Похоже, вы используете блокировщик рекламы. Наш сайт существует и развивается
только за счет дохода от рекламы.
Пожалуйста, добавьте нас в исключения блокировщика.
на главную
Дискриминант
квадратного уравнения
Поддержать сайт
Мы уже разобрали,
как решать квадратные уравнения.
Теперь давайте более подробно рассмотрим, что называют
дискриминантом квадратного уравнения.
Вернемся к нашей формуле для нахожденя корней квадратного уравнения.
Запомните!
Выражение «b2 − 4ac», которое находится под корнем,
принято называть дискриминантом и обозначать буквой «D».
По-другому, через дискриминант формулу нахождения корней квадратного уравнения можно записать так:
x1;2 = , где «D = b2 − 4ac»
По одной из версий термин «Дискриминант» произошел от латинского discriminantis, что означает «отличающий» или «различающий».
В зависимости от знака «D» (дискриминанта)
квадратное уравнение может иметь два, один или ни одного корня. Рассмотрим все три случая.
I случай
D > 0
(дискриминант больше нуля)
2x2 + 5x −7 = 0
D = b2 − 4ac
D = 52 − 4 · 2 · (−7)
D = 25 + 56
D = 81
D > 0
x1;2 =
x1;2 =
x1;2 =
x1 = |
x2 = |
x1 = |
x2 = |
x1 = 1 |
x2 = −3 |
x1 = 1 |
x2 = −3 |
Ответ: x1 = 1;
x2 = −3
Вывод: когда «D > 0» в квадратном уравнении два корня.
II случай
D = 0
(дискриминант равен нулю)
16x2 − 8x + 1 = 0
D = b2 − 4ac
D = (−8)2 − 4 · 16 · 1
D = 64 − 64
D = 0
x1;2 =
x1;2 =
x1;2 =
x =
x =
Ответ: x =
Вывод: когда «D = 0» в квадратном уравнении один корень.
III случай
D < 0
(дискриминант меньше нуля)
9x2 − 6x + 2 = 0
D = b2 − 4ac
D = (−6)2 − 4 · 9 · 2
D = 36 − 72
D = −36
D < 0
x1;2 =
x1;2 =
Ответ: нет действительных корней
Вывод: когда «D < 0» в квадратном уравнении нет корней.
Ваши комментарии
Важно!
Чтобы оставить комментарий, вам нужно войти на наш сайт при помощи
«ВКонтакте».
Оставить комментарий:
На чтение 7 мин. Просмотров 7.7k.
Важная характеристика квадратных уравнений – их дискриминант. По значению этой величины определяют, сколько корней у данного уравнения и есть ли они.
В 8 классе по алгебре начинают изучать квадратные уравнения и самый популярный способ их решения – через дискриминант. Формула вычисления дискриминанта известна
Дискриминант в математике используется чтобы определить сколько корней в уравнении — 1 корень, 2 корня или действительных корней нет. В этой статье определим, что такое дискриминант и выведем формулу дискриминанта.
Определение
Определим что такое дискриминант и зачем он нужен в математике, а также как его рассчитать.
Дискриминантом называют число, описывающее свойство коэффициентов квадратного многочлена. Хотя есть дискриминанты и кубических многочленов.
По этому числу определяют характер корней уравнения, полученному если многочлен приравнять к нулю. Так, если дискриминант больше нуля, то уравнение будет иметь два корня, равен нулю, то 1 корень, а если будет меньше нуля, то корней не будет.
Дискриминант (определение) помогает определить наличие или отсутствие корней квадратного уравнения, не решая его.
Обозначается дискриминант квадратного уравнения буквой или знаком Δ. И находится по формуле:
D=b^2-4ac , где
, и — коэффициенты уравнения:
ax^2+bx+c=0
Корни через дискриминант определяются по формулам:
displaystyle x_1=frac{-b-sqrt{D}}{2a} и displaystyle x_2=frac{-b+sqrt{D}}{2a}
Пример вычисления дискриминанта:
Вычислим дискриминант в уравнении 6x^2+4x+2=0 .
По формуле находим:
D=b^2-4ac=4^2-4cdot 6 cdot 2=16-48=-32
Мы получили отрицательный дискриминант, значит, данное уравнение не имеет действительных корней. Действительно, так как корни квадратного уравнения находят по формулам:
displaystyle x_1=frac{-b-sqrt{D}}{2a} и displaystyle x_2=frac{-b+sqrt{D}}{2a}
Подставим значения для исходного уравнения:
displaystyle x_1=frac{-4-sqrt{-32}}{12} и displaystyle x_2=frac{-4+sqrt{-32}}{12}
Как видим, мы никак не сможем посчитать корни — у нас отрицательное число под знаком радикала. И, действительно, если вы построите график функции f (x)=6x^2+4x+2 — он нигде не пересечет ось , то есть ни при каком мы не получим ноль.
Геометрический смысл дискриминанта
Что означает дискриминант на графике, каков его геометрический смысл? Графически дискриминант квадратного уравнения характеризует расстояние по оси абсцисс между точкой — вершиной параболы (парабола — график квадратичной функции) и точкой пересечения графика с осью абсцисс. Посмотрите на рисунок. На нем видно:
- Если дискриминант равен нулю (D=0), это значит, что вершина параболы и является точкой пересечения с осью абсцисс — расстояние между точкой пересечения и вершиной параболы равно нулю.
- Когда D>0, то справа и слева от точки абсцисс вершины параболы на одинаковом расстоянии displaystyle frac{sqrt{D}}{2a} будут находиться точки пересечения параболы ax^2+bx+c=y, которые являются корнями уравнения ax^2+bx+c=0.
- Когда D<0 — это означает, что точек действительных отметить на оси абсцисс нельзя, то есть от вершины отложить расстояние до точек пересечения графика с осью абсцисс невозможно, то есть этих точек пересечения нет. График не пересекает ось абсцисс и корней уравнения [katex]ax^2+bx+c=0[/katex] нет.
Корни квадратного уравнения через дискриминант.
Полное квадратное уравнение
Пусть нам дано уравнение вида ax^2+bx+c=0. Вычисляем дискриминант по известной формуле. Затем определяем корни уравнения.
- Если D>0 получаем два вещественных корня displaystyle x_1=frac{-b-sqrt{D}}{2a} и displaystyle x_2=frac{-b+sqrt{D}}{2a}.
- Если D=0 корни будут совпадать: displaystyle x_1=x_2=frac{-b}{2a}
- Если D<0, вещественных корней нет, но есть мнимые корни или так называемые комплексные корни (обычно изучаются в курсе математического анализа в ВУЗах, хотя иногда и встречаются в алгебре 9-11 классов).
Неполное квадратное уравнение
Неполным называется такое квадратное уравнение, когда один из коэффициентов такого уравнения равен нулю.
- Пусть коэффициент a=0, тогда уравнение сводится к линейному уравнению вида kx+b=0 и уже не будет считаться неполным.
- Если равны нулю два коэффициента: и , тогда . Решением такого уравнения будет: .
- Если равен нулю коэффициент b, то имеем D=-4ac и displaystyle x_1= frac{sqrt{D}}{2a} и displaystyle x_2= -frac{sqrt{D}}{2a}.
- При равенстве нулю свободного члена c=0 имеем D=b^2 и displaystyle x_1=frac{-b-sqrt{D}}{2a} и displaystyle x_2=frac{-b+sqrt{D}}{2a}.
Приведенное квадратное уравнение
Приведенным квадратным уравнением называется такое уравнение вида , в котором старший коэффициент равен a=1. Оно решается обычно по теореме Виета.
Дискриминант находится по формуле: .
Если второй коэффициент кратен 2
Если коэффициент b можно разделить на 2 (с четным вторым коэффициентом), то тогда вычисляется не полный дискриминант, а displaystyle frac{D}{4} по формуле:
displaystyle frac{D}{4}=left ( frac{b}{2} right)^2-ac,
а корни: displaystyle x_1=frac{-frac{b}{2}-sqrt{frac{D}{4}}}{a} и второй корень displaystyle x_2=frac{-frac{b}{2}+sqrt{frac{D}{4}}}{a}.
Примеры нахождения корней уравнения с помощью дискриминанта
Пример 1
Решим уравнение: 4x^2+5x-5=0
Находим дискриминант: D=25-4 cdot 4 cdot (-5)=25+80=105
Корни: displaystyle x_1=frac{-5-sqrt{105}}{2cdot 4}, displaystyle x_2=frac{-5+sqrt{105}}{2cdot 4}
или
displaystyle x_1=frac{-5-sqrt{105}}{8}, displaystyle x_2=frac{-5+sqrt{105}}{8}
Пример 2
Сколько корней в данном уравнении 2x^2-3x+6=0?
Для ответа на этот вопрос необходимо найти дискриминант:
D=3^2-4 cdot 2 cdot 6=9-48=-39
D<0[/katex] — действительных корней нет.</p> <h3>Пример 3</h3> <p>[katex]x^2-6x-72=0 — найти корень.
D=b^2-4ac=(-6)^2-4 cdot (-72)=36+288=324
Так как , имеем два корня:
displaystyle x_1=frac{6-sqrt{324}}{2}, x_2=frac{6+sqrt{324}}{2}
displaystyle x_1=frac{6-18}{2}=-6, x_2=frac{6+18}{2}=12
Пример 4
Решить неполное уравнение
x^2-4=0
Способ 1
Разложим левую часть по формуле разность квадратов:
(x-2)(x+2)=0
Тогда корни:
x_1=-2, x_2=2
Способ 2
Решим задачу с помощью дискриминанта: , тогда displaystyle x_1=sqrt{D}/2=sqrt{16}/2=4/2=2,
displaystyle x_2=-sqrt{D}/2=-sqrt{16}/2=-4/2=-2
Пример 5
Придумайте такое квадратное уравнение, в котором будет нулевой дискриминант.
Решение:
Так как формула дискриминанта: D=b^2-4ac, то выберем любые коэффициенты и , а найдем, если приравняем D=b^2-4ac к нулю.
Пусть , a , тогда displaystyle D=4^2-4cdot 7cdot c=0
4^2-4cdot 7cdot c=0
16-28c=0
-28c=-16 Разделим левую и правую части на -4.
7c=4
displaystyle c=frac{4}{7}
И, получаем: displaystyle 7x^2+4x+frac{4}{7}=0
Ответ: displaystyle 7x^2+4x+frac{4}{7}=0
Выводы
Самое важное, что надо запомнить, это формулу:
D=b^2-4ac
и как определяются корни квадратного уравнения:
displaystyle x_1=frac{-b-sqrt{D}}{2a} и displaystyle x_2=frac{-b+sqrt{D}}{2a}
Можно забыть, как определяются корни в разных видах квадратных уравнений, неполных, приведенных, но если вы знаете главное — как определяется дискриминант и корни в полном квадратном уравнении, то вы сможете решить любое уравнение второй степени.
Квадра́тное уравне́ние — алгебраическое уравнение второй степени с общим видом
в котором — неизвестное, а коэффициенты , и — вещественные или комплексные числа.
Корень уравнения — это значение неизвестного , обращающее квадратный трёхчлен в ноль, а квадратное уравнение в верное числовое равенство. Также это значение называется корнем самого многочлена
Элементы квадратного уравнения имеют собственные названия[1]:
Приведённым называют квадратное уравнение, в котором старший коэффициент равен единице[1]. Такое уравнение может быть получено делением всего выражения на старший коэффициент :
Полным называют такое квадратное уравнение, все коэффициенты которого отличны от нуля.
Неполным называется такое квадратное уравнение, в котором хотя бы один из коэффициентов, кроме старшего (либо второй коэффициент, либо свободный член), равен нулю.
Квадратное уравнение является разрешимым в радикалах, то есть его корни могут быть выражены через коэффициенты в общем виде.
Исторические сведения о квадратных уравнениях[править | править код]
Древний Вавилон[править | править код]
Уже во втором тысячелетии до нашей эры вавилоняне знали, как решать квадратные уравнения[1]. Решение их в Древнем Вавилоне было тесно связано с практическими задачами, в основном такими, как измерение площади земельных участков, земельные работы, связанные с военными нуждами; наличие этих познаний также обусловлено развитием математики и астрономии вообще. Были известны способы решения как полных, так и неполных квадратных уравнений. Приведём примеры квадратных уравнений, решавшихся в Древнем Вавилоне, используя современную алгебраическую запись:
Правила решения квадратных уравнений во многом аналогичны современным, однако в вавилонских текстах не зафиксированы рассуждения, путём которых эти правила были получены.
Индия[править | править код]
Задачи, решаемые с помощью квадратных уравнений, встречаются в трактате по астрономии «Ариабхаттиам», написанным индийским астрономом и математиком Ариабхатой в 499 году нашей эры. Один из первых известных выводов формулы корней квадратного уравнения принадлежит индийскому учёному Брахмагупте (около 598 г.)[1]; Брахмагупта изложил универсальное правило решения квадратного уравнения, приведённого к каноническому виду: притом предполагалось, что в нём все коэффициенты, кроме могут быть отрицательными. Сформулированное учёным правило по своему существу совпадает с современным.
Корни квадратного уравнения на множестве действительных чисел[править | править код]
I способ. Общая формула для вычисления корней с помощью дискриминанта[править | править код]
Дискриминантом квадратного уравнения называется величина .
Условие | |||
Количество корней | Два корня | Один корень кратности 2 (другими словами, два равных корня) |
Действительных корней нет |
Формула | (1) | — |
Данный метод универсальный, однако не единственный.
II способ. Корни квадратного уравнения при чётном коэффициенте b[править | править код]
Для уравнений вида , то есть при чётном , где
вместо формулы (1) для нахождения корней существует возможность использования более простых выражений[1].
Примечание: данные ниже формулы можно получить, подставив в стандартные формулы выражение b = 2k, через несложные преобразования.
Дискриминант | Корни | |||
неприведённое | приведённое | D > 0 | неприведённое | приведённое |
удобнее вычислять значение
четверти дискриминанта: Все необходимые свойства при этом сохраняются. |
. | |||
D = 0 |
III способ. Решение неполных квадратных уравнений[править | править код]
К решению неполных квадратных уравнений практикуется особый подход. Рассматриваются три возможных ситуации.
IV способ. Использование частных соотношений коэффициентов[править | править код]
Существуют частные случаи квадратных уравнений, в которых коэффициенты находятся в соотношениях между собой, позволяющих решать их гораздо проще.
Корни квадратного уравнения, в котором сумма старшего коэффициента и свободного члена равна второму коэффициенту[править | править код]
Если в квадратном уравнении сумма первого коэффициента и свободного члена равна второму коэффициенту: , то его корнями являются и число, противоположное отношению свободного члена к старшему коэффициенту ().
Доказательство
Способ 1. Сначала выясним, действительно ли такое уравнение имеет два корня (в том числе, два совпадающих):
- .
Да, это так, ведь при любых действительных значениях коэффициентов , а значит и дискриминант неотрицателен. Таким образом, если , то уравнение имеет два корня, если же , то оно имеет только один корень.
Найдём эти корни:
- .
В частности, если , то корень будет один:
Способ 2.
Геометрическая интерпретация: парабола, заданная аналитически указанной формулой, пересекает ось x в двух точках, абсциссами которых и являются корни, хотя бы один из которых равен -1
Используем геометрическую модель корней квадратного уравнения: их мы будем рассматривать как точки пересечения параболы с осью абсцисс. Всякая парабола вне зависимости от задающего её выражения является фигурой, симметричной относительно прямой . Это означает, что отрезок всякой перпендикулярной к ней прямой, отсекаемый на ней параболой, делится осью симметрии пополам. Сказанное, в частности, верно и для оси абсцисс. Таким образом, для всякой параболы справедливо одно из следующих равенств: (если ) или (если верно неравенство противоположного смысла). Используя тождество , выражающее геометрический смысл модуля, а также принимая, что (это можно доказать, подставив равенство в квадратный трёхчлен: , поэтому -1 – корень такого уравнения) , приходим к следующему равенству: Если учитывать, что разность в том случае, когда мы прибавляем модуль, всегда положительна, а в том, когда отнимаем – отрицательна, что говорит о тождественности этих случаев, и, к тому же, помня о равенстве , раскрываем модуль: . Во втором случае,совершив аналогичные преобразования, придём к тому же результату, ч.т.д.
- Отсюда следует, что перед решением какого-либо квадратного уравнения целесообразна проверка возможности применения к нему этой теоремы: сравнить сумму старшего коэффициента и свободного члена со вторым коэффициентом.
Корни квадратного уравнения, сумма всех коэффициентов которого равна нулю[править | править код]
Если в квадратном уравнении сумма всех его коэффициентов равна нулю (), то корнями такого уравнения являются и отношение свободного члена к старшему коэффициенту ().
Доказательство
Способ 1. Прежде всего заметим, что из равенства следует, что
Установим количество корней:
При любых значениях коэффициентов уравнение имеет хотя бы один корень: действительно, ведь при любых значениях коэффициентов , а значит и дискриминант неотрицателен. Обратите внимание, что если , то уравнение имеет два корня, если же , то только один.
Найдём эти корни:
что и требовалось доказать.
- В частности, если , то уравнение имеет только один корень, которым является число .
Способ 2. Пользуясь данным выше определением корня квадратного уравнения, обнаруживаем путём подстановки, что число 1 является таковым в рассматриваемом случае: – верное равенство, следовательно, единица – корень такого вида квадратных уравнений. Далее, по теореме Виета находим второй корень: согласно этой теореме, произведение корней уравнения равно числу, равному отношению свободного члена к старшему коэффициенту – , ч.т.д.
- Отсюда следует, что перед решением уравнения стандартными методами целесообразна проверка применимости к нему этой теоремы, а именно сложение всех коэффициентов данного уравнения и установление, не равна ли нулю эта сумма.
V способ. Разложение квадратного трёхчлена на линейные множители[править | править код]
Если трёхчлен вида удастся каким-либо образом представить в качестве произведения линейных множителей , то можно найти корни уравнения — ими будут и , действительно, ведь а решив указанные линейные уравнения, получим вышеописанное. Квадратный трёхчлен не всегда раскладывается на линейные множители с действительными коэффициентами: это возможно, если соответствующее ему уравнение имеет действительные корни.
Рассматриваются некоторые частные случаи.
Использование формулы квадрата суммы (разности)[править | править код]
Если квадратный трёхчлен имеет вид , то применив к нему названную формулу, можно разложить его на линейные множители и, значит, найти корни:
Выделение полного квадрата суммы (разности)[править | править код]
Также названную формулу применяют, пользуясь методом, получившим названия «выделение полного квадрата суммы (разности)». Применительно к приведённому квадратному уравнению с введёнными ранее обозначениями, это означает следующее:
- прибавляют и отнимают одно и то же число:
. - применяют формулу к полученному выражению, переносят вычитаемое и свободный член в правую часть:
- извлекают из левой и правой частей уравнения квадратный корень и выражают переменную:
Примечание: данная формула совпадает с предлагаемой в разделе «Корни приведённого квадратного уравнения», которую, в свою очередь, можно получить из общей формулы (1) путём подстановки равенства a = 1. Этот факт не просто совпадение: описанным методом, произведя, правда, некоторые дополнительные рассуждения, можно вывести и общую формулу, а также доказать свойства дискриминанта.
VI способ. Использование прямой и обратной теоремы Виета[править | править код]
Прямая теорема Виета (см. ниже) и обратная ей теорема позволяют решать приведённые квадратные уравнения устно, не прибегая к вычислениям по формуле (1).
Согласно обратной теореме, всякая пара чисел (число) , будучи решением системы уравнений
- являются корнями уравнения .
Подобрать устно числа, удовлетворяющие этим уравнениям, поможет прямая теорема. С её помощью можно определить знаки корней, не зная сами корни. Для этого следует руководствоваться правилом:
- 1) если свободный член отрицателен, то корни имеют различный знак, и наибольший по модулю из корней — знак, противоположный знаку второго коэффициента уравнения;
- 2) если свободный член положителен, то оба корня обладают одинаковым знаком, и это — знак, противоположный знаку второго коэффициента.
VII способ. Метод «переброски»[править | править код]
По своей сущности метод «переброски» является просто модификацией теоремы Виета.
Метод «переброски» — это сведение уравнения, которое нельзя привести так, чтобы все коэффициенты остались целыми, к приведённому уравнению с целыми коэффициентами:
- 1) умножаем обе части на старший коэффициент:
- 2) заменяем
Далее решаем уравнение относительно y по методу, описанному выше, и находим x = y/a.
Как можно заметить, в методе «переброски» старший коэффициент как раз «перебрасывается» к свободному члену.
Графическое решение квадратного уравнения[править | править код]
Графиком квадратичной функции является парабола. Решениями (корнями) квадратного уравнения называют абсциссы точек пересечения параболы с осью абсцисс. Если парабола, описываемая квадратичной функцией, не пересекается с осью абсцисс, уравнение не имеет вещественных корней. Если парабола пересекается с осью абсцисс в одной точке (в вершине параболы), уравнение имеет один вещественный корень (также говорят, что уравнение имеет два совпадающих корня). Если парабола пересекает ось абсцисс в двух точках, уравнение имеет два вещественных корня (см. изображение справа.)
Если коэффициент положительный, ветви параболы направлены вверх и наоборот. Если коэффициент положительный (при положительном , при отрицательном наоборот), то вершина параболы лежит в левой полуплоскости и наоборот.
Графический способ решения квадратных уравнений[править | править код]
Помимо универсального способа, описанного выше, существует так называемый графический способ. В общем виде этот способ решения рационального уравнения вида заключается в следующем: в одной системе координат строят графики функций и и находят абсциссы общих точек этих графиков; найденные числа и будут корнями уравнения.
- Есть всего пять основных способов графического решения квадратных уравнений.
Приём I[править | править код]
Для решения квадратного уравнения строится график функции
и отыскиваются абсциссы точек пересечения такого графика с осью .
Приём II[править | править код]
Для решения того же уравнения этим приёмом уравнение преобразуют к виду
и строят в одной системе координат графики квадратичной функции и линейной функции , затем находят абсциссу точек их пересечения.
Приём III[править | править код]
Данный приём подразумевает преобразование исходного уравнения к виду , используя метод выделения полного квадрата суммы (разности) и затем в . После этого строятся график функции (им является график функции , смещённый на единиц масштаба вправо или влево в зависимости от знака) и прямую , параллельную оси абсцисс. Корнями уравнения будут абсциссы точек пересечения параболы и прямой.
Приём IV[править | править код]
Квадратное уравнение преобразуют к виду , строят график функции (им является график функции , смещённый на единиц масштаба вверх, если этот коэффициент положителен, либо вниз, если он отрицателен), и , находят абсциссы их общих точек.
Приём V[править | править код]
Квадратное уравнение преобразуют к особому виду:
затем
Совершив преобразования, строят графики линейной функции и обратной пропорциональности , отыскивают абсциссы точек пересечения этих графиков. Этот приём имеет границу применимости: если , то приём не используется.
Решение квадратных уравнений с помощью циркуля и линейки[править | править код]
Описанные выше приёмы графического решения имеют существенные недостатки: они достаточно трудоёмки, при этом точность построения кривых — парабол и гипербол — низка. Указанные проблемы не присущи предлагаемому ниже методу, предполагающему относительно более точные построения циркулем и линейкой.
Чтобы произвести такое решение, нужно выполнить нижеследующую последовательность действий.
- Построить в системе координат окружность с центром в точке , пересекающую ось в точке .
- Далее возможны три случая:
Доказательство
Иллюстрация к доказательству.
Рассматриваемый способ предполагает построение окружности, пересекающей ось ординат в точках (точке), абсциссы которых являются корнями (или корнем) решаемого уравнения. Как нужно строить такую окружность? Предположим, что она уже построена. Окружность определяется однозначно заданием трёх своих точек. Пусть в случае, если корня два, это будут точки , где , естественно, действительные корни квадратного уравнения (подчёркиваем: если они имеются). Найдём координаты центра такой окружности. Для этого докажем, что эта окружность проходит через точку . Действительно, согласно теореме о секущих, в принятых обозначениях выполняется равенство (см рисунок). Преобразовывая это выражение, получаем величину отрезка OD, которой и определяется искомая ордината точки D: (в последнем преобразовании использована теорема Виета (см. ниже в одноимённом разделе)). Если же корень один, то есть ось абсцисс будет касательной к такой окружности, и окружность пересекает ось y в точке с ординатой 1, то она обязательно пересечёт её и в точке с указанной выше ординатой (в частности, если 1=c/a, это могут быть совпадающие точки), что доказывается аналогично с использованием уже теоремы о секущей и касательной, являющаяся частным случаем теоремы о секущих. В первом случае (), определяющими будут точка касания, точка оси y с ординатой 1, и её же точка с ординатой . Если c/a и 1 – совпадающие точки, а корня два, определяющими будут эта точка и точки пересечения с осью абсцисс. В случае, когда (1=c/a) и корень один, указанных сведений достаточно для доказательства, так как такая окружность может быть только одна – её центром будет вершина квадрата, образуемого отрезками касательных и перпендикулярами, а радиус – стороне этого квадрата, составляющей 1. Пускай S – центр окружности, имеющей с осью абсцисс две общие точки. Найдём его координаты: для этого опустим от этой точки перпендикуляры к координатным осям. Концы этих перпендикуляров будут серединами отрезков AB и CD – ведь треугольники ASB и CSD равнобедренные, так как в них AS=BS=CS=DS как радиусы одной окружности, следовательно, высоты в них, проведённые к основаниям, также являются и медианами. Найдём координаты середин названных отрезков. Так как парабола симметрична относительно прямой , то точка этой прямой с такой же абсциссой будет являться серединой отрезка AB. Следовательно, абсцисса точки S равна этому числу. В случае же, если уравнение имеет один корень, то ось x является касательной по отношению к окружности,поэтому, согласно её свойству, её радиус перпендикулярен оси, следовательно, и в этом случае указанное число – абсцисса центра. Её ординату найдём так: . В третьем из возможных случаев, когда ca=1 (и, значит, a=c), то .
Итак, нами найдены необходимые для построения данные. Действительно, если мы построим окружность с центром в точке , проходящую через точку , то она, в случаях, когда уравнение имеет действительные корни, пересечёт ось x в точках, абсциссы которых есть эти корни. Причём, если длина радиуса больше длины перпендикуляра к оси Ox, то уравнение имеет два корня (предположив обратное, мы бы получили противоречие с доказанным выше), если длины равны, то один (по той же причине), если же длина радиуса меньше длины перпендикуляра, то окружность не имеет общих точек с осью x, следовательно, и действительных корней у уравнения нет (доказывается тоже от противного: если корни есть, то окружность, проходящая через A, B, C совпадает с данной, и поэтому пересекает ось, однако она не должна пересекать ось абсцисс по условию, значит, предположение неверно).
Корни квадратного уравнения на множестве комплексных чисел[править | править код]
Уравнение с действительными коэффициентами[править | править код]
Квадратное уравнение с вещественными коэффициентами всегда имеет с учётом кратности два комплексных корня, о чём гласит основная теорема алгебры. При этом, в случае неотрицательного дискриминанта корни будут вещественными, а в случае отрицательного — комплексно-сопряжёнными:
Уравнение с комплексными коэффициентами[править | править код]
В комплексном случае квадратное уравнение решается по той же формуле (1) и указанным выше её вариантам, но различимыми являются только два случая: нулевого дискриминанта (один двукратный корень) и ненулевого (два корня единичной кратности).
Корни приведённого квадратного уравнения[править | править код]
Квадратное уравнение вида в котором старший коэффициент равен единице, называют приведённым. В этом случае формула для корней (1) упрощается до
Мнемонические правила:
- Из «Радионяни»:
«Минус» напишем сначала,
Рядом с ним p пополам,
«Плюс-минус» знак радикала,
С детства знакомого нам.
Ну, а под корнем, приятель,
Сводится всё к пустяку:
p пополам и в квадрате
Минус прекрасное[2] q.
- Из «Радионяни» (второй вариант):
p, со знаком взяв обратным,
На два мы его разделим,
И от корня аккуратно
Знаком «минус-плюс» отделим.
А под корнем очень кстати
Половина p в квадрате
Минус q — и вот решенья,
То есть корни уравненья.
- Из «Радионяни» (третий вариант на мотив Подмосковных вечеров):
Чтобы x найти к половине p,
Взятой с минусом не забудь,
Радикал приставь с плюсом минусом,
Аккуратно, не как-нибудь.
А под ним квадрат половины p,
Ты, убавь на q и конец,
Будет формула приведенная,
Рассуждений твоих венец.
Будет формула приведенная,
Рассуждений твоих венец.
Теорема Виета [3][править | править код]
Формулировка для приведённого квадратного уравнения[править | править код]
Сумма корней приведённого квадратного уравнения (вещественных или комплексных) равна второму коэффициенту , взятому с противоположным знаком, а произведение этих корней — свободному члену :
С его помощью приведённые уравнения можно решать устно:
Для неприведённого квадратного уравнения[править | править код]
В общем случае, то есть для неприведённого квадратного уравнения
На практике (следуя методу «переброски») для вычисления корней применяется модификация теорема Виета:
по которой можно устно находить ax1, ax2, а оттуда — сами корни:
Но у некоторых неприведённых уравнений корни можно устно угадать даже по стандартной теореме Виета:
Разложение квадратного трёхчлена на множители и теоремы, следующие из этого[править | править код]
Если известны оба корня квадратного трёхчлена, его можно разложить по формуле
- (2)
Доказательство[править | править код]
Для доказательства этого утверждения воспользуемся теоремой Виета. Согласно этой теореме, корни и квадратного уравнения образуют соотношения с его коэффициентами: . Подставим эти соотношения в квадратный трёхчлен:
В случае нулевого дискриминанта это соотношение становится одним из вариантов формулы квадрата суммы или разности.
- Из формулы (2) имеются два важных следствия:
Следствие 1[править | править код]
-
- Если квадратный трёхчлен раскладывается на линейные множители с вещественными коэффициентами, то он имеет вещественные корни.
Доказательство[править | править код]
Пусть . Тогда, переписав это разложение, получим:
- .
Сопоставив полученное выражение с формулой (2), находим, что корнями такого трёхчлена являются и . Так как коэффициенты вещественны, то и числа, противоположные их отношениям также являются элементами множества .
Следствие 2[править | править код]
-
- Если квадратный трёхчлен не имеет вещественных корней, то он не раскладывается на линейные множители с вещественными коэффициентами.
Доказательство[править | править код]
Действительно, если мы предположим противное (что такой трёхчлен раскладывается на линейные множители), то, согласно следствию 1, он имеет корни в множестве , что противоречит условию, а потому наше предположение неверно, и такой трёхчлен не раскладывается на линейные множители.
Для квадратичной функции:
f (x) = x2 − x − 2 = (x + 1)(x − 2) действительной переменной x, x — координаты точки, где график пересекает ось абсцисс, x = −1 и x = 2, являются решениями квадратного уравнения: x2 − x − 2 = 0.
Уравнения, сводящиеся к квадратным[править | править код]
Алгебраические[править | править код]
Уравнение вида является уравнением, сводящимся к квадратному.
В общем случае оно решается методом введения новой переменной, то есть заменой где — множество значений функции , c последующим решением квадратного уравнения .
Также при решении можно обойтись без замены, решив совокупность двух уравнений:
- и
К примеру, если , то уравнение принимает вид:
Такое уравнение 4-й степени называется биквадратным[4][1].
С помощью замены
к квадратному уравнению сводится уравнение
известное как возвратное или обобщённо-симметрическое уравнение[1].
Дифференциальные[править | править код]
Линейное однородное дифференциальное уравнение с постоянными коэффициентами второго порядка
подстановкой сводится к характеристическому квадратному уравнению:
Если решения этого уравнения и не равны друг другу, то общее решение имеет вид:
- , где и — произвольные постоянные.
Для комплексных корней можно переписать общее решение, используя формулу Эйлера:
где A, B, C, φ — любые постоянные. Если решения характеристического уравнения совпадают , общее решение записывается в виде:
Уравнения такого типа часто встречаются в самых разнообразных задачах математики и физики, например, в теории колебаний или теории цепей переменного тока.
Примечания[править | править код]
Литература[править | править код]
- Квадратное уравнение; Квадратный трёхчлен // Энциклопедический словарь юного математика / Сост. А. П. Савин. — М.: Педагогика, 1985. — С. 133-136. — 352 с.
Ссылки[править | править код]
- Weisstein, Eric W. Quadratic Equation (англ.) на сайте Wolfram MathWorld.
- Вывод формулы корней полного квадратного уравнения. Решение приведённых квадратных уравнений и уравнений с чётным вторым коэффициентом Архивная копия от 28 января 2016 на Wayback Machine / Фестиваль педагогических идей «Открытый урок».
- Математические методы
Дискриминант квадратного уравнения
- Решение квадратных уравнений через дискриминант
Дискриминант квадратного уравнения — это выражение, находящееся под корнем в формуле нахождения корней квадратного уравнения. Дискриминант обозначается латинской буквой D.
Вид уравнения | Формула корней | Формула дискриминанта |
---|---|---|
ax2 + bx + c = 0 | b2 – 4ac | |
ax2 + 2kx + c = 0 | k2 – ac | |
x2 + px + q = 0 | ||
p2 – 4q |
Все формулы нахождения корней квадратных уравнений можно записать короче с помощью дискриминанта:
Вид уравнения | Формула |
---|---|
ax2 + bx + c = 0 | , где D = b2 – 4ac |
ax2 + 2kx + c = 0 | , где D = k2 – ac |
x2 + px + q = 0 | , где D = |
, где D = p2 – 4q |
Дискриминант позволяет определить, имеет ли уравнение корни и сколько их, не решая само уравнение:
- Если дискриминант больше нуля, то уравнение имеет два корня.
- Если дискриминант равен нулю, то уравнение имеет один корень.
- Если дискриминант меньше нуля, то уравнение не имеет корней.
Несмотря на то, что есть несколько формул дискриминанта, чаще всего используют первую:
D = b2 – 4ac,
так как она относится к формуле:
,
которая является универсальной формулой нахождения корней квадратного уравнения. Данная формула подходит даже для неполных квадратных уравнений.
Решение квадратных уравнений через дискриминант
Для решения квадратного уравнения по формуле можно сначала вычислить дискриминант и сравнить его с нулём. В зависимости от результата, либо искать корни по формуле, либо сделать вывод, что корней нет.
Пример 1. Решить уравнение:
3x2 – 4x + 2 = 0.
Определим, чему равны коэффициенты:
a = 3, b = -4, c = 2.
Найдём дискриминант:
D = b2 – 4ac = (-4)2 – 4 · 3 · 2 = 16 – 24 = -8,
D < 0.
Ответ: корней нет.
Пример 2.
x2 – 6x + 9 = 0.
Определим, чему равны коэффициенты:
a = 1, b = -6, c = 9.
Найдём дискриминант:
D = b2 – 4ac = (-6)2 – 4 · 1 · 9 = 36 – 36 = 0,
D = 0.
Уравнение имеет всего один корень:
Ответ: 3.
Пример 3.
x2 – 4x – 5 = 0.
Определим, чему равны коэффициенты:
a = 1, b = -4, c = -5
Найдём дискриминант:
D = b2 – 4ac = (-4)2 – 4 · 1 · (-5) = 16 + 20 = 36,
D > 0.
Уравнение имеет два корня:
x1 = (4 + 6) : 2 = 5,
x2 = (4 – 6) : 2 = -1.
Ответ: 5, -1.
Algebra can be defined as the branch of mathematics that deals with the study, alteration, and analysis of various mathematical symbols. It is the study of unknown quantities, which are often depicted with the help of variables in mathematics. Algebra has a plethora of formulas and identities for the purpose of studying situations involving variables. It also has various sub-branches such as linear algebra, advanced algebra, commutative algebra, etc.
What are Quadratic Equations?
The degree of a polynomial is the highest power of the variable in it. A quadratic equation can be defined as a polynomial equation that has a degree of 2.
ax2 + bx + c = 0
where a and b are the coefficients, x is the unknown variable and c is the constant, and a ≠ 0.
Discriminant Formula for Solving a Quadratic Equation
Since a quadratic equation has a degree of 2, therefore it will have two solutions. Therefore there would be two values of the variable x for which the equation is satisfied. According to the discriminant formula, a quadratic equation of the form ax2 + bx + c = 0 has two roots, given by:
x = ,
where D = b2 − 4ac
The ± signs indicate two distinct solutions to the equation. If the discriminant comes out to be negative, then the given equation does not have any real roots, since a negative number under square root would be treated as imaginary, not a real number.
Sample Questions
Question 1. Find the discriminant of x2 = −2x + 2.
Solution:
Given: x2 = −2x + 2 or, x2 + 2x − 2 = 0
We know, D = b2 − 4ac
Here, a = 1, b = 2, c = −2.
⇒ D = 22 − 4(1)(-2)
⇒ D = 4 + 8
⇒ D = 12.
Question 2. Find the discriminant of 2y2 − 8y − 10 = 0.
Solution:
Given: 2y2 − 8y − 10 = 0
We know, D = b2 − 4ac
Here, a = 2, b = −8, c = −10.
⇒ D = (−8)2 − 4(2)(−10)
⇒ D = 64 + 80
⇒ D = 144
Question 3. Find the discriminant of 2x2 − 7x + 3 = 0.
Solution:
Given: 2x2 − 7x + 3 = 0
We know, D = b2 − 4ac
Here, a = 2, b = −7, c = 3.
⇒ D = (−7)2 − 4(2)(3)
⇒ D = 49 − 24
⇒ D = 25.
Question 4. Find the discriminant of x2 − 2x + 3 = 0.
Solution:
Given: x2 − 2x + 3 = 0
We know, D = b2 − 4ac
Here, a = 1, b = −2, c = 3.
⇒ D = (−2)2 − 4(1)(3)
⇒ D = 4 − 12
⇒ D = −8.
Question 5. Find the discriminant of x2 + 5x + 4 = 0.
Solution:
Given: x2 + 5x + 4 = 0
We know, D = b2 − 4ac
Here, a = 1, b = 5, c = 4.
⇒ D = (5)2 − 4(1)(4)
⇒ D = 25 − 16
⇒ D = 9.
Question 6. Find the discriminant of 6x2 − x − 15 = 0.
Solution:
Given: 6x2 − x − 15 = 0
We know, D = b2 − 4ac
Here, a = 6, b = −1, c = −15.
⇒ D = (−1)2 − 4(6)(−15)
⇒ D = 1 + 360
⇒ D = 361.
Question 7. Find the discriminant of x2 + 4x + 9 = 0.
Solution:
Given: x2 + 4x + 9 = 0
We know, D = b2 − 4ac
Here, a = 1, b = 4, c = 9
⇒ D = (4)2 − 4(1)(9)
⇒ D = 16 − 36
⇒ D = −20.
Last Updated :
15 Feb, 2022
Like Article
Save Article