Деление целых чисел отличается от деления натуральных чисел, только тем что у целых чисел нужно у частного посчитать знак. Как посчитать знак частного целых чисел? Рассмотрим подробно в теме.
Термины и понятия частного целых чисел.
Чтобы выполнить деление целых чисел нужно вспомнить термины и понятия. В делении есть: делимое, делитель и частное целых чисел.
Делимое – это то целое число, которое делят. Делитель – это целое число, на которое делят. Частное – это результат деления целых чисел.
Можно сказать “Деление целых чисел” или “Частное целых чисел” смысл этих фраз один и тот же, то есть нужно поделить одно целое число на другое и получить ответ.
Деление берет свое начало из умножения. Рассмотрим пример:
3∙4=12
У нас есть два множителя 3 и 4. Но допустим нам известно, что есть один множитель 3 и результат умножения множителей их произведение 12. Как найти второй множитель? На помощь приходит деление.
12:3=4
Правило деления целых чисел.
Определение:
Частное двух целых чисел равно частному их модулей, со знаком плюс в результате, если числа одинаковых знаков, и со знаком минус, если они разных знаков.
Важно учитывать знак частного целых чисел. Кратко правила деления целых чисел:
Плюс на плюс дает плюс.
“+ : + = +”
Минус на минус дает плюс.
“– : – =+”
Минус на плюс дает минус.
“– : + = –”
Плюс на минус дает минус.
“+ : – = –”
А теперь рассмотрим подробно каждый пункт правила деления целых чисел.
Деление целых положительных чисел.
Вспомним, что целые положительные числа это тоже самое, что натуральные числа. Мы пользуемся теми же правила, что и при делении натуральных чисел. Знак частного от деления целых положительных чисел всегда плюс. Иными словами, при делении двух целых чисел “плюс на плюс дает плюс”.
Пример:
Выполните деление 306 на 3.
Решение:
Оба числа имеют знак “+”, поэтому ответ будет со знаком “+”.
306:3=102
Ответ: 102.
Пример:
Разделите делимое 220286 на делитель 589.
Решение:
Делимое 220286 и делитель 589 имеет знак плюс, поэтому частное тоже будет иметь знак плюс.
220286:589=374
Ответ: 374
Деление целых отрицательных чисел.
Правило деления двух отрицательных чисел.
Пусть у нас будут два отрицательных целых числа a и b. Нам нужно найти их модули и выполнить деление.
a:b=|a|:|b|
Результат деления или частное двух отрицательных целых чисел будет со знаком “+” или “минус на минус дает плюс”.
Рассмотрим пример:
Найдите частное -900:(-12).
Решение:
-900:(-12)=|-900|:|-12|=900:12=75
Ответ: -900:(-12)=75
Пример:
Выполните деление одного целого отрицательного числа -504 на второе отрицательное число -14.
Решение:
-504:(-14)=|-504|:|-14|=504:14=34
Записать выражение можно короче:
-504:(-14)=34
Деление целых чисел с разными знаками. Правило и примеры.
Правило:
При выполнении деления целых чисел с разными знаками, частное будет равно отрицательному числу.
Не важно положительное целое число делим на отрицательное целое число или отрицательное целое число делим на положительное целое число, результат деления всегда будет равен отрицательному числу.
Минус на плюс дает минус.
Плюс на минус дает минус.
Пример:
Найдите частное двух целых чисел с разными знаками -2436:42.
Решение:
-2436:42=-58
Пример:
Вычислите деление 4716:(-524).
Решение:
4716:(-524)=-9
Нуль деленный на целое число. Правило.
Правило:
При деление нуля на целое число ответ будет равен нулю.
Пример:
Выполните деление 0:558.
Решение:
0:558=0
Пример:
Разделите нуль на целое отрицательное число -4009.
Решение:
0:(-4009)=0
Правило:
На нуль делить нельзя.
Нельзя 0 разделить на 0.
Проверка частного деления целых чисел.
Как говорилось ранее деление и умножение тесно связаны. Поэтому чтобы проверить результат деления двух целых чисел, нужно выполнить умножение делителя и частного в результате должно получиться делимое.
Проверка результата деления краткая формула:
Делитель ∙ Частное = Делимое
Рассмотрим пример:
Выполните деление и сделайте проверку 1888:(-32).
Решение:
Обращаем внимание на знаки целых чисел. Число 1888 положительное и имеет знак “+”. Число (-32) отрицательное и имеет знак “–”. Поэтому при делении двух целых чисел с разными знаками ответ будет отрицательное число.
1888:(-32)=-59
А теперь выполним проверку найденного ответа:
1888 – делимое,
-32 – делитель,
-59 – частное,
Делитель умножаем на частное.
-32∙(-59)=1888
Вопросы по теме:
Что такое частное чисел?
Ответ: частное чисел – это результат деления деления двух чисел.
Как найти частное?
Ответ: нужно одно число поделить на другое, то есть делимое поделить на делитель и получим частное.
Чему равно частное от деления целых чисел?
Ответ: если целые числа делятся без остатка, то их частное равно целому числу. Иначе будет дробное число.
Что такое делимое и делитель?
Ответ: число которое делят называют делимым, а число на которое делят называют делителем.
Пример:
Найдите частное суммы и разности чисел 48 и 16.
Решение:
Находим сумму чисел 48 и 16.
48+16=64
Находим разность чисел 48 и 16.
48-16=32
Находим частное.
64:32=2
Ответ: 2.
Все это части математического действия – деления. Попробую простым языкам, как объясняли мне.. лет тридцать назад..) “Делимое” – это число стоящее слева от знака деления, которое делим (дробим) “Делитель” – это число стоящее справа от знака деления, число на которое делим Делимое (какими частями делим, дробим) “Частное” – это число стоящее после знака равно, результат деления (числовое выражение количества целых частей – делителей в делимом) “Неполное частное” – это число стоящее после знака равно, результат деления при котором оставил “лишнее” число которое меньше Делителя. Неполное частное это количество только целых частей. Всегда пишется с числом Остатка. “Остаток” – это число оставшееся не делимым, которое меньше Делителя. А теперь на примерах – 10 : 5 = 2 В этом примере “10” – Делимое, “5” – Делитель, “2” – Частное. 13 : 5 = 2 (3) В этом примере “13” – Делимое, “5” – Делитель, “2” – неполное Частное, “3” – Остаток (как правило пишется в скобках рядом с “неполным частным”). система выбрала этот ответ лучшим Для того чтобы не путаться в определении величин с которыми приходится иметь дело в процессе деления, люди давным давно придумали для них подходящие названия. Прежде всего само число. которое делят стали называть Делимым, ведь это число делится на части, оно буквально делимое. Например урожай плодов. Число, которое показывает на сколько частей мы поделим Делимое стали называть Делитель. Его задача разделить число на несколько групп, чтобы всем хватило поровну. Результат деления назвали Частным – это число показывает сколько единиц оказывается в каждой группе, кучке плодов, после того как разделили весь урожай. Наконец остаток – это то целое число плодов, которое невозможно поделить между всеми поровну. Пример: Собрали 51 яблоко. Это делимое. Решили поделить между папой, мамой, дочкой и сыном поровну, то есть на четырех. Это делитель. Поделили и получили что каждому причитается 12 яблок – это частное. А три яблока нельзя поделить на четырех и это Остаток. 51:4=12 (остаток 3). Ладлен 6 лет назад С понятия делимое, делитель, частное и остаток, начинают изучать деление в средней школе. Так что это просто необходимо при изучении математики. И так делимое это число , которое подвергают делению. Делитель, это то число на которое делят, а соответственно частное это и есть результат деления. Но так уж бывает когда делимое число не делится нацело. Вот и образуемое в процессе деления число которое меньше делителя и которое нельзя разделить нацело и называется остаток. А пример можно привести следующий. например. Возьмем. 34: 5 = 6 (остаток 4) В данном случае 34 – делимое 5 – делитель. 6 – частное отделения 4 – остаток. moreljuba 6 лет назад Все приведённые в вопросе понятия напрямую относятся к делению в математике. Итак, начнём с “делимого” – под ним подразумевается то число, которое будет делиться; “Делитель” уже подразумевает под собой то число, на которое будет делиться имеющееся “делимое”. “Частное” представляет собой результат, полученный от деления. “Остаток” представляет собой число остающееся при делении в результате у нас будет неполное частное. Вот пример: Бархатные лапки 6 лет назад Объяснить, что такое делимое, делитель, частное и остаток – реально легче на различных примерах. Вот самый простенький вариант, тут все делится без остатка. Далее, рассматриваем немного сложней вариант, когда число делится не полностью и остается у нас остаток, который обычно обозначается в скобочках. Или вот такой еще пример. Ничего сложного как видим нет, все это дети изучают еще в начальных классах на уроках математики. Nelli4ka 6 лет назад В примере: 20 : 10 = 2; 20 – это делимое (то, что делится), 10 – это делитель (то, что делит), 2 – это частное (то, что при умножении на делитель образует делимое). Возьмем другой пример: 17 : 3 = 5 (2), где 17 – делимое, 3 – делитель, 5 – неполное частное, 2 – остаток. При этом интересно, что остаток всегда меньше, чем неполное частное. Делимое – это число, которое будем делить. Делитель – это число, на которое будем делить Частное – это число, которое образуется при делении Остаток – это число, которое остается при делении (при этом частное будет неполным) Например 30/4=7(2) Здесь 30 – делимое, 4 – делитель, 7 – частное, 2 – остаток Тори Торичка 6 лет назад Данные понятия арифметики легче всего рассмотреть на примере. Пример: 17 : 8 = 2 (остаток – 1). В этом примере 17 – делимое (число, которое делят), 8 – делитель (то, на что мы делим), 2 – остаток (то, что получаем при делении), 1 – остаток. Azamatik 6 лет назад Сразу же приведем пример (можно даже несколько примеров): 1). 18 : 9 = 2; 2). 21 : 5 = 4,2 или же 4 и 1 в остатке. Делимое – это то число, которое мы делим (в наших примерах делимыми являются 18 и 21). Делитель – это то число, на которое мы делим делимое (делителями в наших примерах являются 9 и 5). Частное – это результат деления (частное в первом примере 2, а во втором примере 4,2). В первом случае делимое делится без остатка, а во втором у нас есть остаток – 1. Бекки Шарп 6 лет назад Например 40:6=6 (4) В данном примере делимое -40, число, стоящее перед знаком деления, 6-делитель, число, стоящее после знака деления или на которое делим делимое. 6-частное , то, что получается в результате деления 4-остаток , число, остающееся при делении 25 : 4 = 6 (1) делимое делитель частное остаток Знаете ответ? |
Перед тем как найти делитель, нужно понимать, что такое делитель, что такое делимое и частное.
Делитель — это число, на которое можно разделить другое число без остатка.
Давайте рассмотрим пример: число 12. Если мы разделим 12 на 2, то получим 6, а если разделим на 3, то получим 4 без остатка. Это значит, что 2 и 3 являются делителями числа 12. Чтобы найти все делители числа, нужно просто проверять все числа, начиная с 1 и заканчивая самим числом.
Если число делится на какое-то из этих чисел без остатка, то это число является делителем. Например, чтобы найти все делители числа 12, мы можем проверить, делится ли 12 на 1, 2, 3, 4, 6 и 12 без остатка.
Также можно заметить, что делители всегда идут парами: например, 2 и 6, 3 и 4 являются парами делителей числа 12, так как 2 * 6 = 12 и 3 * 4 = 12.
Существует определенное правило для нахождения делителя. Вспомним, что такое делимое, делитель и частное.
Чтобы найти делитель, нужно делимое разделить на частное. В примере выше делитель у нас 4, поэтому мы разделим делимое 12 на частное 3. Легко, не так ли ? Теперь попробуем найти делитель в более сложных примерах.
Пример 1. Найдите делитель: (1080 : 24x = 15)
Решение:
(1080 : 24x = 15)
Алгоритм решения тот же: делимое делим на частное:
(1080:15 =72)
(24x=72)
(72:24=3)
Данное правило мы можем применять везде, где есть деление чисел.
Ответ: делитель равен (72) ((x=3)).
Если вы сомневаетесь, что на что надо делить, то придумайте такой же пример, только с простыми числами. Рассмотрим это на примере ниже.
Пример 2. Найдите делитель: (784:x=14)
Решение:
(784:x=14)
Аналогичный пример с простыми числами:
(6:x=2) – здесь понятно, чтобы найти (x) надо (6) разделить на (2), то есть делитель равен (3)
(784:14 = 56) – искомый делитель
Чтобы научиться быстро и успешно решать уравнения, нужно начать с самых простых правил и примеров. В первую очередь надо научиться решать уравнения, слева у которых стоит разность, сумма, частное или произведение некоторых чисел с одним неизвестным, а справа другое число. Иными словами, в этих уравнениях есть одно неизвестное слагаемое и либо уменьшаемое с вычитаемым, либо делимое с делителем и т.д. Именно об уравнениях такого типа мы с вами поговорим.
Эта статья посвящена основным правилам, позволяющим найти множители, неизвестные слагаемые и др. Все теоретические положения будем сразу пояснять на конкретных примерах.
Нахождение неизвестного слагаемого
Допустим, у нас есть некоторое количество шариков в двух вазах, например, 9. Мы знаем, что во второй вазе 4 шарика. Как найти количество во второй? Запишем эту задачу в математическом виде, обозначив число, которое нужно найти, как x. Согласно первоначальному условию, это число вместе с 4 образуют 9, значит, можно записать уравнение 4+x=9. Слева у нас получилась сумма с одним неизвестным слагаемым, справа – значение этой суммы. Как найти x? Для этого надо использовать правило:
Для нахождения неизвестного слагаемого надо вычесть известное из суммы.
В данном случае мы придаем вычитанию смысл, который является обратным смыслу сложения. Иначе говоря, есть определенная связь между действиями сложения и вычитания, которую можно в буквенном виде выразить так: если a+b=c, то c−a=b и c−b=a, и наоборот, из выражений c−a=b и c−b=a можно вывести, что a+b=c.
Зная это правило, мы можем найти одно неизвестное слагаемое, используя известное и сумму. Какое именно слагаемое мы знаем, первое или второе, в данном случае неважно. Посмотрим, как применить данное правило на практике.
Возьмем то уравнение, что у нас получилось выше: 4+x=9. Согласно правилу, нам нужно вычесть из известной суммы, равной 9, известное слагаемое, равное 4. Вычтем одно натуральное число из другого: 9-4=5. Мы получили нужное нам слагаемое, равное 5.
Обычно решения подобных уравнений записывают следующим образом:
- Первым пишется исходное уравнение.
- Далее мы записываем уравнение, которое получилось после того, как мы применили правило вычисления неизвестного слагаемого.
- После этого пишем уравнение, которое получилось после всех действий с числами.
Такая форма записи нужна для того, чтобы проиллюстрировать последовательную замену исходного уравнения равносильными и отобразить процесс нахождения корня. Решение нашего простого уравнения, приведенного выше, правильно будет записать так:
4+x=9,x=9−4,x=5.
Мы можем проверить правильность полученного ответа. Подставим то, что у нас получилось, в исходное уравнение и посмотрим, выйдет ли из него верное числовое равенство. Подставим 5 в 4+x=9 и получим: 4+5=9. Равенство 9=9 верное, значит, неизвестное слагаемое было найдено правильно. Если бы равенство оказалось неверным, то нам следовало бы вернуться к решению и перепроверить его, поскольку это знак допущенной ошибки. Как правило, чаще всего это бывает вычислительная ошибка или применение неверного правила.
Нахождение неизвестного вычитаемого или уменьшаемого
Как мы уже упоминали в первом пункте, между процессами сложения и вычитания существует определенная связь. С ее помощью можно сформулировать правило, которое поможет найти неизвестное уменьшаемое, когда мы знаем разность и вычитаемое, или же неизвестное вычитаемое через уменьшаемое или разность. Запишем эти два правила по очереди и покажем, как применять их при решении задач.
Для нахождения неизвестного уменьшаемого надо прибавить вычитаемое к разности.
Например, у нас есть уравнение x-6=10. Неизвестно уменьшаемое. Согласно правилу, нам надо прибавить к разности 10 вычитаемое 6, получим 16. То есть исходное уменьшаемое равно шестнадцати. Запишем все решение целиком:
x−6=10,x=10+6,x=16.
Проверим получившийся результат, добавив получившееся число в исходное уравнение: 16-6=10. Равенство 16-16 будет верным, значит, мы все подсчитали правильно.
Переходим к следующему правилу.
Для нахождения неизвестного вычитаемого надо вычесть разность из уменьшаемого.
Воспользуемся правилом для решения уравнения 10-x=8. Мы не знаем вычитаемого, поэтому нам надо из 10 вычесть разность, т.е. 10-8=2. Значит, искомое вычитаемое равно двум. Вот вся запись решения:
10-x=8,x=10-8,x=2.
Сделаем проверку на правильность, подставив двойку в исходное уравнение. Получим верное равенство 10-2=8 и убедимся, что найденное нами значение будет правильным.
Перед тем, как перейти к другим правилам, отметим, что существует правило переноса любых слагаемых из одной части уравнения в другую с заменой знака на противоположный. Все приведенные выше правила ему полностью соответствуют.
Нахождение неизвестного множителя
Посмотрим на два уравнения: x·2=20 и 3·x=12. В обоих нам известно значение произведения и один из множителей, необходимо найти второй. Для этого нам надо воспользоваться другим правилом.
Для нахождения неизвестного множителя нужно выполнить деление произведения на известный множитель.
Данное правило базируется на смысле, который является обратным смыслу умножения. Между умножением и делением есть следующая связь: a·b=c при a и b, не равных 0, c: a=b, c: b=c и наоборот.
Вычислим неизвестный множитель в первом уравнении, разделив известное частное 20 на известный множитель 2. Проводим деление натуральных чисел и получаем 10. Запишем последовательность равенств:
x·2=20x=20:2x=10.
Подставляем десятку в исходное равенство и получаем, что 2·10=20. Значение неизвестного множителя было выполнено правильно.
Уточним, что в случае, если один из множителей нулевой, данное правило применять нельзя. Так, уравнение x·0=11 с его помощью решить мы не можем. Эта запись не имеет смысла, поскольку для решения надо разделить 11 на 0, а деление на нуль не определено. Подробнее о подобных случаях мы рассказали в статье, посвященной линейным уравнениям.
Когда мы применяем это правило, мы, по сути, делим обе части уравнения на другой множитель, отличный от 0. Существует отдельное правило, согласно которому можно проводить такое деление, и оно не повлияет на корни уравнения, и то, о чем мы писали в этом пункте, с ним полностью согласовано.
Нахождение неизвестного делимого или делителя
Еще один случай, который нам нужно рассмотреть, – это нахождение неизвестного делимого, если мы знаем делитель и частное, а также нахождение делителя при известном частном и делимом. Сформулировать это правило мы можем с помощью уже упомянутой здесь связи между умножением и делением.
Для нахождения неизвестного делимого нужно умножить делитель на частное.
Посмотрим, как применяется данное правило.
Решим с его помощью уравнение x:3=5. Перемножаем между собой известное частное и известный делитель и получаем 15, которое и будет нужным нам делимым.
Вот краткая запись всего решения:
x:3=5,x=3·5,x=15.
Проверка показывает, что мы все подсчитали верно, ведь при делении 15 на 3 действительно получается 5. Верное числовое равенство – свидетельство правильного решения.
Указанное правило можно интерпретировать как умножение правой и левой части уравнения на одинаковое отличное от 0 число. Это преобразование никак не влияет на корни уравнения.
Переходим к следующему правилу.
Для нахождения неизвестного делителя нужно разделить делимое на частное.
Возьмем простой пример – уравнение 21:x=3. Для его решения разделим известное делимое 21 на частное 3 и получим 7. Это и будет искомый делитель. Теперь оформляем решение правильно:
21:x=3,x=21:3,x=7.
Удостоверимся в верности результата, подставив семерку в исходное уравнение. 21:7=3, так что корень уравнения был вычислен верно.
Важно отметить, что это правило применимо только для случаев, когда частное не равно нулю, ведь в противном случае нам опять же придется делить на 0. Если же частным будет нуль, возможны два варианта. Если делимое также равно нулю и уравнение выглядит как 0:x=0, то значение переменной будет любым, то есть данное уравнение имеет бесконечное число корней. А вот уравнение с частным, равным 0, с делимым, отличным от 0, решений иметь не будет, поскольку таких значений делителя не существует. Примером может быть уравнение 5:x=0, которое не имеет ни одного корня.
Последовательное применение правил
Зачастую на практике встречаются более сложные задачи, в которых правила нахождения слагаемых, уменьшаемых, вычитаемых, множителей, делимых и частных нужно применять последовательно. Приведем пример.
У нас есть уравнение вида 3·x+1=7. Вычисляем неизвестное слагаемое 3·x, отняв от 7 единицу. Получим в итоге 3·x=7−1, потом 3·x=6. Это уравнение решить очень просто: делим 6 на 3 и получаем корень исходного уравнения.
Вот краткая запись решения еще одного уравнения (2·x−7):3−5=2:
(2·x−7):3−5=2,(2·x−7):3=2+5,(2·x−7):3=7,2·x−7=7·3,2·x−7=21,2·x=21+7,2·x=28,x=28:2,x=14.
Математика, 2 класс
Урок № 55. Название чисел при делении
Перечень вопросов, рассматриваемых в теме:
1. Как называются числа при делении?
2. Как называется числовое выражение со знаком деление?
Глоссарий по теме:
Деление – это арифметическое действие, обратное умножению. С помощью деления по произведению и одному из множителей определяется второй множитель.
Делимое – это число стоящее слева от знака деления, которое делим.
Делитель – это число стоящее справа от знака деления, число на которое делим делимое. (какими частями делим, дробим)
Частное – это число стоящее после знака равно, результат деления, числовое выражение со знаком деление.
Обязательная литература и дополнительная литература:
- Моро М. И., Бантова М. А. и др. Математика 2 класс. Учебник для общеобразовательных организаций. М.; Просвещение, 2017. – с. 62.
- С. И. Волкова. Математика 2 класс. Тетрадь учебных достижений. Учебное пособие для общеобразовательных организаций. М.; Просвещение, 2018. – с. 44-47.
Теоретический материал для самостоятельного изучения
Запишем равенство, используя необходимое арифметическое действие:
10 яблок разложили на две тарелки поровну.
10 : 2 = 5
9 конфет раздали трём детям поровну.
9 : 3 = 3
8 тетрадей раздали четырём ученикам поровну.
8 : 4 = 2
Для того, чтобы выполнит задание, нам понадобилось действие деление.
Вы уже знаете, как называются числа при сложении и вычитании, недавно вы познакомились с названиями чисел при умножении.
Вы умеете называть выражения со знаками «плюс», «минус», со знаком умножения. Сегодня вы узнаете, как называются числа при делении. Выражение со знаком деления тоже имеет своё название. Хотите узнать? Вперёд!
Числа при делении имеют свои названия.
Рассмотрим рисунок.
8 листьев раздали детям, по 2 листа каждому.
8 : 2 = 4
4 человека получили листья.
Число, которое делят, называется делимым. 8 – это делимое. Число, на которое делят делимое, называется делитель. 2 – это делитель Результат действия деления называется частным. 4 – это частное. Выражение 8 разделить на 2 тоже называется частным.
Компоненты деления: делимое, делитель, частное.
Найдите частное, если делимое – 6, делитель – 3.
Проверьте: 6 : 3 = 2
Найдите частное чисел 12 и 6. Проверьте: 12 : 6 = 2
Решим задачу: 12 клубничек раздали 4 детям поровну. По сколько клубничек получил каждый ребёнок?
Для решения задачи выберем действие деление, так как надо узнать, сколько раз по 4 содержится в числе 12.
12 : 4 = 3 (кл.)
Ответ: по 3 клубнички получил каждый ребёнок.
Вспомним название чисел при делении. 12 – делимое, 4 – делитель. 3 – частное. 12 : 4 – это частное.
Вывод: компоненты действия деление – делимое, делитель, результат деления – частное.
Ответим на вопросы, поставленные в начале урока.
Число, которое делят, называется делимое.
Число, на которое делят делимое, называется делитель.
Результат деления – частное.
Числа, которые соединены знаком деления, тоже называются частное.
Выполним несколько тренировочных заданий.
1. По рисунку составьте задачи на деление. Запишите решение. Назовите компоненты действия деление.
а) 15 яблок разложили в 3 вазы, в каждую вазу поровну. Сколько яблок положили в одну вазу?
Проверьте: 15 : 3 = 5 (яб.).
Ответ: 5 яблок.
15 – делимое. 3 – делитель. 5 – частное. Выражение 15:3 – частное.
б) 15 яблок разложили в вазы, по 5 штук в каждую. Сколько ваз заняты яблоками?
15 : 5 = 3 (в.)
Ответ: 3 вазы.
15 – делимое. 5 – делитель. 3 – частное. Выражение 15:5 – частное.
2. Запишите выражение и найдите их значения:
Частное чисел 12 и 2.
Делитель 4, делимое 20.
Делимое 8, делитель 4.
Произведение 5 и 3.
Сумма чисел 6 и 4.
Проверьте.
12 : 2 = 6
20 : 4 = 5
8 : 4 = 2
5 ∙ 3 = 15
6 + 4 = 10