций нескольких переменных, при наличии ограничений на переменные.
Методами математического программирования решаются задачи о распределении ресурсов, планировании выпуска продукции, ценообразования, транспортные задачи и т.д.
Построение математической модели экономической задачи включает следующие этапы:
- выбор переменных задачи;
- составление системы ограничений;
- выбор целевой функции.
Переменными задачи называются величины
Система ограничений включает в себя систему уравнений и неравенств, которым удовлетворяют переменные задачи и которые следуют из ограниченности ресурсов или других экономических или физических условий, например, положительности переменных и т.п.
Целевой функцией называют функцию переменных задачи, которая характеризует качество выполнения задачи, и экстремум которой требуется найти.
Общая задача математического программирования формулируется следующим образом: найти экстремум целевой функции: и соответствующие ему переменные при условии, что эти переменные удовлетворяют системе ограничений:
Если целевая функция и система ограничений линейны, то задача математического программирования называется задачей линейного программирования и в общем виде может быть записана следующим образом:
Данная запись означает следующее: найти экстремум целевой функции задачи и соответствующие ему переменные X = (). при условии, что эти переменные удовлетворяют системе ограничений и условиям неотрицательности.
Допустимым решением (планом) задачи линейного программирования называется любойX = (). удовлетворяющий системе ограничений и условиям неотрицательности. Множество допустимых решений (планов) задачи образует область допустимых решений.
Оптимальным решением (планом) задачи линейного программирования называется такое допустимое решение задачи, при котором целевая функция достигает экстремума.
Задача линейного программирования
В общем случае задача линейного программирования записывается так, что ограничениями являются как уравнения, так и неравенства, а переменные могут быть как неотрицательными, так и произвольно изменяющимися. В случае, когда все ограничения являются уравнениями и все переменные удовлетворяют условию неотрицательности, задачу линейного программирования называют канонической. Каноническая задача линейного программирования в координатной форме записи имеет вид:
Используя знак суммирования эту задачу можно записать следующим образом:
Каноническая задача линейного программирования в векторной форме имеет вид:
В данном случае введены векторы:
Здесь С – X – скалярное произведение векторов С и X.
Каноническая задача линейного программирования в матричной форме записи имеет вид:
где:
Здесь А – матрица коэффициентов системы уравнений, X -матрица-столбец переменных задачи; – матрица-столбец правых частей системы ограничений.
Нередко используются задачи линейного программирования, называемые симметричными, которые в матричной форме записи имеют вид:
Приведение общей задачи линейного программирования к канонической форме
В большинстве методов решения задач линейного программирования предполагается, что система ограничений состоит из уравнений и естественных условий неотрицательности переменных. Однако, при составлении математических моделей экономических задач ограничения в основном формулируются системы неравенств, поэтому возникает необходимость перехода от системы неравенств к системе уравнений. Это может быть сделано следующим образом. К левой части линейного неравенства:
прибавляется величина такая, что переводит неравенство в равенство , где:
Неотрицательная переменная называется дополнительной переменной.
Основания для возможности такого преобразования дает следующая теорема.
Теорема. Каждому решению неравенства соответствует единственное решение уравнения: и неравенства и, наоборот, каждому решению уравнения: и неравенства соответствует единственное решение неравенства:
Доказательство. Пусть – решение неравенства. Тогда:
Если в уравнение вместо переменных подставить значения , получится:
Таким образом, решение удовлетворяет уравнению: и неравенству .
Доказана первая часть теоремы.
Пусть удовлетворяет уравнению и неравенству , т.е. . Отбрасывая в левой части равенства неотрицательную величину , получим:
т.е. удовлетворяет неравенству: что и требовалось доказать.
Если в левую часть неравенств системы ограничений вида
добавить переменную , то получится система ограничений – уравнений В случае, если система неравенств-ограничений имеет вид , то из левой части неравенств-ограничений нужно вычесть соответствующую неотрицательную дополнительную переменную
Полученная таким образом система уравнений-ограничений, вместе с условиями неотрицательности переменных, т.е. и целевой функцией является канонической формой записи задачи линейного программирования.
Дополнительные переменные вводятся в целевую функцию с нулевыми коэффициентами и поэтому не влияют на ее значения.
В реальных практических задачах дополнительные неизвестные имеют определенный смысл. Например, если левая часть ограничений задачи отражает расход ресурсов на производство продукции в объемах , а правые части – наличие производственных ресурсов, то числовые значения дополнительных неизвестных и означают объем неиспользованных ресурсов i-го вида.
Иногда возникает также необходимость перейти в задаче от нахождения минимума к нахождению максимума или наоборот. Для этого достаточно изменить знаки всех коэффициентов целевой функции на противоположные, а в остальном задачу оставить без изменения. Оптимальные решения полученных таким образом задач на максимум и минимум совпадают, а значения целевых функций при оптимальных решениях отличаются только знаком.
Множества допустимых решений
Множество точек называется выпуклым, если оно вместе с любыми двумя своими точками содержит их произвольную выпуклую линейную комбинацию.
Выпуклой линейной комбинацией произвольных точек Евклидова пространства называется сумма – произвольные неотрицательные числа, сумма которых равна 1.
Геометрически это означает, что если множеству с любыми двумя его произвольными точками полностью принадлежит и отрезок, соединяющий эти точки, то оно будет выпуклым. Например, выпуклыми множествами являются прямолинейный отрезок, прямая, круг, шар, куб, полуплоскость, полупространство и др.
Точка множества называется граничной, если любая окрестность этой точки сколь угодно малого размера содержит точки, как принадлежащие множеству, так и не принадлежащие ему.
Граничные точки множества образуют его границу. Множество называется замкнутым, если оно содержит все свои граничные точки.
Ограниченным называется множество, если существует шар с радиусом конечной длины и центром в любой точке множества, содержащий полностью в себе данное множество. В противном случае множество будет неограниченным.
Пересечение двух или более выпуклых множеств будет выпуклым множеством, так как оно отвечает определению выпуклого множества.
Точка выпуклого множества называется угловой, если она не может быть представлена в виде выпуклой линейной комбинации двух других различных точек этого множества.
Так, угловые точки треугольника – его вершины, круга – точки окружности, ее ограничивающие, а прямая, полуплоскость, плоскость, полупространство, пространство не имеют угловых точек.
Выпуклое замкнутое ограниченное множество на плоскости, имеющее конечное число угловых точек, называется выпуклым многоугольником, а замкнутое выпуклое ограниченное множество в трехмерном пространстве, имеющее конечное число угловых точек, называется выпуклым многогранником.
Теорема. Любая тонка многоугольника является выпуклой линейной комбинацией его угловых точек.
Теорема. Область допустимых решений задачи линейного программирования является выпуклым множеством.
Уравнение целевой функции при фиксированных значениях самой функции является уравнением прямой линии (плоскости, гиперплоскости и т.д.). Прямая, уравнение которой получено из целевой функции при равенстве ее постоянной величине, называется линией уровня.
Линия уровня, имеющая общие точки с областью допустимых решений и расположенная так, что область допустимых решений находится целиком в одной из полуплоскостей, называется опорной прямой.
Теорема. Значения целевой функции в точках линии уровня увеличиваются, если линию уровня перемещать параллельно начальному положению в направлении нормали и убывают при перемещении в противоположном направлении.
Теорема. Целевая функция задачи линейного программирования достигает экстремума в угловой точке области допустимых решений; причем, если целевая функция достигает экстремума в нескольких угловых точках области допустимых решений, она также достигает экстремума в любой выпуклой комбинации этих точек.
Опорное решение задачи линейного программирования, его взаимосвязь с угловыми точками
Каноническая задача линейного программирования в векторной форме имеет вид:
Положительным координатам допустимых решений ставятся в соответствие векторы условий. Эти системы векторов зависимы, так как число входящих в них векторов больше размерности векторов.
Базисным решением системы называется частное решение, в котором неосновные переменные имеют нулевые значения. Любая система уравнений имеет конечное число базисных решений, равное , где n – число неизвестных, r- ранг системы векторов условий. Базисные решения, координаты которых удовлетворяют условию неотрицательности, являются опорными.
Опорным решением задачи линейного программирования называется такое допустимое решение , для которого векторы условий, соответствующие положительным координатам линейно независимы.
Число отличных от нуля координат опорного решения не может превосходить ранга r системы векторов условий (т.е. числа линейно независимых уравнений системы ограничений).
Если число отличных от нуля координат опорного решения равно m, то такое решение называется невырожденным, в противном случае, если число отличных от нуля координат опорного решения меньше т, такое решение называется вырожденным.
Базисом опорного решения называется базис системы векторов условий задачи, в состав которой входят векторы, соответствующие отличным от нуля координатам опорного решения.
Теорема. Любое опорное решение является угловой точкой области допустимых решений.
Теорема. Любая угловая точка области допустимых решений является опорным решением.
Пример:
Графический метод решения задачи линейной оптимизации рассмотрим на примере задачи производственного планирования при n = 2.
Предприятие изготавливает изделия двух видов А и В. Для производства изделий оно располагает сырьевыми ресурсами трех видов С, D и Е в объемах 600, 480 и 240 единиц соответственно. Нормы расхода ресурсов на единицу продукции каждого вида известны и представлены в табл. 14.1
Прибыль от реализации изделия А составляет 40 млн. руб., а изделия В – 50 млн.руб. Требуется найти объемы производства изделий А и В, обеспечивающие максимальную прибыль.
Построим математическую модель задачи, для чего обозначим – объемы производства изделий А и В соответственно.
Тогда прибыль предприятия от реализации изделий А и изделий В составит:
Ограничения по ресурсам будут иметь вид:
Естественно, объемы производства должны быть неотрицательными
Решение сформулированной задами найдем, используя геометрическую интерпретацию. Определим сначала многоугольник решений, для чего систему ограничений неравенств запишем в виде уравнений и пронумеруем их:
Каждое из записанных уравнений представляет собой прямую на плоскости, причем 4-я и 5-я прямые являются координатными осями.
Чтобы построить первую прямую, найдем точки ее пересечения с осями координат: а при .
Далее нас интересует, по какую сторону от прямой будет находиться полуплоскость, соответствующая первому неравенству. Чтобы определить искомую полуплоскость, возьмем точку O(0,0) подставив ее координаты в неравенство, видим, что оно удовлетворяется. Так как точка O(0,0) лежит левее первой прямой, то и полуплоскость будет находиться левее прямой
. На рис 14 , расположение полуплоскости относительно первой прямой отмечено стрелками.
Аналогично построены 2-я и 3-я прямые и найдены полуплоскости, соответствующие 2-му и 3-му неравенству. Точки, удовлетворяющие ограничениям , находятся в первом квадранте. Множество точек, удовлетворяющих всем ограничениям одновременно, является ОДР системы ограничений. Такой областью на графике (рис. 14.1) является многоугольник ОАВС.
Любая точка многоугольника решений удовлетворяет системе ограничений задачи и, следовательно, является ее решением. Это говорит о том, что эта задача линейной оптимизации имеет множество допустимых решений, т.е. моговариантпа. Нам же необходимо найти решение, обеспечивающее максимальную прибыль.
Чтобы найти эту точку, приравняем функцию к нулю и построим соответствующую ей прямую. Вектор-градиент прямой функции
имеет координаты
Рис. 14.1
Изобразим вектор на графике и построим прямую функции перпендикулярно вектору на рис. 14.1. Перемещая прямую функции параллельно самой себе в направлении вектора, видим, что последней точкой многоугольника решений, которую пересечет прямая функции, является угловая точка В. Следовательно, в точке В функция достигает максимального значения. Координаты точки В находим, решая систему уравнений, прямые которых пересекаются в данной точке.
Решив эту систему, получаем, что
Следовательно, если предприятие изготовит изделия в найденных объемах, то получит максимальную прибыль, равную:
Алгоритм решения задачи линейного программирования графическим методом таков:
- Строится область допустимых решений;
- Строится вектор нормали к линии уровня с точкой приложении в начале координат;
- Перпендикулярно вектору нормали проводится одна из линий уровня, проходящая через начало координат;
- Линия уровня перемещается до положения опорной прямой. На этой прямой и будут находиться максимум или минимум функции.
В зависимости от вида области допустимых решений и целевой функции задача может иметь единственное решение, бесконечное множество решений или не иметь ни одного оптимального решения.
На рис. 14.3 показан случай, когда прямая функции параллельна отрезку АВ, принадлежащему ОДР. Максимум функции Z достигается в точке А и в точке В, а, следовательно, и в любой точке отрезка АВ, т.к. эти точки могут быть выражены в виде линейной комбинации угловых точек А и В.
На рисунке 14.4 изображен случай, когда система ограничений образует неограниченное сверху множество. Функция Z в данном случае стремится к бесконечности, так как прямую функции можно передвигать в направлении вектора градиента как угодно далеко, а на рисунке 14.5 представлен случай несовместной системы ограничений.
Основные понятия симплексного метода решения задачи линейного программирования.
Среди универсальных методов решения задач линейного программирования наиболее распространен симплексный метод (или симплекс-метод), разработанный американским ученым Дж.Данцигом. Суть этого метода заключается в том, что вначале получают допустимый вариант, удовлетворяющий всем ограничениям, но необязательно оптимальный (так называемое начальное опорное решение); оптимальность достигается последовательным улучшением исходного варианта за определенное число этапов (итераций). Нахождение начального опорного решения и переход к следующему опорному решению проводятся на основе применения рассмотренного выше метода Жордана-Гаусса для системы линейных уравнений в канонической форме, в которой должна быть предварительно записана исходная задача линейного программирования; направление перехода от одного опорного решения к другому выбирается при этом на основе критерия оптимальности (целевой функции) исходной задачи.
Симплекс-метод основан на следующих свойствах задачи линейного программирования:
- Не существует локального экстремума, отличного от глобального. Другими словами, если экстремум есть, то он единственный.
- Множество всех планов задачи линейного программирования выпукло.
- Целевая функция ЗЛП достигает своего максимального (минимального) значения в угловой точке многогранника решений (в его вершине). Если целевая функция принимает свое оптимальное значение более чем в одной угловой точке, то она достигает того же значения в любой точке, являющейся выпуклой линейной комбинацией этих точек.
- Каждой угловой точке многогранника решений отвечает опорный план ЗЛП.
Рассмотрим две разновидности симплексного метода: симплекс-метод с естественным базисом и симплекс-метод с искусственным базисом (или М-метод).
- Заказать решение задач по высшей математике
Симплекс-метод с естественным базисом
Для применения этого метода задача линейного программирования должна быть сформулирована в канонической форме, причем матрица системы уравнений должна содержать единичную подматрицу размерностью mхm. В этом случае очевиден начальный опорный план (неотрицательное базисное решение).
Для определенности предположим, что первые m векторов матрицы системы составляют единичную матрицу. Тогда очевиден первоначальный опорный план:
Проверка на оптимальность опорного плана проходит с помощью критерия оптимальности, переход к другому опорному плану — с помощью преобразований Жордана-Гаусса и с использованием критерия оптимальности.
Полученный опорный план снова проверяется на оптимальность и т.д. Процесс заканчивается за конечное число шагов, причем на последнем шаге либо выявляется неразрешимость задачи (конечного оптимума нет), либо получаются оптимальный опорный план и соответствующее ему оптимальное значение целевой функции.
Признак оптимальности заключается в следующих двух теоремах.
Теорема 1. Если для некоторого вектора, не входящего в базис, выполняется условие:
то можно получить новый опорный план, для которого значение целевой функции будет больше исходного; при этом могут быть два случая:
- если все координаты вектора, подлежащего вводу в базис, неположительны, то задача линейного программирования не имеет решения;
- если имеется хотя бы одна положительная координата у вектора, подлежащего вводу в базис, то можно получить новый опорный план.
Теорема 2. Если для всех векторов выполняется условие то полученный план является оптимальным.
На основании признака оптимальности в базис вводится вектор Ак, давший минимальную отрицательную величину симплекс-разности:
Чтобы выполнялось условие неотрицательности значений опорного плана, выводится из базиса вектор , который дает минимальное положительное отношение:
Строка называется направляющей, столбец и элемент — направляющими (последний называют также разрешающим элементом).
Элементы вводимой строки, соответствующей направляющей строке, в новой симплекс-таблице вычисляются по формулам:
а элементы любой другой i-й строки пересчитываются по формулам:
Значения базисных переменных нового опорного плана (показатели графы «план») рассчитываются по формулам:
Если наименьшее значение Q достигается для нескольких базисных векторов, то чтобы исключить возможность зацикливания (повторения базиса), можно применить следующий способ.
Вычисляются частные, полученные от деления всех элементов строк, давших одинаковое минимальное значение Q на свои направляющие элементы. Полученные частные сопоставляются по столбцам слева направо, при этом учитываются и нулевые, и отрицательные значения. В процессе просмотра отбрасываются строки, в которых имеются большие отношения, и из базиса выводится вектор, соответствующий строке, в которой раньше обнаружится меньшее частное.
Для использования приведенной выше процедуры симплекс -метода к минимизации линейной формы следует искать максимум функции затем полученный максимум взять с противоположным знаком. Это и будет искомый минимум исходной задачи линейного программирования.
Симплексный метод с искусственным базисом (М-метод)
Симплексный метод с искусственным базисом применяется в тех случаях, когда затруднительно найти первоначальный опорный план исходной задачи линейного программирования, записанной в канонической форме.
М-метод заключается в применении правил симплекс-метода к так называемой М-задаче. Она получается из исходной добавлением к левой части системы уравнений в канонической форме исходной задачи линейного программирования таких искусственных единичных векторов с соответствующими неотрицательными искусственными переменными, чтобы вновь полученная матрица содержала систему единичных линейно-независимых векторов. В линейную форму исходной задачи добавляется в случае её максимизации слагаемое, представляющее собой произведение числа (-М) на сумму искусственных переменных, где М – достаточно большое положительное число.
В полученной задаче первоначальный опорный план очевиден. При применении к этой задаче симплекс-метода оценки А, теперь будут зависеть от числа М. Для сравнения оценок нужно помнить, что М – достаточно большое положительное число, поэтому из базиса будут выводиться в первую очередь искусственные переменные.
В процессе решения M-задачи следует вычеркивать в симплекс-таблице искусственные векторы по мере их выхода из базиса. Если все искусственные векторы вышли из базиса, то получаем исходную задачу. Если оптимальное решение М-задачи содержит искусственные векторы или М-задача неразрешима, то исходная задача также неразрешима.
Путем преобразований число вводимых переменных, составляющих искусственный базис, может быть уменьшено до одной.
Теория двойственности
Любой задаче линейного программирования можно сопоставить сопряженную или двойственную ей задачу. Причем, совместное исследование этих задач дает, как правило, значительно больше информации, чем исследование каждой из них в отдельности.
Любую задачу линейного программирования можно записать в виде:
Первоначальная задача называется исходной или прямой.
Модель двойственной задачи имеет вид:
Переменные двойственной задачи называют объективно обусловленными оценками или двойственными оценками.
Связь исходной и двойственной задач заключается, в частности, в том, что решение одной из них может быть получено непосредственно из решения другой. Каждая из задач двойственной пары фактически является самостоятельной задачей линейного программирования и может быть решена независимо от другой.
Двойственная задача по отношению к исходной составляется согласно следующим правилам:
- Целевая функция исходной задачи формулируется на максимум, а целевая функция двойственной задачи – на минимум, при этом в задаче на максимум все неравенства в функциональных ограничениях имеют вид <, а в задаче на минимум – вид
- Матрица , составленная из коэффициентов при неизвестных в системе ограничении исходной задачи, и аналогичная матрица , в двойственной задаче получаются друг из друга транспонированием;
- Число переменных в двойственной задаче равно числу функциональных ограничений исходной задачи, а число ограничений в системе двойственной задачи – числу переменных в исходной задаче;
- Коэффициентами при неизвестных в целевой функции двойственной задачи являются свободные члены в системе ограничений исходной задачи, а правыми частями в ограничениях двойственной задачи – коэффициенты при неизвестных в целевой функции исходной задачи;
- Каждому ограничению одной задачи соответствует переменная другой задачи: номер переменной совпадает с номером ограничения; при этом ограничению, записанному в виде неравенства <, соответствует переменная, связанная условием неотрицательности.
Если функциональное ограничение исходной задачи является равенством, то соответствующая переменная двойственной задачи может принимать как положительные, так и отрицательные значения.
Математические модели пары двойственных задач могут быть симметричными и несимметричными. В несимметричных двойственных задачах система ограничений исходной задачи задается в виде равенств, а двойственной – в виде неравенств, причем переменные в двойственной задаче могут быть и отрицательными. В симметричных двойственных задачах система ограничений как исходной, так и двойственной задачи задается в виде неравенств, причем на двойственные переменные налагается условие неотрицательности.
где:
Рассмотрим пример, показывающий, как в реальной экономической ситуации появляются взаимно двойственные задачи линейного программирования.
На некотором предприятии после выполнения годового плана возник вопрос: как поступить с остатками сырья? Из оставшегося сырья можно наладить производство продукции и реализовать его или продать сырье.
Предположим, что имеется два вида сырья , остатки которого составляют соответственно 35 и 20 единиц. Из этого сырья можно наладить производство трех видов товаров:
При исследовании первой возможности (наладить выпуск товаров ) возникает вопрос о плане выпуска, который задается тремя переменными , которые соответствуют количеству произведенного товара. Эти переменные должны удовлетворять условиям:
Прибыль, которую получит предприятие от реализации товара, составит:
В интересах предприятия эту прибыль максимизировать.
Это прямая задача.
Объективно обусловленными оценками двойственной задачи будут цены, по которым целесообразно продавать излишки сырья, т.е. при продаже сырья по ценам ниже предприятие будет терпеть убытки.
Справедливое требование со стороны продающего предприятия состоит в следующем: если взять сырье, идущее на производство единицы товара то выручка от его продажи должна быть не меньше, чем прибыль от реализации готового изделия (в противном случае нет смысла продавать сырье – целесообразнее изготовить товар и получить прибыль от его реализации).
Это требование можно представить в виде системы неравенств:
В левой части каждого неравенства предполагаемая выручка от продажи сырья, необходимого для производства единицы товара а в правой – прибыль от реализации этой единицы товара.
Что касается покупателя, то он заинтересован в минимизации расходов на покупку сырья, т.е. величины
Теоремы двойственности
Теоремы двойственности позволяют установить взаимосвязь между оптимальными решениями пары двойственных задач: можно либо найти оптимальное решение другой задачи, не решая ее, либо установить его отсутствие.
Возможны следующие случаи:
- обе задачи из пары двойственных имеют оптимальные решения;
- одна из задач не имеет решения ввиду неограниченности целевой функции, а другая – ввиду несовместности системы ограничений.
Первая теорема двойственности.
Для двойственных задач линейного программирования имеет место один из взаимоисключающих случаев:
- В прямой и двойственной задачах имеются оптимальные решения, при этом значения целевых функций на оптимальных решениях совпадают:
- В прямой задаче допустимое множество не пусто, а целевая функция на этом множестве не ограничена сверху. При этом у двойственной задачи будет пустое допустимое множество.
- В двойственной задаче допустимое множество не пусто, а целевая функция на этом множестве не ограничена снизу. При этом у прямой задачи допустимое множество оказывается пустым;
- Обе из рассматриваемых задач имеют пустые допустимые множества.
Вторая теорема двойственностн (теорема о дополняющей нежесткости):
Пусть – допустимое решение прямой задачи, а допустимое решение двойственной задачи.
Для того, чтобы они были оптимальными решениями соответствующих взаимодвойственных задач, необходимо и достаточно, чтобы выполнялись следующие соотношения:
Эти условия устанавливают связь между оптимальными значениями прямой и двойственной задач и позволяют, зная решение одной из них, находить решение другой задачи.
Теорема об оценках:
Значения переменных в оптимальном решении двойственной задачи представляют собой оценки влияния свободных членов системы ограничений – неравенств прямой задачи на величину :
Диапазон изменения компонент вектора В, в котором сохраняется оптимальный базис, называется областью устойчивости оптимальных оценок.
Экономический смысл первой теоремы двойственности следующий. План производства X и набор ресурсов Y оказываются оптимальными тогда и только тогда, когда прибыль от реализации продукции, определенная при известных заранее ценах продукции , равна затратам на ресурсы по «внутренним» (определяемым только из решения задачи) ценам ресурсов Для всех других планов прибыль от продукции всегда меньше или равна стоимости затраченных ресурсов , т.е. ценность выпущенной продукции не превосходит суммарной оценки затраченных ресурсов. Значит, величина Z(X)~ F(Y) характеризует производственные потери в зависимости от рассмотренной производственной программы и выбранных оценок ресурсов.
- Дифференциальное исчисление функций одной переменной
- Исследование функции
- Пространство R”
- Неопределённый интеграл
- Линейный оператор – свойства и определение
- Многочлен – виды, определение с примерами
- Квадратичные формы – определение и понятие
- Системы линейных уравнений с примерами
Линейное
программирование
(ЛП) — это одна из математических задач
оптимизации, которая широко
применяется в инженерной деятельности.
Например,
при выборе варианта технологического
оборудования для изготовления тех или
иных деталей желательно обеспечить их
минимальную себестоимость [13]. Менеджеры
предприятия, производящего несколько
видов продукции, должны знать, сколько
и какого вида продукции
необходимо выпускать, чтобы доход был
как можно больше или
издержки как можно меньше [11]. С
использованием ЛП решаются задачи
перевозок, снабжения и многие
другие.
4.1. Ограничения и целевая функция задач лп
Все
модели ЛП имеют две основные составляющие
части: целевую
функцию и ограничения.
Целевая
функция описывает
некоторое количество, которое должно
быть минимизировано
или максимизировано.
Например, целевая функция может иметь
смысл цены продажи или затрат выпускаемой
продукции какого-то предприятия.
Возникает естественный вопрос: сколько
и какого вида продукции необходимо
изготовить предприятию, чтобы получить
максимальную прибыль, или снизить
себестоимость,
время изготовления и т. д. При составлении
задачи учитываются также ограничения
на функционирование исследуемого
объекта.
Пример.
Качество
железной руды, добываемой на четырех
шахтах, зависит от количества трех
основных компонент, которые мы условно
обозначим через А, В, С. В частности,
каждая тонна руды должна содержать по
крайней мере 5 кг компонента А, 100 кг
компонента В и 30 кг компонента С.
Содержание компонентов в руде, добываемой
в каждой из шахт, показано в таблице
2.12
Анализ
приведенных данных показывает, что,
например, руда из первой шахты удовлетворяет
требованиям по содержанию компонентов
А и
С,
но
не удовлетворяет требованиям по
содержанию компонента
В. Соответствующие
выводы можно легко сделать и по остальным
шахтам.
Пример
задачи ЛП Таблица 4.1
№ шахты |
||||
компоненты руды |
1 |
2 |
3 |
4 |
содержание |
||||
А |
10 |
3 |
8 |
2 |
В-(100) |
90 |
150 |
75 |
175 |
С |
45 |
25 |
20 |
37 |
Цена |
800 |
400 |
600 |
500 |
Однако, руда из
каждой шахты имеет свою цену, а именно:
одна тонна из шахты
1 стоит $800,
из шахты
2 $400,
из шахты
3 $600,
из
шахты 4 $500.
Чем
должен руководствоваться менеджер
предприятия, покупающего руду? Естественно
тем, чтобы цена была как можно меньшей
и при этом, чтобы руда была необходимого
качества. Данную реальную проблему
можно сформулировать как математическую
задачу.
Обозначим
через
Х1
количество руды, которое должно
содержаться в одной тонне смеси,
добываемой из шахты 1. Аналогично: Х2,
— количество руды из шахты 2, Х3—
количество руды из шахты 3, Х4
—
количество
руды из шахты 4.
Цена
одной тонны смеси будет выражаться
целевой
функцией:
.
(4.1)
Выражение
будет
определять содержание
компонентов
А
в
одной тонне смеси. Так как это количество
по условию должно быть не менее 5, то
получаем:
(4.2)
Точно также получим:
(4.3)
(4.4)
Необходимо
учесть, что вес смеси -1 тонна, т. е.
000
(2.5)
Все
величины Х1
, Х2
, Х3
, Х4
должны
быть неотрицательны.
(4.6)
Необходимо
найти такие неотрицательные значения
Х1,
Х2,
Х3,
Х4,
которые бы минимизировали функцию
(2.26) и удовлетворяли бы ограничениям
(2.27 -2.31).
Из
выше изложенного следует, что задачи
линейного программирования — это
такие задачи, в которых
целевая
функция есть линейная функция, а
ограничения — линейные равенства или
неравенства.
4.2.
Общая постановка задач ЛП
Как
правило, большинство реальных проблем,
которые можно сформулировать как задачи
ЛП, имеют дело с достаточно большим
количеством факторов. Поэтому приведем
формулировку задач ЛП в общем виде, т.
е. когда число неизвестных равно
n,
а
число ограничений равно m.
Найти
такие значения неизвестных х1,
х2,
. . . , хn,
которые
бы максимизировали (или минимизировали)
целевую функцию
(
2.32)
удовлетворяли
бы ограничениям:
,
………………………………………
(
2.33)
,
(
2.34)
Знак
≤
подразумевает,
что ограничения могут иметь вид “=”,
“≥”,”≤”.
Выражение
( 2.32) – целевая функция задачи ЛП;
Неравенства
(2.33) и (2.34) — ограничения задачи ЛП.
Величины
С1,
С2,
…, Сп
в
выражении (2.32) называются коэффициентами
целевой функции;
aij
(i=1,
2, . . . , m;
j=l,
2, . . . ,
n)
— коэффициенты условий (2.33);
bi
—
правые
части ограничений
(2.33);
условия
(2.34) — условия
неотрицательности.
Соотношение
между числом условий т
и
количеством неизвестных п,
как
правило, произвольно.
Все
ограничения задачи образуют некоторую
область в n-мерном
пространстве, которую называют областью
решений или
областью
планов задачи ЛП.
Любая
точка n-мерного
пространства называется решением
или
планом
задачи ЛП, если
ее координаты (х1,
х2,
.
. . , хn)
удовлетворяют всем ограничениям задачи
ЛП.
План
называется оптимальным,
если
его координаты обеспечивают минимум
или максимум
целевой функции.
Ограничения,
имеющие первоначально вид неравенств,
можно свести к равенствам добавлением
в каждое ограничение новых переменных,
число которых равно числу ограничений.
Для
иллюстрации этой возможности рассмотрим
задачу, в которой ограничения, например
имеют вид
,
,
(2.35)
.
Правые
части всех неравенства превосходят на
какую-то неотрицательную величину левые
части. Если мы к левым частям добавим
новые неотрицательные переменные х3,
х4
и х5
соответственно, то при определенных
значениях этих неизвестных неравенства
станут равенствами, т. е.
,
,
(2.36)
В
другом примере ограничения имели вид:
,
,
(2.37)
,
Здесь
уже левые части первых трех неравенств
превосходят на какую-то неотрицательную
величину правые части. Необходимо от
левых частей отнять некоторые
неотрицательные переменные х5,
х6,
х7
такие, что неравенства превратятся в
равенства, т. е.
,
,
(2.38)
.
Переменные,
которые надо прибавить к левым частям
неравенств вида «<»
или отнять от левых частей неравенств
вида «>»,
чтобы неравенства превратились в
равенства, называются вспомогательными
или дополнительными переменными.
Значения
дополнительных переменных не известны
заранее. При вводе дополнительных
переменных задача ЛП изменяется, т. к.
увеличивается число неизвестных. Эти
новые неизвестные должны быть введены
в целевую функцию. Дополнительные
переменные имеют конкретную интерпретацию.
Если
ограничения задачи ЛП записаны в виде
неравенств, то говорят, что данная задача
записана в стандартном
виде. Если
все ограничения имеют вид равенств,
то
говорят, что данная задача ЛП представлена
в каноническом
виде.
Можно
использовать векторы и матрицы для
записи задачи ЛП. Действительно, из
коэффициентов ограничений aij
без
труда составляется
матрица:
(2.39)
Запишем
матрицы неизвестных, правых частей и
целевой функции, соответственно
X
=
,
B
=
,
.
(2.40)
Тогда
стандартную задачу ЛП можно записать
так:
,
(2.41)
,
(2.42)
,
Задания
1.
Предприятие ИВЦ «Техномаш» выпускает
два вида огнетушителей – порошковые и
аэрозольные. Цифровые данные о
месячной производительности приведены
в таблице. Сколько огнетушителей
каждого типа должно производить
предприятие в месяц, чтобы прибыль была
максимальной?
Цехи предрприятия |
Количество |
Максимально |
|
порош- ковые |
аэрозоль- ные |
||
Механо-сварочный |
26 |
14 |
1008 |
Сборочный |
4 |
3 |
124 |
Прибыль |
40 |
30 |
Соседние файлы в папке Лекции
- #
- #
- #
- #
- #
- #
- #
- #