Решение уравнений с дробями
О чем эта статья:
5 класс, 6 класс, 7 класс
Понятие дроби
Прежде чем отвечать на вопрос, как найти десятичную дробь, разберемся в основных определениях, видах дробей и разницей между ними.
Дробь — это рациональное число, представленное в виде a/b, где a — числитель дроби, b — знаменатель. Есть два формата записи:
- обыкновенный вид — ½ или a/b,
- десятичный вид — 0,5.
Дробь — это одна из форм деления, записываемая с помощью дробной черты. Над чертой принято писать делимое (число, которое делим) — числитель. А под чертой всегда находится делитель (на сколько делим), его называют знаменателем. Черта между числителем и знаменателем означает деление.
Дроби бывают двух видов:
- Числовые — состоят из чисел. Например, 2/7 или (1,8 − 0,3)/5.
- Алгебраические — состоят из переменных. Например, (x + y)/(x − y). Значение дроби зависит от данных значений букв.
Дробь называют правильной, когда ее числитель меньше знаменателя. Например, 4/9 и 23/57.
Неправильная дробь — та, у которой числитель больше знаменателя или равен ему. Например, 13/5. Такое число называют смешанным — читается так: «две целых три пятых», а записывается — 2 3/5.
Основные свойства дробей
Дробь не имеет значения, если делитель равен нулю.
Дробь равняется нулю в том случае, если числитель равен нулю, а знаменатель отличен от нуля.
Дроби a/b и c/d называют равными, если a × d = b × c.
Если числитель и знаменатель дроби умножить или разделить на одно и то же натуральное число, то получится равная ей дробь.
Действия с дробями можно выполнять те же, что и с обычными числами: складывать, вычитать, умножать и делить. Также, дроби можно сравнивать между собой и возводить в степень.
Понятие уравнения
Уравнение — это математическое равенство, в котором неизвестна одна или несколько величин. Наша задача — найти неизвестные числа так, чтобы при их подстановке в пример получилось верное числовое равенство. Давайте на примере:
- Возьмем выражение 4 + 5 = 9. Это верное равенство, потому что 4+5 действительно 9. Если бы вместо 9 стояло любое другое число — мы бы сказали, что числовое равенство неверное.
- Уравнением можно назвать выражение 4 + x = 9, с неизвестной переменной x, значение которой нужно найти. Результат должен быть таким, чтобы знак равенства был оправдан, и левая часть равнялась правой.
Корень уравнения — то самое число, которое уравнивает выражения справа и слева, когда мы подставляем его на место неизвестной. В таком случае афоризм «зри в корень» — очень кстати при усердном решении уравнений.
Равносильные уравнения — это те, в которых совпадают множества решений. Другими словами, у них одни и те же корни.
Решить уравнение значит найти все его корни или убедиться, что корней нет.
Алгебраические уравнения могут быть разными, самые часто встречающиеся — линейные и квадратные. Расскажем и про них.
Линейное уравнение выглядит так | ах + b = 0, где a и b — действительные числа.
Что поможет в решении:
|
---|---|
Квадратное уравнение выглядит так: | ax 2 + bx + c = 0, где коэффициенты a, b и c — произвольные числа, a ≠ 0. |
Понятие дробного уравнения
Дробное уравнение — это уравнение с дробями. Да, вот так просто. Но это еще не все. Чаще всего неизвестная стоит в знаменателе. Например, вот так:
Такие уравнения еще называют дробно-рациональными. В них всегда есть хотя бы одна дробь с переменной в знаменателе.
Если вы видите в знаменателях числа, то это уравнения либо линейные, либо квадратные. Решать все равно нужно, поэтому идем дальше. Примеры:
На алгебре в 8 классе можно встретить такое понятие, как область допустимых значений — это множество значений переменной, при которых это уравнение имеет смысл. Его используют, чтобы проверить корни и убедиться, что решение правильное.
Мы уже знаем все важные термины, их определения и наконец подошли к самому главному — сейчас узнаем как решить дробное уравнение.
Как решать уравнения с дробями
1. Метод пропорции
Чтобы решить уравнение методом пропорции, нужно привести дроби к общему знаменателю. А само правило звучит так: произведение крайних членов пропорции равно произведению средних. Проверим, как это работает.
Итак, у нас есть линейное уравнение с дробями:
В левой части стоит одна дробь — оставим без преобразований. В правой части видим сумму, которую нужно упростить так, чтобы осталась одна дробь.
После того, как в левой и правой части осталась одна дробь, можно применить метод пропорции и перемножить крест-накрест числители и знаменатели.
2. Метод избавления от дробей
Возьмем то же самое уравнение, но попробуем решить его по-другому.
В уравнении есть две дроби, от которых мы очень хотим избавиться. Вот, как это сделать:
- подобрать число, которое можно разделить на каждый из знаменателей без остатка;
- умножить на это число каждый член уравнения.
Ищем самое маленькое число, которое делится на 5 и 9 и без остатка — 45 как раз подходит. Умножаем каждый член уравнения на 45 и избавляемся от знаменателей. Вуаля!
Вот так просто мы получили тот же ответ, что и в прошлый раз.
Что еще важно учитывать при решении
- если значение переменной обращает знаменатель в 0, значит это неверное значение;
- делить и умножать уравнение на 0 нельзя.
Универсальный алгоритм решения
Определить область допустимых значений.
Найти общий знаменатель.
Умножить каждый член уравнения на общий знаменатель и сократить полученные дроби. Знаменатели при этом пропадут.
Раскрыть скобки, если нужно и привести подобные слагаемые.
Решить полученное уравнение.
Сравнить полученные корни с областью допустимых значений.
Записать ответ, который прошел проверку.
Курсы по математике от Skysmart помогут закрепить материал и разобраться в сложных темах.
Примеры решения дробных уравнений
Чтобы стать успешным в любом деле, нужно чаще практиковаться. Мы уже знаем, как решаются дробные уравнения — давайте перейдем к решению задачек.
Пример 1. Решить дробное уравнение: 1/x + 2 = 5.
- Вспомним правило х ≠ 0. Это значит, что область допустимых значений: х — любое число, кроме нуля.
- Отсчитываем справа налево в числителе дробной части три знака и ставим запятую.
- Избавимся от знаменателя. Умножим каждый член уравнения на х.
Решим обычное уравнение.
Пример 2. Найти корень уравнения
- Область допустимых значений: х ≠ −2.
- Умножим обе части уравнения на выражение, которое сократит оба знаменателя: 2(х+2)
- Избавимся от знаменателя. Умножим каждый член уравнения на х.
Переведем новый множитель в числитель..
Сократим левую часть на (х+2), а правую на 2.
Пример 3. Решить дробное уравнение:
-
Найти общий знаменатель:
Умножим обе части уравнения на общий знаменатель. Сократим. Получилось:
Выполним возможные преобразования. Получилось квадратное уравнение:
Решим полученное квадратное уравнение:
Получили два возможных корня:
Если x = −3, то знаменатель равен нулю:
Если x = 3 — знаменатель тоже равен нулю.
Дробно-рациональные уравнения
Что такое дробно-рациональные уравнения
Дробно-рациональными уравнениями называют такие выражения, которые представляется возможным записать, как:
при P ( x ) и Q ( x ) в виде выражений, содержащих переменную.
Таким образом, дробно-рациональные уравнения обязательно содержат как минимум одну дробь с переменной в знаменателе с любым модулем.
9 x 2 – 1 3 x = 0
1 2 x + x x + 1 = 1 2
6 x + 1 = x 2 – 5 x x + 1
Уравнения, которые не являются дробно-рациональными:
Как решаются дробно-рациональные уравнения
В процессе решения дробно-рациональных уравнений обязательным действием является определение области допустимых значений. Найденные корни следует проверить на допустимость, чтобы исключить посторонние решения.
Алгоритм действий при стандартном способе решения:
- Выписать и определить ОДЗ.
- Найти общий знаменатель для дробей.
- Умножить каждый из членов выражения на полученный общий параметр (знаменатель), сократить дроби, которые получились в результате, чтобы исключить знаменатели.
- Записать уравнение со скобками.
- Раскрыть скобки для приведения подобных слагаемых.
- Найти корни полученного уравнения.
- Выполним проверку корней в соответствии с ОДЗ.
- Записать ответ.
Пример 1
Разберем предложенный алгоритм на практическом примере. Предположим, что имеется дробно-рациональное уравнение, которое требуется решить:
x x – 2 – 7 x + 2 = 8 x 2 – 4
Начать следует с области допустимых значений:
x 2 – 4 ≠ 0 ⇔ x ≠ ± 2
Воспользуемся правилом сокращенного умножения:
x 2 – 4 = ( x – 2 ) ( x + 2 )
В результате общим знаменателем дробей является:
Выполним умножение каждого из членов выражения на общий знаменатель:
x x – 2 – 7 x + 2 = 8 x 2 – 4
x ( x – 2 ) ( x + 2 ) x – 2 – 7 ( x – 2 ) ( x + 2 ) x + 2 = 8 ( x – 2 ) ( x + 2 ) ( x – 2 ) ( x + 2 )
После сокращения избавимся от скобок и приведем подобные слагаемые:
x ( x + 2 ) – 7 ( x – 2 ) = 8
x 2 + 2 x – 7 x + 14 = 8
Осталось решить квадратное уравнение:
Согласно ОДЗ, первый корень является лишним, так как не удовлетворяет условию, по которому корень не равен 2. Тогда в ответе можно записать:
Примеры задач с ответами для 9 класса
Требуется решить дробно-рациональное уравнение:
x x + 2 + x + 1 x + 5 – 7 – x x 2 + 7 x + 10 = 0
x x + 2 + x + 1 x + 5 – 7 – x x 2 + 7 x + 10 = 0
Определим область допустимых значений:
О Д З : x + 2 ≠ 0 ⇔ x ≠ – 2
x 2 + 7 x + 10 ≠ 0
D = 49 – 4 · 10 = 9
x 1 ≠ – 7 + 3 2 = – 2
x 2 ≠ – 7 – 3 2 = – 5
Квадратный трехчлен x 2 + 7 x + 10 следует разложить на множители, руководствуясь формулой:
a x 2 + b x + c = a ( x – x 1 ) ( x – x 2 )
x x + 2 + x + 1 x + 5 – 7 – x ( x + 2 ) ( x + 5 ) = 0
Заметим, что общим знаменателем для дробей является: ( x + 2 ) ( x + 5 ) . Умножим на этот знаменатель уравнение:
x x + 2 + x + 1 x + 5 – 7 – x ( x + 2 ) ( x + 5 ) = 0
Сократим дроби, избавимся от скобок, приведем подобные слагаемые:
x ( x + 2 ) ( x + 5 ) x + 2 + ( x + 1 ) ( x + 2 ) ( x + 5 ) x + 5 –
– ( 7 – x ) ( x + 2 ) ( x + 5 ) ( x + 2 ) ( x + 5 ) = 0
x ( x + 5 ) + ( x + 1 ) ( x + 2 ) – 7 + x = 0
x 2 + 5 x + x 2 + 3 x + 2 – 7 + x = 0
2 x 2 + 9 x – 5 = 0
Потребуется решить квадратное уравнение:
2 x 2 + 9 x – 5 = 0
Первый корень не удовлетворяет условиям ОДЗ, поэтому в ответ нужно записать только второй корень.
Дано дробно-рациональное уравнение, корни которого требуется найти:
4 x – 2 – 3 x + 4 = 1
В первую очередь следует переместить все слагаемые влево и привести дроби к минимальному единому знаменателю:
4 ( x + 4 ) x – 2 – 3 ( x – 2 ) x + 4 – 1 ( x – 2 ) ( x + 4 ) = 0
4 ( x + 4 ) – 3 ( x – 2 ) – ( x – 2 ) ( x + 4 ) ( x – 2 ) ( x + 4 ) = 0
4 x + 16 – 3 x + 6 – ( x 2 + 4 x – 2 x – 8 ) ( x – 2 ) ( x + 4 ) = 0
x + 22 – x 2 – 4 x + 2 x + 8 ( x – 2 ) ( x + 4 ) = 0
Заметим, что получилось нулевое значение для дроби. Известно, что дробь может равняться нулю, если в числителе нуль, а знаменатель не равен нулю. На основании этого можно составить систему:
– x 2 – x + 30 ( x – 2 ) ( x + 4 ) = 0 ⇔ – x 2 – x + 30 = 0 ( x – 2 ) ( x + 4 ) ≠ 0
Следует определить такие значения для переменной, при которых в дроби знаменатель будет обращаться в нуль. Такие значения необходимо удалить из ОДЗ:
( x – 2 ) ( x + 4 ) ≠ 0
Далее можно определить значения для переменных, которые при подстановке в уравнение обращают числитель в нуль:
– x 2 – x + 30 = 0 _ _ _ · ( – 1 )
Получилось квадратное уравнение, которое можно решить:
Сравнив корни с условиями области допустимых значений, можно сделать вывод, что оба корня являются решениями данного уравнения.
Нужно решить дробно-рациональное уравнение:
x + 2 x 2 – 2 x – x x – 2 = 3 x
На первом шаге следует перенести все слагаемые в одну сторону и привести дроби к минимальному единому знаменателю:
x + 2 1 x ( x – 2 ) – x x x – 2 – 3 ( x – 2 ) x = 0
x + 2 – x 2 – 3 ( x – 2 ) x ( x – 2 ) = 0
x + 2 – x 2 – 3 x + 6 x ( x – 2 ) = 0
– x 2 – 2 x + 8 x ( x – 2 ) = 0 ⇔ – x 2 – 2 x + 8 = 0 x ( x – 2 ) ≠ 0
Перечисленные значения переменной обращают знаменатель в нуль. По этой причине их необходимо удалить из области допустимых значений.
– x 2 – 2 x + 8 = 0 _ _ _ · ( – 1 )
Корни квадратного уравнения:
x 1 = – 4 ; x 2 = 2
Заметим, что второй корень не соответствует ОДЗ. Таким образом, в ответе остается только первый корень.
Найти корни уравнения:
x 2 – x – 6 x – 3 = x + 2
Согласно стандартному алгоритму решения дробно-рациональных уравнений, выполним перенос всех слагаемых в одну сторону. Далее необходимо привести к дроби к наименьшему общему знаменателю:
x 2 – x – 6 1 x – 3 – x ( x – 3 ) – 2 ( x – 3 ) = 0
x 2 – x – 6 – x ( x – 3 ) – 2 ( x – 3 ) x – 3 = 0
x 2 – x – 6 – x 2 + 3 x – 2 x + 6 x – 3 = 0
0 x x – 3 = 0 ⇔ 0 x = 0 x – 3 ≠ 0
Такое значение переменной, при котором знаменатель становится равным нулю, нужно исключить из области допустимых значений:
Заметим, что это частный случай линейного уравнения, которое обладает бесконечным множеством корней. При подстановке какого-либо числа на место переменной х в любом случае числовое равенство будет справедливым. Единственным недопустимым значением для х в данном задании является число 3, которое не входит в ОДЗ.
Ответ: х — любое число, за исключением 3.
Требуется вычислить корни дробно-рационального уравнения:
5 x – 2 – 3 x + 2 = 20 x 2 – 4
На первом этапе необходимо выполнить перенос всех слагаемых влево, привести дроби к минимальному единому знаменателю:
5 ( x + 2 ) x – 2 – 3 ( x – 2 ) x + 2 – 20 1 ( x – 2 ) ( x + 2 ) = 0
5 ( x + 2 ) – 3 ( x – 2 ) – 20 ( x – 2 ) ( x + 2 ) = 0
5 x + 10 – 3 x + 6 – 20 ( x – 2 ) ( x + 2 ) = 0
2 x – 4 ( x – 2 ) ( x + 2 ) = 0 ⇔ 2 x – 4 = 0 ( x – 2 ) ( x + 2 ) ≠ 0
( x – 2 ) ( x + 2 ) ≠ 0
Данные значения переменной х являются недопустимыми, так как в этом случае теряется смысл дроби в связи с тем, что знаменатель принимает нулевое значение.
Заметим, что 2 не входит в область допустимых значений. В связи с этим, можно заключить, что у уравнения отсутствуют корни.
Ответ: корни отсутствуют
Нужно найти корни уравнения:
x – 3 x – 5 + 1 x = x + 5 x ( x – 5 )
Начнем с определения ОДЗ:
– 5 ≠ 0 x ≠ 0 x ( x – 5 ) ≠ 0 x ≠ 5 x ≠ 0
При умножении обеих частей уравнения на единый знаменатель всех дробей и сокращении аналогичных выражений, которые записаны в числителе и знаменателе, получим:
x – 3 x – 5 + 1 x = x + 5 x ( x – 5 ) · x ( x – 5 )
( x – 3 ) x ( x – 5 ) x – 5 + x ( x – 5 ) x = ( x + 5 ) x ( x – 5 ) x ( x – 5 )
( x – 3 ) x + x = x + 5
Прибегая к арифметическим преобразованиям, можно записать уравнение в упрощенной форме:
x 2 – 3 x + x – 5 = x + 5 → x 2 – 2 x – 5 – x – 5 = 0 → x 2 – 3 x – 10 = 0
Для дальнейших действий следует определить, к какому виду относится полученное уравнение. В нашем случае уравнение является квадратным с коэффициентом при x 2 , который равен 1. Таким образом, целесообразно воспользоваться теоремой Виета:
x 1 · x 2 = – 10 x 1 + x 2 = 3
В этом случае подходящими являются числа: -2 и 5.
Второе значение не соответствует области допустимых значений.
Как решать уравнения с дробями. Показательное решение уравнений с дробями.
Решение уравнений с дробями рассмотрим на примерах. Примеры простые и показательные. С их помощью вы наиболее понятным образом сможете усвоить, как решать уравнения с дробями.
Например, требуется решить простое уравнение x/b + c = d.
Уравнения такого типа называется линейным, т.к. в знаменателе находятся только числа.
Решение выполняется путем умножения обоих частей уравнения на b, тогда уравнение принимает вид x = b*(d – c), т.е. знаменатель дроби в левой части сокращается.
Например, как решить дробное уравнение:
x/5+4=9
Умножаем обе части на 5. Получаем:
х+20=45
x=45-20=25
Другой пример, когда неизвестное находится в знаменателе:
Уравнения такого типа называются дробно-рациональными или просто дробными.
Решать дробное уравнение бы будем путем избавления от дробей, после чего это уравнение, чаще всего, превращается в линейное или квадратное, которое решается обычным способом. Следует только учесть следующие моменты:
- значение переменной, обращающее в 0 знаменатель, корнем быть не может;
- нельзя делить или умножать уравнение на выражение =0.
Здесь вступает в силу такое понятие, как область допустимых значений (ОДЗ) – это такие значения корней уравнения, при которых уравнение имеет смысл.
Таким образом решая уравнение, необходимо найти корни, после чего проверить их на соответствие ОДЗ. Те корни, которые не соответствуют нашей ОДЗ, из ответа исключаются.
Например, требуется решить дробное уравнение:
Исходя из вышеуказанного правила х не может быть = 0, т.е. ОДЗ в данном случае: х – любое значение, отличное от нуля.
Избавляемся от знаменателя путем умножения всех членов уравнения на х
И решаем обычное уравнение
5x – 2х = 1
3x = 1
х = 1/3
Решим уравнение посложнее:
Здесь также присутствует ОДЗ: х -2.
Решая это уравнение, мы не станем переносить все в одну сторону и приводить дроби к общему знаменателю. Мы сразу умножим обе части уравнения на выражение, которое сократит сразу все знаменатели.
Для сокращения знаменателей требуется левую часть умножить на х+2, а правую – на 2. Значит, обе части уравнения надо умножать на 2(х+2):
Это самое обычное умножение дробей, которое мы уже рассмотрели выше
Запишем это же уравнение, но несколько по-другому
Левая часть сокращается на (х+2), а правая на 2. После сокращения получаем обычное линейное уравнение:
х = 4 – 2 = 2, что соответствует нашей ОДЗ
Для закрепления материала рекомендуем еще посмотреть видео.
Решение уравнений с дробями не так сложно, как может показаться. В этой статье мы на примерах это показали. Если у вас возникли какие то трудности с тем, как решать уравнения с дробями, то отписывайтесь в комментариях.
Если материал был полезен, вы можете отправить донат или поделиться данным материалом в социальных сетях:
[spoiler title=”источники:”]
http://wika.tutoronline.ru/algebra/class/9/drobnoraczionalnye-uravneniya
http://reshit.ru/Kak-reshat-uravneniya-s-drobyami
[/spoiler]
Иногда линейные уравнения принимают вид, когда неизвестное оказывается в числителе одной или нескольких дробей.
Как, например, в уравнении ниже.
В таких случаях подобные уравнения можно решить двумя способами.
I способ решения
Сведение уравнения к пропорции
Запомните!
При решении уравнений способом пропорции необходимо выполнить следующие действия:
- привести все дроби к общему знаменателю и сложить их как алгебраические дроби
(в левой и правой части должно остаться только по одной дроби); - полученное уравнение решить по правилу пропорции.
Итак, вернемся к нашему уравнению. В левой части у нас и так стоит только одна дробь, поэтому в ней не нужны
никакие преобразования.
Будем работать с правой частью уравнения.
Упростим правую часть уравнения так, чтобы там осталась только одна дробь.
Для этого вспомним правила сложения числа с алгебраической дробью.
Теперь используем правило пропорции и решим уравнение до конца.
II способ решения
Сведение к линейному уравнению без дробей
Рассмотрим уравнение выше еще раз и решим его другим способом.
Мы видим, что в уравнении присутствуют две дроби
«» и
«».
Наша задача сделать так, чтобы в уравнении не осталось ни одной дроби.
Другими словами, необходимо свести уравнение к обычному
линейному уравнению без неизвестного в дроби.
Запомните!
Чтобы избавиться от дробей в уравнении нужно:
- найти число, которое без остатка будет делиться на каждый из знаменателей;
- умножить каждый член уравнения на это число.
Давайте зададим себе вопрос: «Какое число без остатка делится на каждый из знаменателей дробей, то есть и на
«5», и на «9» ?».
Таким ближайшим наименьшим числом будет число «45».
Умножим каждый член уравнения на «45».
Важно!
При умножении уравнения на число нужно каждый член уравнения
умножить на это число.
Другие примеры решения уравнений с неизвестным в дроби
Решение уравнения I способом (через пропорцию)
-
+=
+
=
+
=
=
=
(49 − 23y) · 2 = 15 · (y + 6)
98 − 46y = 15y + 90
−46y − 15y = 90 − 98
−61y = −8 | :(−61)
y =
Ответ: y =
Решение уравнения II способом
(сведение к уравнению без дробей)
-
2 − +
= 0 | ·202 · 20 − +
= 0 · 2040 − 5 ·(3x − 7) + 4 · (x + 17) = 0
40 − 15x + 35 + 4x + 68 = 0
−15x + 4x + 40 + 35 + 68 = 0
−11x + 75 + 68 = 0
−11x + 143 = 0
−11x = −143 | :(−11)
x = 13
Ответ: x = 13
Ваши комментарии
Важно!
Чтобы оставить комментарий, вам нужно войти на наш сайт при помощи
«ВКонтакте».
Оставить комментарий:
25 августа 2016 в 13:08
Виктория Лебеденко
Профиль
Благодарили: 0
Сообщений: 1
Виктория Лебеденко
Профиль
Благодарили: 0
Сообщений: 1
0
Спасибо
Ответить
3 сентября 2016 в 19:36
Ответ для Виктория Лебеденко
Юлия Анарметова
Профиль
Благодарили: 0
Сообщений: 11
Юлия Анарметова
Профиль
Благодарили: 0
Сообщений: 11
раскроем скобки x2+3x-x-3-x2-5=0(уничтожим x2 и-x2) получим 2x-8=0
2x=8
x=8 :2
x=4
0
Спасибо
Ответить
В предыдущем уроке мы с вами освоили основной принцип решения любых дробных уравнений. Это — ликвидация дробей. Кто читал, тот понял, что ничего сложного в этом нет.
Однако, даже в самых простых (казалось бы!) дробных уравнениях нас может поджидать сюрприз не из приятных. С ним, с сюрпризом, надо разобраться! Разберёмся?)
Основная проблема в решении дробных уравнений.
Сейчас мы с вами научимся обходить одну из самых коварных ловушек на ЕГЭ и контрольных! Попадаются в неё все — и троечники и отличники. Я специально поставил её в самое примитивное уравнение, чтобы с ней (с ловушкой) хорошенько разобраться. Но для начала посмотрим, попадёте вы в неё или нет.)
Допустим, надо решить вот такое нехитрое уравнение:
Дело уже привычное и знакомое. Умножаем всё уравнение на знаменатель (х+1) и получаем:
Напоминаю, что со скобками (х+1) работаем целиком, как будто бы это одно число! Производим умножение:
Сокращаем знаменатель и избавляемся от дроби:
3x2 + 2x — 1 = 5(x+1)
Раскрываем оставшиеся скобки, переносим всё влево, приводим подобные:
3x2 + 2x — 1 = 5x + 5
3x2 – 3x — 6 = 0
Делим всё уравнение на 3 и получаем:
х2 — х — 2 = 0
Отлично. Самое обычное квадратное уравнение. Решаем и получаем два корня:
х1 = -1
х2 = 2
Предположим, в задании на ЕГЭ сказано записать в ответ меньший из корней, если корней более одного. Что писать будем?)
Если вы решили, что ответ -1, то вы попали в ловушку. И задание вам не засчитают, да. Зря старались. Правильный ответ был 2… Два, а не минус один.
Так в чём же дело? А вы попробуйте проверку сделать. Подставьте каждый из найденных иксов в исходное уравнение. И, если при х=2 у вас всё славненько срастётся, получится тождество 5=5, то при х=-1 получится деление на ноль! Чего делать нельзя категорически. Нет такой операции ни в природе, ни в математике…
Что это значит? Это значит, что х=-1 — так называемый посторонний корень. Или лишний корень. Он не является корнем нашего дробного уравнения и в ответе никак не учитывается. Ибо его подстановка даёт бессмыслицу. Его мы просто отбрасываем. Окончательный корень один.
А именно: х=2.
Так, стоп, что-то тут не так! Нам же говорили, что всё уравнение можно умножать на одно и то же выражение! Это же тождественное преобразование!
Да, тождественное. Я не спорю. Но при одном маленьком ограничении, которое многие попросту игнорируют. А именно — выражение, на которое умножаем (делим), отлично от нуля! А скобочка (х+1) при х=-1 обращается в ноль! Так что всё честно.
И что нам теперь делать? Совсем не умножать? Тогда мы вообще ничего не решим! Каждый раз проверку делать? Это с ума сойдёшь. Особенно, если уравнение навороченное.
Нет, мы с вами пойдём красивым и элегантным путём. Обратимся за помощью к трём волшебным буквам! Догадались? Да! Это ОДЗ! Область Допустимых Значений.
Что же такое ОДЗ?
Это такие значения икса, которые могут быть в принципе. Или которые разрешены для данного примера.
Например, в уравнении
мы ещё пока не знаем, чему равен икс, верно? Мы уравнение пока не решили. Но зато мы железно знаем, что икс не может равняться нулю ни в коем случае! На ноль делить нельзя. На любое другое число — целое, дробное, отрицательное, иррациональное — ради бога. А вот на ноль — никак. Стало быть, в этом примере ОДЗ:
х — любое число, кроме нуля.
Зато все остальные иксы — абсолютно безопасны. Хоть 41, хоть -17, хоть -1,3 — весь бесконечный набор чисел.
Идея ясна?
Как записывать ОДЗ? Как работать с ОДЗ?
Тоже легко. На первом этапе всегда внимательно осматриваем исходный пример и ищем опасные места. Что значит опасные места?
Это места, где возможны запретные действия. Действия, которые при каких-то иксах могут оказаться недопустимыми с точки зрения математики. В нашей теме такое действие всего одно — деление. Нельзя делить на ноль. Есть ещё запреты в корнях чётной степени, в логарифмах и в тригонометрии. Их мы тоже рассмотрим в соответствующих уроках.
Как только опасные места найдены, рядышком с примером выписываем условия, которые не приводят к бессмыслице. После этого, глядя на эти условия, вычисляем запретные иксы. И исключаем их из ОДЗ. Вот и всё.
Я специально акцентирую внимание на словах “исходный пример”. Любое преобразование (сокращение, приведение подобных и т.п.) может изменить ОДЗ, и мы можем получить неверный ответ.
Важно! Для поиска ОДЗ мы не решаем пример! Мы решаем всего лишь маленькие кусочки примера для нахождения запретных иксов.
“Многа букаффф”, да. Но на практике вся процедура выглядит до ужаса элементарно.
Итак, берём наше уравнение:
Ничего пока что не трогаем, а внимательно осматриваем исходное уравнение. Осмотрев, мы сразу замечаем операцию деления на х+1.
Это потенциально опасная операция: при каких-то значениях икса выражение х+1 может оказаться равным нулю. На который делить нельзя. Поэтому обезопасим себя вот такой записью:
х+1 ≠ 0
х ≠ -1
Во-о-т. Минус один категорически не подходит нам в качестве ответа. Это и будет ОДЗ для нашего уравнения. Все иксы, кроме минус единички.
На практике запись и нахождение ОДЗ обычно оформляют так:
Иногда ОДЗ записывают и в другой форме, через промежутки. Вот так:
x ∈ (-∞; -1) U (-1; +∞)
Читается эта запись так: “Икс принадлежит интервалу от минус бесконечности до минус единицы (не включая), и от минус единицы (не включая) до плюс бесконечности.”
Перевод с математического на человеческий: “Икс — любое число, кроме минус единицы.”
Вот и всё. Как только мы себя обезопасили такой записью, дальше мы имеем полное право делать с уравнением всё что хотим — переносить члены, домножать, сокращать… Вот и домножаем всё уравнение на (х+1). Дробь-то убирать всё равно надо! Это по-прежнему будет не совсем тождественным преобразованием, но все вредные последствия от нарушения тождественности мы исключим по ОДЗ.
Умножаем:
3x2 + 2x — 1 = 5(x+1)
Как вы думаете, в какой же момент мы с вами попали в ловушку элементарного примера? Как раз в момент домножения всего уравнения на знаменатель дроби! Знаменатель исчез, и вместе с ним исчезли и соответствующие ограничения на иксы. Бесследно. И для нового уравнения, без дроби, на икс уже не накладывается никаких запретов! Любым может быть икс…
В математике это явление называется расширение ОДЗ.
Но теперь мы уже с вами народ бдительный. Исходные ограничения (х≠-1) мы записали и сохранили.
Поэтому дальше спокойно решаем уравнение безо всяких дробей и получаем два корня:
х1 = -1
х2 = 2
А вот теперь стыкуем наши результаты и условия ОДЗ. И видим в наших кандидатах на ответ один из иксов в качестве запретного! Минус один. Это означает, что в окончательный ответ его включать нельзя. Это посторонний корень, появившийся в процессе решения без нашего желания.
Да, это законный корень нашего вспомогательного квадратного уравнения, но никак не корень исходного дробного уравнения!
Стало быть, минус единицу мы безжалостно вычёркиваем и в ответ не включаем. Вот и всё.)
А в других уравнениях прошлого урока? Там что, нет ОДЗ? Есть, разумеется. Есть деление на икс — есть и ОДЗ.
В первом уравнении:
Во втором уравнении:
И так далее.
Я специально в тех примерах ничего не сказал про ОДЗ. Чтобы вас не перегрузить раньше времени.) В всех уравнениях прошлого урока (и домашнего задания к нему) ОДЗ никак не сказывалась на ответе. Так бывает. Но в заданиях ОГЭ и ЕГЭ ОДЗ в 99% случаев влияет на ответ! Так что мы с ОДЗ дружить будем. И во всех темах, где это необходимо, мы будем про ОДЗ вспоминать. Чтобы не упасть лицом в грязь.)
Итак, про ОДЗ поговорили. Убедились, что работать с ней тоже совсем не сложно. Теперь можно перейти и к общему алгоритму решения любого дробного уравнения.
Решаем дробные уравнения по алгоритму!
Для успешного решения любого дробного уравнения необходимо выполнить (правильно) пять пунктов:
1. Разложить знаменатели всех дробей на множители (если требуется). До упора. Переписать уравнение с учётом этого факта.
2. Найти ОДЗ, записать рядышком с уравнением и временно (до конца решения) забыть про неё.
3. Сообразить, на что надо умножить обе части уравнения, чтобы все дроби исчезли полностью.
4. Выполнить это самое умножение и решить новое уравнение, уже безо всяких дробей. Найти решения (кандидаты в ответ).
5. Вспомнить про ОДЗ и состыковать найденные решения с условиями ОДЗ. Те решения, которые не входят в ОДЗ, безжалостно выбросить. Записать окончательный ответ.
А теперь, вооружившись таким мощным супероружием, как ОДЗ, и общим алгоритмом, разберём очередной пример. Супердетально разберём!
Решить уравнение:
Решаем строго по пунктам. Выполняем пункт первый:
1. Разложить все знаменатели на множители (если требуется). До упора. Переписать пример с учётом этого факта.
Знаменатели наших дробей НЕ разложены на множители. Вот и приступаем. Вынесение общего множителя за скобки и формула разности квадратов — мощные штуки.)
2x — x2 = x(2-x)
2x + x2 = x(2+x)
4 — x2 = 22 — x2 = (2-x)(2+x)
Вот так. А теперь переписываем уравнение с учётом наших разложений:
Готово. Все знаменатели разложены до упора.) Можно приступать ко второму пункту.
2. Найти ОДЗ, записать рядышком с примером и временно (до конца решения) забыть про неё.
Итак, начинаем осматривать исходный пример на наличие опасных операций.
Внимание! Ничего не трогаем и не решаем! Не складываем дроби, не приводим подобные, не сокращаем!!!
Подобные преобразования запросто могут изменить ОДЗ, что может привести к неверному ответу! Оно нам надо?! Ещё раз напоминаю: ДО поиска ОДЗ с исходным примером мы не делаем НИЧЕГО! Кроме разложения на множители. Оно — безопасно и даже полезно.)
Берём и именно осматриваем исходный пример. И замечаем три опасных места: каждая из дробей таит в себе возможное деление на ноль.
Вот и пишем:
Знак системы (фигурная скобка) здесь не зря поставлен. Она означает, что все три условия должны выполняться одновременно! Мы ведь ОДЗ записываем не для каждой дроби по отдельности, а для всего примера целиком.)
Ну и как? Нашли ОДЗ? Не-а…)
Мы записали кусочек примера, записали три требования, которые должны выполняться железно. Но этого мало. Нужно ещё найти иксы, которые обеспечивают эти железные требования. ОДЗ ведь к иксам относится, а не к кусочкам примера…
Как же найти значения иксов, которые не превращают знаменатели дробей в ноль? Их же очень много? Очень просто! Мы поступим элегантно. Найдём иксы, которые наоборот, превращают знаменатели дробей в ноль. Это и будут запретные иксы.
Вот и решаем эти неравенства методом “от противного”. То есть, делаем из неравенств уравнения:
x(2-x) = 0
x(2+x) = 0
(2-x)(2+x) = 0
Именно из этих трёх уравнений мы и будем искать запретные иксы. Уравнения очень простые: произведение равно нулю, когда хотя бы один из множителей равен нулю. Вот и приравниваем (в уме или на черновике) каждый множитель к нулю.
Для первого уравнения получаем: x1 = 0; x2 = 2.
Вспомнив, что это запретные иксы, получим:
х ≠ 0; x ≠ 2.
Точно так же решаем и два оставшихся уравнения.
Для второго уравнения получаем:
x ≠ 0; x ≠ -2.
И, наконец, для третьего уравнения получаем:
x ≠ 2; x ≠ -2.
Видно, что некоторые запретные значения иксов повторяются. Разумеется, для окончательной записи ОДЗ мы их не будем дублировать. Итого ОДЗ для нашего уравнения будет выглядеть вот так:
ОДЗ:
Видите, насколько полезно предварительно раскладывать знаменатели на множители! В уме ОДЗ ищется! Поэтому эта процедура и стоит первым пунктом в алгоритме.)
Можно приступать к третьему пункту.
3. Сообразить, на что надо умножить обе части уравнения, чтобы все дроби исчезли полностью.
И тут разложение на множители тоже здорово играет на руку!
Понятно, что для ликвидации первой дроби, надо её домножать на x(2-x), вторую — на x(2+x) и третью – на (2-x)(2+x).
Но чтобы сразу сократить все дроби, надо скомбинировать такое выражение, которое одинаково хорошо делится и на х(2-х), и на х(2+х), и на (2-х)(2+х).
Вот оно, это выражение:
х(2-x)(2+x)
Как же я до него додумался? Очень просто: составил произведение всех неповторяющихся множителей всех знаменателей. Чтобы ничего не забыть и лишнего не взять.) Приступаем к четвёртому пункту:
4. Выполнить это самое умножение и решить новое уравнение, уже безо всяких дробей. Получить решения (кандидаты в ответ).
Итак, умножаем:
И снова, чтобы не заплутать в трёх соснах, используем скобки:
Производим умножение. Большие скобки раскрываем, малые — не трогаем!
Сокращаем все дроби:
2 + x + (x-4)(2-x) = 2x
Всё. От дробей избавились. Как обычно, раскрываем оставшиеся скобки, приводим подобные и собираем все члены слева:
2 + x + 2x — x2 — 8 + 4x — 2x = 0
–х2 + 5x — 6 = 0
Помним, что минус впереди крайне неудобен, посему умножаем всё на (-1):
x2 — 5x + 6 = 0
Решаем простенькое квадратное уравнение и получаем корни:
x1 = 2
x2 = 3
Нашли кандидатов в ответ. Самое время вспомнить про ОДЗ. Про самый последний пункт:
5. Вспомнить про ОДЗ и состыковать найденные решения с условиями ОДЗ. Те решения, которые не входят в ОДЗ, безжалостно выбросить. Записать окончательный ответ.
Итак, наши решения:
x1 = 2
x2 = 3
Условия ОДЗ:
Сопоставляем и… Оп-па! А ведь двойка — запретное значение! Нас не проведёшь! ОДЗ — штука жёсткая. В отвал двойку!
Окончательный ответ: х = 3.
Именно так и решаются все дробные уравнения. В пять шагов. Зачем же я распинался, рассказывая целый урок про избавление от дробей, затем ещё пол-урока про ОДЗ? Мог бы сразу дать общий алгоритм и соответствующий пример!
На этот вопрос отвечу так. Если бы вы знали, сколько народу спотыкается на применении тупо заученного алгоритма! А уж при малейшем отклонении от шаблона простой пример становится вообще нерешаемым… Если понимать смысл, то шанс решить есть всегда. Понимание всегда побеждает механическую память.)
Вот, собственно, и всё, что я хотел сказать. И напоследок очередная порция примеров для самостоятельного решения.
Решить уравнения:
Ответы (по традиции, в беспорядке):
x = 3
x = -1
x = 4
x1 = -1; x2 = -9
x = -2
Всё совпало! Поздравляю! У вас иксов побольше будет? Хм… Про ОДЗ не забыли, случаем? Кое-какие корни выбрасывать надо! ОДЗ учли, а всё равно не выходит? Да-а-а… Проблемка. Такие уравнения надо уметь решать: слишком уж они популярны во многих темах математики. Особенно — в текстовых задачках! Но не отчаивайтесь!
Перечитайте этот и предыдущий уроки ещё раз и прогуляйтесь по смежным темам: разложение на множители, квадратные уравнения, линейные уравнения и (особенно!) тождественные преобразования уравнений. И всё получится. Я в вас верю!)
Методы решения уравнений, содержащих дроби
В этой статье я расскажу методики решения рациональных уравнений, содержащих дроби.
Что такое рациональное уравнение? Это уравнение, которое содержит в себе такие действия как сложение, вычитание, умножение, деление, возведение в степень с целым показателем. Извлечение корня – это недопустимое действие для рационального уравнения. Корень делает уравнение иррациональным, как, собственно, и дробный показатель степени.
В свою очередь рациональные уравнения делятся на два вида: целые рациональные и дробные рациональные.
К целым рациональным уравнениям относятся линейные и квадратные уравнения. Рассмотрим пример:
Это уравнение является…попробуешь угадать?…линейным. Его можно запросто увидеть, если деление на 2 и на 6 заменить умножением на 1/2 и 1/6 соответственно. Но оно все-таки содержит в себе знаменатель, поэтому мы его и рассматриваем в данной статье.
К дробным рациональным уравнениям относятся уравнения, которые содержат икс в знаменателе. Например, это уравнение дробное рациональное:
Методика решения приведенных примеров, в принципе, одинакова. Разница состоит в том, что в дробных рациональных уравнениях знаменатель не должен равняться нулю, поэтому при их решении оговаривают ограничения для икса. По-научному говорят, что находят область допустимых значений (ОДЗ).
Но давайте начнем с простого.
Целое рациональное уравнение.
Сначала решим целое рациональное уравнение.
Если ты в уравнении видишь дроби, то надо от них избавится, ведь уравнение без дробей решается намного приятнее)
В этом уравнении находим общий знаменатель. Он равен 6. Это значит, что обе части уравнения надо умножить на 6 (одинокий икс тоже).
Обычно этот шаг пропускают и переходят к следующему, но я его все равно распишу:
Числители и знаменатели сокращаются и получается элементарное уравнение:
Приводим подобные слагаемые:
Чтобы найди икс надо -10 разделить на 10 (произведение делим на известный множитель). Получаем ответ:
Готово!
Дробное рациональное уравнение.
Теперь решим дробное рациональное уравнение.
Я уже писала о том, что в дробных рациональных уравнениях знаменатели не должны равняться нулю. Знаменатель второй дроби нас устраивает, ведь 3 не равно 0) А вот знаменатель первой дроби требует от нас, чтобы мы нашли ОДЗ.
А дальше по накатанной: надо обе части уравнения умножить на общий знаменатель. Общим знаменателем будет выражение 3(х + 9).
Снова распишу подробно, но если ты шаришь, то следующую запись можешь не писать.
В первой дроби сокращаем (х + 9), а во второй – тройки. Получаем такое уравнение:
Здесь можно раскрыть скобки, потом перенести известные в одну сторону, а неизвестные – в другую… Но делать я этого не стану, а просто обе части уравнения разделю на -2. А еще поменяю местами левую и правую части уравнения, чтобы привести его к привычному виду.
Чтобы найти неизвестное слагаемое надо из суммы вычесть известное слагаемое, т.е. из -9 вычесть 9.
Ответ таков:
Сравниваем с ОДЗ… Всё отлично. Корень уравнения подходит.
Альтернативный метод решения уравнения с дробями.
Но нельзя пройти мимо другого метода решения данного уравнения: с помощью пропорции. Помнишь, как она раскрывается? Правильно, крест-накрест. И не надо искать общий знаменатель)
Перемножаем….и о чудо! Получаем уравнение, которое мы уже решали!
Дальнейшее решение расписывать не буду, оно есть выше.
Такой способ решения уравнений хорош, когда в уравнении имеются две дроби.
В завершении решу еще одно уравнение предложенными выше способами.
Только ты решаешь какой способ выбрать.
Твой персональный препод Васильева Анна)
Наталья Игоревна Восковская
Эксперт по предмету «Математика»
Задать вопрос автору статьи
Уравнения, содержащие переменную в знаменателе можно решать двумя способами:
-
Приведя дроби к общему знаменателю
-
Используя основное свойство пропорции
Вне зависимости от выбранного способа необходимо после нахождения корней уравнения выбрать из найденных допустимые значения, т.е те, которые не обращают знаменатель в $0$.
1 способ. Приведение дробей к общему знаменателю.
Пример 1
$frac{2x+3}{2x-1}=frac{x-5}{x+3}$
Решение:
1.Перенесем дробь из правой части уравнения в левую
[frac{2x+3}{2x-1}-frac{x-5}{x+3}=0]
Для того чтобы правильно это сделать, вспомним, что при перенесении элементов в другую часть уравнения меняется знак перед выражениями на противоположный. Значит, если в правой части перед дробью был знак «+», то в левой перед ней будет знак «-».Тогда в левой части получим разность дробей.
2.Теперь отметим что у дробей разные знаменатели, значит для того, чтобы составить разность необходимо привести дроби к общему знаменателю. Общим знаменателем будет произведение многочленов, стоящих в знаменателях исходных дробей: $(2x-1)(x+3)$
Для того чтобы получить тождественное выражение, числитель и знаменатель первой дроби необходимо умножить на многочлен $(x+3)$, а второй на многочлен $(2x-1)$.
[frac{(2x+3)(х+3)}{(2x-1)(х+3)}-frac{(x-5)(2х-1)}{(x+3)(2х-1)}=0]
Выполним преобразование в числителе первой дроби-произведем умножение многочленов. Вспомним , что для этого необходимо умножить первое слагаемое первого многочлена умножить на каждое слагаемое второго многочлена, затем второе слагаемое первого многочлена умножить на каждое слагаемое второго многочлена и результаты сложить
[left(2x+3right)left(х+3right)=2хcdot х+2хcdot 3+3cdot х+3cdot 3={2х}^2+6х+3х+9]
Приведем подобные слагаемые в полученном выражении
[left(2x+3right)left(х+3right)=2хcdot х+2хcdot 3+3cdot х+3cdot 3={2х}^2+6х+3х+9=] [{=2х}^2+9х+9]
Выполним аналогично преобразование в числителе второй дроби-произведем умножение многочленов
$left(x-5right)left(2х-1right)=хcdot 2х-хcdot 1-5cdot 2х+5cdot 1={2х}^2-х-10х+5={2х}^2-11х+5$
Тогда уравнение примет вид:
[frac{{2х}^2+9х+9}{(2x-1)(х+3)}-frac{{2х}^2-11х+5}{(x+3)(2х-1)}=0]
Теперь дроби с одинаковым знаменателем, значит можно производить вычитание. Вспомним, что при вычитании дробей с одинаковым знаменателем из числителя первой дроби необходимо вычесть числитель второй дроби, знаменатель оставить прежним
[frac{{2х}^2+9х+9-({2х}^2-11х+5)}{(2x-1)(х+3)}=0]
Преобразуем выражение в числителе. Для того, чтобы раскрыть скобки, перед которыми стоит знак «-» надо изменить все знаки перед слагаемыми , стоящими в скобках на противоположные
[{2х}^2+9х+9-left({2х}^2-11х+5right)={2х}^2+9х+9-{2х}^2+11х-5]
Приведем подобные слагаемые
${2х}^2+9х+9-left({2х}^2-11х+5right)={2х}^2+9х+9-{2х}^2+11х-5=20х+4$
Тогда дробь примет вид
[frac{{rm 20х+4}}{(2x-1)(х+3)}=0]
3.Дробь равна $0$, если ее числитель равен 0. Поэтому мы приравниваем числитель дроби к $0$.
[{rm 20х+4=0}]
Решим линейное уравнение:
$20x=-4$
$X=-0,2$
4.Проведем выборку корней. Это значит, что необходимо проверить, не обращаются ли знаменатели исходных дробей в $0$ при найденных корнях.
Поставим условие, что знаменатели не равны $0$
[2x-1ne 0 x+3ne 0]
х$ne 0,5$ х$ne -3$
Значит допустимы все значения переменных, кроме $-3$ и $0,5$.
Найденный нами корень является допустимым значением, значит его смело можно считать корнем уравнения. Если бы найденный корень был бы не допустимым значением, то такой корень был бы посторонним и ,конечно, не был бы включен в ответ.
Ответ:$-0,2.$
Сдай на права пока
учишься в ВУЗе
Вся теория в удобном приложении. Выбери инструктора и начни заниматься!
Получить скидку 3 000 ₽
Теперь можем составить алгоритм решения уравнения, которое содержит переменную в знаменателе
Алгоритм решения уравнения, которое содержит переменную в знаменателе
-
Перенести все элементы из правой части уравнения в левую. Для получения тождественного уравнения необходимо изменить все знаки, стоящие перед выражениями в правой части на противоположные
-
Если в левой части мы получим выражение с разными знаменателями, то приводим их к общему, используя основное свойство дроби. Выполнить преобразования, используя тождественные преобразования и получить итоговую дробь равную $0$.
-
Приравнять числитель к $0$ и найти корни получившегося уравнения.
-
Проведем выборку корней, т.е. найти допустимые значения переменных, которые не обращают знаменатель в $0$.
2 способ. Используем основное свойство пропорции
Основным свойством пропорции является то, что произведение крайних членов пропорции равно произведению средних членов.
Пример 2
Используем данное свойство для решения этого задания
[frac{2x+3}{2x-1}=frac{x-5}{x+3}]
1.Найдем и приравняем произведение крайних и средних членов пропорции.
$left(2x+3right)cdot( x+3)=left(x-5right)cdot(2x-1)$
[{2х}^2+3х+6х+9={2х}^2-10х-х+5]
$9x+11x=5-9$
$20x=-4$
$X=-0,2$
Решив полученное уравнение, мы найдем корни исходного
2.Найдем допустимые значения переменной .
Из предыдущего решения (1 способ) мы уже нашли , что допустимы любые значения, кроме $-3$ и $0,5$.
Тогда, установив что найденный корень является допустимым значением, мы выяснили, что $-0,2$ будет являться корнем.
Ответ:$-0,2.$
Находи статьи и создавай свой список литературы по ГОСТу
Поиск по теме