Центр тяжести рычага как найти

Содержание:

Рычаг:

Взаимодействие может происходить через промежуточные тела.

Взаимодействие может происходить не только при непосредственном контакте, но и при наличии промежуточных тел. Таких примеров можно привести большое количество. Так, если мастер забивает гвоздь в углублении, он ставит на головку гвоздя металлический стержень и по нему ударяет молотком (рис. 58). Молоток действует на стержень, который, в свою очередь, уже действует на гвоздь.

Рычаг в физике - виды, формулы и определения с примерами

Можно ли изменять значения силы

Если взаимодействие между телами происходит через промежуточные тела, то можно изменять силы взаимодействия между ними. Оно может изменить как направление силы, так и ее значение. Одним из примеров такого использования промежуточных тел для взаимодействия между телами является рычаг. В быту и на производстве можно наблюдать много таких примеров.

Часто можно видеть, как тяжелый предмет поднимают или перемещают с помощью металлического стержня (рис. 59). В этом случае стержень называют рычагом.
Рычаг в физике - виды, формулы и определения с примерами

Что такое рычаг

Рычагом называют жесткий стержень, имеющий ось вращения.

Ось вращения рычага может проходить через один из его концов или посередине рычага – между точками приложения сил.

Под действием нескольких сил рычаг может вращаться или быть неподвижным. В последнем случае говорят, что рычаг уравновешен.

Как уравновесить рычаг

Выясним, при каких условиях рычаг, на который действует несколько сил, будет уравновешен.

Рычаг в физике - виды, формулы и определения с примерами

Для этого возьмем деревянную планку с отверстием посередине и поместим ее на оси, закрепленной в штативе (рис. 60). Это и будет рычаг. Слева от оси вращения повесим в точке А на расстоянии 10 см гирьку массой 102 г. В этом случае говорят, что точка А является точкой действия силы 1 Н. Под действием этой силы рычаг начнет вращаться против часовой стрелки. Для того чтобы он не вращался и оставался в горизонтальном положении, на другом конце рычага найдем такую точку В, при закреплении в которой гирьки массой 102 г рычаг перестанет вращаться. Измерив расстояние ОВ, увидим, что оно также равно 10 см. Таким образом, OA = ОВ, если Fl = F2. Если направление действия силы перпендикулярно к направлению оси вращения рычага, то расстояние от его оси вращения к направлению действия силы называют плечом силы.

Если силы, действующие на рычаг, находящийся в равновесии, равны, то равны и плечи этих сил.

Если левую гирьку оставить прикрепленной в точке А, а в точке В подвесить две такие гирьки массой по 102 г каждая, то равновесие рычага нарушится и он начнет вращаться. Достигнуть равновесия в этом случае можно, изменяя положение точки подвеса двух гирек. Так можно установить новое положение точки подвеса С. Измерив оба плеча, увидим, что правое плечо ОС в два раза меньше левого плеча OA.

Рычаг в физике - виды, формулы и определения с примерами

В случае равновесия рычага плечо большей силы меньше, и наоборот, плечо меньшей силы больше.

Рычаг в физике - виды, формулы и определения с примерами

Используя свойства пропорции, получаем

Рычаг в физике - виды, формулы и определения с примерами

В уравновешенном рычаге плечи сил обратно пропорциональны силам.

Что такое момент силы

Физическую величину, равную произведению силы на плечо, называют моментом силы. Единицей измерения момента силы является ньютон-метр (Н-м).

Сформулируем условие равновесия рычага в общем виде.

Рычаг пребывает в равновесии, если момент силы, вращающий рычаг по часовой стрелке, равен моменту силы, вращающему рычаг против часовой стрелки.

Конструктивно рычаг может быть таким, что силы будут действовать по одну сторону от оси вращения. Условие равновесия для него будет такое же, как и для рычага, рассмотренного выше.

Используя условие равновесия рычага, можно рассчитывать силы, действующие на него, или плечи этих сил.

Пример:

На одно из плеч рычага длиной 30 см действует сила 2 Н. Какая сила должна подействовать на другое плечо этого рычага длиной 15 см, чтобы он оставался неподвижным.

Дано:

Рычаг в физике - виды, формулы и определения с примерами

Решение

При условии равновесия рычага Рычаг в физике - виды, формулы и определения с примерами Отсюда

Рычаг в физике - виды, формулы и определения с примерами

Ответ. На второе плечо рычага должна подействовать сила 4 Н.

Где используют рычаги

Рычаг известен человеку с того времени, когда человек взял палку, чтобы сбить плод с дерева. И вся следующая история человечества связана с использованием рычагов. Так, исследования историков показывают, что при строительстве пирамид древние египтяне использовали рычаги для поднятия тяжелых блоков на значительную высоту (рис. 61). Историкам науки известно, что древние римляне использовали рычаги для создания различных строительных и военных машин (рис. 62). Значительный вклад в теорию рычагов внес древнегреческий ученый и изобретатель Архимед. Сконструированные им машины помогали оборонять греческие города от захватчиков, подавать воду для орошения полей (рис. 63), перемещать значительные грузы на стройках, выполнять большое количество других подобных работ.

Рычаг в физике - виды, формулы и определения с примерами

Рычаги широко используются и в современной технике, в самых разнообразных машинах.

Рычагом является стрела подъемного крана, используемого в строительстве. Она дает возможность получить выигрыш в силе или расстоянии. Момент силы, действующей на конце стрелы при подъеме груза, уравновешивается моментом противовеса, находящегося на противоположном конце стрелы.

Принцип рычага используется во многих устройствах и инструментах, которыми мы пользуемся ежедневно. На рисунке 64 изображены некоторые из них. На них легко найти части, исполняющие роль рычагов.Рычаг в физике - виды, формулы и определения с примерами

Рычаги можно найти и в живых организмах. По принципу рычага работают руки человека (рис. 65), ноги, голова.
Рычаг в физике - виды, формулы и определения с примерами

Рычаг в физике - виды, формулы и определения с примерамиАрхимед (около 287-212 гг. до н. э.) – известный древнегреческий ученый. Научные труды касаются математики, механики, физики и астрономии. Автор многих изобретений и открытий, в том числе машины для орошения полей, винта, рычагов, блоков, военных метательных машин и пр. В его труде «О плавающих телах» изложены основы гидростатики.

Условие равновесия рычага и момент силы

Как уже отмечалось, рычаг — твёрдое тело, которое может вращаться около неподвижной опоры. Его применяют для изменения направления и значения силы, например для уравновешивания большой силы малой. Рычаг имеет следующие характеристики

(рис. 202).

Рычаг в физике - виды, формулы и определения с примерами

Точка приложения силы — это точка, в которой на рычаг действует другое тело.

Ось вращения — прямая, проходящая через неподвижную точку опоры рычага О, и вокруг которой он может свободно вращаться. Рассмотрим случай, когда ось вращения расположена между точками приложения сил Рычаг в физике - виды, формулы и определения с примерами и Рычаг в физике - виды, формулы и определения с примерами.

Линия действия силы — это прямая, вдоль которой направлена сила.

Плечо силы — кратчайшее расстояние от оси вращения тела О до линии действия силы. Плечо силы обозначается буквой d. Единицей плеча силы в СИ является один метр (1 м).

Опыт. Возьмём рычаг, подобный изображённому на рис. 203. На расстоянии 10 см от оси вращения подвесим к нему 6 грузиков, каждый массой по 100 г. Чтобы уравновесить рычаг двумя такими же грузиками, нам придётся их подвесить с другой стороны рычага, но на расстоянии 30 см.

Следовательно, для того чтобы рычаг находился в равновесии, нужно к длинному плечу приложить силу, во столько раз меньшую, во сколько раз его длина больше длины короткого плеча. Такое правило рычага описывают формулой обратно пропорциональной зависимости: Рычаг в физике - виды, формулы и определения с примерами,

где Рычаг в физике - виды, формулы и определения с примерами и Рычаг в физике - виды, формулы и определения с примерами— силы, действующие на рычаг; Рычаг в физике - виды, формулы и определения с примерами и Рычаг в физике - виды, формулы и определения с примерами — плечи соответствующих сил. Поэтому правило (условие) равновесия рычага можно сформулировать так. 

Рычаг находится в равновесии тогда, когда значения сил, действующих на него, обратно пропорциональны плечам этих сил.

С тех пор, когда Архимед установил правило рычага, оно просуществовало в первозданном виде почти 1900 лет. И лишь в 1687 г. французский учёный П. Вариньон придал ему более общую форму, используя понятие момента силы.

Момент силы М– это физическая величина, значение которой опре-Г деляется произведением модуля силы F, вращающей тело, и ее плеча d : Рычаг в физике - виды, формулы и определения с примерами.

Единицей момента силы в СИ является один ньютон-метр (1 Н • м), равный моменту силы 1 Н, приложенной к плечу 1 м.

Докажем, что рычаг находится в равновесии под действием двух сил, если значение момента М1 силы, вращающей рычаг против часовой стрелки, равно значению момента М2 силы, вращающей его по часовой стрелке, т.е.: Рычаг в физике - виды, формулы и определения с примерами

Из правша рычага Рычаг в физике - виды, формулы и определения с примерами на основе свойства пропорции вытекает

равенство:Рычаг в физике - виды, формулы и определения с примерами. Но Рычаг в физике - виды, формулы и определения с примерами  — момент силы, вращающей рычаг против часовой стрелки (рис. 202),Рычаг в физике - виды, формулы и определения с примерами— момент силы, вращающей рычаг по часовой стрелке. Таким образом: Рычаг в физике - виды, формулы и определения с примерами,

что и требовалось доказать. Итак, правило (условие) равновесия рычага можно ещё сформулировать так.

Рычаг находится в равновесии под действием двух сил, если значение момента силы, вращающей рычаг против часовой стрелки, равно значению момента силы, вращающей его по часовой стрелке.

Момент силы — важная физическая величина, она характеризует действие силы, показывает, что оно зависит и от модуля силы, и от её плеча. Например, мы знаем, что действие силы на дверь зависит и от модуля силы, и оттого, где приложена сила: дверь тем легче повернуть, чем дальше от оси вращения приложена сила, действующая на неё; гайку легче открутить длинным гаечным ключом, чем коротким; ведро тем легче вытянуть из колодца, чем длиннее ручка ворота.

Основы статики и равновесие рычага

Еще в давние времена люди использовали обычную палку в качестве рычага, выигрывая этим в силе. На рисунке 2.35 показано, как с помощью рычага можно поднять по ступенькам большие каменные глыбы, например для строительства пирамид.

Рычаг в физике - виды, формулы и определения с примерами
В древних книгах по механике, написанных учеными Греции и Египта, главным образом рассматривались вопросы статики. Важнейшие открытия в этой области принадлежали великому греческому философу Аристотелю, который и дал название «механика» науке, изучающей простейшие движения материальных тел, находящихся в природе или создающихся людьми в процессе их деятельности.

Ученые уже тогда понимали значение статики как одной из основных составляющих фундамента механики. Дальнейшее развитие науки и, особенно, техники подтвердило правильность их вывода: действие огромного количества £ механизмов и машин базируется на законах о равновесии сил. 

Аристотель (384-322 до н. э.) – один из известнейших ученых Древней Греции. Изучал вопросы ста-тики, разработал классификацию механических движений, сформулировал закон прямолинейного распространения света, объяснил природу атмосферных явлений и др.

Основы науки о равновесии были заложены еще Архимедом. Именно он ввел в физику такое понятие, как центр тяжести и момент силы относительно точки и оси, определил положение центра тяжести для многих тел и фигур, математически обосновал законы рычага, сформулировал правила приложения параллельных сил.

  • Заказать решение задач по физике

В своей работе «О равновесии плоских фигур» Архимед опирался на положения, которые считал само собой разумеющимися:

Архимед (287-212 до н. э.) – древнегреческий физик, математик, исследователь, инженер. Изучал условия равновесия тел, простые механизмы, плавание тел и др. Установил, что соотношение длины любой окружности к ее диаметру (число Рычаг в физике - виды, формулы и определения с примерами) колеблется между Рычаг в физике - виды, формулы и определения с примерами и Рычаг в физике - виды, формулы и определения с примерами(3,142 – 3,140); на то время это были точные данные.

Рычаг в физике - виды, формулы и определения с примерами

  1. одинаковые грузы, приложенные к одинаковым плечам рычага, уравновешиваются (рис. 2.36, а);
  2. одинаковые грузы, приложенные к неодинаковым плечам рычага, не находятся в равновесии; груз, приложенный к более длинному рычагу, падает (рис. 2.36, б);
  3. если грузы, подвешенные к неодинаковым плечам рычага, уравновешиваются и к одному из них что-либо прибавить, то равновесие нарушится и этот груз будет падать (рис. 2.36, в);
  4. если при тех же условиях, что в предыдущем случае, один груз уменьшить, то равновесие нарушится, и тогда другой груз будет падать (рис. 2.36, г).

Рычаг находится в равновесии, если плечи сил обратно пропорциональны значениям сил, действующих на него
Рычаг в физике - виды, формулы и определения с примерами
Из этих положений Архимед сделал вывод: грузы пребывают в равновесии, когда плечи рычага обратно пропорциональны грузам:

Рычаг в физике - виды, формулы и определения с примерами

Условия равновесия тел. Устойчивое и неустойчивое равновесие

Равновесие – состояние тела, при котором в рассматриваемой системе отсчета отсутствуют перемещения каких-либо его точек под действием приложенных к нему сил.

Вспомним, что момент силы относительно какой-либо оси равен произведению модуля силы на ее плечо: М = Fl. Плечом силы l называется кратчайшее расстояние от оси вращения до линии действия данной силы. Момент силы считается положительным, если сила стремится повернуть тело по часовой стрелке, и отрицательным, если такое действие противоположно. Для равновесия тел необходимы два условия: 1) геометрическая сумма приложенных к телу сил равна нулю:  Рычаг в физике - виды, формулы и определения с примерами

2) алгебраическая сумма моментов сил относительно любой неподвижной оси равна нулю:Рычаг в физике - виды, формулы и определения с примерами

Момент силы: М = Fl.

Условия равновесия тел:

Рычаг в физике - виды, формулы и определения с примерами
Равновесие устойчивое, если при незначительном смещении тело вновь возвращается в положение равновесия (рис. 2.37).

При неустойчивом равновесии незначительное смещение тела вызывает в дальнейшем значительное удаление его от исходного положения (рис. 2.38).

Равновесие тела  может быть устойчивым, неустойчивым и безразличным.  
Рычаг в физике - виды, формулы и определения с примерами

Рычаг в физике - виды, формулы и определения с примерами

Если любые смещения тела не нарушают его состояния равновесия, то можно говорить о безразличном равновесии (рис. 2.39).Рычаг в физике - виды, формулы и определения с примерами

Примеры решения задач на равновесие рычага

Рассмотрим примеры решения задач статики.

Пример №1

Метровая линейка, весом которой можно пренебречь, положена средним делением на подставку и нагружена гирями (рис. 2.40). Какого направления и значения сила должна быть приложена на делении 1 м для того, чтобы линейка находилась в равновесии? Какой будет сила реакции опоры, если приложить эту силу?
Рычаг в физике - виды, формулы и определения с примерами

Решение:

Выполняем рисунок в соответствии с условием задачи (рис. 2.41), указав силы и их плечи. Линейка под действием моментов сил может вращаться вокруг неподвижной оси О, которая проходит через точку О. Будем считать положительными все моменты, вращающие систему по часовой стрелке. В задаче это момент силы Рычаг в физике - виды, формулы и определения с примерами Отрицательные моменты создают силы Рычаг в физике - виды, формулы и определения с примерами
Рычаг в физике - виды, формулы и определения с примерами
Для упрощения вычислений значение ускорения свободного падения будем считать равным 10 Рычаг в физике - виды, формулы и определения с примерами

Рычаг в физике - виды, формулы и определения с примерами

Рычаг в физике - виды, формулы и определения с примерами

Предположим, что для равновесия системы на конце линейки 1 м должна быть приложена сила Рычаг в физике - виды, формулы и определения с примерами направленная вертикально вверх. Если же мы ошиблись в выборе направления этой силы, то в ответе значение силы получится со знаком  “-“. Для решения задачи воспользуемся вторым условием равновесия тела: 

Рычаг в физике - виды, формулы и определения с примерами

Ответ:Рычаг в физике - виды, формулы и определения с примерами= 3,2H, направление силы выбрано правильно.

Пример №2

Метровая линейка, весом которой можно пренебречь, положена крайними точками на две опоры и нагружена гирями, как в предыдущей задаче. Нужно определить силы реакции опор Рычаг в физике - виды, формулы и определения с примерами (рис. 2.42).

Рычаг в физике - виды, формулы и определения с примерами

Решение:

Чтобы определить силу реакции опоры Рычаг в физике - виды, формулы и определения с примерами можно воспользоваться таким приемом. Если опору забрать, то для равновесия системы на отметке 1 м необходимо приложить силу, направленную вертикально вверх. Иначе система будет вращаться вокруг оси в точке О линейки по часовой стрелке. Теперь можно применить правило моментов:
Рычаг в физике - виды, формулы и определения с примерами
Чтобы определить силу реакции опоры Рычаг в физике - виды, формулы и определения с примерами действуем аналогично. Теперь система будет вращаться вокруг оси против часовой стрелки, когда она проходит через отметку 1 м:Рычаг в физике - виды, формулы и определения с примерами

Чтобы найти силы реакции опор, можно воспользоваться правилом сложения параллельных сил. Им же можно пользоваться и для контроля найденных значений.

Ответ: Рычаг в физике - виды, формулы и определения с примерами = 3,9 H; Рычаг в физике - виды, формулы и определения с примерами =7,1 Н.

Рычаг в физике - виды, формулы и определения с примерами
Оригинальный метод решения задач статики был предложен Симоном Сте-вином (1548-1620). Для случаев равновесия тел на наклонной плоскости он доказал, что массы тел соотносятся как длины плоскостей, которые их образуют (рис. 2.43):

Рычаг в физике - виды, формулы и определения с примерами

Он же установил принцип сложения статических сил (треугольник сил): три силы, действующие на одну точку, находятся в равновесии тогда, когда они бывают параллельны и пропорциональны трем сторонам плоского треугольника (рис. 2.44). Приведем пример решения одной из задач статики с применением треугольника сил.

Рычаг в физике - виды, формулы и определения с примерами

Пример №3

На кронштейне висит лампа весом 4 Н. Найти значение сил упругости в деталях ОА и ОВ.
Дано:

Р = 4 Н
Рычаг в физике - виды, формулы и определения с примерами– ? 

Решение:

Выбираем масштаб построения треугольника. Пусть 1 см на рисунке соответствует значению силы 1 Н. Теперь строим сторону треугольника
А’В’, длина которой известна: 4 см = 4 Н. Эта сторона параллельна направлению силы тяжести, действующей на лампу. Из точки А’ проводим линию, параллельную направлению действия силы в подвесе ОА, а потом из точки В’ – параллельную направлению действия силы в упоре ОВ. На пересечении линий находится точка О’. Таким образом мы получили замкнутый треугольник сил. Зная масштаб, при помощи линейки измеряем значения силы упругости в подвесе ОА (О’А’) и силы реакции в упоре ОВ (О’В’).

  • Блоки в физике
  • Движение тела под действием нескольких сил
  • Наклонная плоскость в физике
  • Давление газов и жидкостей
  • Равнодействующая сила и движение тела под действием нескольких сил 
  • Сила давления в физике и единицы давления
  • Механическое давление в физике
  • Столкновения в физике

Момент силы. Условия равновесия рычага

  1. Устройство и виды рычагов
  2. Момент силы
  3. Правило моментов для двух сил
  4. Правило моментов для нескольких сил
  5. Применение рычагов в быту и технике
  6. Задачи
  7. Лабораторная работа №9. Проверка условия равновесия рычага

п.1. Устройство и виды рычагов

Устройство и виды рычагов Рычаг – это твёрдое тело, которое может вращаться вокруг неподвижной опоры.

Рычаг состоит из перекладины и опоры.
Точка опоры делит перекладину рычага на два плеча рычага.

Назначение рычага – получить выигрыш в силе или расстоянии.
Если к плечу рычага достаточно приложить меньшую силу, то переместить конец рычага придётся на бóльшее расстояние: выигрыш в силе оборачивается проигрышем в расстоянии.
И наоборот, если удаётся сократить перемещение конца рычага, придётся приложить бóльшую силу: выигрыш в расстоянии оборачивается проигрышем в силе.

В зависимости от взаимного расположения точки опоры и нагрузки различают три вида рычагов.

п.2. Момент силы

Плечо силы – это кратчайшее расстояние между точкой опоры и прямой, вдоль которой сила действует на рычаг.

Чтобы найти плечо силы, нужно из точки опоры провести перпендикуляр на линию действия силы.

Момент силы

На рисунке (l_1) – плечо силы (F_1, l_2) – плечо силы (F_2).

Силы вращают рычаг вокруг точки опоры – по часовой или против часовой стрелки.

Ось вращения проходит через точку опоры перпендикулярно плоскости вращения.

На рисунке сила (F_1) вращает рычаг против часовой стрелки, а сила (F_2) – по часовой стрелке.

Момент силы – это произведение силы, вращающей тело, на её плечо. $$ M=Fl $$ В системе СИ единица измерения момента силы – Н·м.

Момент силы определяется не для всего тела, а для некоторой его точки, удалённой от центра (оси) вращения. Эта величина имеет смысл только для вращающихся тел.

п.3. Правило моментов для двух сил

Правило моментов для двух сил
Рычаг находится в равновесии под действием двух сил, если момент силы, вращающей его по ходу часовой стрелки, равен моменту силы, вращающей его против хода часовой стрелки.

Правило моментов для двух сил $$ F_1l_1=F_2l_2 $$

п.4. Правило моментов для нескольких сил

Правило моментов для нескольких сил
Рычаг находится в равновесии, если сумма моментов всех сил, вращающих его по ходу часовой стрелки, равен сумме моментов всех сил, вращающих его против хода часовой стрелки.

Например:

Правило моментов для нескольких сил Силы (F_1, F_2, F_3) вращают рычаг против часовой стрелки, а сила (F_4) – по часовой стрелке. Поэтому: $$ F_1l_1+F_2l_2+F_3l_3=F_4l_4 $$

п.5. Применение рычагов в быту и технике

Рычаги первого рода

Весы
Весы
Предмет, вес которого нужно измерить, — это нагрузка, а гиря создает усилие. Они равны, так как находятся на одном расстоянии от точки опоры.
Рычажные весы
Рычажные весы
Точка опоры смещена относительно центра. Грузило передвигается по основанию, пока не уравновесит взвешиваемый объект.
Гвоздодёр
Гвоздодёр
Усилие ручки увеличивается плечом и вытаскивает гвоздь. Нагрузкой здесь является сопротивление гвоздя.
Ручная тележка
Ручная тележка
Небольшое усилие, прикладываемое к ручкам тележки, позволяет поднимать тяжелый груз.
Плоскогубцы
Плоскогубцы
Составной рычаг, пара простых рычагов, соединенных в точке опоры. Нагрузка — сопротивление предмета захвату инструментом.
Ножницы
Ножницы
Составной рычаг первого рода, развивают мощное режущее действие очень близко к месту крепления. Нагрузка — сопротивление материала лезвиям.

Рычаги второго рода

Рычаги третьего рода

п.6. Задачи

Задача 1. Для каждого положения тела укажите плечо силы.
Задача 1
При необходимости достраиваем линию действия силы и опускаем на неё перпендикуляр из точки опоры. Этот перпендикуляр и есть искомое плечо.

Задача 2. Грузы уравновешены на рычаге. Отношение плеч рычага 1:5. Масса большего груза 2,5 кг. Найдите массу меньшего груза.

Дано:
(frac{l_1}{l_2}=frac 15)
(m_1=2,5 text{кг})
__________________
(m_2-?)

Задача 2
По правилу моментов begin{gather*} F_1l_1=F_2l_2 end{gather*} На обоих концах рычага действуют силы тяжести: $$ F_1=m_1g, F_2=m_2g $$ Получаем: begin{gather*} m_1gl_1=m_2gl_2\[7pt] m_2=frac{m_1l_1}{l_2} end{gather*} Подставляем: $$ m_2=2,5cdot frac 15=0,5 (text{кг}) $$ Ответ: 0,5 кг

Задача 3. На концах рычага действуют силы 15 Н и 60 Н, направленные вниз. Рычаг находится в равновесии. Расстояние между точками приложения сил 1 м. Где расположена точка опоры?

Дано:
(F_1=15 text{Н})
(F_2=60 text{Н})
(l_1+l_2=1 text{м})
__________________
(l_1, l_2-?)

Задача 3
По правилу моментов begin{gather*} F_1l_1=F_2l_2. end{gather*} Получаем систему уравнений begin{gather*} left{ begin{array}{l l} 15l_1=60l_2 \ l_1+l_2=1 end{array} right. Rightarrow left{ begin{array}{l l} l_1=4l_2 \ l_1+l_2=1 end{array} right. Rightarrow left{ begin{array}{l l} l_1=4l_2 \ 4l_2+l_2=1 end{array} right. Rightarrow \[7pt] Rightarrow left{ begin{array}{l l} l_1=4l_2 \ 5l_2=1 end{array} right. Rightarrow left{ begin{array}{l l} l_1=0,8 \ l_2=0,2 end{array} right. end{gather*} Ответ: 0,8 м от точки приложения первой силы и 0,2 м от точки приложения второй силы.

Задача 4*. К балке, расположенной на двух опорах А и В подвешен груз массой 500 кг. Расстояние от точки подвеса груза к одному из концов балки в 4 раза больше, чем к другому. С какой силой балка давит на каждую из опор? Примите (gapprox 10 text{м/с}^2). Ответ запишите в килоньютонах.

Дано:
(m=500 text{кг})
(gapprox 10 text{м/с}^2)
(OB=4OA)
__________________
(F_A, F_B-?)

Задача 4*
Сила тяжести (F_{text{т}}=mg), направленная вниз, уравновешивается силами реакции опор (F_A) и (F_B), направленными вверх. begin{gather*} F_A+F_B=mg end{gather*} По правилу моментов при равновесии begin{gather*} F_Acdot OA=F_Bcdot OB=F_Bcdot 4OARightarrow F_A=4F_B \[7pt] F_A+F_B=5F_B=mgRightarrow F_B=frac{mg}{5} end{gather*} Получаем: begin{gather*} F_B=frac{500cdot 10}{5}=1000 text{Н}=1 text{кН}, F_A=4cdot 100=4000 text{Н}=4 text{кН} end{gather*} Ответ: 4 кН и 1 кН

п.7. Лабораторная работа №9. Проверка условия равновесия рычага

Цель работы
Исследовать условия равновесия рычага под действием двух параллельных сил.

Теоретические сведения

Рычаг – это твёрдое тело, которое может вращаться вокруг неподвижной опоры.

В работе используется рычаг 1-го рода, в котором опора располагается между точками приложения сил.

Плечо силы – это кратчайшее расстояние между точкой опоры и прямой, вдоль которой сила действует на рычаг. Чтобы найти плечо силы, нужно из точки опоры провести перпендикуляр на линию действия силы.

Момент силы – это произведение силы, вращающей тело, на её плечо: (M=Fl).

Правило моментов для двух сил
Рычаг находится в равновесии под действием двух сил, если момент силы, вращающей его по ходу часовой стрелки, равен моменту силы, вращающей его против хода часовой стрелки.

Правило моментов для двух сил begin{gather*} M_1=M_2\[7pt] F_1l_1=F_2l_2 end{gather*}

В работе используется лабораторный рычаг с отверстиями диаметром 4 мм, находящимися на расстоянии 5 см друг от друга. Отверстий нечетное количество; центральное отверстие (центр тяжести) используется для подвеса рычага на штативе в положении равновесия. Абсолютную погрешность определения плеча на данном рычаге принимаем равной половине диаметра отверстия $$ Delta l=frac D2=2 text{мм} $$

Для измерения веса груза используется динамометр с ценой деления $$ d=0,1 text{Н}. $$

Абсолютная погрешность определения веса $$ Delta_F=frac d2=0,05 text{Н}. $$

Относительные погрешности измерений: $$ delta_l=frac{Delta_l}{l}, delta_F=frac{Delta_F}{F}, delta_M=delta_l+delta_F $$

Абсолютная погрешность определения момента силы $$ Delta_M=Mcdot delta_M $$

Погрешности определения отношений сил и плечей: begin{gather*} r_F=frac{F_1}{F_2}, delta_{rF}=frac{Delta_F}{F_1}+frac{Delta_F}{F_2}, Delta_{rF}=frac{F_1}{F_2}cdot delta_{rF}\[7pt] r_l=frac{l_2}{l_1}, delta_{rF}=delta_{rl}frac{Delta_l}{l_1}+frac{Delta_l}{l_2}, Delta_{rl}=frac{l_2}{l_1}cdot delta_{rl} end{gather*}

Приборы и материалы
Лабораторный рычаг, штатив, стержень, динамометр, набор грузов.

Ход работы

1. Закрепите стержень в штативе, наденьте на него рычаг. Если стержень проходит через центральное отверстие рычага, он находится в равновесии.
2. Подвесьте три груза на динамометре, запишите их вес (F_1).
3. Подвесьте грузы слева от оси вращения рычага на расстоянии 5 см.
4. С помощью динамометра определите, какую силу нужно приложить на расстоянии 15 см справа от оси вращения, чтобы удерживать рычаг в равновесии.
5. Как направлены в этом случае силы, действующие на рычаг? Запишите длину плеч этих сил.
6. Найдите моменты сил (M_1) и (M_2), их относительные и абсолютные погрешности.
7. Вычислите отношение сил (frac{F_1}{F_2}) и плеч (frac{l_2}{l_1}) для этого случая, погрешности их определения.
8. Сделайте выводы.

Результаты измерений и вычислений

(F_1, text{Н}) (l_1, text{см}) (F_2, text{Н}) (l_2, text{см}) (F_1/F_2) (l_2/l_1)
2,9 5 1,0 15 2,9 3,0

Погрешности прямых измерений: $$ Delta_l=2 text{мм}=0,2 text{см}, Delta_F=0,05 text{Н} $$ Найдем моменты сил и погрешности вычислений: begin{gather*} M_1=F_1cdot l_1=2,9cdot 5=14,5 (text{Н}cdot text{м})\[7pt] delta_{M1}=frac{Delta_l}{l_1}+frac{Delta_F}{F_1}=frac{0,2}{5}+frac{0,05}{2,9}approx 0,04+0,017=0,057=5,7text{%} \[7pt] Delta_{M1}=M_1cdot delta_{M1}=14,5cdot 0,057approx 0,8 (text{Н}cdot text{м})\[7pt] M_1=(14,5pm 0,8) text{Н}cdot text{м}\[7pt] \[7pt] M_2=F_2cdot l_2=1,0cdot 15=15,0 (text{Н}cdot text{м})\[7pt] delta_{M2}=frac{Delta_l}{l_2}+frac{Delta_F}{F_2}=frac{0,2}{15}+frac{0,05}{1,0}approx 0,013+0,05=0,063=6,3 text{%} \[7pt] Delta_{M2}=M_2cdot delta_{M2}=15,0cdot 0,063approx 0,9 (text{Н}cdot text{м})\[7pt] M_2=(15,0pm 0,9) text{Н}cdot text{м} end{gather*} Таким образом, с учетом вычисленных погрешностей: $$ M_1=M_2 $$

Погрешность вычислений для (frac{F_1}{F_2}) begin{gather*} delta_{rF}=frac{Delta_F}{F_1}+frac{Delta_F}{F_2}=frac{0,05}{2,9}+frac{0,05}{1,0}approx 0,017+0,05=0,067=6,7text{%}\[7pt] Delta_{rF}=frac{F_1}{F_2}cdot delta_{rF}=2,9cdot 0,067approx 0,2\[7pt] frac{F_1}{F_2}=2,9pm 0,2 end{gather*}

Погрешность вычислений для (frac{l_2}{l_1}) begin{gather*} delta_{rl}=frac{Delta_l}{l_1}+frac{Delta_l}{l_2}=frac{0,2}{5}+frac{0,2}{15}approx 0,04+0,013=0,053=5,3text{%}\[7pt] Delta_{rl}=frac{l_2}{l_1}cdot delta_{rl}=3,0cdot 0,053approx 0,2\[7pt] frac{l_2}{l_1}=3,0pm 0,2 end{gather*} Таким образом, с учетом вычисленных погрешностей: $$ frac{F_2}{F_2}=frac{l_2}{l_1} $$

Выводы
На основании проделанной работы можно сделать следующие выводы.

Моменты сил, приложенных слева и справа от оси вращения рычага, равны $$ M_1=(14,5pm 0,8) text{Н}cdot text{м}, M_2=(15,0pm 0,9) text{Н}cdot text{м} $$ Таким образом, с учетом вычисленных погрешностей, (M_1=M_2) – правило моментов выполняется.

Отношения сил и плечей равны begin{gather*} frac{F_1}{F_2}=2,9pm 0,2, frac{l_2}{l_1}=3,0pm 0,2 end{gather*}

Таким образом, с учетом вычисленных погрешностей (frac{F_1}{F_2}=frac{l_2}{l_1}) – правило отношений выполняется.

Эксперименты подтвердили условие равновесия рычага.


Загрузить PDF


Загрузить PDF

Центр тяжести – это точка, относительно которой суммарный момент сил тяжести, действующих на систему, равен нулю. То есть это такая точка, в которой система находится в идеальном равновесии независимо от того, как система повернута или вращается вокруг этой точки. Чтобы найти центр тяжести системы, необходимо определить массу основного объекта и массу тел, входящих в систему, найти точку отсчета и подставить эти значения в формулу.

  1. Изображение с названием Calculate Center of Gravity Step 1

    1

    Определите вес основного объекта. Чтобы найти центр тяжести, сначала необходимо определить вес основного объекта. Например, рассмотрим качели-доску (качели-балансир) массой 12 кг. Таким образом, вес качелей равен 120 Н (Р=mg, где P – вес, m – масса, g – ускорение свободного падения, приблизительно равное 10 м/с2). Так как такие качели представляют собой симметричный объект, его центр тяжести находится точно по центру (когда на качелях никого нет). Но если на качелях сидят дети разной массы тела, задача усложняется.[1]

  2. Изображение с названием Calculate Center of Gravity Step 2

    2

    Определите дополнительные веса. Чтобы найти центр тяжести качелей с двумя детьми, необходимо определить вес каждого ребенка. Предположим, что масса тела первого ребенка равна 16 кг, а второго – 24 кг. Таким образом, вес первого ребенка равен 160 Н, а второго – 240 Н.

    Реклама

  1. Изображение с названием Calculate Center of Gravity Step 3

    1

    Выберите точку отсчета. Точкой отсчета является любая точка, которая находится на одном (любом) конце доски. Предположим, что длина доски равна 5 м. Поместите точку отсчета на левой стороне доски возле первого ребенка.

  2. Изображение с названием Calculate Center of Gravity Step 4

    2

    Измерьте расстояние от точки отсчета до центра основного объекта и до дополнительных тел. Допустим, дети сидят на расстоянии 50 см от каждого конца доски. До центра доски 2,5 м (5/2=2,5). Вот расстояния от точки отсчета до центра основного объекта и двух дополнительных тел:

    • Центр доски находится на расстоянии 2,5 м от точки отсчета.
    • Первый ребенок находится на расстоянии 0,5 м от точки отсчета.
    • Второй ребенок находится на расстоянии 4,5 м от точки отсчета.

    Реклама

  1. Изображение с названием Calculate Center of Gravity Step 5

    1

    Перемножьте вес каждого тела и его расстояние до точки отсчета. Так вы найдете момент силы для каждого тела. Вот как умножить расстояние до каждого тела на его вес:

    • Доска: 120 Н х 5 м = 600 Н х м.
    • Первый ребенок: 160 Н x 0,5 м = 80 Н х м.
    • Второй ребенок: 240 Н x 4,5 м = 1080 Н x м.
  2. Изображение с названием Calculate Center of Gravity Step 6

    2

    Сложите найденные значения. Сложение: 600 + 80 + 1080 = 1760 Н х м. Суммарный момент равен 1760 Н x м.

  3. Изображение с названием Calculate Center of Gravity Step 7

    3

    Сложите веса всех объектов. Найдите сумму веса качелей, веса первого ребенка и веса второго ребенка. Сумма: 120 Н + 160 Н + 240 Н = 520 Н.

  4. Изображение с названием Calculate Center of Gravity Step 8

    4

    Разделите суммарный момент на суммарный вес. Так вы найдете расстояние от точки отсчета до центра тяжести системы. В нашем примере разделите 1760 Н х м на 520 Н.

    • 1760 Н х м / 520 Н = 3,4 м
    • Центр тяжести находится на расстоянии 3,4 м от точки отсчета или на расстоянии 3,4 м от левого конца доски, где находится точка отсчета.

    Реклама

  1. Изображение с названием Calculate Center of Gravity Step 9

    1

    Нарисуйте схему системы и отметьте на ней центр тяжести. Если найденный центр тяжести находится вне системы объектов, вы получили неверный ответ. Возможно, вы измерили расстояния от разных точек отсчета. Повторите измерения.

    • Например, если на качелях сидят дети, центр тяжести будет где-то между детьми, а не справа или слева от качелей. Также центр тяжести никогда не совпадет с точкой, где сидит ребенок.
    • Эти рассуждения верны в двумерном пространстве. Нарисуйте квадрат, в котором поместятся все объекты системы. Центр тяжести должен находиться внутри этого квадрата.
  2. Изображение с названием Calculate Center of Gravity Step 10

    2

    Проверьте математические вычисления, если вы получили маленький результат. Если точка отсчета находится на одном конце системы, маленький результат помещает центр тяжести возле конца системы. Возможно, это правильный ответ, но в подавляющем большинстве случаев такой результат указывает на ошибку. Когда вы вычисляли моменты, вы перемножали соответствующие веса и расстояния? Если вместо умножения вы сложили веса и расстояния, вы получите гораздо меньший результат.

  3. Изображение с названием Calculate Center of Gravity Step 11

    3

    Исправьте ошибку, если вы нашли несколько центров тяжести. Каждая система имеет только один центр тяжести. Если вы нашли несколько центров тяжести, скорее всего, вы не сложили все моменты. Центр тяжести равен отношению «суммарного» момента к «суммарному» весу. Не нужно делить «каждый» момент на «каждый» вес: так вы найдете положение каждого объекта.

  4. Изображение с названием Calculate Center of Gravity Step 12

    4

    Проверьте точку отсчета, если ответ отличается на некоторое целое значение. В нашем примере ответ равен 3,4 м. Допустим, вы получили ответ 0,4 м или 1,4 м, или другое число, оканчивающееся на «,4». Это потому, что в качестве точки отсчета вы выбрали не левый конец доски, а точку, которая расположена правее на целую величину. На самом деле, ваш ответ верен, независимо от того, какую точку отсчета вы выбрали! Просто запомните: точка отсчета всегда находится в положении x = 0. Вот пример:

    • В нашем примере точка отсчета находилась на левом конце доски и мы нашли, что центр тяжести находится на расстоянии 3,4 м от этой точки отсчета.
    • Если в качестве точки отсчета выбрать точку, которая расположена на расстоянии 1 м вправо от левого конца доски, вы получите ответ 2,4 м. То есть центр тяжести находится на расстоянии 2,4 м от новой точки отсчета, которая, в свою очередь, находится на расстоянии 1 м от левого конца доски. Таким образом, центр тяжести находится на расстоянии 2,4 + 1 = 3,4 м от левого конца доски. Получился старый ответ!
    • Примечание: при измерении расстояния помните, что расстояния до «левой» точки отсчета отрицательные, а до «правой» – положительные.
  5. Изображение с названием Calculate Center of Gravity Step 13

    5

    Расстояния измеряйте по прямым линиям. Предположим, на качелях два ребенка, но один ребенок намного выше другого, или один ребенок висит под доской, а не сидит на ней. Проигнорируйте такую разницу и измерьте расстояния по прямой линии доски. Измерение расстояний под углами приведет к близким, но не совсем точным результатам.

    • В случае задачи с качелями-доской помните, что центр тяжести находится между правым и левым концами доски. Позже вы научитесь вычислять центр тяжести более сложных двумерных систем.

    Реклама

Советы

  • Чтобы найти расстояние, на которое должен переместиться ребенок, чтобы сбалансировать качели-доску относительно точки опоры, используйте формулу: (перемещаемый вес)/(общий вес) = (расстояние движения центра тяжести)/(расстояние движения веса). Эту формулу можно переписать так: расстояние, на которое должен переместиться ребенок = (расстояние между центром тяжести и точкой опоры х вес ребенка)/(общий вес). Поэтому первому ребенку нужно переместиться на -0,9*160/520 = -0,28 м или -28 см (к концу доски), а второму ребенку нужно переместиться на -0,9*520/240 = -1,95 м или -195 см (к концу доски).
  • Если нужно найти центр тяжести двумерного объекта, используйте формулу Xcg = ΣxW/W, чтобы найти центр тяжести вдоль оси X, и Ycg = ΣyW/ΣW, чтобы найти центр тяжести вдоль оси Y. Точка, в которой они пересекаются, является центром тяжести.
  • Определение центра тяжести общего распределения масс: (∫ r dW/∫ dW), где dW – дифференциал веса, r – радиус-вектор, а интегралы должны интерпретироваться как интегралы Стилтьеса по всему телу. Но эти интегралы могут быть выражены как более общие интегралы (по плотности) Римана или Лебега для распределений, допускающих функцию плотности. Начиная с этого определения, все свойства центра тяжести (включая те, которые описаны в этой статье) могут быть получены из свойств интегралов Стилтьеса.

Реклама

Предупреждения

  • Не пытайтесь применить описанные здесь методы, не поняв теорию. В противном случае вы получите неверный результат.

Реклама

Об этой статье

Эту страницу просматривали 52 680 раз.

Была ли эта статья полезной?

Как рассчитать рычаг

Рычаг — древнейший механизм для поднятия тяжестей. Он представляет собой перекладину, которая вращается вокруг точки опоры. Несмотря на то, что сейчас очень немало всяких других приспособлений, рычаг своей актуальности не потерял. Он является составной частью многих современных устройств. Чтобы эти устройства работали, необходимо рассчитать длину плеча рычага точно так же, как это доводилось делать еще Архимеду. Рычаги использовались и в более древние времена, но первое письменное объяснение оставил как раз великий греческий ученый. Именно он связал воедино длину плеча рычага, силы и груза.

Как рассчитать рычаг

Вам понадобится

  • приборы:
  • – прибор для измерения длины;
  • – калькулятор.
  • математические и физические формулы и понятия:
  • – закон сохранения энергии;
  • – определение плеча рычага;
  • – определение силы;
  • – свойства подобных треугольников;
  • – вес груза, который необходимо переместить.

Инструкция

Начертите схему рычага, обозначив на ней силы F1 и F2, действующие на оба его плеча. Обозначьте плечи рычага как D1 и D2. Плечи обозначаются от точки опоры до точки приложения силы. На схеме постройте 2 прямоугольных треугольника, их катетами будет являться расстояние, на которое необходимо переместить одно плечо рычага и на которое переместится при этом другое плечо и собственно плечи рычага, а гипотенузой — расстояние между точкой приложения силы и точкой опоры. У вас получатся подобные треугольники, поскольку в случае приложения силы к одному плечу второе отклонится от исходной горизонтали на точно такой же угол, что и первое.

Вычислите расстояние, на которое необходимо переместить рычаг. Если вам дан реальный рычаг, который необходимо переместить на реальное расстояние, просто измерьте длину нужного отрезка с помощью линейки или рулетки. Обозначьте это расстояние как Δh1.

Вычислите работу, которую должна совершить сила F1, чтобы передвинуть рычаг на нужное вам расстояние. Работа вычисляется по формуле A=F*Δh, В данном случае формула будет выглядеть как А1=F1*Δh1, где F1 — сила, действующая на первое плечо, а Δh1- уже известное вам расстояние. По той же самой формуле вычислите работу, которую должна совершить сила, действующая на второе плечо рычага. Эта формула будет выглядеть как A2=F2*Δh2.

Вспомните закон сохранения энергии для замкнутой системы. Работа, которую совершает сила, действующая на первое плечо рычага, должна быть равна той, которую совершает противодействующая ей сила на втором плече рычага. То есть получается, что А1=А2, а F1*Δh1= F2*Δh2.

Вспомните соотношения сторон в подобных треугольниках. Отношение катетов одного из них равно отношению катетов другого, то есть Δh1/Δh2=D1/D2, где D — длина одного и другого плеча. Заменив соотношения на равные им в соответствующих формулах, получаем следующее равенство:F1*D1=F2*D2.

Вычислите передаточное число I. Оно равно отношению нагрузки и приложенной силы для ее перемещения, то есть i=F1/F2=D1/D2.

Войти на сайт

или

Забыли пароль?
Еще не зарегистрированы?

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.


Download Article


Download Article

The center of gravity (CG) is the center to an object’s weight distribution, where the force of gravity can be considered to act. This is the point where the object is in perfect balance, no matter how turned or rotated around that point.[1]
If you want to know how to calculate the center of gravity of an object, then you have to find the weight of the object: and any objects on it, locate the datum, and plug the known quantities into the equation for calculating the center of gravity. If you want to know how to calculate the center of gravity, just follow these steps.

Calculator

  1. Image titled Calculate Center of Gravity Step 1

    1

    Calculate the weight of the object. When you’re calculating the center of gravity, the first thing you should do is to find the weight of the object. Let’s say that you’re calculating the weight of a see-saw that has a weight of 30 lbs. Since it’s a symmetrical object, its center of gravity will be exactly in its center if it’s empty. But if the see-saw has people of different weights sitting on it, then the problem is a bit more complicated.[2]

  2. Image titled Calculate Center of Gravity Step 2

    2

    Calculate the additional weights. To find the center of gravity of the see-saw with two children on it, you’ll need to individually find the weight of the children on it.[3]
    The first child has a weight of 40 lbs. and the second child’s is 60 lbs.

  3. Advertisement

  1. Image titled Calculate Center of Gravity Step 3

    1

    Choose a datum. The datum is an arbitrary starting point placed on one end of the see-saw.[4]
    You can place the datum on one end of the see-saw or the other. Let’s say the see-saw is 16 feet long. Let’s place the datum on the left side of the see-saw, close to the first child.

  2. Image titled Calculate Center of Gravity Step 4

    2

    Measure the datum’s distance from the center of the main object as well as from the two additional weights. Let’s say the children are each sitting 1 foot away from each end of the see-saw.[5]
    The center of the see-saw is the midpoint of the see-saw, or at 8 feet, since 16 feet divided by 2 is 8. Here are the distances from the center of the main object and the two additional weights form the datum:

    • Center of see-saw = 8 feet away from datum.
    • Child 1 = 1 foot away from datum
    • Child 2 = 15 feet away from datum
  3. Advertisement

  1. Image titled Calculate Center of Gravity Step 5

    1

    Multiply each object’s distance from the datum by its weight to find its moment. This gives you the moment for each object. Here’s how to multiply each object’s distance from the datum by its weight:

    • The see-saw: 30 lb. x 8 ft. = 240 ft. x lb.
    • Child 1 = 40 lb. x 1 ft. = 40 ft. x lb.
    • Child 2 = 60 lb. x 15 ft. = 900 ft. x lb.
  2. Image titled Calculate Center of Gravity Step 6

    2

    Add up the three moments. Simply do the math: 240 ft. x lb. + 40 ft. x lb. + 900 ft. x lb = 1180 ft. x lb. The total moment is 1180 ft. x lb.

  3. Image titled Calculate Center of Gravity Step 7

    3

    Add the weights of all the objects. Find the sum of the weights of the seesaw, the first child, and the second child. To do this, add up the weights: 30 lbs. + 40 lbs. + 60 lbs. = 130 lbs.

  4. Image titled Calculate Center of Gravity Step 8

    4

    Divide the total moment by the total weight. This will give you the distance from the datum to the center of gravity of the object. To do this, simply divide 1180 ft. x lb. by 130 lbs.

    • 1180 ft. x lb. ÷ 130 lbs = 9.08 ft.
    • The center of gravity is 9.08 feet from the datum, or measured 9.08 feet from the end of the left side of the see-saw, which is where the datum was placed.
  5. Advertisement

  1. Image titled Calculate Center of Gravity Step 9

    1

    Find the center of gravity in the diagram. If the center of gravity you found is outside of the system of objects, you have the wrong answer.[6]
    You may have measured the distances from more than one point. Try again with just one datum.

    • For example, for people sitting on a seesaw, the center of gravity has to be somewhere on the seesaw, not to the left or right of the seesaw. It does not have to be directly on a person.
    • This is still true with problems in two dimensions. Draw a square just large enough to fit all of the objects in your problem. The center of gravity must be inside this square.
  2. Image titled Calculate Center of Gravity Step 10

    2

    Check your math if you get a tiny answer. If you picked one end of the system as your datum, a tiny answer puts the center of gravity right next to one end. This can be the right answer, but it’s often the sign of a mistake. When you calculated the moment, did you multiply the weight and distance together? That’s the correct way to find the moment. If you accidentally added them together instead, you’ll usually get a much smaller answer.

  3. Image titled Calculate Center of Gravity Step 11

    3

    Troubleshoot if you have more than one center of gravity. Every system only has a single center of gravity. If you find more than one, you might have skipped the step where you add all the moments together. The center of gravity is the total moment divided by total weight. You do not need to divide each moment by each weight, which only tells you the position of each object.

  4. Image titled Calculate Center of Gravity Step 12

    4

    Check your datum if your answer is off by a whole number. The answer to our example is 9.08 ft. Let’s say you try it and get the answer 1.08 ft., 7.08 ft, or another number ending in “.08.” This most likely happened because we chose the left end of the seesaw as the datum, while you chose the right end or some other point an integer distance from our datum. Your answer is actually correct no matter which datum you choose! You just need to remember that the datum is always at x = 0. Here’s an example:

    • The way we solved it, the datum is at the left end of the seesaw. Our answer was 9.08 ft, so our center of mass is 9.08 ft from the datum at the left end.
    • If you pick a new datum 1 ft from the left end, you get the answer 8.08 ft for the center of mass. The center of mass is 8.08 ft from the new datum, which is 1 ft from the left end. The center of mass is 8.08 + 1 = 9.08 ft from the left end, the same answer we got before.
    • (Note: When measuring distance, remember that distances to the left of the datum are negative, while distances to the right are positive.)
  5. Image titled Calculate Center of Gravity Step 13

    5

    Make sure all your measurements are in straight lines. Let’s say you see another “kids on the seesaw” example, but one kid is much taller than the other, or one kid is hanging underneath the seesaw instead of sitting on top. Ignore the difference and take all your measurements along the straight line of the seesaw. Measuring distances at angles will lead to answers that are close but slightly off.

    • For seesaw problems, all you care about is where the center of gravity is along the left-right line of the seesaw. Later, you might learn more advanced ways to calculate the center of gravity in two dimensions.
  6. Advertisement

Add New Question

  • Question

    Why do we calculate centers of gravity?

    Danoyachtcapt

    Danoyachtcapt

    Top Answerer

    Center of gravity (CG) is very important, especially in aircraft and other vehicles like cars and trains. The Vehicle has to be designed so the CG is within certain limits so the vehicle will be well-balanced while in motion.

  • Question

    I have to find the center of gravity for a 1310 mm length MS Steel. How can I go about doing that?

    Community Answer

    Balance it on a knife edge and record the position by marking the edge. Then, turn the object approx. 30 degrees and re-balance it on the knife edge. Record the position by marking the edge — you should now have 2 intersecting lines, and the intersection point will give you the center of gravity.

  • Question

    Why is the determination of the center of gravity necessary, and where might I apply it in real life?

    Community Answer

    It’s more useful in certain sports and careers. If you are an engineer, you don’t want whatever you’re building to be off center. In sports such as gymnastics, it’s easier to do harder moves if you know where your center of balance is.

See more answers

Ask a Question

200 characters left

Include your email address to get a message when this question is answered.

Submit

Advertisement

  • To find the distance a person needs to move to balance the see-saw over the fulcrum, use the formula: (

    weight moved

    ) / (

    total weight

    ) = (

    distance CG moves

    ) / (

    distance weight is moved

    ). This formula can be rewritten to show that the distance the weight (person) needs to move equals the distance between the CG and the fulcrum times the weight of the person divided by the total weight. So the first kid needs to move

    -1.08ft * 40lb / 130lbs =

    -.33ft or -4in. (toward the edge of the see-saw). Or, the second kid needs to move

    -1.08ft * 130lb / 60lbs =

    -2.33ft or -28in. (toward the center of the see-saw).[7]

  • The definition for center of gravity of a general mass distribution is (∫ r dW/∫ dW) where dW is the differential of weight, r the position vector and the integrals are to be interpreted as Stieltjes integrals over the entire body. They can however be expressed as more conventional Riemann or Lebesgue volume integrals for distributions that admit a density function. Starting with this definition all properties of CG including the ones used in this article may be derived from properties of Stieltjes integrals.

  • To find the CG of a two dimensional object, use the formula Xcg = ∑xW/∑W to find the CG along the x-axis and Ycg = ∑yW/∑W to find the CG along the y-axis. The point at which they intersect is the center of gravity.

Thanks for submitting a tip for review!

Advertisement

  • Trying to blindly apply this mechanical technique without understanding the theory may result in errors. Understand the laws/theories behind it first.

Advertisement

References

About This Article

Article SummaryX

To calculate the center of gravity of 2 objects on a see-saw, first identify the weight of each separate object. Choose a starting point, or datum, on one end of the see-saw and measure its distance from the center and each object. Find each object’s moment by multiplying the distance by the object’s weight, then add up the 3 moments. Add up the weights of the objects and divide the total moment by the total weight to get the datum’s distance from the center of gravity. For examples and ways to check your answer, read on!

Did this summary help you?

Thanks to all authors for creating a page that has been read 1,423,418 times.

Did this article help you?

Добавить комментарий