Движение по наклонной плоскости как найти угол

Проецирование сил. Движение по наклонной плоскости

Задачи по динамике.

I и II закон Ньютона.

Ввод и направление осей.

Неколлинеарные силы.

Проецирование сил на оси.

Решение систем уравнений.

Самые типовые задачи по динамике


Начнем с I и II законов Ньютона.

Откроем учебник физики и прочтем. I закон Ньютона: существуют такие инерциальные системы отсчета в которых… Закроем такой учебник, я тоже не понимаю. Ладно шучу, понимаю, но объясню проще.

I закон Ньютона: если тело стоит на месте либо движется равномерно (без ускорения), сумма действующих на него сил равна нулю.

Вывод: Если тело движется с постоянной скоростью или стоит на месте векторная сумма сил будет ноль.

II закон Ньютона: если тело движется равноускоренно или равнозамедленно (с ускорением), сумма сил, действующих на него, равна произведению массы на ускорение.

Вывод: Если тело двигается с изменяющейся скоростью, то векторная сумма сил, которые как-то влияют на это тело ( сила тяги, сила трения, сила сопротивления воздуха), равна массе этого тело умножить на ускорение.

При этом одно и то же тело чаще всего движется по-разному (равномерно или с ускорением) в разных осях. Рассмотрим именно такой пример.

Задача 1. Определите коэффициент трения шин автомобиля массой 600 кг, если сила тяги двигателя 4500 Н вызывает ускорение 5 м/с².

Обязательно в таких задачах делать рисунок, и показывать силы, которые дествуют на машину:

На Ось Х: движение с ускорением 

На Ось Y: нет движения (здесь координата, как была ноль так и останется, машина не поднимает в горы или спускается вниз)

Те силы, направление которых совпадает с направлением осей, будут с плюсом, в противоположном случае — с минусом.

По оси X: сила тяги направлена вправо, так же как и ось X, ускорение так же направлено вправо.

Fтр = μN, где N  сила реакции опоры. На оси Y:  N = mg, тогда в данной задаче Fтр = μmg.

Получаем, что: 

Коэффициент трения  безразмерная величина. Следовательно, единиц измерения нет.

Ответ: 0,25

Задача 2. Груз массой 5кг, привязанный к невесомой нерастяжимой нити, поднимают вверх с ускорением 3м/с². Определите силу натяжения нити.

Сделаем рисунок, покажем силы, которые дествуют на груз

T – сила натяжения нити

На ось X: нет сил

Разберемся с направлением сил на ось Y:

Выразим T (силу натяжения) и подставим числительные значения:

Ответ: 65 Н

Самое главное не запутаться с направлением сил (по оси или против), все остальное сделает калькулятор или всеми любимый столбик.

Далеко не всегда все силы, действующие на тело, направлены вдоль осей.

Простой пример: мальчик тянет санки

Если мы так же построим оси X и Y, то сила натяжения (тяги) не будет лежать ни на одной из осей. 

Чтобы спроецировать силу тяги на оси, вспомним прямоугольный треугольник.

Отношение противолежащего катета к гипотенузе — это синус.

Отношение прилежащего катета к гипотенузе — это косинус.

Сила тяги на ось Y — отрезок (вектор) BC.

Сила тяги на ось X — отрезок (вектор) AC.

Если это непонятно, посмотрите задачу №4.

Чем длинее будет верека и, соответсвенно, меньше угол α, тем проще будет тянуть санки. Идеальный вариант, когда веревка параллельна земле, ведь сила, которая действуют на ось X— это Fнcosα. При каком угле косинус максимален? Чем больше будет этот катет, тем сильнее горизонтальная сила.

Задача 3. Брусок подвешен на двух нитях. Сила натяжения первой составляет 34 Н, второй  21Н, θ1 = 45°, θ2 = 60°. Найдите массу бруска.

Введем оси и спроецируем силы:

Получаем два прямоугольных треугольника. Гипотенузы AB и KL — силы натяжения. LM и BC — проекции на ось X, AC и KM — на ось Y.

Ответ: 4,22 кг

Задача 4. Брусок массой 5 кг (масса в этой задаче не нужна, но, чтобы в уравнениях все было известно, возьмем конкретное значение) соскальзывает с плоскости, которая наклонена под углом 45°, с коэффициентом трения μ = 0,1. Найдите ускорение движения бруска? 

Когда же есть наклонная плоскость, оси (X и Y) лучше всего направить по направлению движения тела. Некоторые силы в данном случае ( здесь это mg) не будут лежать ни на одной из осей. Эту силу нужно спроецировать, чтобы она имела такое же направление, как и взятые оси.
Всегда ΔABC подобен ΔKOM в таких задачах (по прямому углу и углу наклона плоскости).

Рассмотрим поподробнее ΔKOM: 

Получим, что KO лежит на оси Y, и проекция mg на ось Y будет с косинусом. А вектор MK коллинеарен (параллелен) оси X, проекция mg на ось X будет с синусом, и вектор МК направлен против оси X (то есть будет с минусом).

Не забываем, что, если направления оси и силы не совпадают, ее нужно взять с минусом!

Из оси Y выражаем N и подставляем в уравнение оси X, находим ускорение:

Ответ: 6,36 м/с²

Как видно, массу в числителе можно вынести за скобки и сократить со знаменаталем. Тогда знать ее не обязательно, получить ответ реально и без нее.
Да-да, 
в идеальных условиях (когда нет силы сопротивления воздуха и т.п.), что перо, что гиря скатятся (упадут) за одно и тоже время. 

Задача 5. Автобус съезжает с горки под уклоном 60° с ускорением 8 м/с²  и с силой тяги 8 кН. Коэффициент трения шин об асфальт равен 0,4. Найдите массу автобуса.

Сделаем рисунок с силами:

Введем оси X и Y. Спроецируем mg на оси:

Запишем второй закон Ньютона на X и Y:

Ответ: 6000 кг

Задача 6. Поезд движется по закруглению радиуса 800 м со скоростью 72 км/ч. Определить, на сколько внешний рельс должен быть выше внутреннего. Расстояние между рельсами 1,5 м.

Самое сложное – понять, какие силы куда действуют, и как угол влияет на них.

Вспомни, когда едешь по кругу на машине или в автобусе, куда тебя выталкивает? Для этого и нужен наклон, чтобы поезд не упал набок!

Угол α задает отношение разницы высоты рельсов к расстоянию между ними (если бы рельсы находились горизонтально)

Запишем какие силы действуют на оси:

Ускорение в данной задачи центростремительное!

Поделим одно уравнение на другое:

Тангенс – это отношение противолежащего катета к прилежащему:

Ответ: 7,5 см

Как мы выяснили, решение подобных задач сводится к расстановке направлений сил, проецированию их на оси и к решению систем уравнений, почти сущий пустяк.

В качестве закрепления материала решите несколько похожих задач с подсказками и ответами. 

Будь в курсе новых статеек, видео и легкого технического юмора.

Динамика и кинематика – это два важных раздела физики, которые изучают законы перемещения объектов в пространстве. Первый рассматривает действующие на тело силы, второй же занимается непосредственно характеристиками динамического процесса, не вникая в причины того, что его вызвало. Знание этих разделов физики необходимо применять для успешного решения задач на движение по наклонной плоскости. Рассмотрим этот вопрос в статье.

Основная формула динамики

Сила трения скольжения

Конечно же, речь идет о втором законе, который постулировал Исаак Ньютон в XVII веке, изучая механическое движение твердых тел. Запишем его в математической форме:

F¯ = m*a¯

Действие внешней силы F¯ вызывает появление линейного ускорения a¯ у тела с массой m. Обе векторные величины (F¯ и a¯) направлены в одну и ту же сторону. Сила в формуле является результатом действия на тело всех сил, которые присутствуют в системе.

В случае движения вращения второй закон Ньютона записывается в виде:

M = I*α

Здесь M и I – моменты силы и инерции, соответственно, α – угловое ускорение.

Формулы кинематики

Решение задач на движение по наклонной плоскости требует знания не только главной формулы динамики, но и соответствующих выражений кинематики. Они связывают в равенства ускорение, скорость и пройденный путь. Для равноускоренного (равнозамедленного) прямолинейного движения применяются следующие формулы:

a = Δv/Δt;

v = v0 ± a*t;

S = v0*t ± a*t2/2

Здесь v0 – значение начальной скорости тела, S – пройденный за время t путь вдоль прямолинейной траектории. Знак “+” следует поставить, если скорость тела увеличивается с течением времени. В противном случае (равнозамедленное движение) следует использовать в формулах знак “-“. Это важный момент.

Если движение осуществляется по круговой траектории (вращение вокруг оси), тогда следует использовать такие формулы:

α = Δω/Δt;

ω = ω0 ± α*t;

θ = ω0*t ± α*t2/2

Здесь α и ω – угловые ускорение и скорость, соответственно, θ – угол поворота вращающегося тела за время t.

Линейные и угловые характеристики друг с другом связаны формулами:

a = α*r;

v = ω*r

Здесь r – радиус вращения.

Движение по наклонной плоскости: силы

Под этим движением понимают перемещение некоторого объекта вдоль плоской поверхности, которая наклонена под определенным углом к горизонту. Примерами может служить соскальзывание бруска по доске или качение цилиндра по металлическому наклоненному листу.

Для определения характеристик рассматриваемого типа движения необходимо в первую очередь найти все силы, которые действуют на тело (брусок, цилиндр). Они могут быть разными. В общем случае это могут быть следующие силы:

  • тяжести;
  • реакции опоры;
  • трения качения и/или скольжения;
  • натяжение нити;
  • сила внешней тяги.

Первые три из них присутствуют всегда. Существование последних двух зависит от конкретной системы физических тел.

Чтобы решать задачи на перемещение по плоскости наклонной необходимо знать не только модули сил, но и их направления действия. В случае, если тело по плоскости скатывается, сила трения неизвестна. Однако она определяется из соответствующей системы уравнений движения.

время движения по наклонной плоскости

Методика решения

Решения задач данного типа начинается с определения сил и их направлений действия. Для этого в первую очередь рассматривают силу тяжести. Ее следует разложить на два составляющих вектора. Один из них должен быть направлен вдоль поверхности наклонной плоскости, а второй должен быть ей перпендикулярен. Первая составляющая силы тяжести, в случае движения тела вниз, обеспечивает его линейное ускорение. Это происходит в любом случае. Вторая равна силе реакции опоры. Все эти показатели могут иметь различные параметры.

Скольжение по наклонной плоскости

Сила трения при движении по наклонной плоскости всегда направлена против перемещения тела. Если речь идет о скольжении, то вычисления довольно просты. Для этого следует использовать формулу:

Ff = µ*N

Где N – реакция опоры, µ – коэффициент трения, не имеющий размерности.

Если в системе присутствуют только указанные три силы, тогда их результирующая вдоль наклонной плоскости будет равна:

F = m*g*sin(φ) – µ*m*g*cos(φ) = m*g*(sin(φ) – µ*cos(φ)) = m*a

Здесь φ – это угол наклона плоскости к горизонту.

Зная силу F, можно по закону Ньютона определить линейное ускорение a. Последнее, в свою очередь, используется для определения скорости движения по наклонной плоскости через известный промежуток времени и пройденного телом расстояния. Если вникнуть, то можно понять, что все не так уж и сложно.

В случае, когда тело скатывается по наклонной плоскости без проскальзывания, суммарная сила F будет равна:

F = m*g*sin(φ) – Fr = m*a

Где Fr – сила трения качения. Она неизвестна. Когда тело катится, то сила тяжести не создает момента, поскольку приложена к оси вращения. В свою очередь, Fr создает следующий момент:

M = Fr*r = I*α

Учитывая, что мы имеем два уравнения и две неизвестных (α и a связаны друг с другом), можно легко решить эту систему, а значит, и задачу.

Теперь рассмотрим, как использовать описанную методику при решении конкретных задач.

Задача на движение бруска по наклонной плоскости

Брусок наклонной плоскости

Деревянный брусок находится в верхней части наклонной плоскости. Известно, что она имеет длину 1 метр и располагается под углом 45o. Необходимо вычислить, за какое время брусок опустится по этой плоскости в результате скольжения. Коэффициент трения принять равным 0,4.

Записываем закон Ньютона для данной физической системы и вычисляем значение линейного ускорения:

m*g*(sin(φ) – µ*cos(φ)) = m*a =>

a = g*(sin(φ) – µ*cos(φ)) ≈ 4,162 м/с2

Поскольку нам известно расстояние, которое должен пройти брусок, то можно записать следующую формулу для пути при равноускоренном движении без начальной скорости:

S = a*t2/2

Откуда следует выразить время, и подставить известные значения:

t = √(2*S/a) = √(2*1/4,162) ≈ 0,7 с

Таким образом, время движения по наклонной плоскости бруска составит меньше секунды. Заметим, что полученный результат от массы тела не зависит.

Задача со скатывающимся по плоскости цилиндром

Скатывание цилиндра

Цилиндр радиусом 20 см и массой 1 кг помещен на наклонную под углом 30o плоскость. Следует вычислить его максимальную линейную скорость, которую он наберет при скатывании с плоскости, если ее длина составляет 1,5 метра.

Запишем соответствующие уравнения:

m*g*sin(φ) – Fr = m*a;

Fr*r = I*α = I*a/r

Момент инерции I цилиндра вычисляется по формуле:

I = 1/2*m*r2

Подставим это значение во вторую формулу, выразим из нее силу трения Fr и заменим полученным выражением ее в первом уравнении, имеем:

Fr*r = 1/2*m*r2*a/r = >

Fr = 1/2*m*a;

m*g*sin(φ) – 1/2*m*a = m*a =>

a = 2/3*g*sin(φ)

Мы получили, что линейное ускорение не зависит от радиуса и массы скатывающегося с плоскости тела.

Зная, что длина плоскости составляет 1,5 метра, найдем время движения тела:

S = a*t2/2 =>

t = √(2*S/a)

Тогда максимальная скорость движения по наклонной плоскости цилиндра будет равна:

v = a*t = a*√(2*S/a) = √(2*S*a) = √(4/3*S*g*sin(φ))

Подставляем все известные из условия задачи величины в конечную формулу, получаем ответ: v ≈ 3,132 м/c.

В этой главе…

  • Постигаем гравитацию
  • Изучаем влияние наклона плоскости
  • Учитываем силы трения
  • Измеряем дальность полета под действием силы тяжести

Сила гравитационного притяжения — вот основная тема этой главы. В главе 5 было показано, что для ее преодоления требуется применять силу. В этой главе будет представлены способы влияния гравитационного притяжения и трения на движение объектов по наклонным плоскостям. Кроме того, будет показано, как гравитация влияет на траекторию полета объекта.

Содержание

  • Разбираемся с гравитацией
  • Движемся по наклонной плоскости
    • Вычисляем углы
      • Ищем компоненту вектора силы Fg вдоль наклонной плоскости
      • Вычисляем скорость вдоль наклонной плоскости
    • Разбираемся с ускорением
  • Преодолеваем трение
    • Вычисляем силу трения и нормальную силу
    • Разбираемся с коэффициентом трения
    • Знакомимся со статическим и кинетическим трением
      • Изучаем статическое трение
      • Поддерживаем движение вопреки трению скольжения
    • Тянем груз в гору и боремся с трением
      • Вычисляем компоненту силы тяжести
      • Определяем силу трения
      • Вычисляем путь скольжения холодильника до полной остановки
        • Вычисляем ускорение скольжения
        • Вычисляем путь скольжения по полу
  • Как гравитация влияет на свободное падение объектов
    • Стреляем вверх: максимальная высота
    • Время подъема ядра
    • Общее время полета
    • Стреляем под углом
      • Разбиваем движение ядра на компоненты
      • Определяем максимальную дальность полета ядра

Разбираемся с гравитацией

На поверхности Земли сила гравитационного притяжения ​( mathbf{F_g} )​ (или сила тяжести) постоянна и равна ​( mmathbf{g} )​, где ​( m )​ — это масса объекта, a ​( mathbf{g} )​ — ускорение свободного падения под действием силы тяжести, равное 9,8 м/с2.

Ускорение — это вектор, а значит, он имеет величину, направление и точку приложения (подробнее об этом см. главу 4). Уравнение ( mathbf{F_g}=mmathbf{g} ) интересно тем, что ускорение свободного падения объекта ​( g )​ не зависит от массы объекта.

Поскольку ускорение свободного падения не зависит от массы объекта, то более тяжелый объект падает нисколько не быстрее, чем более легкий объект. Сила тяжести сообщает свободно падающим телам одинаковое направленное вниз ускорение ( mathbf{a} ) (на поверхности Земли равное ( mathbf{g} )), независимо от их массы.

Сказанное выше относится к объектам вблизи поверхности Земли, а в главе 7 рассматриваются другие ситуации вдали от Земли (например, на орбите Луны), где сила тяжести и ускорение свободного падения имеют другие значения. Чем дальше вы находитесь от центра Земли, тем меньше сила тяжести и ускорение свободного падения. В примерах этой главы ускорение свободного падения направлено вниз. Но это не значит, что оно влияет только на движение предметов вертикально вниз. Здесь рассматриваются также примеры движения объектов под углом к вертикали.

Движемся по наклонной плоскости

В курсе физики часто упоминаются наклонные плоскости и рассматривается движение объектов по ним. Взгляните на рис. 6.1. На нем показана тележка, которая скатывается по наклонной плоскости. Тележка движется не строго вертикально, а вдоль плоскости, наклоненной под углом ​( theta )​ к горизонтали.

Допустим, что угол ( theta ) = 30°, а длина наклонной плоскости равна 5 метрам. До какой скорости разгонится тележка в конце наклонной плоскости? Сила тяжести сообщит тележке ускорение, но учтите, что вдоль наклонной плоскости ускорение будет отличаться от ускорения свободного падения. Дело в том, что разгон вдоль наклонной плоскости будет выполнять только компонента силы тяжести вдоль этой наклонной плоскости.

Чему равна компонента силы тяжести, действующей вдоль наклонной плоскости, если на тележку действует направленная вертикально сила тяжести ( mathbf{F_g} )? Взгляните на рис. 6.2, на котором показаны упомянутые выше угол ( theta ) и вектор силы ( mathbf{F_g} ) (подробнее о векторах см. главу 4). Для определения компоненты силы тяжести, действующей вдоль наклонной плоскости, нужно определить угол между вектором силы ( mathbf{F_g} ) и наклонной плоскостью. Для этого потребуются элементарные сведения из геометрии (подробности см. в главе 2), а именно то, что сумма углов треугольника равна 180°. Угол между вектором силы ( mathbf{F_g} ) и основанием наклонной плоскости равен 90°, а угол между наклонной плоскостью и ее основанием равен ( theta ). Поэтому, глядя на рис. 6.2 , можно легко определить угол между вектором силы ( mathbf{F_g} ) и наклонной плоскостью: 180°-90°-( theta ) или 90°-( theta ).

Вычисляем углы

Преподаватели физики используют особый способ вычисления углов между векторами и наклонными плоскостями. Однако читателям книги можно раскрыть этот “секрет” определения угла ( theta ). Для начала обратите внимание на то, что если ( theta ) стремится к 0°, то угол между вектором силы ( mathbf{F_g} ) и наклонной плоскостью стремится к 90°. И наоборот, если ( theta ) стремится к 90°, то угол между вектором силы ( mathbf{F_g} ) и наклонной плоскостью стремится к 0°. На основании этого простого наблюдения можно предположить, что угол между вектором силы ( mathbf{F_g} ) и наклонной плоскостью равняется 90°-( theta ). Как видите, для определения взаимосвязи между углами бывает полезно попробовать поменять значения некоторых углов от 0° до 90°.

Ищем компоненту вектора силы Fg вдоль наклонной плоскости

Итак, зададимся вопросом: чему равна компонента вектора силы ( mathbf{F_g} ) вдоль наклонной плоскости? Теперь мы знаем, что угол между вектором силы ( mathbf{F_g} ) и наклонной плоскостью равняется 90°-​( theta )​. Значит, компонента вектора силы вдоль наклонной плоскости ( F_{g,накл} ) равна:

Если вы добросовестно учили тригонометрию, то вам наверняка должно быть известно (а если нет, то обратитесь к главе 2), что:

(Часто это знать совсем не обязательно, и может сгодиться предыдущее уравнение.)

Следовательно:

Полученное выражение можно легко проверить следующим образом. Когда ​( theta )​ стремится к 0°, то значение компоненты силы вдоль наклонной плоскости ( F_{g,накл} ) стремится к 0, поскольку наклонная плоскость стремится к горизонтальному положению. А когда ​( theta )​ стремится к 90°, то значение компоненты силы вдоль наклонной плоскости ( F_{g,накл} ) стремится к ​( F_g )​ поскольку наклонная плоскость стремится к вертикальному положению. Итак, если вдоль наклонной плоскости на тележку с массой 800 кг действует сила ​( F_gsintheta )​, то каким будет ускорение тележки? Это легко определить по известной формуле:

Следовательно:

Задача упрощается, если вспомнить, что ​( F_g=mg )​ и тогда:

Итак, теперь нам известно, что ускорение тележки вдоль наклонной плоскости равно ​( a=gsintheta )​. Это соотношение справедливо для любого объекта, ускоряющегося под действием силы тяжести, если не учитывать силы трения.

Вычисляем скорость вдоль наклонной плоскости

Логично было бы поинтересоваться: а какова скорость тележки в конце наклонной плоскости? Для этого нам потребуется следующее уравнение, которое было выведено в главе 3:

Поскольку начальная скорость ​( v_0 )​ = 0, а длина наклонной плоскости ​( s )​ = 5 м, то получим:

Итак, скорость тележки в конце наклонной плоскости ( v_1 ) = 7 метров в секунду. Хотя это не такая уж и большая скорость для автомобиля, но все же не рекомендуется проводить такие эксперименты в домашних условиях. Имейте в виду, что на самом деле скорость будет несколько ниже, поскольку часть энергии расходуется на вращение колес, движение других частей автомобиля, трение и т.д.

Разбираемся с ускорением

Блиц-вопрос: а какую скорость в конце наклонной плоскости приобретет кубик льда при скольжении без трения? Ответ: он будет иметь такую же скорость, что и тележка в предыдущем примере, т.е. 7 м/с. Ускорение любого объекта, движущегося без трения вдоль наклонной плоскости под углом ​( theta )​, равно ​( gsintheta )​. Как видите, имеет значение не масса объекта, а компонента ускорения свободного падения вдоль наклонной плоскости. Если нам известно ускорение движения кубика льда и пройденное расстояние ​( s )​, то получим значение скорости по известной формуле:

Итак, масса не входит в формулу для определения конечной скорости.

Преодолеваем трение

Трудно представить себе повседневную жизнь без трения. Без трения автомобили не могли бы ездить, люди — ходить, а руки — брать любые предметы. Трение создает проблемы, но без него жизнь была бы просто невозможной.

Трение возникает из-за взаимодействия между поверхностными неровностями. Поверхность состоит из множества микроскопических выступов и впадин. При соединении двух поверхностей эти выступы одной поверхности и впадины другой поверхности сцепляются и препятствуют свободному проскальзыванию.

Допустим, что ваши сбережения хранятся в виде огромного золотого слитка, который показан на рис. 6.3, и некий злоумышленник задумал украсть его, но не может нести такой огромный слиток в руках, а может только тащить его волоком. Этот воришка стремится приложить силу к слитку, чтобы ускорить его и сбежать от преследующей его полиции. Однако благодаря силе трения вор не сможет развить большого ускорения.

Определим количественно влияние силы трения на движение объектов. Результирующая сила на слиток и создаваемое ею ускорение определяется как разность приложенной силы ​( F_п )​ и силы трения ​( F_{трение} )​ вдоль оси X:

Эта формула выглядит очень просто, но как определить силу трения? Как будет показано ниже, она зависит от нормальной силы.

Вычисляем силу трения и нормальную силу

Сила трения ( F_{трение} ) всегда противодействует приложенной силе, которая вызывает движение. Причем сила трения пропорциональна приложенной силе.

Как показано на рис. 6.3, слиток золота давит на горизонтальную поверхность с силой, равной весу слитка, ​( mg )​. А поверхность с той же силой действует на слиток. Эту силу называют нормальной силой (или силой нормального давления), ​( F_н )​.(Нормальной называется компонента силы со стороны поверхности, направленная по нормали к поверхности, т.е. перпендикулярно к поверхности.) Нормальная сила по величине не всегда совпадает с силой тяжести, поскольку нормальная сила всегда перпендикулярна поверхности, по которой движется объект. Иначе говоря, нормальная сила — это сила взаимодействия поверхностей разных объектов, и чем она больше, тем сильнее трение.

В примере на рис. 6.3 слиток скользит вдоль горизонтальной поверхности, поэтому нормальная сила равна весу объекта, т.е. ​( F_н=mg )​ Итак, у нас есть нормальная сила, которая равна силе давления слитка на горизонтальную поверхность. Для чего она нам нужна? Для определения силы трения.

Разбираемся с коэффициентом трения

Сила трения определяется характеристиками поверхностей соприкасающихся материалов. Как физики теоретически описывают их? Никак. У физиков есть множество общих уравнений, которые предсказывают общее поведение объектов, например ​( sum!F=ma )​ (см. главу 5). Однако у физиков нет полного теоретического понимания механизмов взаимодействия поверхностей материалов. Поэтому поверхностные характеристики материалов известны, в основном, из опыта.

А из опыта известно, что нормальная сила непосредственно связана с силой трения. Оказывается, что с большой точностью эти две силы пропорциональны друг другу и их можно связать с помощью константы ​( mu )​ следующим образом:

Согласно этому уравнению, чтобы определить силу трения, нужно умножить нормальную силу на некую постоянную величину, т.е. константу ​( mu )​. Такая константа называется коэффициентом трения, и именно она характеризует свойства сцепления шероховатостей данных поверхностей.

Величина коэффициента трения находится в диапазоне от 0 до 1. Значение 0 возможно только в идеализированном случае, когда трение отсутствует вообще. А значение 1 соответствует случаю, когда сила трения максимальна и равна нормальной силе. Это значит, что максимальная сила трения для автомобиля не может превышать его веса.

Обратите внимание, что уравнение ​( F_{трение}=mu F_н )​ не является соотношением между векторами, поскольку эти векторы направлены в разные стороны. Например, на рис. 6.3 они перпендикулярны друг другу. Действительно, нормальная сила ( mathbf{F_н} ) всегда перпендикулярна поверхности, а сила трения ​( mathbf{F_{трение}} )​ — параллельна. Эти направления определяются их природой: нормальная сила ( mathbf{F_н} ) определяет степень сжатия поверхностей, а сила трения ( mathbf{F_{трение}} ) — степень противодействия скольжению вдоль поверхностей.

Сила трения не зависит от площади соприкосновения двух поверхностей. Это значит, что слиток с той же массой, но вдвое длиннее и вдвое ниже исходного будет испытывать точно такую же силу трения при скольжении по поверхности. При этом увеличивается вдвое площадь соприкосновения, но уменьшается вдвое давление, т.е. величина силы, которая приходится на единицу площади.

Итак, мы получили предварительные сведения и готовы вычислить силу трения? Не так быстро. Оказывается, что коэффициент трения бывает двух типов.

Знакомимся со статическим и кинетическим трением

Два разных коэффициента трения соответствуют двум разным типам трения: статическому трению (или трению покоя) и кинетическому трению (или трению скольжения).

Дело в том, что эти типы трения соответствуют двум разным физическим процессам. Если две поверхности не движутся относительно друг друга, то на микроскопическом уровне они взаимодействуют более интенсивно, и этот случай называется трением покоя. А когда поверхности уже скользят относительно друг друга, то микроскопические неровности не успевают вступить в интенсивное взаимодействие, и этот случай называется трением скольжения. На практике это значит, что для каждого из этих двух типов трения используются свои коэффициенты трения: коэффициент трения покоя ​( mu_п )​ и коэффициент скольжения ( mu_с ).

Изучаем статическое трение

Трение покоя сильнее трения скольжения, т.е. коэффициент трения покоя ( mu_п ) больше коэффициента трения скольжения ( mu_с ). Это можно упрощенно объяснить следующим образом. В состоянии покоя соприкасающиеся поверхности интенсивно взаимодействуют на микроскопическом уровне, а при скольжении поверхности успевают вступить в интенсивное взаимодействие только на более крупном макроскопическом уровне.

Трение покоя возникает тогда, когда нужно привести в движение покоящийся объект. Именно такую силу трения нужно преодолеть для начала скольжения объекта.

Предположим, что в примере на рис. 6.3 коэффициент трения покоя между слитком и поверхностью равен 0,3, а масса слитка равна 1000 кг (очень приличный слиток). Какую силу должен приложить воришка, чтобы сдвинуть слиток? Из предыдущих разделов нам уже известно, что:

Поскольку поверхность горизонтальна, то нормальная сила направлена противоположно силе тяжести слитка и имеет ту же величину:

где ​( m )​ — масса слитка, a ​( g )​ — ускорение свободного падения, вызванное силой притяжения со стороны Земли. Подставляя численные значения, получим:

Итак, воришке потребуется приложить силу 2940 Н, чтобы сдвинуть с места неподвижный слиток. Довольно большая сила! А какая сила потребуется ему, чтобы поддерживать скольжение слитка? Для ответа на этот вопрос нужно рассмотреть трение скольжения.

Поддерживаем движение вопреки трению скольжения

Сила трения скольжения, возникающая из-за скольжения двух соприкасающихся поверхностей, не так велика, как сила трения покоя. Но это совсем не значит, что коэффициент трения скольжения можно легко вычислить теоретически, даже если нам известен коэффициент трения покоя. Оба коэффициента трения приходится определять из опыта.

Именно из опыта известно, что трение покоя больше трения скольжения. Представьте себе, что вы разгружаете неподвижный ящик на наклонной плоскости, но он вдруг начинает скользить вниз. Достаточно заблокировать его движение ногой и с большой вероятностью ящик останется в состоянии покоя, если аккуратно убрать ногу. Именно так, в состоянии покоя, проявляется трение покоя, а в процессе движения ящика — трение скольжения.

Пусть слиток на рис. 6.3 имеет массу 1000 кг, а коэффициент трения скольжения ​( mu_c )​ равен 0,18. Какую силу должен приложить воришка, чтобы сдвинуть с места неподвижный слиток? Для ответа на этот вопрос нужно воспользоваться следующей формулой:

Подставляя численные значения, получим:

Воришке потребуется приложить силу 1764 Н, чтобы поддерживать скольжение слитка. Не такая уж и маленькая сила, если, конечно, воришке не помогают его верные друзья. Однако это не так уж и легко, и полиция быстро сможет догнать этого воришку. Зная законы физики, полицейские вряд ли захотят прилагать лишние усилия: “Слиток-то мы нашли, а вот домой тащите его сами”.

Тянем груз в гору и боремся с трением

В предыдущих примерах со слитком описывалось трение на горизонтальной поверхности. А как определить силу сопротивления со стороны трения на наклонной плоскости?

Допустим, что, собираясь на рыбалку, вы решили захватить с собой холодильник массой 100 кг. Единственный способ погрузить его в багажник автомобиля — это втащить холодильник по наклонной плоскости, как показано на рис. 6.4. Пусть наклонная плоскость расположена под углом 30°, коэффициент трения покоя равен 0,2, а коэффициент трения скольжения — 0,15. Хорошая новость заключается в том, что вам помогают два друга, а плохая — в том, что каждый из вас способен приложить силу не более 350 Н.

Ваши друзья растеряны? “Не стоит беспокоиться, немного физики — и все будет в порядке”, — можете ответить им вы, доставая калькулятор. Итак, нам нужно вычислить минимальную силу, которую нужно приложить, чтобы втащить холодильник вверх по наклонной плоскости в багажник автомобиля вопреки силе трения и силе тяжести.

Вычисляем компоненту силы тяжести

Для этого нужно внимательно изучить схему на рис. 6.4. Сила тяжести действует на холодильник и направлена вертикально вниз. Сумма углов треугольника, образованного вектором силы тяжести, наклонной плоскостью и ее основанием, равна 180°. Угол между вектором силы тяжести и основанием наклонной плоскости равен 90°, а угол между наклонной плоскостью и ее основанием — ​( theta )​. Поэтому угол между наклонной плоскостью и вектором силы тяжести равен:

Компонента силы тяжести, действующая вдоль наклонной плоскости, равна:

Таким образом, минимальная сила, с которой нужно толкать холодильник вверх по наклонной плоскости, равна сумме силы трения, ​( F_{трение} )​, и этой компоненты ( F_{g,накл} ), т.е.:

Определяем силу трения

Следующий вопрос: чему равна сила трения, ( F_{трение} )? Какой коэффициент трения нужно использовать для ее определения: покоя или скольжения? Поскольку коэффициент трения покоя больше коэффициента трения скольжения, то для оценки минимально необходимой силы имеет смысл учесть коэффициент трения покоя. Ведь после того как холодильник удастся сдвинуть с места, для скольжения придется прикладывать меньшую силу. Итак, с учетом коэффициента трения покоя, получим для силы трения

Для определения этой силы трения нам потребуется вычислить нормальную силу, ( F_н ) (более подробно эта сила описывается выше в этой главе). Она равна компоненте силы тяжести, которая направлена перпендикулярно (т.е. по нормали, откуда и происходит ее название) к наклонной плоскости. Как мы уже выяснили, угол между наклонной плоскостью и вектором силы тяжести равен 90°-​( theta )​(рис. 6.5).

С помощью тригонометрических соотношений (см. главу 2) получим:

Чтобы проверить справедливость этого выражения, попробуйте устремить угол ​( theta )​ к нулю, при котором нормальная сила ​( F_н )​ становится равной ​( mg )​, что и следовало ожидать. Теперь получаем:

После подстановки численных значений получим:

Итак, три человека должны приложить минимально необходимую силу 660 Н, т.е. по 220 Н каждый, что меньше максимально возможной силы 350 Н. С радостным призывом “Приступим!” вы приступаете к работе, втаскиваете холодильник на самый верх наклонной плоскости. Допустим, что из-за несогласованности действий кто-то из вас перестал прикладывать силу. Как результат, холодильник после непродолжительной остановки неожиданно заскользил вниз, а после достижения основания продолжил движение по полу до полной остановки.

Вычисляем путь скольжения холодильника до полной остановки

Допустим, что наклонная плоскость и пол имеют одинаковые коэффициенты трения скольжения. Каким будет путь скольжения холодильника до полной остановки? Пусть сначала холодильник скользит из состояния покоя до основания наклонной плоскости длиной 3 м, как показано на рис. 6.6. Во время такого скольжения холодильник разгоняется и вполне может столкнуться с автомобилем на расстоянии 7,5 м. О, Боже! Неужели они столкнутся? Нужно немедленно достать калькулятор и приступить к расчетам.

Вычисляем ускорение скольжения

При скольжении вниз действующие на холодильник силы направлены иначе, чем при скольжении вверх. Теперь вы и ваши друзья уже не прилагают свои силы, а холодильник скользит только под действием компоненты силы тяжести, направленной вдоль наклонной плоскости. А ей противодействует лишь сила трения. Чему же равна результирующая сумма этих сил? Из предыдущих разделов уже известно, что компонента силы тяжести вдоль наклонной плоскости равна:

А нормальная сила равна:

Это значит, что сила трения скольжения равна:

Результирующая сила, которая действует на холодильник в направлении движения и определяет его ускорение, равна:

Обратите внимание на то, что сила трения, ​( F_{трение} )​, имеет отрицательный знак, т.е. она направлена противоположно компоненте силы тяжести вдоль наклонной плоскости, которая приводит в движение холодильник. После подстановки численных значений получим:

Поскольку масса холодильника равна 100 кг, то он скользит с ускорением 363 Н/100 кг = 3,63 м/с2 вдоль наклонной плоскости длиной 3 м. Для вычисления конечной скорости холодильника, ​( v )​, в конце наклонной плоскости нужно использовать следующую известную нам формулу:

После извлечения квадратного корня и подстановки численных значений получим:

Такой будет скорость холодильника в конце наклонной плоскости.

Вычисляем путь скольжения по полу

Как на основе данных, полученных в предыдущем разделе, определить путь скольжения холодильника по полу? Столкнется ли холодильник с автомобилем?

Итак, нам известно, что холодильник начинает движение по полу со скоростью 4,67 м/с. Вопрос: какое расстояние он пройдет до полной остановки? Теперь в горизонтальном направлении на него действует только сила трения, а компонента силы тяжести по горизонтали равна нулю. Поэтому холодильник постепенно замедляется и рано или поздно остановится. Но уцелеет ли при этом стоящий поодаль автомобиль? Как обычно, сначала вычисляем суммарную силу ​( F )​, действующую на холодильник в направлении движения и определяющую его ускорение. В данном случае она равна силе трения:

Поскольку холодильник движется вдоль горизонтальной поверхности, то нормальная сила ​( F_н )​ равна силе тяжести ( F_g ), действующей на холодильник:

т.е. суммарная сила равна:

После подстановки численных значений получим:

Именно такая сила сопротивления действует на холодильник и… терроризирует всю округу! Итак, насколько длинным будет тормозной путь холодильника? Подставим численные значения и получим:

Здесь отрицательный знак обозначает замедление холодильника (см. главу 2).

По формуле:

найдем тормозной путь холодильника:

Поскольку конечная скорость ​( v_1 )​, равна 0, то эта формула упрощается и принимает вид:

Вот это да! Холодильник проедет расстояние 7,4 м и остановится всего в 10 см от автомобиля, который находится на расстоянии 7,5 м от основания наклонной плоскости. Можно расслабиться и понаблюдать за вашими друзьями, которые охвачены паникой и с ужасом в глазах ожидают столкновения холодильника и автомобиля.

Как гравитация влияет на свободное падение объектов

В главе 7 сила гравитационного притяжения (или сила тяжести) описывается в космическом масштабе, а здесь она рассматривается только вблизи поверхности Земли. В физике часто встречаются задачи с учетом силы тяжести. Этот раздел посвящен тому, как сила тяжести влияет на свободное падение объектов, и его следует рассматривать, как переходный между материалом предыдущей главы и материалом главы 7.

Стреляем вверх: максимальная высота

Зная ускорение свободного падения и начальную скорость объекта, можно легко вычислить дальность его полета. Эти знания могут пригодиться при подготовке праздничных фейерверков!

Предположим невероятное: на день рождения друзья подарили вам пушку, способную разгонять ядро весом 10 кг до начальной скорости 860 м/с. С изумлением рассматривая ее, гости начали спорить: а на какую максимальную высоту эта пушка способна выстрелить? Поскольку вы уже владеете всеми необходимыми знаниями, то можете быстро дать ответ на этот вопрос.

Нам известна начальная скорость ядра, ​( v_0 )​, и ускорение свободного падения ​( g )​ под действием силы тяжести. Как определить максимальную высоту подъема ядра? В точке максимального подъема ядра его скорость будет равна нулю, а затем оно начнет обратное движение вниз. Следовательно, для вычисления максимальной высоты подъема ядра, ​( s )​, можно использовать следующую формулу, в которой конечная скорость ​( v_1 )​ равна нулю:

Отсюда получим:

Подставляя численные значения для начальной скорости ​( v_0 )​ = 860 м/с2, ускорения свободного падения под действием силы тяжести ​( g )​ = —9,8 м/с2 (минус обозначает направление ускорения, противоположное направлению перемещения), получим:

Ого! Ядро улетит на высоту 38 км. Совсем неплохо для пушки, подаренной на день рождения. Интересно, а сколько же времени придется его ждать обратно?

Время подъема ядра

Итак, сколько времени потребуется для того, чтобы ядро поднялось на максимальную высоту? В примере из главы 4, где мяч для игры в гольф падал с вершины обрыва, для вычисления дальности его полета использовалось следующее уравнение:

Однако это уравнение представляет собой всего один из многих возможных вариантов поиска ответа на заданный вопрос.

Нам известно, что в точке максимального подъема скорость ядра равна 0. Поэтому для определения времени полета до максимальной высоты можно использовать следующее уравнение:

Поскольку ​( v_1 )​ = 0 и ​( a )​ = ​( -g )​, то:

Иначе говоря, получим:

После подстановки численных значений получим:

Итак, ядру потребуется 88 с, чтобы достичь максимальной высоты. А каково общее время полета?

Общее время полета

Сколько времени потребуется ядру, чтобы достичь максимальной высоты 38 км и вернуться обратно к пушке, если на подъем ему потребовалось 88 с? Общее время полета вычислить очень просто, поскольку обратный путь вниз симметричен прямому пути вверх. Это значит, что скорость ядра в каждой точке обратного пути вниз равна по величине и имеет противоположное направление по сравнению с прямым путем вверх. Поэтому время падения равно времени подъема и общее время полета равно удвоенному времени подъема:

Итак, общее время полета равно 176 с, или 2 минуты и 56 секунд.

Стреляем под углом

В предыдущих разделах пушка стреляла вертикально вверх. Попробуем теперь поразить цель, стреляя ядром из пушки под углом, как показано на рис. 6.7.

Разбиваем движение ядра на компоненты

Как характеризовать движение ядра при стрельбе под углом? Поскольку любое движение всегда можно разбить на компоненты по осям X и Y, а в данном примере сила притяжения действует только вдоль оси Y, то задача упрощается. Разобьем начальную скорость на компоненты (подробнее об этом рассказывается в главе 4):

Эти компоненты независимы, а сила притяжения действует только в направлении оси Y. Это значит, что компонента ​( v_x )​ остается постоянной, а меняется только компонента ​( v_y )​:

Теперь легко определить координаты ядра в любой момент. Например, координата ядра по оси X выражается формулой:

Поскольку сила тяжести влияет на движение ядра по вертикали, то координата ядра по оси Y выражается формулой:

Из предыдущего раздела нам уже известно, что общее время полета ядра по вертикали равно:

Теперь, зная время, можно легко определить дальность полета ядра по оси X:

Итак, для вычисления дальности полета ядра по горизонтали нужно знать начальную скорость ядра, ​( v_0 )​, и угол, ​( theta )​, под которым сделан выстрел.

Определяем максимальную дальность полета ядра

При каком угле выстрела ( theta ) ядро улетит на максимальное расстояние по горизонтали? Из тригонометрии известно, что ​( 2sinthetacostheta=sin2theta )​.

Тогда:

и расстояние ​( s )​ будет максимальным при максимальном значении ​( sin2theta=1 )​, т.е. при ​( theta )​ = 45°.

В таком случае:

Совсем неплохо для пушки, подаренной на день рождения!

Глава 6. Запрягаемся в упряжку: наклонные плоскости и трение

2.9 (58.38%) 37 votes

Итак, постараюсь подробно описать ход моих
рассуждений по этому вопросу. На первом уроке
ставлю перед учащимися вопрос: как может тело
двигаться по наклонной плоскости? Вместе
отвечаем: скатываться равномерно, с ускорением;
покоиться на наклонной плоскости; удерживаться
на ней; съезжать под действием силы тяги
равномерно, с ускорением; заезжать под действием
силы тяги равномерно, с ускорением. На рисунках
на двух-трех примерах показываем, какие при этом
на тело действуют силы. Попутно ввожу понятие
скатывающей равнодействующей. Записываем
уравнение движения в векторной форме, затем в нем
заменяем сумму  скатывающей
равнодействующей  (обозначайте,
как вам нравится). Это делаем по двум причинам:
во-первых, нет необходимости проецировать
векторы сил на ось  и решать два уравнения; во-вторых,
правильно будет показано соотношение сил, исходя
из условия задачи.

Покажу на конкретных примерах. Пример 1: тело
под действием силы тяги съезжает равномерно
(Рисунок 1).

Ученики первым делом должны усвоить алгоритм
построения рисунка. Изображаем наклонную
плоскость, посередине нее – тело в виде
прямоугольника, через середину тела параллельно
наклонной плоскости проводим ось . Направление оси не
существенно, но в случае равноускоренного
движения лучше показать в сторону вектора , чтобы в
алгебраической форме в уравнении движения в
правой части перед  был знак «плюс». Далее строим силы.
Силу тяжести  проводим
вертикально вниз произвольной длины (требую
рисунки делать крупными, чтобы всем было все
понятно). Затем из точки приложения силы тяжести
– перпендикуляр к оси , вдоль которого пойдет сила реакции
опоры .
Параллельно этому перпендикуляру из конца
вектора   проводим
пунктирную линию до пересечения с осью . Из этой точки –
пунктирную линию, параллельную  до пересечения с
перпендикуляром – получаем вектор  правильной длины.
Таким образом, мы построили параллелограмм на
векторах  и , автоматически
указав правильную величину силы реакции опоры и
построив по всем правилам векторной геометрии
равнодействующую этих сил , которую я называю скатывающей
равнодействующей (диагональ, совпадающая с осью ). В этом месте,
воспользовавшись методом из учебника, на
отдельном рисунке показываю силу реакции опоры
произвольной длины: сначала короче, чем нужно, а
потом длиннее, чем нужно. Показываю
равнодействующую силы тяжести и силы реакции
опоры: в первом случае она направлена вниз под
углом к наклонной плоскости (Рисунок 2), во втором
случае – вверх под углом к наклонной плоскости
(Рисунок 3).

Делаем очень важный вывод: соотношение между
силой тяжести и силой реакции опоры должно быть
таким, чтобы тело под их действием (или под
действием скатывающей равнодействующей) в
отсутствие других сил двигалось вниз вдоль
наклонной плоскости. Далее я спрашиваю:
какие еще силы действуют на тело? Ребята
отвечают: сила тяги и сила трения. Я задаю
следующий вопрос: какую силу покажем сначала, а
какую потом? Добиваюсь правильного и
обоснованного ответа: сначала в этом случае надо
показать силу тяги, а затем силу трения, модуль
которой будет равен сумме модулей силы тяги и
скатывающей равнодействующей:  , т.к. по условию задачи тело
движется равномерно, следовательно,
равнодействующая всех сил, действующих на тело,
должна равняться нулю согласно первому закону
Ньютона. Для контроля задаю провокационный
вопрос: так сколько сил действует на тело? Ребята
должны ответить – четыре (не пять!): сила тяжести,
сила реакции опоры, сила тяги и сила трения.
Теперь записываем уравнение движения в
векторной форме согласно первому закону Ньютона:

Заменяем сумму векторов  скатывающей равнодействующей :

.

Получаем уравнение, в котором все векторы
параллельны оси .
Теперь запишем это уравнение через проекции
векторов на ось :

.

Эту запись в дальнейшем можно пропускать.
Заменим в уравнении проекции векторов на их
модули с учетом направлений:

.

Пример 2:  тело под действием силы тяги
заезжает на наклонную плоскость с ускорением
(Рисунок 4).

В этом примере ученики должны сказать, что
после построения силы тяжести, силы реакции
опоры и скатывающей равнодействующей следующей
надо показать силу трения, последним –  вектор
силы тяги, который должен быть больше суммы
векторов , т.к.
равнодействующая всех сил должна быть
направлена так же, как вектор ускорения  согласно второму
закону Ньютона. Уравнение движения тела должны
записать согласно второму закону Ньютона:

 

Если есть возможность на уроке рассмотреть
другие случаи, то не пренебрегаем этой
возможностью. Если нет, то даю это задание домой.
Кто-то может рассмотреть все оставшиеся случаи,
кто-то некоторые – право выбора учеников. На
следующем уроке проверяем, исправляем ошибки и
переходим к решению конкретных задач,
предварительно выразив из векторных
треугольников  и
:

,
.

Равенство (2) желательно проанализировать для
различных углов .
При  имеем: , как при движении
горизонтально под действием горизонтальной силы
тяги. С ростом угла  его косинус уменьшается,
следовательно, уменьшается и сила реакции опоры
и становится все меньше и меньше силы тяжести. 
При угле  она
равна нулю, т.е. тело не действует на опору и
опора, соответственно, «не реагирует».

Предвижу вопрос оппонентов: как применить эту
методику для случаев, когда сила тяги
горизонтальна или направлена под углом к
наклонной плоскости? Отвечу на конкретных
примерах.

а) Тело с ускорением затаскивают на наклонную
плоскость, прикладывая силу тяги горизонтально
(Рисунок 5).

Горизонтальную силу тяги  раскладываем на две
составляющие: вдоль оси  –  и
перпендикулярную оси  –  (операция,
обратная построению равнодействующей
перпендикулярных сил). Записываем уравнение
движения:

.

Заменяем  скатывающей
равнодействующей, а вместо  пишем :

Из векторных треугольников выражаем :  и : .

Под действием горизонтальной силы  тело не только
поднимается вверх по наклонной плоскости, но еще
и дополнительно прижимается к ней. Поэтому
возникает дополнительная сила давления, равная
модулю вектора  и,
согласно третьему закону Ньютона,
дополнительная сила реакции опоры : . Тогда сила трения будет: .

Уравнение движения примет вид:

 

Вот мы полностью расшифровали уравнение
движения. Теперь осталось выразить из него
искомую величину. Попробуйте решить эту задачу
традиционным способом и вы получите такое же
уравнение, только решение будет громоздче.

б) Тело стаскивают равномерно с наклонной
плоскости, прикладывая силу тяги горизонтально
(Рисунок 6).

В этом случае сила тяги кроме стаскивания тела
вниз вдоль наклонной плоскости еще и отрывает
его от наклонной плоскости. Итак, окончательное
уравнение имеет вид:

.

в) Тело затаскивают равномерно на наклонную
плоскость, прикладывая силу тяги под углом  к наклонной
плоскости (Рисунок 7).

Предлагаю рассмотреть конкретные задачи, дабы
еще убедительнее прорекламировать мой
методический подход к решению таких задач. Но
прежде обращаю внимание на алгоритм решения (я
думаю, все учителя физики на него обращают
внимание учеников, и все мое повествование было
подчинено этому алгоритму):

1) внимательно прочитав задачу, выяснить, как
движется тело;
2) сделать рисунок с правильным, исходя из условия
задачи, изображением сил;
3) записать уравнение движения в векторной форме
согласно первому или второму закону Ньютона;
4) записать это уравнение через проекции векторов
сил на ось x (этот шаг в дальнейшем, когда умение
решать задачи по динамике будет доведено до
автоматизма, можно опустить);
5) выразить проекции векторов через их модули с
учетом направлений и записать уравнение в
алгебраической форме;
6) выразить модули сил по формулам (если есть
необходимость);
7) выразить искомую величину.

Задача 1. За какое время  тело массой  соскальзывает с наклонной
плоскости высотой  и углом наклона , если по наклонной плоскости с
углом наклона  оно
движется равномерно?

 

                                  
                                            
                                        
                                   
                                     


Каково было бы решать эту задачу привычным
способом!

Задача 2. Что легче: удержать тело на
наклонной плоскости или двигать его по ней
равномерно вверх?

Здесь при объяснении без скатывающей
равнодействующей, на мой взгляд, не обойтись.

Как видно из рисунков, в первом случае сила
трения помогает удерживать тело (направлена в ту
же сторону, что и удерживающая сила), во втором
случае она вместе со скатывающей
равнодействующей направлена против движения. В
первом случае ,
во втором случае .

Решение задач по динамике. Движение по горизонтали и вдоль наклонной плоскости

 Введение

Мы про­дол­жа­ем изу­чать ди­на­ми­ку. Это раз­дел фи­зи­ки, ко­то­рый изу­ча­ет при­чи­ны ме­ха­ни­че­ско­го дви­же­ния.

Се­год­ня мы зай­мем­ся ре­ше­ни­ем задач на дви­же­ние по го­ри­зон­та­ли и вдоль на­клон­ной плос­ко­сти. Как ре­шать такие за­да­чи?

У нас есть тело, ко­то­рое на­хо­дит­ся на го­ри­зон­таль­ной или на­клон­ной плос­ко­сти. На него в любом слу­чае дей­ству­ет сила тя­же­сти и сила ре­ак­ции опоры. Если по­верх­ность не глад­кая, на тело дей­ству­ет сила тре­ния, на­прав­лен­ная про­тив на­прав­ле­ния дви­же­ния. Тело могут та­щить за нить, в таком слу­чае на него будет дей­ство­вать сила на­тя­же­ния нити. На­ли­чие той или иной силы за­ви­сит от усло­вия за­да­чи, но рав­но­дей­ству­ю­щая всех сил, дей­ству­ю­щих на тело, в общем слу­чае вы­зы­ва­ет уско­ре­ние тела, . Это след­ствие из вто­ро­го за­ко­на Нью­то­на – глав­но­го ин­стру­мен­та ре­ше­ния задач по ди­на­ми­ке.

Итак, мы разо­бра­ли, что про­ис­хо­дит при дви­же­нии тела вдоль плос­ко­сти, опре­де­ли­ли дей­ству­ю­щие на тело силы и опи­са­ли про­цесс ма­те­ма­ти­че­ски, при­ме­нив вто­рой закон Нью­то­на. На этом фи­зи­ка за­кан­чи­ва­ет­ся, и оста­ет­ся ма­те­ма­ти­ка.

Ре­шать урав­не­ния в век­тор­ной форме ма­те­ма­ти­че­ски слож­но, по­это­му нужно пе­ре­пи­сать след­ствие из вто­ро­го за­ко­на Нью­то­на в про­ек­ци­ях на оси ко­ор­ди­нат.

Если плос­кость на­клон­ная, она ори­ен­ти­ро­ва­на под опре­де­лен­ным углом к го­ри­зон­ту, а зна­чит, сила тя­же­сти будет на­прав­ле­на под углом к плос­ко­сти, знаем мы этот угол или нет. Это де­ла­ет важ­ным выбор си­сте­мы ко­ор­ди­нат.

Мы сво­бод­ны в вы­бо­ре, ре­зуль­тат не будет за­ви­сеть от вы­бо­ра си­сте­мы ко­ор­ди­нат, но нужно вы­брать такую, при ко­то­рой ма­те­ма­ти­че­ские пре­об­ра­зо­ва­ния будут мак­си­маль­но про­сты­ми. Мы уви­дим это на при­ме­ре одной из задач.

И толь­ко те­перь, когда по­лу­че­на си­сте­ма урав­не­ний, опи­сы­ва­ю­щая фи­зи­че­ский про­цесс, мы ре­ша­ем за­да­чу ма­те­ма­ти­че­ски: ре­ша­ем урав­не­ния и на­хо­дим неиз­вест­ное.

При­сту­пим к ре­ше­нию задач.

 Задача 1

Ка­мень, сколь­зив­ший по го­ри­зон­таль­ной по­верх­но­сти льда, оста­но­вил­ся, прой­дя рас­сто­я­ние S =48 м. Най­ди­те на­чаль­ную ско­рость  камня, если сила тре­ния сколь­же­ния камня о лед со­став­ля­ет 0,06 силы нор­маль­но­го дав­ле­ния камня на лед.

Ана­лиз усло­вия:

– в за­да­че опи­са­но тело, ко­то­рое дви­жет­ся под дей­стви­ем сил, зна­чит, будем при­ме­нять вто­рой закон Нью­то­на;

– на ка­мень дей­ству­ет сила тя­же­сти, сила ре­ак­ции опоры и сила тре­ния. От­ме­тим их (см. рис. 1).

Дей­ству­ю­щие на ка­мень силы

Рис. 1. Дей­ству­ю­щие на ка­мень силы

– сила тре­ния равна ;

– ка­мень оста­нав­ли­ва­ет­ся, дви­жет­ся с уско­ре­ни­ем, ко­то­рое по вто­ро­му за­ко­ну Нью­то­на вы­зва­но рав­но­дей­ству­ю­щей силой;

-при рав­но­уско­рен­ном дви­же­нии тело про­хо­дит путь  и при­об­ре­та­ет ско­рость .

Ре­ше­ние

Вы­бе­рем си­сте­му ко­ор­ди­нат. Удоб­но на­пра­вить ось х в на­прав­ле­нии дви­же­ния камня, а ось у пер­пен­ди­ку­ляр­но оси х (см. рис. 2).

Выбор си­сте­мы ко­ор­ди­нат

Рис. 2. Выбор си­сте­мы ко­ор­ди­нат

При­ме­ним вто­рой закон Нью­то­на:

Учи­ты­вая, что сила тре­ния равна , за­пи­шем в про­ек­ци­ях на вы­бран­ные оси ко­ор­ди­нат. Сила тре­ния на­прав­ле­на про­тив дви­же­ния камня, туда же на­прав­ле­но и уско­ре­ние (ка­мень за­мед­ля­ет­ся) (см. рис. 3):

На­прав­ле­ние уско­ре­ния

Рис. 3. На­прав­ле­ние уско­ре­ния

За время оста­нов­ки  ка­мень по усло­вию за­да­чи прой­дет рас­сто­я­ние . На­чаль­ная ско­рость на­прав­ле­на в на­прав­ле­нии оси х, ее про­ек­ция будет иметь знак «+», уско­ре­ние – про­тив оси х, ста­вим знак «-»:

Тело оста­но­вит­ся, то есть его ско­рость через время  будет равна нулю:

По­лу­чи­ли си­сте­му урав­не­ний, ко­то­рую оста­ет­ся ре­шить и по­лу­чить на­чаль­ную ско­рость камня, рав­ную 7,6 м/с:

Ма­те­ма­ти­че­ская часть ре­ше­ния за­да­чи

Вы­ра­зим из вто­ро­го урав­не­ния силу ре­ак­ции опоры:

Под­ста­вим ее в пер­вое урав­не­ние:

Вы­ра­зим из чет­вер­то­го урав­не­ния время Т:

Под­ста­вим его в тре­тье урав­не­ние:

Вы­ра­зим ско­рость и под­ста­вим най­ден­ное выше уско­ре­ние:

 Задача 2

Те­перь решим за­да­чу на дви­же­ние вдоль на­клон­ной плос­ко­сти.

Тело массы m без на­чаль­ной ско­ро­сти со­скаль­зы­ва­ет с на­клон­ной плос­ко­сти с углом  с вы­со­ты h (см. рис. 4).

Ри­су­нок к усло­вию за­да­чи 2

Рис. 4. Ри­су­нок к усло­вию за­да­чи 2

Ко­эф­фи­ци­ент тре­ния тела о по­верх­ность равен . За какое время тело до­стиг­нет под­но­жья?

Ана­лиз усло­вия

– Задан пря­мо­уголь­ный тре­уголь­ник, в ко­то­ром из­вест­на одна сто­ро­на и угол. Зна­чит, из­вест­ны все сто­ро­ны, и опре­де­лен путь, ко­то­рый про­хо­дит тело.

– На тело дей­ству­ют сила тя­же­сти, сила ре­ак­ции опоры и сила тре­ния (см. рис. 5).

Силы, ко­то­рые дей­ству­ют на тело

Рис. 5. Силы, ко­то­рые дей­ству­ют на тело

Рав­но­дей­ству­ю­щая этих сил со­зда­ет уско­ре­ние – будем при­ме­нять вто­рой закон Нью­то­на.

– В за­да­че нужно найти время дви­же­ния тела, ко­то­рое дви­жет­ся с уско­ре­ни­ем, рав­но­уско­рен­ное дви­же­ние опи­сы­ва­ет­ся урав­не­ни­я­ми ки­не­ма­ти­ки.

Ре­ше­ние

Вы­бе­рем си­сте­му ко­ор­ди­нат. Здесь есть своя осо­бен­ность: дви­же­ние брус­ка про­ис­хо­дит вдоль на­клон­ной плос­ко­сти, сила тре­ния на­прав­ле­на про­ти­во­по­лож­но на­прав­ле­нию дви­же­ния, сила ре­ак­ции опоры пер­пен­ди­ку­ляр­на плос­ко­сти, а сила тя­же­сти на­прав­ле­на под углом к плос­ко­сти. Нам осо­бен­но важно вы­брать удоб­ную си­сте­му ко­ор­ди­нат. Для ма­те­ма­ти­че­ских рас­че­тов удоб­но на­пра­вить оси ко­ор­ди­нат, как по­ка­за­но на ри­сун­ке: ось х вдоль в на­прав­ле­нии дви­же­ния брус­ка, ось у пер­пен­ди­ку­ляр­но по­верх­но­сти (см. рис. 6).

Выбор си­сте­мы ко­ор­ди­нат

Рис. 6. Выбор си­сте­мы ко­ор­ди­нат

При­ме­ним вто­рой закон Нью­то­на:

Учи­ты­вая, что сила тре­ния равна , за­пи­шем в про­ек­ци­ях на вы­бран­ные оси ко­ор­ди­нат.

Сила тя­же­сти на­прав­ле­на под углом к обеим осям ко­ор­ди­нат. Тре­уголь­ни­ки АВС и авс по­доб­ны, и угол  равен углу cab. Сле­до­ва­тель­но, про­ек­ция силы тя­же­сти на ось х равна , на ось у –  (см. рис. 7).

Про­ек­ции сил на оси ко­ор­ди­нат

Рис. 7. Про­ек­ции сил на оси ко­ор­ди­нат

Тогда:

На­хож­де­ние про­ек­ций силы тя­же­сти

Чтобы найти про­ек­цию силы на ко­ор­ди­нат­ную ось, нужно знать угол, под ко­то­рым она на­прав­ле­на к оси. Рас­по­ло­жим век­тор силы тя­же­сти на ри­сун­ке (см. рис. 8).

Вектор силы тя­же­сти

Рис. 8. Век­тор силы тя­же­сти

Если его про­дол­жить, по­лу­чим пря­мо­уголь­ный тре­уголь­ник . Угол . В тре­уголь­ни­ке , тоже пря­мо­уголь­ном, т. к.  – про­ек­ция , угол  (см. рис. 9).

Определение углов

Рис. 9. Опре­де­ле­ние углов

Тогда . В   – про­ек­ция . Угол , т. к.  – се­ку­щая.  (см. рис. 10).

Равенство углов EBF и BED

Рис. 10. Ра­вен­ство углов 

Таким об­ра­зом, нам нужно, ис­поль­зуя зна­ния по гео­мет­рии, опре­де­лить, где в тре­уголь­ни­ках, об­ра­зо­ван­ных про­ек­ци­я­ми, на­хо­дит­ся за­дан­ный угол на­кло­на плос­ко­сти , чтобы пра­виль­но при­ме­нять синус или ко­си­нус угла на­кло­на.

Тело про­хо­дит путь АВ, рав­ный из тре­уголь­ни­ка АВС . Путь, прой­ден­ный телом при рав­но­уско­рен­ном дви­же­нии без на­чаль­ной ско­ро­сти, равен:

По­лу­чи­ли си­сте­му урав­не­ний, из ко­то­рой оста­ет­ся найти время:

Ма­те­ма­ти­че­ская часть ре­ше­ния за­да­чи

Из пер­во­го урав­не­ния по­лу­чим N:

Под­ста­вим во вто­рое и вы­ра­зим уско­ре­ние:

Из тре­тье­го урав­не­ния, под­ста­вив уско­ре­ние, вы­ра­зим время:

Выбор си­сте­мы ко­ор­ди­нат

При ре­ше­нии за­да­чи мы на­пра­ви­ли оси ко­ор­ди­нат (см. рис. 6) и по­лу­чи­ли сле­ду­ю­щую си­сте­му урав­не­ний:

Си­сте­ма ко­ор­ди­нат – это наш выбор, и ре­ше­ние за­да­чи от ее вы­бо­ра не за­ви­сит. Для этой же за­да­чи на­пра­вим оси ко­ор­ди­нат по-дру­го­му (см. рис. 11).

Выбор системы координат

Рис. 11. Выбор си­сте­мы ко­ор­ди­нат

За­пи­шем урав­не­ния в про­ек­ци­ях на оси ко­ор­ди­нат в дан­ной си­сте­ме:

Фор­му­лу для пе­ре­ме­ще­ния при рав­но­уско­рен­ном дви­же­нии также за­пи­шем в про­ек­ци­ях на вы­бран­ные оси:

Как ви­ди­те, урав­не­ния по­лу­чи­лись более слож­ны­ми, но, решив их, вы убе­ди­тесь, что ре­зуль­тат по­лу­чит­ся тот же, что при дру­гом вы­бо­ре си­сте­мы ко­ор­ди­нат. Ре­ко­мен­дую вам про­де­лать это са­мо­сто­я­тель­но.

 Задача 3

На на­клон­ной плос­ко­сти с углом на­кло­на 300 по­ко­ит­ся бру­сок с при­вя­зан­ной нитью. При какой ми­ни­маль­ной силе на­тя­же­ния нити бру­сок сдви­нет­ся с места, если по­тя­нуть за нить вниз так, что она будет па­рал­лель­на плос­ко­сти? Масса брус­ка – 0,5 кг, ко­эф­фи­ци­ент тре­ния сколь­же­ния брус­ка о плос­кость равен 0,7, уско­ре­ние сво­бод­но­го па­де­ния при­нять рав­ным 10 м/с2.

Ана­лиз усло­вия

– В за­да­че опи­са­но тело, на ко­то­рое дей­ству­ют сила тя­же­сти, сила ре­ак­ции опоры, сила тре­ния и сила на­тя­же­ния нити (см. рис. 12).

Действие сил на тело

Рис. 12. Дей­ствие сил на тело

– Тело стас­ки­ва­ют вниз, сила тре­ния на­прав­ле­на про­тив воз­мож­но­го на­прав­ле­ния дви­же­ния.

– По усло­вию за­да­чи при неко­то­ром ми­ни­маль­ном зна­че­нии силы на­тя­же­ния нити бру­сок сдви­га­ет­ся с места, бру­сок не будет раз­го­нять­ся, уско­ре­ние равно нулю. Будем при­ме­нять вто­рой закон Нью­то­на, уско­ре­ние равно 0.

Ре­ше­ние

Вы­бе­рем си­сте­му ко­ор­ди­нат. Мы уже убе­ди­лись на при­ме­ре преды­ду­щей за­да­чи, что удоб­но на­пра­вить ось х па­рал­лель­но плос­ко­сти (см. рис. 13), а ось у – пер­пен­ди­ку­ляр­но плос­ко­сти.

Выбор си­сте­мы ко­ор­ди­нат

Рис. 13. Выбор си­сте­мы ко­ор­ди­нат

По вто­ро­му за­ко­ну Нью­то­на сумма сил, дей­ству­ю­щих на бру­сок, равна , в нашем слу­чае :

Учи­ты­вая, что сила тре­ния равна , за­пи­шем в про­ек­ци­ях на вы­бран­ные оси ко­ор­ди­нат:

По­лу­чи­ли си­сте­му урав­не­ний, решив ко­то­рую, най­дем ми­ни­маль­ное зна­че­ние .

Ма­те­ма­ти­че­ская часть ре­ше­ния за­да­чи

Вы­ра­зим из пер­во­го урав­не­ния силу ре­ак­ции опоры:

Под­ста­вим ее во вто­рое урав­не­ние и вы­ра­зим Т:

Вы­чис­лим:

Как ви­ди­те, за­да­чи на дви­же­ние тел вдоль на­клон­ной плос­ко­сти, как и боль­шин­ство дру­гих задач по ди­на­ми­ке, сво­дят­ся к при­ме­не­нию за­ко­нов Нью­то­на в вы­бран­ной удоб­ной си­сте­ме ко­ор­ди­нат.

Добавить комментарий