Дробь не имеет смысла как найти

Содержание:

  • § 1  Понятие алгебраической дроби
  • § 2  Допустимые значения переменных алгебраической дроби

§ 1  Понятие алгебраической дроби

Алгебраической дробью называют выражение

где Р и Q —многочлены; Р — числитель алгебраической дроби, Q — знаменатель алгебраической дроби.

Вот примеры алгебраических дробей:

Любой многочлен – это частный случай алгебраической дроби, потому что любой многочлен можно записать в виде

Например:

Значение алгебраической дроби зависит от значения переменных.

Например, вычислим значение дроби

1)

2)

В первом случае получаем:

Заметим, данную дробь можно сократить:

Таким образом, вычисление значения алгебраической дроби упрощается. Воспользуемся этим.

Во втором случае получим:

Как видно, с изменением значений переменных изменилось значение алгебраической дроби.

§ 2  Допустимые значения переменных алгебраической дроби

Рассмотрим алгебраическую дробь

Значение x = –1 является недопустимым для данной дроби, т.к. знаменатель дроби при таком значении х обращается в нуль. При этом значении переменной алгебраическая дробь не имеет смысла.

Таким образом, допустимыми значениями переменных алгебраической дроби являются такие значения переменных, при которых знаменатель дроби не обращается в нуль.

Решим несколько примеров.

Пример 1:

При каких значениях переменной не имеет смысла алгебраическая дробь:

Решение:

Для нахождения недопустимых значений переменных знаменатель дроби приравнивается к нулю, и находятся корни соответствующего уравнения.

Ответ:

Пример 2:

При каких значениях переменной равна нулю алгебраическая дробь:

Решение:

Дробь равна нулю, если числитель равен нулю. Приравняем к нулю числитель нашей дроби и найдем корни получившегося уравнения:

Далее следует найти недопустимые значения переменной х. Действуем как в предыдущем примере, приравниваем к нулю знаменатель алгебраической дроби и решаем получившееся уравнение:

Таким образом, при x = 0 и x= 3 данная алгебраическая дробь не имеет смысла, а значит, мы должны исключить эти значения переменной из ответа.

Ответ:

Итак, на этом уроке Вы изучили основные понятия алгебраической дроби: числитель и знаменатель дроби, а также допустимые значения переменных алгебраической дроби.

Список использованной литературы:

  1. Мордкович А.Г. «Алгебра» 8 класс. В 2 ч. Ч.1 Учебник для общеобразовательных учреждений / А.Г. Мордкович. – 9-е изд., перераб. – М.: Мнемозина, 2007. – 215 с.: ил.
  2. Мордкович А.Г. «Алгебра» 8 класс. В 2 ч. Ч.2 Задачник для общеобразовательных учреждений / А.Г. Мордкович, Т.Н. Мишустина, Е.Е. Тульчинская. – 8-е изд., – М.: Мнемозина, 2006 – 239с.
  3. Алгебра. 8 класс. Контрольные работы для учащихся образовательных учреждений Л.А. Александрова под ред. А.Г. Мордковича 2-е изд., стер. – М.: Мнемозина 2009. – 40с.
  4. Алгебра. 8 класс. Самостоятельные работы для учащихся образовательных учреждений: к учебнику А.Г. Мордковича, Л.А. Александрова под ред. А.Г. Мордковича. 9-е изд., стер. – М.: Мнемозина 2013. – 112с.

Содержание:

Вы уже знакомы с целыми рациональными выражениями, то есть с выражениями, которые не содержат деления на выражение с переменной, например:

Рациональная дробь - определение, свойства и примеры с решением

Любое целое выражение можно представить в виде многочлена стандартного вида, например:

Рациональная дробь - определение, свойства и примеры с решением

В отличие от целых выражений, выражения

Рациональная дробь - определение, свойства и примеры с решением

содержат деление на выражение с переменной. Такие выражения называют дробными рациональными выражениями. Целые рациональные и дробные рациональные выражения называют рациональными выражениями.

Рациональные выражения — это математические выражения, содержащие действии сложения, вычитания, умножения, деления и возведения в степень с целым показателем.

Определение рациональной дроби

Рациональное выражение вида Рациональная дробь - определение, свойства и примеры с решением, где Рациональная дробь - определение, свойства и примеры с решением – выражения, содержащие числа или переменные, называют дробью. Выражение Рациональная дробь - определение, свойства и примеры с решением – ее числитель, a Рациональная дробь - определение, свойства и примеры с решением – знаменатель. Если Рациональная дробь - определение, свойства и примеры с решением в дроби – многочлены, то дробь называют рациональной дробью.

Целое рациональное выражение имеет смысл при любых значениях входящих в него переменных, так как при нахождении его значения выполняют действия сложения, вычитания, умножения и деления на число, отличное от нуля, что всегда выполнимо.

Рассмотрим дробное рациональное выражение — Рациональная дробь - определение, свойства и примеры с решением. Его значение можно найти для любого Рациональная дробь - определение, свойства и примеры с решением кроме Рациональная дробь - определение, свойства и примеры с решением так как при Рациональная дробь - определение, свойства и примеры с решением знаменатель дроби обращается в нуль. В этом случае говорят, что выражение Рациональная дробь - определение, свойства и примеры с решением имеет смысл при всех значениях переменной Рациональная дробь - определение, свойства и примеры с решением кроме Рациональная дробь - определение, свойства и примеры с решением (или же при Рациональная дробь - определение, свойства и примеры с решением не имеет смысла).

Значения переменных, при которых выражение имеет смысл, называют допустимыми значениями переменных в выражении.

Эти значения образуют область определения выражения, или область допустимых значений переменных в выражении.

Пример:

Найдите допустимые значения переменной в выражении:

Рациональная дробь - определение, свойства и примеры с решением

Решение:

1) Выражение имеет смысл при любых значениях переменной Рациональная дробь - определение, свойства и примеры с решением 2) Допустимые значения переменной Рациональная дробь - определение, свойства и примеры с решением – все числа, кроме числа Рациональная дробь - определение, свойства и примеры с решением так как это число обращает знаменатель дроби в нуль. 3) Знаменатель дроби Рациональная дробь - определение, свойства и примеры с решением обращается в нуль при Рациональная дробь - определение, свойства и примеры с решением или Рациональная дробь - определение, свойства и примеры с решением поэтому допустимые значения переменной Рациональная дробь - определение, свойства и примеры с решением – все числа, кроме чисел 0 и 9. 4) Допустимые значения переменной Рациональная дробь - определение, свойства и примеры с решением – все числа, кроме 3 и -3.

Кратко ответы можно записать следующим образом: 1) Рациональная дробь - определение, свойства и примеры с решением – любое число; Рациональная дробь - определение, свойства и примеры с решением

Рассмотрим условие равенства дроби нулю. Так как Рациональная дробь - определение, свойства и примеры с решением если Рациональная дробь - определение, свойства и примеры с решением то можно сделать вывод, что дробь Рациональная дробь - определение, свойства и примеры с решением равна нулю тогда и только тогда, когда числитель Рациональная дробь - определение, свойства и примеры с решением равен нулю, а знаменатель Рациональная дробь - определение, свойства и примеры с решением не равен нулю, то есть Рациональная дробь - определение, свойства и примеры с решением

Пример:

При каких значениях переменной равно нулю значение дроби:

Рациональная дробь - определение, свойства и примеры с решением

Решение:

1) Числитель дроби равен нулю при Рациональная дробь - определение, свойства и примеры с решением Это значение переменной не обращает знаменатель в нуль, поэтому число 3 является значением переменной, при котором данная дробь равна нулю. 2) Числитель дроби равен нулю при Рациональная дробь - определение, свойства и примеры с решением или Рациональная дробь - определение, свойства и примеры с решением Для каждого из этих значений знаменатель дроби нулю не равен. Поэтому числа 2 и -1 – те значения переменной, при которых данная дробь равна нулю. 3) Числитель дроби равен нулю, если Рациональная дробь - определение, свойства и примеры с решением или Рациональная дробь - определение, свойства и примеры с решением При Рациональная дробь - определение, свойства и примеры с решением знаменатель дроби нулю не равен, а при Рациональная дробь - определение, свойства и примеры с решением знаменатель дроби обращается в нуль, то есть такой дроби не существует. Следовательно, данная дробь равна нулю только при Рациональная дробь - определение, свойства и примеры с решением

Ответ. Рациональная дробь - определение, свойства и примеры с решением

А еще раньше

Древнегреческий математик Диофант (прибл. Рациональная дробь - определение, свойства и примеры с решением в. н. э.) рассмотрел рациональные дроби и действия с ними в своей работе «Арифметика». В частности, на страницах этой книги можно встретить доказательство тождеств

Рациональная дробь - определение, свойства и примеры с решением

записанных символикой того времени.

Выдающийся английский ученый Исаак Ньютон (1643-1727) в своей монографии «Универсальная арифметика» (1707 г.) определяет дробь следующим образом: «Запись одной из двух величин под другой, ниже которой между ними проведена черта, означает часть или же величину, возникающую при делении верхней величины на нижнюю». В этой работе Ньютон рассматривает не топько обычные дроби, но и рациональные.

Определение: Дробь, числитель и знаменатель которой — многочлены, называется рациональной дробью.

Например, выражения Рациональная дробь - определение, свойства и примеры с решением

являются рациональными дробями.

Рациональная дробь является рациональным выражением. Выражения, составленные из чисел, переменных с помощью действий сложения, вычитания, умножения, деления, возведения в натуральную степень, называют рациональными выражениями.

Если рациональное выражение не содержит деления на выражение с переменными, то оно называется целым рациональным выражением.

Рассмотрим задачу: Туристы в первый день проплыли на лодке по течению реки Рациональная дробь - определение, свойства и примеры с решением км, а во второй — на 6 км больше. Сколько времени продолжалось все путешествие, если собственная скорость лодки равна Рациональная дробь - определение, свойства и примеры с решением, а скорость течения реки — Рациональная дробь - определение, свойства и примеры с решением?

Решение:

Так как за два дня туристы преодолели Рациональная дробь - определение, свойства и примеры с решением км по течению реки, а скорость движения лодки по течению реки равна Рациональная дробь - определение, свойства и примеры с решением, то время, затраченное на весь путь, ч равно Рациональная дробь - определение, свойства и примеры с решением. Частное Рациональная дробь - определение, свойства и примеры с решением можно записать в виде дроби Рациональная дробь - определение, свойства и примеры с решениемРациональная дробь - определение, свойства и примеры с решением.

Ответ: Рациональная дробь - определение, свойства и примеры с решением

При решении этой задачи получили дробь, в числителе и знаменателе которой записаны многочлены. Такая дробь называется рациональной.

Целые рациональные выражения

Рациональная дробь - определение, свойства и примеры с решением

Например, выражения Рациональная дробь - определение, свойства и примеры с решением являются целыми рациональными выражениями.

Рациональное выражение, содержащее деление на выражение с переменными, называют дробным рациональным выражением.

Дробные рациональные выражения

Рациональная дробь - определение, свойства и примеры с решением

Например, выражения Рациональная дробь - определение, свойства и примеры с решениемРациональная дробь - определение, свойства и примеры с решением являются дробными рациональными выражениями, поскольку содержат (кроме действий сложения, вычитания, умножения) деление на выражение с переменными.

Связь между понятиями «рациональная дробь», «целое рациональное выражение» и «дробное рациональное выражение» иллюстрирует рисунок 1.

Целые рациональные выражения имеют смысл при любых значениях входящих в них переменных.

Например, областью определения выражения Рациональная дробь - определение, свойства и примеры с решением является множество всех действительных чисел.

Рациональные выражения:

Рациональная дробь - определение, свойства и примеры с решением

Дробные рациональные выражения имеют смысл при всех значениях переменных, кроме тех, которые обращают знаменатели дробей в нуль.

Например, выражение Рациональная дробь - определение, свойства и примеры с решением при Рациональная дробь - определение, свойства и примеры с решением не имеет смысла, так как при Рациональная дробь - определение, свойства и примеры с решением знаменатель дроби Рациональная дробь - определение, свойства и примеры с решением обращается в нуль. Значит, данное выражение имеет смысл при всех значениях переменной, кроме Рациональная дробь - определение, свойства и примеры с решением.

Рациональная дробь Рациональная дробь - определение, свойства и примеры с решением имеет смысл при любых значениях переменной, кроме чисел Рациональная дробь - определение, свойства и примеры с решением и Рациональная дробь - определение, свойства и примеры с решением, так как при Рациональная дробь - определение, свойства и примеры с решением и при Рациональная дробь - определение, свойства и примеры с решением знаменатель дроби обращается в нуль.

Областью определения рациональной дроби является множество всех значений входящих в нее переменных, кроме тех, которые обращают ее знаменатель в нуль.

Пример №1

Найдите область определения рациональной дроби:

Рациональная дробь - определение, свойства и примеры с решением

Решение:

а) Областью определения рациональной дроби Рациональная дробь - определение, свойства и примеры с решением является множество всех действительных чисел, кроме числа Рациональная дробь - определение, свойства и примеры с решением так как при Рациональная дробь - определение, свойства и примеры с решением знаменатель дроби обращается в нуль. Можно записать: Рациональная дробь - определение, свойства и примеры с решением.

б) Найдем, при каких значениях переменной знаменатель дроби Рациональная дробь - определение, свойства и примеры с решением обращается в нуль. Для этого решим уравнение Рациональная дробь - определение, свойства и примеры с решением Корнями данного уравнения являются числа Рациональная дробь - определение, свойства и примеры с решением и Рациональная дробь - определение, свойства и примеры с решением. Значит, областью определения дроби Рациональная дробь - определение, свойства и примеры с решением является множество всех действительных чисел, кроме чисел Рациональная дробь - определение, свойства и примеры с решением и Рациональная дробь - определение, свойства и примеры с решением, т. е. Рациональная дробь - определение, свойства и примеры с решением.

в) Поскольку выражение Рациональная дробь - определение, свойства и примеры с решением является положительным числом при любых значениях переменной, то нет таких значении переменной, при которых знаменатель дроби Рациональная дробь - определение, свойства и примеры с решением был бы равен нулю. Значит, рациональная дробь имеет смысл при любых значениях переменной, т. е. областью определения дроби является множество всех действительных чисел, Рациональная дробь - определение, свойства и примеры с решением

Рациональные выражения:

Пример №2

Какие из следующих выражений:

а) Рациональная дробь - определение, свойства и примеры с решением

б) Рациональная дробь - определение, свойства и примеры с решением

в) Рациональная дробь - определение, свойства и примеры с решением

г) Рациональная дробь - определение, свойства и примеры с решением

д) Рациональная дробь - определение, свойства и примеры с решением — являются рациональными?

Решение:

Выражения а), в), г) и д) являются рациональными, так как составлены из чисел, переменных и содержат действия сложения, вычитания, умножения и деления. Выражение б) не является рациональным, так как содержит действие извлечения корня из выражения с переменными.

Пример №3

Какие из следующих выражений:

а) Рациональная дробь - определение, свойства и примеры с решением

б) Рациональная дробь - определение, свойства и примеры с решением

в) Рациональная дробь - определение, свойства и примеры с решением

г) Рациональная дробь - определение, свойства и примеры с решением

д) Рациональная дробь - определение, свойства и примеры с решением — являются дробными рациональными?

Решение:

Выражения б), в), д) являются дробными рациональными, так как составлены из чисел, переменных, натуральных степеней переменных с помощью действий сложения, вычитания, умножения и содержат действие деления на рациональное выражение с переменными.

Пример №4

Какие из следующих выражений:

а) Рациональная дробь - определение, свойства и примеры с решением

б) Рациональная дробь - определение, свойства и примеры с решением

в) Рациональная дробь - определение, свойства и примеры с решением

г) Рациональная дробь - определение, свойства и примеры с решением

д) Рациональная дробь - определение, свойства и примеры с решением являются рациональными дробями?

Решение:

Выражения а) — д) являются рациональными дробями, так как каждое из них представляет собой дробь, числитель и знаменатель которой являются многочленами.

Пример №5

Найдите значение выражения:

а) Рациональная дробь - определение, свойства и примеры с решением при Рациональная дробь - определение, свойства и примеры с решением

б) Рациональная дробь - определение, свойства и примеры с решением при Рациональная дробь - определение, свойства и примеры с решением

в) Рациональная дробь - определение, свойства и примеры с решением при Рациональная дробь - определение, свойства и примеры с решением

Решение:

а) Подставим Рациональная дробь - определение, свойства и примеры с решением в выражение Рациональная дробь - определение, свойства и примеры с решением, и получим: Рациональная дробь - определение, свойства и примеры с решением

б) При Рациональная дробь - определение, свойства и примеры с решением имеем:

Рациональная дробь - определение, свойства и примеры с решением

в) Если Рациональная дробь - определение, свойства и примеры с решением то Рациональная дробь - определение, свойства и примеры с решением

Рациональная дробь - определение, свойства и примеры с решением

Область определения рациональной дроби

Пример №6

Найдите область определения рациональной дроби:

а) Рациональная дробь - определение, свойства и примеры с решением

б) Рациональная дробь - определение, свойства и примеры с решением

в) Рациональная дробь - определение, свойства и примеры с решением

Решение:

а) Найдем, при каком значении переменной знаменатель дроби обращается в нуль. Для этого решим уравнение Рациональная дробь - определение, свойства и примеры с решением Областью определения данной дроби является множество всех действительных чисел, кроме числа 3, т. е. Рациональная дробь - определение, свойства и примеры с решением

б) Рациональная дробь - определение, свойства и примеры с решениемОбластью определения данной дроби является множество всех действительных чисел, кроме чисел Рациональная дробь - определение, свойства и примеры с решением и Рациональная дробь - определение, свойства и примеры с решением, т. е. Рациональная дробь - определение, свойства и примеры с решением

в) Рациональная дробь - определение, свойства и примеры с решениемРациональная дробь - определение, свойства и примеры с решением Областью определения данной дроби является множество всех действительных чисел, кроме чисел Рациональная дробь - определение, свойства и примеры с решением и Рациональная дробь - определение, свойства и примеры с решением. Значит, Рациональная дробь - определение, свойства и примеры с решением

Пример №7

Найдите область определения рационального выражения:

а) Рациональная дробь - определение, свойства и примеры с решением

б) Рациональная дробь - определение, свойства и примеры с решением

Решение:

а) ВыражениеРациональная дробь - определение, свойства и примеры с решением является целым рациональным, его областью определения является множество всех действительных чисел, т. е. Рациональная дробь - определение, свойства и примеры с решением

б) Знаменатель первой дроби обращается в нуль при Рациональная дробь - определение, свойства и примеры с решением, а знаменатель второй дроби равен нулю при Рациональная дробь - определение, свойства и примеры с решением. Значит, областью определения данного выражения является множество всех действительных чисел, кроме чисел Рациональная дробь - определение, свойства и примеры с решением и Рациональная дробь - определение, свойства и примеры с решением. Таким образом, Рациональная дробь - определение, свойства и примеры с решением

Основное свойство рациональной дроби

Действия с рациональными дробями выполняются по тем же правилам, что с обыкновенными дробями. Так, согласно основному свойству обыкновенных дробей, если числитель и знаменатель дроби умножить или разделить на одно и то же число, не равное нулю, то получится дробь, равная данной.

Например, Рациональная дробь - определение, свойства и примеры с решением

Аналогичное свойство можно сформулировать для рациональных дробей.

Если числитель и знаменатель дроби умножить или разделить на одно и то же выражение, не равное нулю, то получится дробь, тождественно равная данной.

Это свойство называют основным свойством дроби.

Для любой рациональной дроби Рациональная дробь - определение, свойства и примеры с решением справедливо тождество Рациональная дробь - определение, свойства и примеры с решением где Рациональная дробь - определение, свойства и примеры с решением

Умножим числитель и знаменатель дробиРациональная дробь - определение, свойства и примеры с решением на одночлен Рациональная дробь - определение, свойства и примеры с решением и получим: Рациональная дробь - определение, свойства и примеры с решением В этом случае говорят, что дробь Рациональная дробь - определение, свойства и примеры с решением привели к новому знаменателю Рациональная дробь - определение, свойства и примеры с решением

Пример №8

Приведите дробь:

а) Рациональная дробь - определение, свойства и примеры с решением к знаменателю Рациональная дробь - определение, свойства и примеры с решением

б) Рациональная дробь - определение, свойства и примеры с решением к знаменателю Рациональная дробь - определение, свойства и примеры с решением

в) Рациональная дробь - определение, свойства и примеры с решением к знаменателю Рациональная дробь - определение, свойства и примеры с решением

Решение:

а) Рациональная дробь - определение, свойства и примеры с решением

б) Рациональная дробь - определение, свойства и примеры с решением

в) Рациональная дробь - определение, свойства и примеры с решением

Если основное свойство дроби записать справа налево, то получится равенство

Рациональная дробь - определение, свойства и примеры с решением

Это равенство позволяет дробь Рациональная дробь - определение, свойства и примеры с решениемзаменить на тождественно равную ей дробь Рациональная дробь - определение, свойства и примеры с решением разделив числитель и знаменатель дроби Рациональная дробь - определение, свойства и примеры с решением на множитель Рациональная дробь - определение, свойства и примеры с решением

Например, разделим числитель и знаменатель дроби Рациональная дробь - определение, свойства и примеры с решением на одночлен Рациональная дробь - определение, свойства и примеры с решением и получим: Рациональная дробь - определение, свойства и примеры с решением В этом случае говорят, что дробь Рациональная дробь - определение, свойства и примеры с решением сократили на множитель Рациональная дробь - определение, свойства и примеры с решением.

Сократить рациональную дробь — это значит числитель и знаменатель дроби разделить на их общий множитель.

Например, сократим дробь Рациональная дробь - определение, свойства и примеры с решением Для этого нужно найти множитель, на который можно разделить числитель и знаменатель дроби. Одночлены Рациональная дробь - определение, свойства и примеры с решением и Рациональная дробь - определение, свойства и примеры с решением имеют общий множитель Рациональная дробь - определение, свойства и примеры с решением на который можно сократить данную дробь:

Рациональная дробь - определение, свойства и примеры с решением

Чтобы сократить рациональную дробь, нужно:

  1. Разложить (если возможно) числитель и знаменатель дроби на множители.
  2. Определить общий множитель числителя и знаменателя дроби.
  3. Разделить числитель и знаменатель данной дроби на общий множитель.

Сократите дробь Рациональная дробь - определение, свойства и примеры с решением

(1) Рациональная дробь - определение, свойства и примеры с решением

(2) Рациональная дробь - определение, свойства и примеры с решением — общий множитель числителя и знаменателя дроби.

(3) Рациональная дробь - определение, свойства и примеры с решением

Пример №9

Сократите дробь:

а) Рациональная дробь - определение, свойства и примеры с решением

б) Рациональная дробь - определение, свойства и примеры с решением

Решение:

а)

  • (1) Разложим числитель и знаменатель дроби на множители: Рациональная дробь - определение, свойства и примеры с решением
  • (2) Числитель и знаменатель дроби имеют общий множитель Рациональная дробь - определение, свойства и примеры с решением
  • (3) Разделим числитель и знаменатель данной дроби на общий множитель, т. е. сократим дробь:Рациональная дробь - определение, свойства и примеры с решением

б)

Из основного свойства дроби следует, что Рациональная дробь - определение, свойства и примеры с решением и Рациональная дробь - определение, свойства и примеры с решением (и в том и в другом случае вторая дробь получена из первой умножением числителя и знаменателя на Рациональная дробь - определение, свойства и примеры с решением).

Пример №10

Приведите дробь Рациональная дробь - определение, свойства и примеры с решением к знаменателю Рациональная дробь - определение, свойства и примеры с решением

Решение:

Воспользуемся равенством Рациональная дробь - определение, свойства и примеры с решением и получим: Рациональная дробь - определение, свойства и примеры с решением

Пример №11

Сократите дробь:

а) Рациональная дробь - определение, свойства и примеры с решением

б) Рациональная дробь - определение, свойства и примеры с решением

Решение:

а) Разложим знаменатель дроби на множители и получим:

Рациональная дробь - определение, свойства и примеры с решением

Выражения Рациональная дробь - определение, свойства и примеры с решением и Рациональная дробь - определение, свойства и примеры с решением отличаются только знаками. Чтобы сократить дробь, поменяем знаки одного из множителей Рациональная дробь - определение, свойства и примеры с решением или Рациональная дробь - определение, свойства и примеры с решением

Рациональная дробь - определение, свойства и примеры с решением

Полученный ответ можно записать в виде Рациональная дробь - определение, свойства и примеры с решением В этом случае говорят, что знак «минус» поставили перед дробью.

Рациональная дробь - определение, свойства и примеры с решением

б) Разложим числитель и знаменатель дроби на множители и получим:

Рациональная дробь - определение, свойства и примеры с решением

Поменяем знаки одного из множителей Рациональная дробь - определение, свойства и примеры с решением или Рациональная дробь - определение, свойства и примеры с решением и поставим знак «минус» перед дробью:

Рациональная дробь - определение, свойства и примеры с решением

Пример №12

Приведите дробь Рациональная дробь - определение, свойства и примеры с решением к знаменателю:

а) Рациональная дробь - определение, свойства и примеры с решением

б) Рациональная дробь - определение, свойства и примеры с решением

Решение:

а) Умножим числитель и знаменатель дроби на 2 и получим:

Рациональная дробь - определение, свойства и примеры с решением

б) Умножим числитель и знаменатель дроби на Рациональная дробь - определение, свойства и примеры с решением и получим: Рациональная дробь - определение, свойства и примеры с решением

Разберём лекцию подробно:

Вспомним основное свойство обыкновенной дроби: если числитель и знаменатель дроби умножить или разделить на одно и то же натуральное число, то получим дробь, равную данной. Иначе говоря, для любых натуральных чисел Рациональная дробь - определение, свойства и примеры с решениемРациональная дробь - определение, свойства и примеры с решением справедливо равенство:

Рациональная дробь - определение, свойства и примеры с решением

Докажем, что эти равенства являются верными не только для натуральных значений Рациональная дробь - определение, свойства и примеры с решением но и для любых других значений при условии Рациональная дробь - определение, свойства и примеры с решением

Докажем сначала, что Рациональная дробь - определение, свойства и примеры с решением

Пусть Рациональная дробь - определение, свойства и примеры с решением Тогда по определению частного Рациональная дробь - определение, свойства и примеры с решением Умножим обе части этого равенства на Рациональная дробь - определение, свойства и примеры с решением получим: Рациональная дробь - определение, свойства и примеры с решением Используя переставное и сочетательное свойства умножения, приходим к равенству: Рациональная дробь - определение, свойства и примеры с решением Так как Рациональная дробь - определение, свойства и примеры с решением то и Рациональная дробь - определение, свойства и примеры с решением Из последнего равенства (по определению частного) имеем: Рациональная дробь - определение, свойства и примеры с решениемПоскольку Рациональная дробь - определение, свойства и примеры с решением

Это равенство является тождеством, следовательно, можем поменять в нем левую и правую части местами:

Рациональная дробь - определение, свойства и примеры с решением

Это тождество дает возможность заменить дробь Рациональная дробь - определение, свойства и примеры с решением на дробь Рациональная дробь - определение, свойства и примеры с решением, то есть сократить дробь Рациональная дробь - определение, свойства и примеры с решением на общий множитель Рациональная дробь - определение, свойства и примеры с решением числителя и знаменателя.

Свойство дроби, выраженное равенствами Рациональная дробь - определение, свойства и примеры с решением называют основным свойством рациональной дроби.

Если числитель и знаменатель дроби умножить или разделить на одно и то же отличное от нуля выражение, то получим дробь, равную данной.

Рассмотрим примеры применения этого свойства для дробей на их области допустимых значений переменной.

Пример №13

Сократите дробь Рациональная дробь - определение, свойства и примеры с решением

Решение:

Представим числитель и знаменатель этой дроби в виде произведений, содержащих одинаковый (общий) множитель Рациональная дробь - определение, свойства и примеры с решением и сократим дробь на это выражение:

Рациональная дробь - определение, свойства и примеры с решением

Ответ: Рациональная дробь - определение, свойства и примеры с решением

Пример №14

Сократите дробь Рациональная дробь - определение, свойства и примеры с решением

Решение:

Разложим на множители числитель и знаменатель дроби: Рациональная дробь - определение, свойства и примеры с решением Сократим дробь на Рациональная дробь - определение, свойства и примеры с решением – общий множитель числителя и знаменателя: Рациональная дробь - определение, свойства и примеры с решением

Ответ: Рациональная дробь - определение, свойства и примеры с решением

Таким образом, чтобы сократить дробь, нужно:

  1. разложить на множители числитель и знаменатель дроби, если это необходимо;
  2. выполнить деление числителя и знаменателя на их общий множитель и записать ответ.

Тождество Рациональная дробь - определение, свойства и примеры с решением дает возможность приводить дроби к заданному другому (новому) знаменателю.

Пример №15

Приведите дробь Рациональная дробь - определение, свойства и примеры с решением к знаменателю Рациональная дробь - определение, свойства и примеры с решением

Решение:

Поскольку Рациональная дробь - определение, свойства и примеры с решением то, умножив числитель и знаменатель дроби Рациональная дробь - определение, свойства и примеры с решением на Рациональная дробь - определение, свойства и примеры с решением получим дробь со знаменателем Рациональная дробь - определение, свойства и примеры с решением

Рациональная дробь - определение, свойства и примеры с решением

Множитель Рациональная дробь - определение, свойства и примеры с решением называют дополнительным множителем числителя и знаменателя дроби Рациональная дробь - определение, свойства и примеры с решением

Ответ: Рациональная дробь - определение, свойства и примеры с решением

Пример №16

Приведите дробь Рациональная дробь - определение, свойства и примеры с решением к знаменателю Рациональная дробь - определение, свойства и примеры с решением

Решение:

Поскольку Рациональная дробь - определение, свойства и примеры с решением то, умножив числитель и знаменатель дроби Рациональная дробь - определение, свойства и примеры с решением на -1, получим дробь со знаменателем Рациональная дробь - определение, свойства и примеры с решением

Дробь Рациональная дробь - определение, свойства и примеры с решением можно заменить тождественно равным ему выражением Рациональная дробь - определение, свойства и примеры с решением так как изменение знака перед дробью приводит к изменению знака в числителе или знаменателе.

Поэтому Рациональная дробь - определение, свойства и примеры с решением

Ответ. Рациональная дробь - определение, свойства и примеры с решением

Аналогично, например, Рациональная дробь - определение, свойства и примеры с решением Следовательно,

  • если изменить знак в числителе (или знаменателе) дроби одновременно со знаком перед дробью, то получим дробь, тождественно равную данной.

Это правило можно записать с помощью тождества:

Рациональная дробь - определение, свойства и примеры с решением

Пример №17

Найдите область определения функции Рациональная дробь - определение, свойства и примеры с решением и постройте ее график.

Решение:

Область определения функции – все числа, кроме тех, которые обращают знаменатель Рациональная дробь - определение, свойства и примеры с решением в нуль. Так как Рациональная дробь - определение, свойства и примеры с решением при Рациональная дробь - определение, свойства и примеры с решением то область определения функции все числа, кроме числа 2. Упростим дробь Рациональная дробь - определение, свойства и примеры с решением путем сокращения: Рациональная дробь - определение, свойства и примеры с решением Следовательно, функция Рациональная дробь - определение, свойства и примеры с решением имеет вид Рациональная дробь - определение, свойства и примеры с решением при условии Рациональная дробь - определение, свойства и примеры с решением а ее графиком является прямая Рациональная дробь - определение, свойства и примеры с решением точки с абсциссой 2, то есть без точки (2; 1). Такую точку называют «выколотой» и обязательно исключают ее из графика, изображая «пустой».

График функции Рациональная дробь - определение, свойства и примеры с решением представлен на рисунке 1.

Рациональная дробь - определение, свойства и примеры с решением

Сокращение рациональных дробей

Пример №18

Сократите дробь Рациональная дробь - определение, свойства и примеры с решением

Решение:

Дробь можно сократить на Рациональная дробь - определение, свойства и примеры с решением — общий множитель числителя и знаменателя дроби:

Рациональная дробь - определение, свойства и примеры с решением

Пример №19

Сократите дробь:

а) Рациональная дробь - определение, свойства и примеры с решением

б) Рациональная дробь - определение, свойства и примеры с решением

в) Рациональная дробь - определение, свойства и примеры с решением

г) Рациональная дробь - определение, свойства и примеры с решением

Решение:

а) Разложим на множители числитель дроби и сократим дробь:

Рациональная дробь - определение, свойства и примеры с решением

б) С помощью формул сокращенного умножения разложим на множители числитель и знаменатель дроби и получим:

Рациональная дробь - определение, свойства и примеры с решением

в) Разложим на множители числитель и знаменатель дроби:

Рациональная дробь - определение, свойства и примеры с решением

Множители Рациональная дробь - определение, свойства и примеры с решением и Рациональная дробь - определение, свойства и примеры с решением отличаются только знаками. Поменяем знаки одного из множителей Рациональная дробь - определение, свойства и примеры с решением или Рациональная дробь - определение, свойства и примеры с решением и поставим знак «минус» перед дробью:

Рациональная дробь - определение, свойства и примеры с решением

г) После разложения на множители числителя дроби имеем:

Рациональная дробь - определение, свойства и примеры с решением

Воспользуемся тем, что Рациональная дробь - определение, свойства и примеры с решением т. е. Рациональная дробь - определение, свойства и примеры с решением и получим:

Рациональная дробь - определение, свойства и примеры с решением

Пример №20

Сократите дробь:

а) Рациональная дробь - определение, свойства и примеры с решением

б) Рациональная дробь - определение, свойства и примеры с решением

Решение:

а) С помощью способа группировки разложим числитель и знаменатель дроби на множители и сократим дробь:

Рациональная дробь - определение, свойства и примеры с решением

Рациональная дробь - определение, свойства и примеры с решением

б) Рациональная дробь - определение, свойства и примеры с решением

Рациональная дробь - определение, свойства и примеры с решением

Пример №21

Сократите дробь:

Рациональная дробь - определение, свойства и примеры с решением

Решение:

Для разложения на множители знаменателя дроби воспользуемся формулой разложения квадратного трехчлена на множители: Рациональная дробь - определение, свойства и примеры с решением Найдем корни квадратного трехчлена Рациональная дробь - определение, свойства и примеры с решением Для этого решим квадратное уравнение Рациональная дробь - определение, свойства и примеры с решением

Рациональная дробь - определение, свойства и примеры с решением

тогда Рациональная дробь - определение, свойства и примеры с решением

Рациональная дробь - определение, свойства и примеры с решением

Сократим дробь:

Рациональная дробь - определение, свойства и примеры с решением

Пример №22

Упростите выражение Рациональная дробь - определение, свойства и примеры с решением и найдите его значение при Рациональная дробь - определение, свойства и примеры с решением

Решение:

Упростим выражение, сократив дробь:

Рациональная дробь - определение, свойства и примеры с решением

Подставим Рациональная дробь - определение, свойства и примеры с решением в выражение Рациональная дробь - определение, свойства и примеры с решением и получим Рациональная дробь - определение, свойства и примеры с решением

Пример №23

Из данных рациональных дробей выберите дробь, тождественно равную дроби Рациональная дробь - определение, свойства и примеры с решением

а) Рациональная дробь - определение, свойства и примеры с решением

б) Рациональная дробь - определение, свойства и примеры с решением

в) Рациональная дробь - определение, свойства и примеры с решением

Решение:

Выполним преобразования:

Рациональная дробь - определение, свойства и примеры с решением

Дроби Рациональная дробь - определение, свойства и примеры с решением тождественно равна дробь в).

Пример №24

Приведите дробь:

а) Рациональная дробь - определение, свойства и примеры с решением к знаменателю Рациональная дробь - определение, свойства и примеры с решением

б) Рациональная дробь - определение, свойства и примеры с решением к знаменателю Рациональная дробь - определение, свойства и примеры с решением

Решение:

Умножим числитель и знаменатель дроби на Рациональная дробь - определение, свойства и примеры с решением и получим:

а) Рациональная дробь - определение, свойства и примеры с решением

Рациональная дробь - определение, свойства и примеры с решением

б) Рациональная дробь - определение, свойства и примеры с решением

Пример №25

Постройте график функции Рациональная дробь - определение, свойства и примеры с решением

Решение:

Областью определения данной функции является множество всех действительных чисел, кроме числа 2.

Сократим дробь Рациональная дробь - определение, свойства и примеры с решением и получим:

Рациональная дробь - определение, свойства и примеры с решением

Необходимо построить график функции Рациональная дробь - определение, свойства и примеры с решением при Рациональная дробь - определение, свойства и примеры с решением Графиком данной функции является прямая Рациональная дробь - определение, свойства и примеры с решением без точки (2; 4).

Рациональная дробь - определение, свойства и примеры с решением

Сложение и вычитание рациональных дробей

Вспомним, как складывают и вычитают обыкновенные дроби. Например:

Рациональная дробь - определение, свойства и примеры с решением

Сложение и вычитание рациональных дробей выполняются по таким же правилам, что сложение и вычитание обыкновенных дробей.

Чтобы сложить дроби с одинаковыми знаменателями, нужно сложить их числители, а знаменатель оставить тем же.

Затем, если возможно, следует сократить полученную дробь.

Рациональная дробь - определение, свойства и примеры с решением

Рациональная дробь - определение, свойства и примеры с решением

Пример №26

Найдите сумму рациональных дробей:

а) Рациональная дробь - определение, свойства и примеры с решением

б) Рациональная дробь - определение, свойства и примеры с решением

Решение:

а) Рациональная дробь - определение, свойства и примеры с решением

б) Рациональная дробь - определение, свойства и примеры с решением

Чтобы вычесть дроби с одинаковыми знаменателями, нужно из числителя уменьшаемого вычесть числитель вычитаемого, а знаменатель оставить тем же. Затем, если возможно, следует сократить полученную дробь.

Рациональная дробь - определение, свойства и примеры с решением

Рациональная дробь - определение, свойства и примеры с решением

Пример №27

Найдите разность рациональных дробей:

а) Рациональная дробь - определение, свойства и примеры с решением

б) Рациональная дробь - определение, свойства и примеры с решением

Решение:

а) Рациональная дробь - определение, свойства и примеры с решением

б) Рациональная дробь - определение, свойства и примеры с решением

При сложении и вычитании обыкновенных дробей с разными знаменателями их приводят к общему знаменателю (например, Рациональная дробь - определение, свойства и примеры с решением).

Для того чтобы выполнить сложение или вычитание рациональных дробей с разными знаменателями, их также нужно привести к общему знаменателю.

Чтобы привести рациональные дроби к общему знаменателю, нужно:

  1. Разложить знаменатель каждой дроби на множители (если это необходимо) и определить общий знаменатель дробей.
  2. Умножить числитель и знаменатель каждой дроби на недостающие множители из общего знаменателя дробей.

Приведите к общему знаменателю рациональные дроби Рациональная дробь - определение, свойства и примеры с решением и Рациональная дробь - определение, свойства и примеры с решением

(1) Рациональная дробь - определение, свойства и примеры с решением и Рациональная дробь - определение, свойства и примеры с решением

Общий знаменатель Рациональная дробь - определение, свойства и примеры с решением

(2) Рациональная дробь - определение, свойства и примеры с решением

Рациональная дробь - определение, свойства и примеры с решением

Пример №28

Приведите к общему знаменателю дроби: а) Рациональная дробь - определение, свойства и примеры с решением

б) Рациональная дробь - определение, свойства и примеры с решением

Решение:

а) Общим знаменателем данных дробей является одночлен Рациональная дробь - определение, свойства и примеры с решением, поскольку НОК (10, 15) = 30 и переменные Рациональная дробь - определение, свойства и примеры с решением и Рациональная дробь - определение, свойства и примеры с решением взяты с наибольшим показателем степени.

Умножим числитель и знаменатель первой дроби на Рациональная дробь - определение, свойства и примеры с решением а числитель и знаменатель второй дроби на Рациональная дробь - определение, свойства и примеры с решением и приведем дроби к общему знаменателю:

Рациональная дробь - определение, свойства и примеры с решением

б) Разложим на множители знаменатель каждой дроби и получим:

Рациональная дробь - определение, свойства и примеры с решением

Умножим числитель и знаменатель первой дроби на Рациональная дробь - определение, свойства и примеры с решением, а числитель и знаменатель второй дроби на Рациональная дробь - определение, свойства и примеры с решением и приведем дроби к общему знаменателю:

Рациональная дробь - определение, свойства и примеры с решением

и

Рациональная дробь - определение, свойства и примеры с решением

Чтобы выполнить сложение (вычитание) рациональных дробей с разными знаменателями, нужно:

  1. Привести дроби к общему знаменателю.
  2. Применить правила сложения (вычитания) дробей с одинаковыми знаменателями.

Найдите сумму рациональных дробей Рациональная дробь - определение, свойства и примеры с решением

(1) Рациональная дробь - определение, свойства и примеры с решением

(2) Рациональная дробь - определение, свойства и примеры с решением

Рациональная дробь - определение, свойства и примеры с решением

Пример №29

Найдите разность рациональных дробей

Рациональная дробь - определение, свойства и примеры с решением

Решение:

Рациональная дробь - определение, свойства и примеры с решением

Рациональная дробь - определение, свойства и примеры с решением

Сложение и вычитание дробей с одинаковыми знаменателями

Вспомним, как сложить дроби с одинаковыми знаменателями. Нужно сложить их числители, а знаменатель оставить тот же. Например:

Рациональная дробь - определение, свойства и примеры с решением

Запишем это правило в виде формулы:

Рациональная дробь - определение, свойства и примеры с решением

Это равенство справедливо для любых дробей. Докажем его (при условии Рациональная дробь - определение, свойства и примеры с решением

Пусть Рациональная дробь - определение, свойства и примеры с решением Тогда по определению частного Рациональная дробь - определение, свойства и примеры с решением Рациональная дробь - определение, свойства и примеры с решением Имеем: Рациональная дробь - определение, свойства и примеры с решением Поскольку Рациональная дробь - определение, свойства и примеры с решением то по определению частного Рациональная дробь - определение, свойства и примеры с решением

следовательно, Рациональная дробь - определение, свойства и примеры с решением

Сформулируем правило сложения дробей с одинаковыми знаменателями:

чтобы сложить дроби с одинаковыми знаменателями, нужно сложить их числители, а знаменатель оставить тот же.

Пример №30

Рациональная дробь - определение, свойства и примеры с решением

Аналогично можно доказать тождество

Рациональная дробь - определение, свойства и примеры с решением

при помощи которого записывают правило вычитания дробей с одинаковыми знаменателями.

Сформулируем правило вычитания дробей с одинаковыми знаменателями:

чтобы вычесть дроби с одинаковыми знаменателями, нужно от числителя уменьшаемого отнять числитель вычитаемого, а знаменатель оставить тот же.

Пример №31

Рациональная дробь - определение, свойства и примеры с решением

Рассмотрим еще несколько примеров.

Пример №32

Найдите сумму и разность дробей

Рациональная дробь - определение, свойства и примеры с решением

Решение:

Рациональная дробь - определение, свойства и примеры с решением

Ответ.Рациональная дробь - определение, свойства и примеры с решением

Пример №33

Упростите выражение

Рациональная дробь - определение, свойства и примеры с решением

Решение:

Рациональная дробь - определение, свойства и примеры с решением

Ответ: Рациональная дробь - определение, свойства и примеры с решением

Пример №34

Найдите сумму Рациональная дробь - определение, свойства и примеры с решением

Решение:

Так как Рациональная дробь - определение, свойства и примеры с решением то второе слагаемое можно записать с тем же знаменателем, что и в первом слагаемом:

Рациональная дробь - определение, свойства и примеры с решением

Тогда

Рациональная дробь - определение, свойства и примеры с решением

Ответ: Рациональная дробь - определение, свойства и примеры с решением

Если в тождествах Рациональная дробь - определение, свойства и примеры с решением поменять местами левые и правые части, то получим тождества:

Рациональная дробь - определение, свойства и примеры с решением

С помощью этих тождеств дробь, числитель которой является суммой или разностью нескольких выражений, можно записать в виде суммы или разности нескольких дробей.

Пример №35

Рациональная дробь - определение, свойства и примеры с решением

Пример №36

Запишите дробь в виде суммы или разности целого выражения и дроби: Рациональная дробь - определение, свойства и примеры с решением

Решение:

Рациональная дробь - определение, свойства и примеры с решением

Рациональная дробь - определение, свойства и примеры с решением

Ответ. Рациональная дробь - определение, свойства и примеры с решением

Пример №37

Выполните сложение рациональных дробей:

а) Рациональная дробь - определение, свойства и примеры с решением

б) Рациональная дробь - определение, свойства и примеры с решением

Решение:

а) Рациональная дробь - определение, свойства и примеры с решениемРациональная дробь - определение, свойства и примеры с решением

б) Рациональная дробь - определение, свойства и примеры с решениемРациональная дробь - определение, свойства и примеры с решением

Пример №38

Найдите разность рациональных дробей:

а) Рациональная дробь - определение, свойства и примеры с решением

б) Рациональная дробь - определение, свойства и примеры с решением

в) Рациональная дробь - определение, свойства и примеры с решением

Решение:

а) Рациональная дробь - определение, свойства и примеры с решением

б) Рациональная дробь - определение, свойства и примеры с решением

Рациональная дробь - определение, свойства и примеры с решением

в) Рациональная дробь - определение, свойства и примеры с решением

Рациональная дробь - определение, свойства и примеры с решением

Пример №39

Выполните действия:

а) Рациональная дробь - определение, свойства и примеры с решением

б) Рациональная дробь - определение, свойства и примеры с решением

Решение:

а) Знаменатели дробей отличаются только знаком. Поменяем знак в знаменателе второй дроби и перед этой дробью и получим:

Рациональная дробь - определение, свойства и примеры с решением

б) Рациональная дробь - определение, свойства и примеры с решением

Рациональная дробь - определение, свойства и примеры с решением

Пример №40

Выполните действия:

а) Рациональная дробь - определение, свойства и примеры с решением

б) Рациональная дробь - определение, свойства и примеры с решением

Решение:

а) Рациональная дробь - определение, свойства и примеры с решением

Рациональная дробь - определение, свойства и примеры с решением

б) Рациональная дробь - определение, свойства и примеры с решением

Рациональная дробь - определение, свойства и примеры с решением

Разложим на множители квадратный трехчлен в числителе дроби и сократим дробь:

Рациональная дробь - определение, свойства и примеры с решением

Сложение и вычитание дробей с разными знаменателями

Если дроби имеют разные знаменатели, то их, как и обычные дроби, сначала приводят к общему знаменателю, а потом складывают или вычитают по правилу сложения или вычитания дробей с одинаковыми знаменателями.

Рассмотрим, как прибавить дроби Рациональная дробь - определение, свойства и примеры с решением Приведем эти дроби к их общему знаменателю Рациональная дробь - определение, свойства и примеры с решением Для этого числитель и знаменатель дроби Рациональная дробь - определение, свойства и примеры с решением умножим на Рациональная дробь - определение, свойства и примеры с решением числитель и знаменатель дроби Рациональная дробь - определение, свойства и примеры с решением умножим на Рациональная дробь - определение, свойства и примеры с решением Дроби Рациональная дробь - определение, свойства и примеры с решениемпривели к общему знаменателю Рациональная дробь - определение, свойства и примеры с решением Напомним, что Рациональная дробь - определение, свойства и примеры с решением называют дополнительным множителем числителя и знаменателя дроби — Рациональная дробь - определение, свойства и примеры с решениемдополнительным множителем числителя и знаменателя дроби Рациональная дробь - определение, свойства и примеры с решением

Описанную последовательность действий для сложения дробей с разными знаменателями можно записать так:

Рациональная дробь - определение, свойства и примеры с решением

или сокращенно:

Рациональная дробь - определение, свойства и примеры с решением

Аналогично выполняют и вычитание дробей с разными знаменателями:

Рациональная дробь - определение, свойства и примеры с решением

Пример №41

Выполните действие: Рациональная дробь - определение, свойства и примеры с решением

Решение:

Рациональная дробь - определение, свойства и примеры с решением

Общим знаменателем двух или более дробей может быть не только произведение их знаменателей. Вообще у дробей есть бесконечно много общих знаменателей. Часто при сложении и вычитании дробей с разными знаменателями удается найти более простой общий знаменатель, чем произведение знаменателей этих дробей. В таком случае говорят о простейшем общем знаменателе (аналогично наименьшему общему знаменателю числовых дробей).

Рассмотрим пример, где знаменатели дробей – одночлены.

Пример №42

Выполните сложение Рациональная дробь - определение, свойства и примеры с решением

Решение. Общим знаменателем данных дробей можно считать одночлен Рациональная дробь - определение, свойства и примеры с решением который является произведением знаменателей дробей, но в данном случае он не будет простейшим общим знаменателем. Попробуем найти простейший общий знаменатель, что для дробей, знаменатели которых являются одночленами, будет также одночленом. Коэффициент этого одночлена должен делиться и на 6, и на 8. Наименьшим из таких чисел будет 24. В общий знаменатель каждая из переменных должна входить с наибольшим из показателей степени, которые содержат знаменатели дробей. Таким образом, простейшим знаменателем будет одночлен Рациональная дробь - определение, свойства и примеры с решением Тогда дополнительным множителем для первой дроби станет выражение Рациональная дробь - определение, свойства и примеры с решением так как Рациональная дробь - определение, свойства и примеры с решением а для второй – выражение Рациональная дробь - определение, свойства и примеры с решением так как Рациональная дробь - определение, свойства и примеры с решением Следовательно, имеем:

Рациональная дробь - определение, свойства и примеры с решением

Ответ: Рациональная дробь - определение, свойства и примеры с решением

Обратите внимание, что в примере 2 при приведении дробей к общему знаменателю дополнительные множители Рациональная дробь - определение, свойства и примеры с решением и Рациональная дробь - определение, свойства и примеры с решением не содержали ни одного общего множителя, отличного от единицы. Это означает, что мы нашли простейший общий знаменатель дробей.

Рассмотрим пример, в котором знаменателями дробей являются многочлены.

Пример №43

Выполните вычитание

Рациональная дробь - определение, свойства и примеры с решением

Решение:

Чтобы найти общий знаменатель, разложим знаменатели на множители:

Рациональная дробь - определение, свойства и примеры с решением

Простейшим общим знаменателем дробей будет выражение Рациональная дробь - определение, свойства и примеры с решением Тогда дополнительным множителем для первой дроби станет Рациональная дробь - определение, свойства и примеры с решением а для второй – Рациональная дробь - определение, свойства и примеры с решениемВыполним вычитание:

Рациональная дробь - определение, свойства и примеры с решением

Ответ. Рациональная дробь - определение, свойства и примеры с решением

Таким образом, чтобы выполнить сложение или вычитание дробей с разными знаменателями, нужно:

  1. разложить на множители знаменатели дробей, если это необходимо;
  2. найти общий знаменатель, лучше простейший;
  3. записать дополнительные множители;
  4. найти дробь, которая является суммой или разницей данных дробей;
  5. упростить эту дробь и получить ответ.

Аналогично выполняют сложение и вычитание целого выражения и дроби.

Пример №44

Упростите выражение Рациональная дробь - определение, свойства и примеры с решением

Решение:

Запишем выражение Рациональная дробь - определение, свойства и примеры с решением в виде дроби со знаменателем 1 и выполним вычитание:

Рациональная дробь - определение, свойства и примеры с решениемРациональная дробь - определение, свойства и примеры с решением

Ответ: Рациональная дробь - определение, свойства и примеры с решением

Пример №45

Выполните сложение рациональных дробей:

а) Рациональная дробь - определение, свойства и примеры с решением

б) Рациональная дробь - определение, свойства и примеры с решением

в) Рациональная дробь - определение, свойства и примеры с решением

г) Рациональная дробь - определение, свойства и примеры с решением

Решение:

а) Рациональная дробь - определение, свойства и примеры с решением

б) Рациональная дробь - определение, свойства и примеры с решением

Рациональная дробь - определение, свойства и примеры с решением

в) Рациональная дробь - определение, свойства и примеры с решением

Рациональная дробь - определение, свойства и примеры с решением

г) Рациональная дробь - определение, свойства и примеры с решением

Рациональная дробь - определение, свойства и примеры с решением

Пример №46

Выполните вычитание:

а) Рациональная дробь - определение, свойства и примеры с решением

б) Рациональная дробь - определение, свойства и примеры с решением

в) Рациональная дробь - определение, свойства и примеры с решением

г) Рациональная дробь - определение, свойства и примеры с решением

д) Рациональная дробь - определение, свойства и примеры с решением

Решение:

а) Рациональная дробь - определение, свойства и примеры с решением

Рациональная дробь - определение, свойства и примеры с решением

б) Рациональная дробь - определение, свойства и примеры с решением

Рациональная дробь - определение, свойства и примеры с решением

в) Рациональная дробь - определение, свойства и примеры с решением

Рациональная дробь - определение, свойства и примеры с решением

г) Рациональная дробь - определение, свойства и примеры с решением

Рациональная дробь - определение, свойства и примеры с решением

д) Разложим на множители квадратный трехчлен в знаменателе первой дроби и получим:

Рациональная дробь - определение, свойства и примеры с решением

Пример №47

Представьте в виде дроби выражение

Рациональная дробь - определение, свойства и примеры с решением

Решение:

Рациональная дробь - определение, свойства и примеры с решением

Умножение и деление рациональных дробей

Вспомним, как умножают и делят обыкновенные дроби.

Рациональная дробь - определение, свойства и примеры с решением

Правила умножения и деления рациональных дробей аналогичны правилам умножения и деления обыкновенных дробей.

Произведение рациональных дробей равно дроби, числитель которой равен произведению числителей данных дробей, а знаменатель равен произведению знаменателей данных дробей. Рациональная дробь - определение, свойства и примеры с решением

Чтобы найти произведение рациональных дробей, нужно:

  1. Произведение числителей данных дробей записать в числителе новой дроби, а произведение знаменателей данных дробей записать в знаменателе новой дроби.
  2. Сократить полученную дробь, если это возможно.

Найдите произведение рациональных дробей Рациональная дробь - определение, свойства и примеры с решением

(1) Рациональная дробь - определение, свойства и примеры с решением

(2) Рациональная дробь - определение, свойства и примеры с решением

Рациональная дробь - определение, свойства и примеры с решением

Рациональная дробь - определение, свойства и примеры с решением

Пример №48

Найдите произведение рациональных дробей:

а) Рациональная дробь - определение, свойства и примеры с решением

б) Рациональная дробь - определение, свойства и примеры с решением

Решение:

а) Рациональная дробь - определение, свойства и примеры с решениемРациональная дробь - определение, свойства и примеры с решением

б) Рациональная дробь - определение, свойства и примеры с решением

Правило умножения рациональных дробей можно использовать при возведении рациональной дроби в степень. Например:

Рациональная дробь - определение, свойства и примеры с решением

Обобщим этот прием и получим правило:

Чтобы возвести рациональную дробь в степень, нужно возвести в эту степень числитель дроби и полученный результат записать в числителе новой дроби, возвести в эту степень знаменатель дроби и полученный результат записать в знаменателе новой дроби.

Рациональная дробь - определение, свойства и примеры с решением

Рациональная дробь - определение, свойства и примеры с решением

Пример №49

Возведите в степень дробь:

а) Рациональная дробь - определение, свойства и примеры с решением

б) Рациональная дробь - определение, свойства и примеры с решением

Решение:

а) Рациональная дробь - определение, свойства и примеры с решением

б) Рациональная дробь - определение, свойства и примеры с решением

Чтобы разделить одну рациональную дробь на другую, нужно делимое умножить на дробь, обратную делителю.

Рациональная дробь - определение, свойства и примеры с решением

Рациональная дробь - определение, свойства и примеры с решением

Пример №50

Найдите частное:

а) Рациональная дробь - определение, свойства и примеры с решением

б) Рациональная дробь - определение, свойства и примеры с решением

Решение:

а) Рациональная дробь - определение, свойства и примеры с решениемРациональная дробь - определение, свойства и примеры с решением

Рациональная дробь - определение, свойства и примеры с решением

б) Рациональная дробь - определение, свойства и примеры с решением

Рациональная дробь - определение, свойства и примеры с решением

Пример №51

Представьте в виде дроби рациональное выражение:

а) Рациональная дробь - определение, свойства и примеры с решением

б) Рациональная дробь - определение, свойства и примеры с решением

Решение:

а) Представим множитель Рациональная дробь - определение, свойства и примеры с решением в виде рациональной дроби: Рациональная дробь - определение, свойства и примеры с решением

Выполним умножение дробей:

Рациональная дробь - определение, свойства и примеры с решением

б) Представим выражение Рациональная дробь - определение, свойства и примеры с решением в виде рациональной дроби Рациональная дробь - определение, свойства и примеры с решением получим: Рациональная дробь - определение, свойства и примеры с решением

Рациональная дробь - определение, свойства и примеры с решением

Пример №52

Выполните умножение рациональных дробей:

а) Рациональная дробь - определение, свойства и примеры с решением

б) Рациональная дробь - определение, свойства и примеры с решением

Решение:

а) Рациональная дробь - определение, свойства и примеры с решением

б) Рациональная дробь - определение, свойства и примеры с решением

Пример №53

Представьте в виде рациональной дроби произведение:

а) Рациональная дробь - определение, свойства и примеры с решением

б) Рациональная дробь - определение, свойства и примеры с решением

в) Рациональная дробь - определение, свойства и примеры с решением

Решение:

а) Рациональная дробь - определение, свойства и примеры с решением

Рациональная дробь - определение, свойства и примеры с решением

б) Рациональная дробь - определение, свойства и примеры с решением

в) Рациональная дробь - определение, свойства и примеры с решением

Рациональная дробь - определение, свойства и примеры с решением

Пример №54

Представьте в виде рациональной дроби выражение:

а) Рациональная дробь - определение, свойства и примеры с решением

б) Рациональная дробь - определение, свойства и примеры с решением

в) Рациональная дробь - определение, свойства и примеры с решением

Решение:

а) Рациональная дробь - определение, свойства и примеры с решением

б) Рациональная дробь - определение, свойства и примеры с решением

в) Рациональная дробь - определение, свойства и примеры с решением

Пример №55

Представьте в виде степени рациональную дробь:

а) Рациональная дробь - определение, свойства и примеры с решением

б) Рациональная дробь - определение, свойства и примеры с решением

Решение:

а) Рациональная дробь - определение, свойства и примеры с решением

б) Рациональная дробь - определение, свойства и примеры с решением

Пример №56

Выполните деление рациональных дробей:

а) Рациональная дробь - определение, свойства и примеры с решением

б) Рациональная дробь - определение, свойства и примеры с решением

в) Рациональная дробь - определение, свойства и примеры с решением

г) Рациональная дробь - определение, свойства и примеры с решением

д) Рациональная дробь - определение, свойства и примеры с решением

Решение:

а) Рациональная дробь - определение, свойства и примеры с решением

б) Рациональная дробь - определение, свойства и примеры с решением

Рациональная дробь - определение, свойства и примеры с решением

в) Рациональная дробь - определение, свойства и примеры с решением

Рациональная дробь - определение, свойства и примеры с решением

г) Рациональная дробь - определение, свойства и примеры с решением

Рациональная дробь - определение, свойства и примеры с решением

д) Воспользуемся формулой разложения квадратного трехчлена на множители и получим: Рациональная дробь - определение, свойства и примеры с решением

Тогда

Рациональная дробь - определение, свойства и примеры с решением

Пример №57

Выполните действия:

а) Рациональная дробь - определение, свойства и примеры с решением

б) Рациональная дробь - определение, свойства и примеры с решением

в) Рациональная дробь - определение, свойства и примеры с решениемРациональная дробь - определение, свойства и примеры с решением

Решение:

а) Рациональная дробь - определение, свойства и примеры с решением

Рациональная дробь - определение, свойства и примеры с решением

б) Рациональная дробь - определение, свойства и примеры с решением

Рациональная дробь - определение, свойства и примеры с решением

в) Разложим на множители многочлен, применив способ группировки:

Рациональная дробь - определение, свойства и примеры с решением

Тогда Рациональная дробь - определение, свойства и примеры с решением

Рациональная дробь - определение, свойства и примеры с решением

Пример №58

Найдите значение выражения

Рациональная дробь - определение, свойства и примеры с решением

при Рациональная дробь - определение, свойства и примеры с решением

Решение:

Выполним деление:

Рациональная дробь - определение, свойства и примеры с решением

При Рациональная дробь - определение, свойства и примеры с решением получим: Рациональная дробь - определение, свойства и примеры с решениемРациональная дробь - определение, свойства и примеры с решением

Пример №59

Найдите значение выражения Рациональная дробь - определение, свойства и примеры с решением

при Рациональная дробь - определение, свойства и примеры с решением

Решение:

Выполним умножение:

Рациональная дробь - определение, свойства и примеры с решением

При Рациональная дробь - определение, свойства и примеры с решением имеем:

Рациональная дробь - определение, свойства и примеры с решением

Умножение дробей

Напомним, что произведением двух обыкновенных дробей является дробь, числитель которой равен произведению числителей, а знаменатель – произведению знаменателей данных дробей:

Рациональная дробь - определение, свойства и примеры с решением

Докажем, что это равенство является тождеством для любых значений Рациональная дробь - определение, свойства и примеры с решениемпри условии, что Рациональная дробь - определение, свойства и примеры с решением

Пусть Рациональная дробь - определение, свойства и примеры с решением Тогда по определению частного Рациональная дробь - определение, свойства и примеры с решениемРациональная дробь - определение, свойства и примеры с решением Поэтому Рациональная дробь - определение, свойства и примеры с решением Так как Рациональная дробь - определение, свойства и примеры с решением то, снова учитывая определение частного, получим: Рациональная дробь - определение, свойства и примеры с решением следовательно, если Рациональная дробь - определение, свойства и примеры с решением

Сформулируем правило умножения дробей.

Чтобы умножить дробь на дробь, нужно перемножить отдельно числители и отдельно знаменатели сомножителей и записать первый результат в числителе, а второй – в знаменателе произведения дробей.

Пример №60

Выполните умножение Рациональная дробь - определение, свойства и примеры с решением

Решение:

Рациональная дробь - определение, свойства и примеры с решением

Ответ: Рациональная дробь - определение, свойства и примеры с решением

Пример №61

Найдите произведение

Рациональная дробь - определение, свойства и примеры с решением

Решение.

Используем правило умножения дробей и разложим на множители числитель первой дроби и знаменатель второй:

Рациональная дробь - определение, свойства и примеры с решением

Ответ.Рациональная дробь - определение, свойства и примеры с решением

Обратите внимание, что в примерах 1 и 2 при умножении дробей мы не находили сразу же результат умножения числителей и знаменателей. Сначала мы записали произведения в числителе и в знаменателе по правилу умножения дробей, потом сократили полученную дробь, так как она оказалась сократимой, а уже затем выполнили умножение в числителе и в знаменателе и записали ответ. Целесообразно это учитывать и в дальнейшем.

Пример №62

Умножить дробь Рациональная дробь - определение, свойства и примеры с решением на многочлен Рациональная дробь - определение, свойства и примеры с решением

Решение:

учитывая, что Рациональная дробь - определение, свойства и примеры с решением имеем:

Рациональная дробь - определение, свойства и примеры с решением

Ответ. Рациональная дробь - определение, свойства и примеры с решением

Правило умножения дробей можно распространить на произведение трех и более множителей.

Пример №63

Рациональная дробь - определение, свойства и примеры с решением

Рациональная дробь - определение, свойства и примеры с решением

Возведение дроби в степень

Рассмотрим возведение дроби Рациональная дробь - определение, свойства и примеры с решением в степень Рациональная дробь - определение, свойства и примеры с решением где Рациональная дробь - определение, свойства и примеры с решением – натуральное число.

По определению степени и правилу умножения дробей имеем:

Рациональная дробь - определение, свойства и примеры с решением

Следовательно:

Рациональная дробь - определение, свойства и примеры с решением

Сформулируем правило возведения дроби в степень.

Чтобы возвести дробь в степень, нужно возвести в эту степень числитель и знаменатель и первый результат записать в числитель, а второй – в знаменатель дроби.

Пример №64

Рациональная дробь - определение, свойства и примеры с решением

Пример №65

Представьте выражение Рациональная дробь - определение, свойства и примеры с решением в виде дроби.

Решение:

Рациональная дробь - определение, свойства и примеры с решением

Ответ: Рациональная дробь - определение, свойства и примеры с решением

Деление дробей

Напомним, чтобы найти частное двух обыкновенных дробей, нужно делимое умножить на дробь, обратную делителю:

Рациональная дробь - определение, свойства и примеры с решением

Формулой это можно записать так:

Рациональная дробь - определение, свойства и примеры с решением

Докажем, что это равенство является тождеством для любых значений Рациональная дробь - определение, свойства и примеры с решением при условии, что Рациональная дробь - определение, свойства и примеры с решением

Так как: Рациональная дробь - определение, свойства и примеры с решением

то по определению частного имеем: Рациональная дробь - определение, свойства и примеры с решением

Следовательно, если Рациональная дробь - определение, свойства и примеры с решением

Дробь Рациональная дробь - определение, свойства и примеры с решением называют обратной дроби Рациональная дробь - определение, свойства и примеры с решением

Сформулируем правило деления дробей.

Чтобы разделить одну дробь на другую, нужно первую дробь у множить на дробь, обратную второй.

Пример №66

Разделите дробь Рациональная дробь - определение, свойства и примеры с решением на дробь Рациональная дробь - определение, свойства и примеры с решением

Решение:

Рациональная дробь - определение, свойства и примеры с решением

Ответ. Рациональная дробь - определение, свойства и примеры с решением

Пример №67

Выполните деление Рациональная дробь - определение, свойства и примеры с решением

Решение:

Рациональная дробь - определение, свойства и примеры с решением

Ответ: Рациональная дробь - определение, свойства и примеры с решением

Пример №68

Упростите выражение: Рациональная дробь - определение, свойства и примеры с решением

Решение:

Так как Рациональная дробь - определение, свойства и примеры с решением то:

Рациональная дробь - определение, свойства и примеры с решением

Ответ: Рациональная дробь - определение, свойства и примеры с решением

Преобразования рациональных выражений

При решении многих задач требуется упрощать рациональные выражения, приводя их к рациональным дробям. Для этого выполняют преобразования рациональных выражений.

Чтобы преобразовать рациональное выражение, нужно:

  1. Установить порядок действий в выражении.
  2. Выполнить действия по порядку, используя правила сложения, вычитания, умножения и деления рациональных дробей.

Упростите выражение:

Рациональная дробь - определение, свойства и примеры с решением

(1) Рациональная дробь - определение, свойства и примеры с решением

(2) Рациональная дробь - определение, свойства и примеры с решением

Пример №69

Представьте выражение Рациональная дробь - определение, свойства и примеры с решением в виде рациональной дроби.

Решение:

(1) Сначала необходимо выполнить вычитание выражений, стоящих в скобках, а затем выполнить умножение.

(2) Рациональная дробь - определение, свойства и примеры с решением

Преобразование рационального выражения можно выполнить не по действиям, а “цепочкой”. В данном случае получим:

Рациональная дробь - определение, свойства и примеры с решением

Пример №70

Найдите значение выражения

Рациональная дробь - определение, свойства и примеры с решением

Решение:

Упростим выражение, выполнив действия по порядку:

1) Рациональная дробь - определение, свойства и примеры с решением

Рациональная дробь - определение, свойства и примеры с решением

2) Рациональная дробь - определение, свойства и примеры с решением

3) Рациональная дробь - определение, свойства и примеры с решением

При Рациональная дробь - определение, свойства и примеры с решением получим: Рациональная дробь - определение, свойства и примеры с решением

Преобразования рациональных выражений можно выполнять наряду с другими, ранее изученными преобразованиями.

Пример №71

Упростите выражение Рациональная дробь - определение, свойства и примеры с решением приведя его к рациональной дроби.

Решение:

1) Рациональная дробь - определение, свойства и примеры с решением

2) Рациональная дробь - определение, свойства и примеры с решением

3) Рациональная дробь - определение, свойства и примеры с решением

Правила преобразования рациональных выражений можно использовать и для преобразования выражений, содержащих корни.

Пример №72

Сократите дробь:

а) Рациональная дробь - определение, свойства и примеры с решением

б) Рациональная дробь - определение, свойства и примеры с решением

в) Рациональная дробь - определение, свойства и примеры с решением

Решение:

а) Рациональная дробь - определение, свойства и примеры с решением

б) Рациональная дробь - определение, свойства и примеры с решением

Рациональная дробь - определение, свойства и примеры с решением

в) Рациональная дробь - определение, свойства и примеры с решением

Пример №73

Упростите выражение Рациональная дробь - определение, свойства и примеры с решением

Решение:

1) Рациональная дробь - определение, свойства и примеры с решением

Рациональная дробь - определение, свойства и примеры с решением

2) Рациональная дробь - определение, свойства и примеры с решением

3) Рациональная дробь - определение, свойства и примеры с решением

Пример №74

Представьте выражение Рациональная дробь - определение, свойства и примеры с решениемв виде дроби.

Решение:

1) Рациональная дробь - определение, свойства и примеры с решением

Рациональная дробь - определение, свойства и примеры с решением

2) Рациональная дробь - определение, свойства и примеры с решениемРациональная дробь - определение, свойства и примеры с решением

Пример №75

Найдите значение выражения Рациональная дробь - определение, свойства и примеры с решением при Рациональная дробь - определение, свойства и примеры с решением

Решение:

Преобразуем данное выражение “цепочкой”:

Рациональная дробь - определение, свойства и примеры с решением

При Рациональная дробь - определение, свойства и примеры с решением получим: Рациональная дробь - определение, свойства и примеры с решением

Пример №76

Упростите выражение

Рациональная дробь - определение, свойства и примеры с решением

Решение:

1) Корнями квадратного трехчлена Рациональная дробь - определение, свойства и примеры с решением являются числа Рациональная дробь - определение, свойства и примеры с решением значит, Рациональная дробь - определение, свойства и примеры с решениемРациональная дробь - определение, свойства и примеры с решением тогда:

Рациональная дробь - определение, свойства и примеры с решением

2) Рациональная дробь - определение, свойства и примеры с решением

Рациональная дробь - определение, свойства и примеры с решением

Пример №77

Докажите, что значение выражения

Рациональная дробь - определение, свойства и примеры с решением

не зависит от значений переменных.

Решение:

Значение выражения при различных значениях переменных из области его определения можно найти, предварительно упростить его:

1) Рациональная дробь - определение, свойства и примеры с решением

Рациональная дробь - определение, свойства и примеры с решением

2) Рациональная дробь - определение, свойства и примеры с решением

Рациональная дробь - определение, свойства и примеры с решением

Получили, что результат упрощения равен числу 1, значит при любых значениях переменных из области определения значение данного выражения равно 1, т. е. не зависит от значений переменных.

Пример №78

Упростите выражение

Рациональная дробь - определение, свойства и примеры с решением

Решение:

Запишем дробь в виде частного и получим: Рациональная дробь - определение, свойства и примеры с решением

Рациональная дробь - определение, свойства и примеры с решением

Пример №79

Упростите выражение

Рациональная дробь - определение, свойства и примеры с решением приведя его к несократимой дроби.

Решение:

1) Рациональная дробь - определение, свойства и примеры с решением

2) Рациональная дробь - определение, свойства и примеры с решениемРациональная дробь - определение, свойства и примеры с решением

3) Рациональная дробь - определение, свойства и примеры с решениемРациональная дробь - определение, свойства и примеры с решением

4) Рациональная дробь - определение, свойства и примеры с решениемРациональная дробь - определение, свойства и примеры с решением

Пример №80

Примените к выражению алгоритм сокращения рациональной дроби:

а) Рациональная дробь - определение, свойства и примеры с решением

б) Рациональная дробь - определение, свойства и примеры с решением

Решение:

а) Рациональная дробь - определение, свойства и примеры с решениемРациональная дробь - определение, свойства и примеры с решением

б) Рациональная дробь - определение, свойства и примеры с решением

Рациональная дробь - определение, свойства и примеры с решением

Пример №81

Упростите выражение

Рациональная дробь - определение, свойства и примеры с решением

Решение:

1) Рациональная дробь - определение, свойства и примеры с решением

Рациональная дробь - определение, свойства и примеры с решением

2) Рациональная дробь - определение, свойства и примеры с решением

Рациональная дробь - определение, свойства и примеры с решением

Пример №82

Найдите значение выражения Рациональная дробь - определение, свойства и примеры с решением при Рациональная дробь - определение, свойства и примеры с решением

Решение:

Упростим данное выражение:

Рациональная дробь - определение, свойства и примеры с решением

При Рациональная дробь - определение, свойства и примеры с решением получим:

Рациональная дробь - определение, свойства и примеры с решением

  • Заказать решение задач по высшей математике

Тождественные преобразования рациональных выражений

Рассмотрим примеры преобразований рациональных выражений.

Пример №83

Докажите тождество Рациональная дробь - определение, свойства и примеры с решением

Решение:

Упростим левую часть равенства:

Рациональная дробь - определение, свойства и примеры с решением

С помощью тождественных преобразований мы привели левую часть равенства к правой. Следовательно, равенство является тождеством.

Пример №84

Упростите выражение

Рациональная дробь - определение, свойства и примеры с решением

Решение:

Сначала выполним действие в каждой из скобок, а потом – действие деления:

Рациональная дробь - определение, свойства и примеры с решением

Рациональная дробь - определение, свойства и примеры с решениемРациональная дробь - определение, свойства и примеры с решением

Ответ: Рациональная дробь - определение, свойства и примеры с решением

Решение можно было записать и в виде «цепочки»:

Рациональная дробь - определение, свойства и примеры с решением

Каждое выражение, содержащее сумму, разность, произведение и частное рациональных дробей, можно представить в виде рациональной дроби.

Пример №85

Докажите, что при всех допустимых значениях переменных значение дроби Рациональная дробь - определение, свойства и примеры с решением неотрицательно.

Решение:

Можно представить эту дробь в виде частного Рациональная дробь - определение, свойства и примеры с решением и далее преобразовать ее, как предложено в примере 2.

А можно, используя основное свойство дроби, умножить числитель и знаменатель данной дроби на их общий знаменатель, то есть на Рациональная дробь - определение, свойства и примеры с решением

Рациональная дробь - определение, свойства и примеры с решениемРациональная дробь - определение, свойства и примеры с решением при любом значении Рациональная дробь - определение, свойства и примеры с решением

  • Функция в математике
  • Наибольшее и наименьшее значения функции
  • Раскрытие неопределенностей
  • Дробно-рациональные уравнения
  • Система показательных уравнений
  • Непрерывные функции и их свойства
  • Правило Лопиталя
  • Вычисления в Mathematica с примерами

Алгебраическая дробь имеет смысл только в случае неравенства своего знаменателя нулю. Ведь делить на ноль, как известно, нельзя.

При необходимости определить для дроби те значения, когда она смысл имеет, надо записать значение числового ряда за исключеним тех чисел, которы получаются при решении уравнения при приравнивании знаменателя нулю.

модератор выбрал этот ответ лучшим

Алсу – Ш
[256K]

6 лет назад 

Напомню некоторые сведения, касающиеся алгебраических дробей, а также их допустимых значений.


Авторы верно ответили на вопрос о том, что дробь имеет смысл только тогда, когда знаменатель ее не равен нулю.

Так как речь идет об алгебраических дробях, можно добавить: знаменатель не равен нулю при каждом допустимом значении переменных.

Одинаковый смысл имеют типы заданий:

Чтобы выполнить любое из данных заданий, нужно найти множество допустимых значений переменных, для этого исключить недопустимые.

Мы приравниваем к 0 знаменатель дроби (знак равенства часто перечеркивают), решаем полученное уравнение (обычно со знаком перечеркнутого равенства), корни его исключаем из множества значений переменных (перечеркнутые значения переменных – это и есть исключенные корни из множества значений переменных).

Таким образом, в ответе запишутся все значения переменных, за исключением найденных.

Пример:

В представленной картинке даны алгебраические дроби.


Если в знаменателе дан многочлен, который ни при каких значениях переменных не обращается в нуль, то дробь будет иметь смысл на всей числовой прямой, т.е. на множестве действительных чисел (см. 2-й пример на картинке ниже), если в задаче дополнительно не указывается другое конкретное множество значений переменных, на котором задана дробь, например, рациональных чисел.

Пример.

Одним из основных свойств алгебраических дробей, знакомых еще математикам античности, является запрет деления на 0. Когда в знаменатели дроби возникает это “пустое” число” дробь теряет смысл. В школьной программе часто можно встретить разнообразные задания, в которых спрашивается когда выражение или дробь не имеет смысла, при каком значении переменной Х. При этом знаменатель дроби представлен неким выражением, например 8х-4 или х+5. Для нахождения ответа таких заданий знаменатель приравнивается к нули и решается как уравнение. Удовлетворяющие этому уравнению значения Х делают дробь не имеющей смысла. В данных примерах дробь с любым числителем не имеет смысла если в первом примере Х= 0.5, а во втором Х=-5.

Дробь имеет смысл при условии, что ее знаменатель отличен от нуля. В школьной математике важно, чтобы и числитель был строго больше минус бесконечности и строго меньше плюс бесконечности, иначе даже при ненулевом знаменателе дробь все так же “скатится” в бесконечность.

Nelli­4ka
[114K]

6 лет назад 

Проще было бы ответить на вопрос: когда она не имеет смысла? Тогда бы мы ответили, что тогда, когда знаменатель в дроби равен нулю. Ведь на ноль делить нельзя, как мы помним еще со школы, ибо он все обращает в ноль.

На ваш же вопрос можно ответить таким образом: когда в знаменателе не ноль (будь-то положительные числа, будь-то отрицательные), дробь существует и несет при этом определенный смысл.

morel­juba
[62.5K]

6 лет назад 

Говоря о дробях важно понимать, что используя знак дроби (то есть черту), мы подразумеваем процесс деления. А так как нам всем известно, что деление на ноль проводить нельзя согласно правил, то можно точно сказать, что алгебраическая дробь имеет смысл в том случае, когда значение её знаменателя отлично от нуля.

Помощ­ни к
[56.9K]

6 лет назад 

Также мне кажется, что алгебраическая дробь, или написание числа в виде дроби, не имеет смысла, если числитель равен знаменателю. В таком случае можно написать выражение гораздо проще. К примеру, вместо “1/1” лучше написать просто “1”.

Ну, а по правилам, главное чтобы снизу дроби не был “0”.

Алекс­андр Ветро­в
[80K]

6 лет назад 

Насколько мне известно, алгебраическая дробь не имеет смысла, когда её знаменатель равняется нулю, поскольку на него делить нельзя. Таким образом, во всех остальных случаях алгебраическая дробь имеет смысл, и её можно смело использовать для различных расчётов.

По моему дробь имеет смысл всегда, за исключением случая, когда в знаменателе стоит ноль, так как мы помним, что на ноль делить нельзя. Другое дело в высшей математике, там и но ноль делят, получая математические пределы и т.д.

Про10­0 й
[76.8K]

8 лет назад 

При любом значении числа дробь имеет смысл,кроме одного случая, если только знаменатель не равен нулю, так как на ноль делить нельзя.

Дробь не имеет смысла если знаменатель равен нулю.

Как то так помню со школы.

Алгебраическая дробь имеет смысл только тогда, когда её знаменатель не равен нулю. В противном случае, когда знаменатель равен нулю, алгебраическая дробь не имеет смысла, так как делить на ноль нельзя.

mat03­3
[4.6K]

10 лет назад 

В рамках школьной программы, смысл имеет дробь с отличным от нуля знаменателем 😉 Ну, если актуально большие числа и прочая экзотика не вошла, за эти годы, в школьную программу.

Знаете ответ?

Определение и примеры алгебраических дробей

Рациональные выражения делятся на целые и дробные выражения.

                          схема рациональной дроби

Определение. Рациональная дробь – дробное выражение вида , где  – многочлены.  – числитель,  – знаменатель.

Примеры рациональных выражений:  – дробные выражения;  – целые выражения. В первом выражении, к примеру, в роли числителя выступает , а знаменателя – .

Значение алгебраической дроби, как и любого алгебраического выражения, зависит от численного значения тех переменных, которые в него входят. В частности, в первом примере значение дроби зависит от значений переменных  и , а во втором только от значения переменной .

Вычисление значения алгебраической дроби и две основные задачи на дроби

Рассмотрим первую типовую задачу: вычисление значения рациональной дроби при различных значениях входящих в нее переменных.

Пример 1. Вычислить значение дроби  при а) , б) ,    в)

Решение. Подставим значения переменных в указанную дробь: а) , б) , в)  – не существует (т. к. на ноль делить нельзя).

Ответ: а) 3; б) 1; в) не существует.

Как видим, возникает две типовые задачи для любой дроби: 1) вычисление дроби, 2) нахождение допустимых и недопустимых значений буквенных переменных.

Определение. Допустимые значения переменных – значения переменных, при которых выражение имеет смысл. Множество всех допустимых значений переменных называется ОДЗ или область определения.

Допустимые (ОДЗ) и недопустимые значения переменных в дробях с одной переменной

Значение буквенных переменных может оказаться недопустимым, если знаменатель дроби при этих значениях равен нулю. Во всех остальных случаях значение переменных являются допустимыми, т. к. дробь можно вычислить.

Пример 2. Установить, при каких значениях переменной не имеет смысла дробь .

Решение. Чтобы данное выражение имело смысл, необходимо и достаточно, чтобы знаменатель дроби не равнялся нулю. Таким образом, недопустимыми будут только те значения переменной, при которых знаменатель будет равняться нулю. Знаменатель дроби , поэтому решим линейное уравнение:

.

Следовательно, при значении переменной  дробь не имеет смысла.

Ответ: -5.

Из решения примера вытекает правило нахождения недопустимых значений переменных – знаменатель дроби приравнивается к нулю и находятся корни соответствующего уравнения.

Рассмотрим несколько аналогичных примеров.

Пример 3. Установить, при каких значениях переменной не имеет смысла дробь.

Решение. .

Ответ. .

Пример 4. Установить, при каких значениях переменной не имеет смысла дробь .

Решение..

Встречаются и другие формулировки данной задачи – найти область определения или область допустимых значений выражения (ОДЗ). Это означает – найти все допустимые значения переменных. В нашем примере – это все значения, кроме . Область определения удобно изображать на числовой оси.

Для этого на ней выколем точку , как это указано на рисунке:

Рис. 1

Таким образом, областью определения дроби будут все числа, кроме 3.

Ответ..

Пример 5. Установить, при каких значениях переменной не имеет смысла дробь .

Решение..

Изобразим полученное решение на числовой оси:

Рис. 2

Ответ..

Графическое представление области допустимых (ОДЗ) и недопустимых значений переменных в дробях

Пример 6. Установить, при каких значениях переменных не имеет смысла дробь .

Решение.. Мы получили равенство двух переменных, приведем числовые примеры:  или  и т. д.

Изобразим это решение на графике в декартовой системе координат:

Рис. 3. График функции 

Координаты любой точки, лежащей на данном графике, не входят в область допустимых значений дроби.

Ответ. .

Случай типа “деление на ноль”

В рассмотренных примерах мы сталкивались с ситуацией, когда возникало деление на ноль. Теперь рассмотрим случай, когда возникает более интересная ситуация с делением типа .

Пример 7. Установить, при каких значениях переменных не имеет смысла дробь .

Решение..

Получается, что дробь не имеет смысла при . Но можно возразить, что это не так, потому что: .

Может показаться, что если конечное выражение равно 8 при , то и исходное тоже возможно вычислить, а, следовательно, имеет смысл при . Однако, если подставить  в исходное выражение, то получим  – не имеет смысла.

Ответ..

Чтобы подробнее разобраться с этим примером, решим следующую задачу: при каких значениях  указанная дробь равна нулю?

 (дробь равна нулю, когда ее числитель равен нулю) . Но необходимо решить исходное уравнение с дробью, а она не имеет смысла при , т. к. при этом значении переменной знаменатель равен нулю. Значит, данное уравнение имеет только один корень .

Правило нахождения ОДЗ

Таким образом, можем сформулировать точное правило нахождения области допустимых значений дроби: для нахождения ОДЗ дроби необходимо и достаточно приравнять ее знаменатель к нулю и найти корни полученного уравнения.

Мы рассмотрели две основные задачи: вычисление значения дроби при указанных значениях переменных и нахождение области допустимых значений дроби.

Рассмотрим теперь еще несколько задач, которые могут возникнуть при работе с дробями.

Разные задачи и выводы

Пример 8. Докажите, что при любых значениях переменной дробь .

Доказательство. Числитель – число положительное. . В итоге, и числитель, и знаменатель – положительные числа, следовательно, и дробь является положительным числом.

Доказано.

Пример 9. Известно, что , найти .

Решение. Поделим дробь почленно . Сокращать на  мы имеем право, с учетом того, что  является недопустимым значением переменной для данной дроби.

Ответ..

На данном уроке мы рассмотрели основные понятия, связанные с дробями. На следующем уроке мы рассмотрим основное свойство дроби.

Список литературы

  1. Башмаков М.И. Алгебра 8 класс. – М.: Просвещение, 2004.
  2. Дорофеев Г.В., Суворова С.Б., Бунимович Е.А. и др. Алгебра 8. – 5-е изд. – М.: Просвещение, 2010.
  3. Никольский С.М., Потапов М.А., Решетников Н.Н., Шевкин А.В. Алгебра 8 класс. Учебник для общеобразовательных учреждений. – М.: Просвещение, 2006.

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

  1. Фестиваль педагогических идей (Источник).
  2. Старая школа (Источник).

Домашнее задание

  1. №4, 7, 9, 12, 13, 14. Дорофеев Г.В., Суворова С.Б., Бунимович Е.А. и др. Алгебра 8. – 5-е изд. – М.: Просвещение, 2010.
  2. Запишите рациональную дробь, областью определения которой является: а) множество , б) множество , в) вся числовая ось.
  3. Докажите, что при всех допустимых значениях переменной  значение дроби  неотрицательно.
  4. Найдите область определения выражения . Указание: рассмотреть отдельно два случая: когда знаменатель нижней дроби равен нулю и когда знаменатель исходной дроби равен нулю.

Содержание материала

  1. Понятие алгебраической дроби
  2. Видео
  3. Алгебраические дроби и их решение
  4. Умножение и деление дробей
  5. Сложение и вычитание дробей
  6. Наибольший общий делитель (НОД) и наименьшее общее кратное (НОК)
  7. Более сложные случаи сложения и вычитания дробей
  8. Сложные дроби
  9. Все действия с дробями. Расположенные многочлены в числителе и знаменателе дроби. Выделение целой части из неправильной дроби

Понятие алгебраической дроби

Начнем с определения. Под алгебраической дробью понимается выражения P/Q, где P является числителем, а Q – знаменателем. Под буквенной записью может скрываться число, числовое выражение, численно-буквенное выражение.

Прежде чем задаваться вопросом, как решать алгебраические дроби, для начала нужно понимать, что подобное выражение – часть целого.

Как правило, целое – это 1. Число в знаменателе показывает, на сколько частей разделили единицу. Числитель необходим для того, чтобы узнать, сколько элементов взято. Дробная черта соответствует знаку деления. Допускается запись дробного выражения в качестве математической операции «Деление». В таком случае числитель – делимое, знаменатель – делитель.

Алгебраические дроби и их решение

Если алгебраическое выражение, составленное из букв и чисел, содержит, кроме трех первых действий— сложения, вычитания и умножения, — также еще и деле­ние (на буквенное выражение), то такое выражение называют дробным. Примером могут служить выражения: Если последнее действие, указываемое выражением, е, Если последнее действие, указываемое выражением, е, Если последнее действие, указываемое выражением, е, Если последнее действие, указываемое выражением, е, Если последнее действие, указываемое выражением, е, Если последнее действие, указываемое выражением, е.

Если последнее действие, указываемое выражением, есть деление, то такое выражение называется просто «дробью (алгебраической дробью). При этом, если, кроме этого последнего действия, делений больше производить не нужно, дробь называется простой, в противном случае — сложной. Так, среди преды­дущих примеров только последний нельзя назвать дробью (это сумма двух дробей); предпоследний есть сложная дробь, четыре предыдущих — простые дроби.

К сложным дробям мы обратимся несколько позднее; сначала же будем заниматься только простыми.

Простая алгебраическая дробь есть отношение двух целых алгебраических выражений, являющихся числи­телем и знаменателем дроби.

Мы знаем, что существует число, которое ни в коем случае не может быть знаменателем дроби: это — нуль; поэтому, если знаменатель про­ стой алгебраической дроби оказывается тождественное равным нулю, то сама дробь не имеет смысла ни при каких значениях входящих букв. Примером служит дробь некоторых. Очень часто встречается другой случай, когда знаменатель дроби тождественно не равен нулю, однако обращается в нуль при некоторых значениях входя­щих букв. При этих значениях букв дробь «теряет смысл» — не имеет никакого числового значения. По­ этому, написав дробь, всегда подразумевают, что числовые значения, придаваемые входящим буквам, таковы, что не обращают знаменатель в нуль.

Иногда это отмечают и в явной форме: например, В дальнейшем, говоря о данной дроби, мы всегда буд.

В дальнейшем, говоря о данной дроби, мы всегда будем подразумевать, что буквам даются лишь такие значения, которые не обращают знаменатель в нуль. Что касается числителя дроби, то исключать из рассмотрения те случаи, когда он обращается в нуль, излишне. Напомним, что если числитель дроби равен нулю, то и сама дробь равна нулю. Обратно, если дробь равна нулю, то непременно числитель равен нулю. Итак, простая алгебраическая дробь обращается в нуль при тех и только при тех значениях входящих букв, при которых ее числитель обращается в нуль.

Из арифметики отлично известно основное свойство дроби (частного); дробь (частное) не изменяется, если числитель (делимое) и знаменатель (де­литель) умножить или разделить на одно и то же число Число  может также быть дробным: если, допустим,  . Например, дробь Число  может также быть дробным: если, допустим,  не изменяется, если ее числитель и знаменатель умножить или разделить на Число  может также быть дробным: если, допустим,  : Число  может также быть дробным: если, допустим,  .

Число дробным может также быть дробным: если, допустим, В виде формулы основное свойство дроби записы­вает равно В виде формулы основное свойство дроби записы­вает,то умножить на В виде формулы основное свойство дроби записы­вает — значит сначала умножить на В виде формулы основное свойство дроби записы­вает и затем разделить на В виде формулы основное свойство дроби записы­вает. Оно может быть и отрицательным: при умножении числителя и зна­менателя на отрицательное число знаки числителя и знаменателя меняются, а знак дроби остается неиз­менным. Оно не может быть только равным нулю: понятно — почему.

В виде формулы основное свойство дроби записы­вается следующим образом: Основное свойство дроби можно выразить следую­щими (1).

Основное свойство дроби можно выразить следую­щими словами; если некоторое выражение входит множителем в числитель и в знаменатель алгебраи­ческой дроби, то при условии, что оно не равно нулю, можно на него «сократить» данную дробь: значение дроби при этом не меняется. И, напротив, можно умножить числитель и знаменатель алгебраической дроби на произвольное выражение при условии, что оно не обращается в нуль.

Примечание:

Равенство (1), выражающее основное свойство дроби, считается тождеством, несмотря на то, что его левая часть теряет смысл при Вообще за равенством двух алгебраических выражений, и на то, что обе его части теряют смысл при Вообще за равенством двух алгебраических выражений.

Вообще за равенством двух алгебраических выражений при­нято сохранять наименование тождества и в том случае, если одно из этих выражений или оба теряют смысл при некото­рых исключительных значениях входящих букв. Такое расширен­ное понимание тождества, между прочим, позволяет относить сокращение дроби на буквенное выражение к числу тождествен­ных преобразований.

Руководствуясь основным свойством дроби, можно сокращать алгебраическую дробь (как и арифметиче­скую) на буквенные или числовые множители, входя­щие одновременно в ее числитель и в ее знаменатель.

Если таких множителей нет, дробь называют несократимой.

Например, дробь Левая и правая часть равенства тождественно равны можно сократить на Левая и правая часть равенства тождественно равны : Левая и правая часть равенства тождественно равны .

Левая и правая часть равенства тождественно равны (хотя левая теряет смысл при Мы переходим дальше к изучению действий над алгебр, и обе — при Мы переходим дальше к изучению действий над алгебр).

Мы переходим дальше к изучению действий над алгебраическими дробями — сложения, вычитания, умножения и деления. Выполнить одно из этих действий над данными простыми дробями — значит не только соединить эти дроби соответственным знаком, но также и произвести над полученным выражением тождественные преобразования, целью которых являет­ся представить это выражение в виде простой дроби (или целого выражения). Производя действия над дробями, стараются вместе с тем сокра­щать дробь на общие множители числителя и знаме­нателя.

При изучении действий над дробями мы начнем с более легких — умножения и деления, а затем перейдем к более трудным — сложению и вычита­нию. Те случаи, когда какие-нибудь из данных выраже­ний оказываются целыми, мы не будем рассматривать отдельно, так как всякое целое выражение можно представить в виде дробного, именно, подписывая под ним в качестве знаменателя единицу.

Умножение и деление дробей

Правило умножения арифметических дробей выражается формулой: произведение двух дробей равно дроби, у которой чи (*) и словами может быть прочитано следующим образом: произведение двух дробей равно дроби, у которой числи­тель равен произведению числителей, а знаменатель — произведению знаменателей.

Написанная выше формула справедлива не только в том случае, если входящие буквы имеют целые положительные значения, но и в том случае, если эти зна­чения — дробные; она справедлива также и в том слу­чае, если некоторые из входящих букв имеют отрица­тельные значения. Значение нуль, конечно, исключено для знаменателей, но не исключено для числителей.

Но раз равенство (*) имеет место при всех значе­ниях входящих букв (кроме тех исключительных, при которых знаменатели дробей обращаются в нуль), то оно является тождеством.

Таким образом, правило умножения алгебраических дробей выражается той же формулой и формулируется теми же словами, что и правило умножения арифме­тических дробей.

В алгебре вместо того, чтобы вычесть некоторое число, можно прибавить число, противоположное по знаку: Таким же образом вместо того, чтобы разделить на н.

Таким же образом вместо того, чтобы разделить на некоторое число (не равное нулю), достаточно умножить на величину, обратную этому числу: Действительно, следуя правилу умножения, мы по­луч.

Действительно, следуя правилу умножения, мы по­лучаем: Так как величина, обратная дроби  есть дробь  , то.

Так как величина, обратная дроби Чтобы разделить на дробь, достаточно умножить на в есть дробь дроби на дробь , то правило деления дроби на дробь (подобное арифметическому) дается формулой: Чтобы разделить на дробь, достаточно умножить на в (2).

Чтобы разделить на дробь, достаточно умножить на величину, ей обратную («разделить на числитель и умножить на знаменатель).

Сложение и вычитание дробей

Сложить две алгебраические дроби означает — пред­ставить их сумму в виде одной алгебраической дроби; то же — для вычитания.

Если данные дроби имеют один и тот же знамена­тель, то, чтобы сложить их — в алгебре, как и в ариф­метике, — достаточно составить дробь с тем же зна­менателем и с числителем, равным сумме числителей: Это — распределительный закон деления, справед­лив.

Это — распределительный закон деления, справед­ливый при любом Если же складываемые дроби имеют различные знамена , не равном нулю.

Если же складываемые дроби имеют различные знаменатели, то в алгебре, как и в арифметике, необ­ходимо предварительно привести дроби к общему зна­менателю. При этом пользуются основным свойством дроби — основным тождеством (*) , в котором мы теперь поменяем местами правую и левую части: Желая сложить две дроби  и  , мы всегда можем умно.

Желая сложить две дроби Подобным же образом, ссылаясь на распреде­лительны и Подобным же образом, ссылаясь на распреде­лительны , мы всегда можем умножить числитель и знаменатель первой дроби на Подобным же образом, ссылаясь на распреде­лительны, а числитель и знаменатель второй — на Подобным же образом, ссылаясь на распреде­лительны. и тогда получим: Подобным же образом, ссылаясь на распреде­лительны, дальше достаточно сложить числители: Подобным же образом, ссылаясь на распреде­лительны. Итак, мы получаем тождество: Подобным же образом, ссылаясь на распреде­лительны (3).

Подобным же образом, ссылаясь на распреде­лительный закон деления и на основное свойство дроби, выведите общую формулу вычитания дробей: При действиях с дробями часто приходится пользо­ва (4).

При действиях с дробями часто приходится пользо­ваться важным частным случаем основного свойства дроби (*) Таким образом, значение дроби не меняется при одно именно, тем случаем, когда Таким образом, значение дроби не меняется при одно равно Таким образом, значение дроби не меняется при одно. В этом слу­чае мы получаем: Таким образом, значение дроби не меняется при одно.

Таким образом, значение дроби не меняется при одновременном изменении знаков числителя и знаме­нателя.

Так как при изменении знака только числителя или только зн, то можно заключить: при изменении знака только числителя или только знаменателя знак дроби ме­няется.

Отсюда следует: если мы меняем знак знаменате­ля, то, чтобы значение дроби не изменилось, достаточно еще изменить знак, или числителя или самой дроби; если мы меняем знак числителя, то, чтобы значение дроби не изменилось, достаточно еще изме­нить знак или знаменателя или самой дроби. Например,Наибольший общий делитель (НОД) и наименьшее общее.

Наибольший общий делитель (НОД) и наименьшее общее кратное (НОК)

В арифметике указывается правило для нахождения наибольшего общего делителя (НОД) и наименьшего общего кратного (НОК) нескольких целых чисел.

Пусть даны числа Составим новое число из данных чисел следующим обр, Составим новое число из данных чисел следующим обр и Составим новое число из данных чисел следующим обр. Разложим их на простые множители: Составим новое число из данных чисел следующим обр, Составим новое число из данных чисел следующим обр, Составим новое число из данных чисел следующим обр.

Составим новое число из данных чисел следующим образом: возьмем каждый встречающийся множитель в наименьшей из степеней, в которых он встре­чается, и затем перемножим: Полученное число  есть НОД данных чисел: ча­стные .

Полученное число Составим другое число из данных чисел, отбирая каж есть НОД данных чисел: ча­стные от деления этих чисел на Составим другое число из данных чисел, отбирая каж уже не имеют общих делителей, отличных от Составим другое число из данных чисел, отбирая каж.

Составим другое число из данных чисел, отбирая каждый встречающийся множитель в наибольшей из степеней, в которых он встречается, и перемножая: Таким же образом можно составлять НОД и НОК алгебр. Полученное число Таким же образом можно составлять НОД и НОК алгебр есть НОК данных чисел; частные от деления числа Таким же образом можно составлять НОД и НОК алгебр на эти числа уже не имеют общих делителей, отличных от Таким же образом можно составлять НОД и НОК алгебр.

Таким же образом можно составлять НОД и НОК алгебраических одночленных выражений с целыми коэффициентами, обращаясь при этом с буквами как с це­лыми числами (хотя буквы могут иметь какие угодно, в том числе и дробные, значения). Так, если даны выражения Наибольший общий делитель двух чисел может быть по, Наибольший общий делитель двух чисел может быть по и Наибольший общий делитель двух чисел может быть по, то их наибольший общий делитель равен Наибольший общий делитель двух чисел может быть по, а их наи­меньшее общее кратное равно Наибольший общий делитель двух чисел может быть по . После деления данных выражений на их НОД получаются частные Наибольший общий делитель двух чисел может быть по, Наибольший общий делитель двух чисел может быть по, Наибольший общий делитель двух чисел может быть по, уже не имеющие общих множителей. После деления НОК на данные числа получаются частные Наибольший общий делитель двух чисел может быть по, Наибольший общий делитель двух чисел может быть по и Наибольший общий делитель двух чисел может быть по, также не имеющие общих множителей.

Наибольший общий делитель двух чисел может быть полезен в арифметике при сокращении дробей: найдя НОД числителя и знаменателя и сократив на него, мы сразу получаем несократимую дробь. При этом нахож­дение НОД стоит некоторого труда, так как не всегда очевидно с первого взгляда, каковы простые множите­ ли данного числа и в каких степенях они входят.

В алгебре же такого рода применение НОД излишне, так как буквенные множители выписываются явно.

Если, например, дана дробь Зато в алгебре НОД приносит больше пользы при выне то НОД числителя и знаменателя равен Зато в алгебре НОД приносит больше пользы при выне; сокращая на него, получим Зато в алгебре НОД приносит больше пользы при выне . Но и без наибольшего общего делителя можно сократить сначала, например, на Зато в алгебре НОД приносит больше пользы при выне, потом на Зато в алгебре НОД приносит больше пользы при выне.

Зато в алгебре НОД приносит больше пользы при вынесении за скобку общих множителей много­ членных выражений. Пусть дано выражение Мы видим сразу, что НОД всех членов равен , и, вын.

Мы видим сразу, что НОД всех членов равен Что касается наименьшего общего кратного, то мы ув, и, вынося его за скобку, получаем: Что касается наименьшего общего кратного, то мы ув.

Что касается наименьшего общего кратного, то мы увидим дальше, что в алгебре, как и в арифме­тике, оно позволяет значительно упрощать записи при сложении и вычитании дробей.

Более сложные случаи сложения и вычитания дробей

При сложении и вычитании дробей удобно пользо­ваться приемом составления общего знаменателя посредством перемножения знаменателей данных дро­бей только в том случае, если каждые два, попарно взятые, знаменателя не имеют общих — ни буквенных, ни числовых — множителей. В других случаях употреб­ление этого приема, хотя и дает верный результат, однако, ни коим образом не может быть рекомендовано, так как ведет к лишним записям и потере времени. Общее правило таково: в качестве общего знаменателя нескольких дробей следует брать НОК знаменателей всех данных дробей. Предварительно необходимо каждый знаменатель представить как про­ изведение отдельных множителей; в частности, если данный знаменатель — многочлен, нужно общие число­вые и буквенные множители его членов выносить за скобку. Если встречаются многочленные множители, отличающиеся только знаком, то знак нужно менять, пользуясь уже известными приемами.

После того как общий знаменатель найден, необхо­димо выяснить, на какой один и тот же «дополнитель­ный множитель» придется умножить знаменатель и числитель каждой дроби для того, чтобы ее знамена­тель стал равным выбранному общему знаменателю.

Дальше, раз уже дроби приведены к общему знамена­телю, сделать сложение или вычитание не представ­ляет труда.

Пример:

Произведение знаменателей равно . Однако есть возм

Произведение знаменателей равно Итак, . Однако есть возможность в качестве общего знаменателя взять более простое выражение, именно НОК знаме­нателей, равное Итак, . Дополнительным множителем для первой дроби является Итак, , для второй Итак, , для третьей Итак, : Итак, , Итак, , Итак, .

Итак, Пример:

Пример:

HOK знаменателей равно . Для первой дроби дополнит.

HOK знаменателей равно Пример:. Для первой дроби дополнительный множитель равен Пример:, для второй Пример:. Итак, Пример:.

Пример:

Принимая во внимание, что  и что , мы можем перепи

Принимая во внимание, что Теперь ясно, что наименьшее общее кратное зна­мена и что Теперь ясно, что наименьшее общее кратное зна­мена, мы можем переписать дан­ное выражение в следующем виде: Теперь ясно, что наименьшее общее кратное зна­мена.

Теперь ясно, что наименьшее общее кратное зна­менателей равно Сложные дроби. Дополнительные мно­жители трех дробей соответственно равны Сложные дроби, Сложные дроби и Сложные дроби. Итак, мы получаем сумму Сложные дроби или же, после упрощений в числителе и сокращения на Сложные дроби, Сложные дроби.

Сложные дроби

Если приходится выполнять деление над выражениями, уже содержащими дроби, то, записывая частное в виде дроби (с чер­той), мы получаем сложную дробь. Для облегчения записи в таких случаях иногда пользуются знаком двоеточия, но смысл получаемого от этого, конечно, не изменяется. Например, если Сложную дробь всегда можно преобразовать в простую требуется разделить на Сложную дробь всегда можно преобразовать в простую, то результат можно записать в виде Сложную дробь всегда можно преобразовать в простую или Сложную дробь всегда можно преобразовать в простую.

Сложную дробь всегда можно преобразовать в простую. Для этого достаточно выполнить все действия в том порядке, как они указаны: сначала числитель и знаменатель сложной дроби записать в виде простых дробей и затем разделить дробь на дробь, согласно правилу деления. Так, в нашем примере мы получим:Однако такой способ преобразования сложной дроби в

Однако такой способ преобразования сложной дроби в простую практически менее удобен, чем следующий. Пользуясь основным свойством дроби, умножим в нашем примере числитель и знаменатель на В качестве множителя, на который умножаются и числ; тогда получим прежний результат: В качестве множителя, на который умножаются и числ.

В качестве множителя, на который умножаются и числитель и знаменатель данной сложной дроби, следует, конечно, выбирать НОК знаменателей всех дробей, содержащихся в числителе и зна­менателе данной дроби.

Всякое дробное алгебраическое выражение содержит лишь ко­нечное число делений. Поэтому, сколько бы ни было «этажей» о сложной дроби, такую дробь всегда можно преобразовать в про­стую, постепенно уничтожая «этажи». Отсюда следует, что дробное алгебраическое выражение всегда может быте представлено в виде отношения двух целых алгебраических выражений.

Все действия с дробями. Расположенные многочлены в числителе и знаменателе дроби. Выделение целой части из неправильной дроби

Выполняя указанные действия над данными, про­стыми или сложными, алгебраическими дробями, мы получаем в результате простую алгебраическую дробь.

Если числители и знаменатели данных дробей — много­члены, расположенные по степеням одной и той же буквы, то числитель и знаменатель дроби, получающейся в результате выполнения действий, также представляют­ся в виде многочленов, расположенных по степе­ням той же буквы.

После этого, если удастся в числителе и знамена­ теле обнаружить общие множители, на них следует сокращать полученную дробь.

Простая дробь, у которой числитель и знаменатель — многочлены, расположенные по степеням одной и той же буквы, называется: правильной, если степень числителя меньше, чем степень знаменателя; неправильной, если степень числителя больше или равна степени знаменателя.

Если дробь — неправильная, то ее всегда можно представить в виде суммы многочлена и правильной дроби. Это делается посредством деления числителя на знаменатель.

Неправильная дробь равна сумме: 1) частного, по­лучающегося при делении числителя на знаменатель, и 2) правильной дроби, у которой числитель равен остатку при этом делении, а знаменатель — знамена­телю данной дроби.

Например, деля многочлен Описанное выше преобразование напоминает выде­лени на двучлен Описанное выше преобразование напоминает выде­лени, получаем: Описанное выше преобразование напоминает выде­лени; значит, Описанное выше преобразование напоминает выде­лени.

Описанное выше преобразование напоминает выде­ление целой части из неправильной арифметической дроби; сравните хотя бы с таким примером: По указанной причине это преобразование назы­ваетс

По указанной причине это преобразование назы­вается выделением целой части из неправильной алгебраической дроби.

Видео

Теги

Добавить комментарий