Если есть середина отрезка как найти вершины

Как найти начало вектора если есть середина и конец

Найти координаты конца B отрезка, если другой конец отрезка – точка A(-5, -7), а середина отрезка – C(-9, -12).

(1)

координаты середины отрезка обозначены через x и y. По условию задачи x = -9; y = -12. Координаты одного конца отрезка точки A в этих формулах x1 = -5; y1 = -7. Координаты точки B (другого конца отрезка) – величины неизвестные, которые мы обозначим через x2 и y2. Тогда по формулам (1) для определения этих неизвестных получаем два уравнения:

Векторы в пространстве и метод координат

Существует два способа решения задач по стереометрии

Первый — классический — требует отличного знания аксиом и теорем стереометрии, логики, умения построить чертеж и свести объемную задачу к планиметрической. Способ хорош тем, что развивает мозги и пространственное воображение.

Другой метод — применение векторов и координат. Это простые формулы, алгоритмы и правила. Он очень удобен, особенно когда времени до экзамена мало, а решить задачу хочется.

Если вы освоили векторы на плоскости и действия с ними — то и с векторами в пространстве разберетесь. Многие понятия окажутся знакомыми.

Система координат в пространстве

Выберем начало координат. Проведем три взаимно перпендикулярные оси X, Y и Z. Зададим удобный масштаб.

Получилась система координат в трехмерном пространстве. Теперь каждая его точка характеризуется тремя числами — координатами по X, Y и Z. Например, запись M(−1; 3; 2) означает, что координата точки M по X (абсцисса) равна −1, координата по Y (ордината) равна 3, а координата по Z (аппликата) равна 2.

Векторы в пространстве определяются так же, как и на плоскости. Это направленные отрезки, имеющие начало и конец. Только в пространстве вектор задается тремя координатами x, y и z:

Как найти координаты вектора? Как и на плоскости — из координаты конца вычитаем координату начала.


Длина вектора в пространстве – это расстояние между точками A и B. Находится как корень квадратный из суммы квадратов координат вектора.

Пусть точка M – середина отрезка AB. Ее координаты находятся по формуле:

Для сложения векторов применяем уже знакомые правило треугольника и правило параллелограмма

Сумма векторов, их разность, произведение вектора на число и скалярное произведение векторов определяются так же, как и на плоскости. Только координат не две, а три. Возьмем векторы и .

Произведение вектора на число:

Скалярное произведение векторов:

Косинус угла между векторами:

Последняя формула удобна для нахождения угла между прямыми в пространстве. Особенно если эти прямые – скрещиваются. Напомним, что так называются прямые, которые не параллельны и не пересекаются. Они лежат в параллельных плоскостях.

1. В кубе ABCDA1B1C1D1 точки E и K — середины ребер соответственно A1B1 и B1C1. Найдите косинус угла между прямыми AE и BK.

Если вам достался куб — значит, повезло. Он отлично вписывается в прямоугольную систему координат. Строим чертеж:

Длина ребра куба не дана. Какой бы она ни была, угол между AE и BK от нее не зависит. Поэтому возьмем единичный куб, все ребра которого равны 1.

Прямые AE и BK — скрещиваются. Найдем угол между векторами и . Для этого нужны их координаты.

Запишем координаты векторов:

и найдем косинус угла между векторами и :

2. В правильной четырехугольной пирамиде SABCD, все ребра которой равны 1, точки E, K — середины ребер SB и SC соответственно. Найдите косинус угла между прямыми AE и BK.

Лучше всего выбрать начало координат в центре основания пирамиды, а оси X и Y сделать параллельными сторонам основания.

Координаты точек A, B и C найти легко:

Из прямоугольного треугольника AOS найдем

Координаты вершины пирамиды:

Точка E — середина SB, а K — середина SC. Воспользуемся формулой для координат середины отрезка и найдем координаты точек E и K.

Найдем координаты векторов и

и угол между ними:

Покажем теперь, как вписать систему координат в треугольную призму:

3. В правильной треугольной призме ABCA1B1C1, все ребра которой равны 1, точка D — середина ребра A1B1. Найдите косинус угла между прямыми AD и BC1

Пусть точка A — начало координат. Возьмем ось X параллельно стороне BC, а ось Y перпендикулярно ей. Другими словами, на оси Y будет лежать отрезок AH, являющийся высотой треугольника ABC. Нарисуем отдельно нижнее основание призмы.

Запишем координаты точек:

Точка D — середина A1B1. Значит, пользуемся формулами для координат середины
отрезка.

Найдем координаты векторов и , а затем угол между ними:

Смотрите, как легко с помощью векторов и координат найти угол между прямыми. А если требуется найти угол между плоскостями или между прямой и плоскостью? Для решения подобных задач нам понадобится уравнение плоскости в пространстве.

Плоскость в пространстве задается уравнением:

Здесь числа A, B и C — координаты вектора, перпендикулярного этой плоскости. Его называют нормалью к плоскости.

Вместо x, y и z можно подставить в уравнение координаты любой точки, принадлежащей данной плоскости. Получится верное равенство.

Плоскость в пространстве можно провести через любые три точки, не лежащие на одной прямой. Поэтому для того, чтобы написать уравнение плоскости, берем координаты трех принадлежащих ей точек. Подставляем их по очереди в уравнение плоскости. Решаем полученную систему.

Покажем, как это делается.

Напишем уравнение плоскости, проходящей через точки M (1; 0; 1), N (2; −2; 0) и K (4; 1; 2).

Уравнение плоскости выглядит так:

Подставим в него по очереди координаты точек M, N и K.

То есть A + C + D = 0.

Аналогично для точки K:

Получили систему из трех уравнений:

В ней четыре неизвестных: A, B, C и D. Поэтому одну из них мы выберем сами, а другие выразим через нее. Правило простое — вместо одной из переменных можно взять любое число, не равное нулю.

Пусть, например, D = −2. Тогда:

Выразим C и B через A и подставим в третье уравнение:

Решив систему, получим:

Уравнение плоскости MNK имеет вид:

Умножим обе части уравнения на −3. Тогда коэффициенты станут целыми:

Вектор — это нормаль к плоскости MNK.

Уравнение плоскости, проходящей через заданную точку имеет вид:

Угол между плоскостями равен углу между нормалями к этим плоскостям:

Не правда ли, знакомая формула? Скалярное произведение нормалей поделили на произведение их длин.

Заметим, что при пересечении двух плоскостей вообще-то образуется четыре угла.

Мы берем меньший из них. Поэтому в формуле стоит модуль скалярного произведения — чтобы косинус угла был неотрицателен.

4. В кубе ABCDA1B1C1D1 точки E и F — середины ребер соответственно A1B1 и A1D1. Найдите тангенс угла между плоскостями AEF и BDD1.

Строим чертеж. Видно, что плоскости AEF и BDD1 пересекаются где-то вне куба. В классическом решении пришлось бы строить линию их пересечения. Но векторно-координатный метод значительно всё упрощает. Не будем ломать голову над тем, по какой прямой пересекаются плоскости. Просто отметим координаты нужных нам точек и найдем угол между нормалями к плоскостям AEF и BDD1.

Сначала — нормаль к плоскости BDD1. Конечно, мы можем подставить координаты точек B, D и D1 в уравнение плоскости и найти коэффициенты, которые и будут координатами вектора нормали. А можем сделать хитрее — увидеть нужную нормаль прямо на чертеже. Ведь плоскость BDD1 — это диагональное сечение куба. Вектор перпендикулярен этой плоскости.

Итак, первый вектор нормали у нас уже есть:

Напишем уравнение плоскости AEF.

Берем уравнение плоскости и по очереди подставляем в него, вместо x, y и z, соответствующие координаты точек A, E и F.

Пусть С = -1. Тогда A = B = 2.

Уравнение плоскости AEF:

Нормаль к плоскости AEF:

Найдем угол между плоскостями:

5. Основание прямой четырехугольной призмы BCDA1B1C1D1 — прямоугольник ABCD, в котором AB = 5, AD = √33. Найдите тангенс угла между плоскостью грани AA1D1D и плоскостью, проходящей через середину ребра CD перпендикулярно прямой B1D, если расстояние между прямыми A1C1 и BD равно √3.

Эта задача наглядно показывает, насколько векторный метод проще классического. Попробуйте, для разнообразия, построить необходимые сечения и провести все доказательства — как это делается в «классике» 🙂

Строим чертеж. Прямую четырехугольную призму можно по-другому назвать “параллелепипед”.

Замечаем, что длина и ширина параллелепипеда у нас есть, а вот высота — вроде не дана. Как же ее найти?

«Расстояние между прямыми A1C1 и BD равно √3». Прямые A1C1 и BD скрещиваются. Одна из них — диагональ верхнего основания, другая — диагональ нижнего. Вспомним, что расстояние между скрещивающимися прямыми равно длине их общего перпендикуляра. Общий перпендикуляр к A1C1 и BD — это, очевидно, OO1, где O — точка пересечения диагоналей нижнего основания, O1 — точка пересечения диагоналей верхнего. А отрезок OO1 и равен высоте параллелепипеда.

Плоскость AA1 D1 D — это задняя грань призмы на нашем чертеже. Нормаль к ней — это любой вектор, перпендикулярный задней грани, например, вектор или, еще проще, вектор .

Осталась еще «плоскость, проходящая через середину ребра CD перпендикулярно прямой B1D». Но позвольте, если плоскость перпендикулярна прямой B1D — значит, B1D и есть нормаль к этой плоскости! Координаты точек B1 и D известны:

Координаты вектора — тоже:

Находим угол между плоскостями, равный углу между нормалями к ним:

Зная косинус угла, находим его тангенс по формуле

Получим:

Ответ:

Угол между прямой m и плоскостью α тоже вычисляется с помощью скалярного произведения векторов.

Пусть — вектор, лежащий на прямой m (или параллельный ей), — нормаль к плоскости α.

Находим синус угла между прямой m и плоскостью α по формуле:

6. В кубе ABCDA1B1C1D1 точка E — середина ребра A1B1. Найдите синус угла между прямой AE и плоскостью BDD1.

Как всегда, рисуем чертеж и выбираем систему координат

Находим координаты вектора .

Нужно ли нам уравнение плоскости BDD1? В общем-то, без него можно обойтись. Ведь эта плоскость является диагональным сечением куба, а значит, нормалью к ней будет любой вектор, ей перпендикулярный. Например, вектор .

Найдем угол между прямой и плоскостью:

Ответ:

Расстояние от точки M с координатами x0, y0 и z0 до плоскости α, заданной уравнением Ax + By + Cz + D = 0, можно найти по формуле:

7. В основании прямоугольного параллелепипеда BCDA1B1C1D1 лежит прямоугольник ABCD со сторонами AB = , AD = . Высота параллелепипеда AA1 = . Найдите расстояние от точки A до плоскости A1DB.

Построим чертеж и выпишем координаты точек:

Запишем уравнение плоскости A1DB. Вы помните, как это делается — по очереди подставляем координаты точек A1, D и B в уравнение Ax + Be + Cz + D

Решим эту систему. Выберем

Тогда

Уравнение плоскости A1DB имеет вид:

Дальше все просто. Находим расстояние от точки A до плоскости A1DB:

В некоторых задачах по стереометрии требуется найти расстояние от прямой до параллельной ей плоскости. В этом случае можно выбрать любую точку, принадлежащую данной прямой.

Геометрия

План урока:

Взаимосвязь координат векторов и его начала и конца

На координатной плоскости любые две точки можно соединить друг с другом. В результате получается отрезок. Если же дополнительно указано, какая из этих точек – начало отрезка, а какая – конец, то в итоге мы уже имеем вектор. Попробуем определить, есть ли связь между координатами вектора и координатами (можно использовать сокращение коор-ты) его граничных точек.

Пусть в прямоугольной системе координат отмечены точки А (хАА) и В(хBB).Тогда можно задать вектор АВ. Также построим ещё два вспомогательных вектора ОА и ОВ, начинающиеся в точке О – начале коор-т:

Вектора ОВ и ОА – это радиус-векторы (так как их начало находится в начале координат), поэтому их коор-ты ОВ и ОА совпадают с коор-тами их концов (В и А соответственно):

Итак, зная коор-ты граничных точек вектора, можно найти и координаты данного вектора:

Например, если вектор начинается в точке А (2; 1), а заканчивается в точке В (6; 3), то коор-ты вектора АВ можно определить так:

Задание. Начало вектора находится в точке М, а конец – в точке К. Определите его коор-ты, если:

Решение. Из коор-т К мы просто вычитаем соответствующие коор-ты М, и в итоге определяем коор-ты вектора:

Задание. От точки H (8; 15) отложили вектор m<5; – 6>. Каковы координаты конца этого вектора?

Решение. Обозначим интересующие нас коор-ты как (хк; ук). Для вектора, начинающегося в точке (8; 15) и заканчивающегося в точке (хк; ук), коор-ты можно вычислить так:

Однако нам даны координаты вектора, то есть величины х и у, поэтому мы можем записать:

Оба равенства представляет собой уравнения, которые можно решить:

В итоге получили, что конец вектора находится в точке (13; 9).

Определение координат середины отрезка

Пусть построен вектор АВ, причем известны коор-ты его начала А (хА; уА) и его конца B (хB; уB). Обозначим буквой С середину отрезка АВ и попытаемся вычислить коор-ты С, которые мы обозначим как (хC; уC):

Рассмотрим вектора АС и СВ. Они имеют одинаковую длину, потому что С разбивает АВ пополам. Также АС и СВ коллинеарны, так как они лежат на одной прямой АВ. При этом они и сонаправлены, а значит, эти вектора равны:

Нам удалось выразить коор-ты С через координаты А и В. В итоге можно сформулировать правило:

Например, пусть необходимо найти координаты середины отрезка HK, при этом известны коор-ты его концов: Н(5; – 2) и К(3; 4). Сначала найдем полусумму коор-т х и получим эту же коор-ту у середины:

Итак, точка середины отрезка имеет коор-ты (4; 1). Для наглядности построим отрезок ОК и продемонстрируем, что его середина действительно находится в точке (4; 1):

Вычисление длины вектора и отрезка

Пусть есть произвольный вектор с коор-тами . Отложим его от точки начала координат, после чего из его конца опустим перпендикуляры ОВ и ОС на координатные оси:

Для простоты рассмотрим случай, когда х и у – положительные числа, то есть точка А находится в первой четверти. Тогда длина ОВ будет равна х:

Так как ОСАВ – прямоугольник, то стороны ОС и АВ одинаковы, причем ОС имеет длину, равную коор-те у:

Теперь изучим ∆ОВА. Он прямоугольный, и ОА в нем – гипотенуза, поэтому можно записать теорему Пифагора:

OA 2 = OB 2 + AB 2

Теперь заменим отрезки ОВ и АВ на х и у:

Осталось извлечь квадратный корень:

Мы вывели формулу для вычисления длины вектора по его координатам. Можно рассмотреть и остальные случаи, когда точка А лежит в другой четверти координатной плоскости или на координатных осях, однако во всех случаях будет получаться одинаковая формула.

Задание. Определите длину вектора с коор-тами:

Решение. Во всех случаях просто возводим каждую коор-ту в квадрат, потом складываем полученные числа и извлекаем из полученной суммы квадратный корень:

Теперь предположим, что имеется две точки с коор-тами (х1; у1) и (х2; у2). Требуется найти длину отрезка, их соединяющего, то есть расстояние между этими двумя точками. Если принять одну из этих точек, например первую, за начало вектора, а вторую за его конец, то задача сведется к вычислению длины этого вектора. Его коор-ты можно будет высчитать так:

Тогда расстояние между точками (обозначим его как d) будет вычисляться по формуле:

Задание. Определите длину отрезка MP, если известны коор-ты его концов:

Простейшие задачи с использованием координатного метода

Выведенные нами формулы являются базовыми для расчетов, связанных с коор-тами. До этого мы решали лишь простейшие задачи на использование этих формул, однако в более сложных задачах надо использовать сразу несколько более сложных формул.

Задание. Известны коор-ты трех вершин параллелограмма АВСD: А(4; 1), В(1; 1), С(3; 5). Определите коор-ты четвертой вершины D.

Сначала найдем коор-ты вектора ВС. Мы можем это сделать, так как нам известны коор-ты его начальной и конечной точки:

Так как в параллелограмме противоположные стороны имеют одинаковую длину и при этом параллельны, то вектора ВС и АD равны, то есть имеют одинаковые коор-ты:

Итак, D имеет коор-ты (6; 5).

Задание. В – середина отрезка АС. Известны коор-ты точек: А(2; 4) и В(0; 18). Найдите коор-ты С.

Для начала будем работать только с коор-той х. Так как В – середина АС, то их абсциссы (напомним, так называют координату х точек) связаны соотношением:

Задание. Отрезок MN имеет длину 13. Даны координаты концов отрезка: M(4; 6) и N (х; 1). Найдите величину переменной х.

Нам по условию известно это расстояние для точек M и N, а также известны 3 и 4 коор-т точек. Поэтому надо просто подставить все известные данные в формулу, получить уравнение и решить его:

Далее извлекаем корень из обеих частей, но при этом появляется два различных корня (так обычно и бывает при решении квадратных уравнений):

Ответ: – 8 или 16.

Задание. Расстояние от точки S(2x; – 2) до точки T (6; 4х) составляет 14. Определите величину х.

Решение. Задача во многом аналогично предыдущей, надо подставить в формулу расстояния между точками данные из условия и решить получившееся уравнение:

Решаем это квадратное уравнение через дискриминант:

Ответ: (– 2,6) или 3.

Задание. Найдите коор-ты точки M на рисунке, если точка А имеет коор-ты (4; 2).

Решение. По рисунку видно, что середина отрезка находится в точке О(0; 0). Коор-ты середины отрезка (то есть точки О) и его граничных точек связаны формулами:

Использование признака коллинеарности векторов

На прошлом уроке мы выяснили, что если вектора коллинеарны, то их коор-ты пропорциональны. Это позволяет определить, лежит ли та или иная точка на указанной прямой.

Задание. Даны точки А(1; 2), В(4; 7) и С (10; 17). Определите, лежит ли точка В на прямой АС.

Решение. Если А, В и С принадлежат одной прямой, то любые два вектора, проведенные через эти точки, окажутся коллинеарными друг другу. Если же они НЕ лежат на одной прямой, то наоборот, любые два таких вектора окажутся неколлинеарными. То есть надо составить два вектора, например, АВ и ВС, и проверить их коллинеарность.

Определим коор-ты АВ:

Напомним, что для проверки векторов на коллинеарность надо поделить их коор-ты друг на друга. Если получится одно и то же число, то вектора коллинеарны:

В обоих случаях получилось одинаковое число, значит, вектора коллинеарны.

Ответ: Да, точка B лежит на прямой AC.

Задание. Проверьте, лежат ли точки А(3; 7), В (8; 12) и С(6; 4) на одной прямой.

Решение. Снова вычисляем коор-ты векторов АВ и ВС:

Получились разные числа, следовательно, вектора АВ и ВС не коллинеарны, а потому точки А, В и С никак не могут лежать на одной прямой.

Ответ: Нет, точки A,B,C не лежат на одной прямой.

Задание. Проверьте, параллельны ли друг другу отрезки АВ и CD, если известны коор-ты: А(1; 1), В(5; 5), С(4; 2), D(6; 4).

Решение. Если отрезки параллельны, то и вектора АВ и CD должны быть коллинеарными. Проверим это также, как мы это делали в двух предыдущих задачах:

Итак, вектора коллинеарны. Означает ли это, что отрезки АВ и CD параллельны? Ещё нет. На самом деле возможно два случая:

1) АВ и CD действительно параллельны;

2) АВ и СD лежат на одной прямой, и тогда их параллельными считать нельзя.

Как же проверить, какой из двух случаев относится к этой задаче? Надо рассмотреть ещё один ВС. Если реализуется второй случай, то он окажется коллинеарен вектору АВ. В первом же случае он будет ему не коллинеарен.

Получили различные числа, значит, АВ и ВС не коллинеарны. Теперь мы можем точно утверждать, что АВ и СD параллельны.

Ответ: Да, отрезки AB и CD параллельны.

Деление отрезка в заданном отношении

Мы уже научились находить коор-ты середины отрезка. Можно сказать, что середина – это точка, которая разбивает отрезок в отношении 1:1, то есть на равные отрезки. А что делать в более сложном случае, если нужно найти точку, разбивающую отрезок в другом отношении, например, в отношении 2:1? Выведем для такого случая формулу.

Пусть точка С разбивает отрезок АВ в некотором отношении так, что отрезок АС в k больше отрезка СВ:

(Примечание. Если отрезок АС меньше СВ, то число k будет меньше единицы.)

Как и обычно, для обозначения коор-т точек используем индексы, совпадающие с обозначением точек: А(xА; уА), В(xВ; уВ) и С(xС; уС).

Нам также потребуются вектора АСАС; уАС> и СВСВ; уСВ>. Так как эти вектора сонаправлены, и АС в k раз длиннее, то

Абсолютно аналогичные образования приведут к такому же выражению для коор-ты у:

Рассмотрим на примерах использование этой формулы.

Задание. На отрезке РM отложена точка K так, что она разбивает РM на отрезки РK и KM в отношении РK:KM = 2:1. Даны коор-ты точек: Р(6; 3) и К (18; 12). Вычислите коор-ты K.

Отношение РК:КМ = 2:1 означает, что отрезок РК в 2 раза длиннее, чем КМ. Это означает, что в формуле

Задание. Точки B (5; – 16) и H(29; 24) соединены отрезком. Точка M на отрезке ВН отмечена так, что ВМ:МН = 3:5. Определите коор-ты точки М.

Решение. Из отношения ВМ:МН = 3:5 вытекает, что ВМ длиннее МН в

то есть фактически ВМ короче МН. То есть при использовании формулы

Рассмотрим ещё несколько более усложненных задач с использованием коор-т.

Задание. Точка K лежит на оси Ох, при этом она равноудалена от точек Е(2; 2) и F(6; 10). Найдите коор-ты К.

Решение. У любой точки, лежащей на оси Ох, коор-та у будет равна нулю, в том числе и у точки К:

Будем обозначать неизвестную коор-ту К как х:

Напомним расстояние между точками можно рассчитать, используя формулу:

Получили иррациональное уравнение. В данном случае можно просто приравнять подкоренные выражения, однако после получения корней надо проверить, нет ли среди них посторонних:

Проверяем, не является ли корень посторонним. Для этого просто подставляем его в уравнение:

Корень действительно подошел, поэтому коор-та х точки К равна 16.

Введение прямоугольной системы координат

Даже если в формулировке задачи коор-ты и вектора прямо не упоминаются, может быть полезным самостоятельно добавить в нее прямоугольную систему координат. Это позволит использовать формулы, используемые в методе коор-т, для решения задачи.

Задание. Докажите, что если в параллелограмме сложить квадраты всех его сторон, то получится то же число, что и при сложении квадратов диагоналей этого параллелограмма.

Решение. Расположим систему коор-т таким образом, одна из сторон параллелограмма находилась на оси Ох, причем одна ее вершина совпадала с началом коор-т, а другая имела положительную коор-ту х:

Пусть вершина А находится в начале коор-т, и тогда она имеет коор-ты (0; 0). Вершина D лежит на Ох, тогда ее ордината равна нулю, а абсциссу обозначим буквой а. Точка В имеет произвольные коор-ты (b; с), коор-ты же точки С можно рассчитать. Сначала заметим, что вектор коор-ты вектора АВ совпадают с коор-тами точки В, так как он является радиус-вектором:

Вектора АВ и DC равны, потому что они лежат на параллельных прямых и имеют одинаковую длину:

Итак, коор-ты С – это (а + b; с).

Теперь мы должны длину каждой стороны параллелограмма и возвести ее в квадрат. Обратите внимание, что если расстояние между точками рассчитывается по формуле

Задание. В равнобедренном треугольнике длина основания составляет 80 см, а опущенная на нее медиана имеет длину 160 см. Вычислите длины двух других медиан.

Решение. Пусть АВС – рассматриваемый в задаче треугольник, причем АВ – его основание. Расположим систему коор-т так, чтобы ее начало совпадало с точкой, в которой медиана пересекается с основанием:

В этом случае вершина, из которой опущена медиана, будет иметь коор-ты (0; 160), а две другие вершины будут иметь коор-ты (– 40; 0) и (40; 0).

Нам надо найти длину двух других медиан АM и BN. Они одинаковы по длине, поэтому достаточно найти длину только одной из них, например, АМ. Для этого сначала найдем коор-ты М, которая является серединой ВС:

Сегодня мы познакомились с важнейшими формулами, используемыми в методе коор-т, и научились решать некоторые простейшие задачи. В будущем мы узнаем о более сложных задачах, в которых будут фигурировать не только отрезки и многоугольники, но и окружности.

[spoiler title=”источники:”]

http://ege-study.ru/ru/ege/materialy/matematika/vektory-v-prostranstve-i-metod-koordinat/

http://100urokov.ru/predmety/urok-2-zadachi-v-koordinatah

[/spoiler]

Определение.

Середина отрезка – это точка, которая лежит на отрезке и находится на равном расстоянии от конечных точек.

Середина отрезка

В геометрических задачах часто можно столкнуться с необходимостью найти середину отрезка заданного координатами точек его концов, например в задачах поиска медианы, средней линии, …

Каждая координата середины отрезка равна полусумме соответствующих координат концов отрезка.

Формулы вычисления расстояния между двумя точками:

  • Формула вычисления координат середины отрезка с концами A(xaya) и B(xbyb) на плоскости:
    xc xa + xb        yc ya + yb
    2 2

  • Формула вычисления координат середины отрезка с концами A(xayaza) и B(xbybzb) в пространстве:
    xc xa + xb      yc ya + yb      zc za + zb
    2 2 2

Примеры задач на вычисление середины отрезка

Примеры вычисления координат середины отрезка на плоскости

Пример 1.

Найти координаты точки С, середины отрезка AB заданного точками A(-1, 3) и B(6, 5).

Решение.

xc xa + xb  =  -1 + 6  =  5  = 2.5
2 2 2
yc ya + yb  =  3 + 5  =  8  = 4
2 2 2

Ответ: С(2.5, 4).

Пример 2.

Найти координаты точки В, если известны координаты точки C(1; 5), середины отрезка AB и точки A(-1, 3).

Решение.

xc =

xa + xb2

=> xb = 2xc – xa = 2·1-(-1)=2+1=3

yc =

ya + yb2

=> yb = 2yc – ya = 2·5-3=10-3=7

Ответ: B(3, 7).

Примеры вычисления координат середины отрезка в пространстве

Пример 3.

Найти координаты точки С середины отрезка AB заданного точками A(-1, 3, 1) и B(6, 5, -3).

Решение.

xc xa + xb  =  -1 + 6  =  5  = 2.5
2 2 2
yc ya + yb  =  3 + 5  =  8  = 4
2 2 2
zc za + zb  =  1 + (-3)  =  -2  = -1
2 2 2

Ответ: С(2.5, 4, -1).

Пример 4.

Найти координаты точки В если известны координаты точки C(1, 5, 2), середины отрезка AB и точки A(-1, 3, 10).

Решение.

xc =

xa + xb2

=> xb = 2xc – xa = 2·1-(-1)=2+1=3

yc =

ya + yb2

=> yb = 2yc – ya = 2·5-3=10-3=7

zc =

za + zb2

=> zb = 2zc – za = 2·2-10=4-10=-6

Ответ: B(3, 7, -6).

Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!

Определение длины отрезка по координатам. Нахождение координат середины отрезка: примеры, решения

Если вы хорошо заточенным карандашом прикоснетесь к тетрадному листу, то останется след, который дает представление о точке. (рис. 3
).

Отметим на листе бумаги две точки A
и B.
Эти точки можно соединить различными линиями (рис. 4
). А как соединить точки A
и B
самой короткой линией? Это можно сделать с помощь линейки (рис. 5
). Полученную линию называют отрезком
.

Точка и отрезок − примеры геометрических фигур
.

Точки A
и B
называют концами отрезка
.

Существует единственный отрезок, концами которого являются точки A
и B.
Поэтому отрезок обозначают, записывая точки, которые являются его концами. Например, отрезок на рисунке 5
обозначают одним из двух способов: AB
или BA.
Читают: «отрезок AB»
или «отрезок BA».

На рисунке 6
изображены три отрезка. Длина отрезка AB
равна 1
см. Он помещается в отрезке MN
ровно три раза, а в отрезке EF −
ровно 4
раза. Будем говорить, что длина отрезка
MN
равна 3
см, а длина отрезка EF −
4
см.

Также принято говорить: «отрезок MN
равен 3
см», «отрезок EF
равен 4
см». Пишут: MN =
3
см, EF =
4
см.

Длины отрезков MN
и EF
мы измерили единичным отрезком
, длина которого равна 1
см. Для измерения отрезков можно выбрать и другие единицы длины
, например: 1
мм, 1
дм, 1
км. На рисунке 7
длина отрезка равна 17
мм. Он измерен единичным отрезком, длина которого равна 1
мм, с помощью линейки с делениями. Также с помощью линейки можно построить (начертить) отрезок заданной длины (см. рис. 7
).

Вообще, измерить отрезок означает подсчитать, сколько единичных отрезков в нем помещается
.

Длина отрезка обладает следующим свойством.

Если на отрезке AB
отметить точку C,
то длина отрезка AB
равна сумме длин отрезков AC
и CB
(рис. 8
).

Пишут: AB = AC + CB.

На рисунке 9
изображены два отрезка AB
и CD.
Эти отрезки при наложении совпадут.

Два отрезка называют равными, если они совпадут при наложении.

Следовательно отрезки AB
и CD
равны. Пишут: AB = CD.

Равные отрезки имеют равные длины.

Из двух неравных отрезков бОльшим будем считать тот, у уоторого длина больше. Например, на рисунке 6
отрезок EF
больше отрезка MN.

Длину отрезка AB
называют расстоянием
между точками A
и B.

Если несколько отрезков расположить так, как показано на рисунке 10,
то получится геометрическая фигура, которую называют ломаная
. Заметим, что все отрезки на рисунке 11
ломаную не образуют. Считают, что отрезки, образуют ломаную, если конец первого отрезка совпадает с концом второго, а другой конец второго отрезка − с концом третьего и т. д.

Точки A, B, C, D, E −
вершины ломаной
ABCDE,
точки A
и E −
концы ломаной
, а отрезки AB, BC, CD, DE −
ее звенья
(см. рис. 10
).

Длиной ломаной
называют сумму длин всех ее звеньев.

На рисунке 12
изображены две ломаные, концы которых совпадают. Такие ломаные называют замкнутыми
.

Пример 1

. Отрезок BC
на 3
см меньше отрезка AB,
длина которого равна 8
см (рис. 13
). Найдите длину отрезка AC.

Решение. Имеем: BC =
8
− 3
= 5
(см).

Воспользовавшись свойством длины отрезка, можно записать AC = AB + BC.
Отсюда AC =
8
+ 5
= 13
(см).

Ответ: 13
см.

Пример 2

. Известно, что MK =
24
см, NP =
32
см, MP =
50
см (рис. 14
). Найдите длину отрезка NK.

Решение. Имеем: MN = MP − NP.

Отсюда MN =
50
− 32
= 18
(см).

Имеем: NK = MK − MN.

Отсюда NK =
24
− 18
= 6
(см).

Ответ: 6
см.

Определить длину отрезка возможно разными способами. Для того чтобы узнать, как найти длину отрезка, достаточно иметь в наличии линейку или знать специальные формулы для расчета.

Длина отрезка с помощью линейки

Для этого прикладываем к построенному на плоскости отрезку линейку с миллиметровыми делениями, причем начальную точку необходимо совместить с нулем шкалы линейки. Затем следует отметить на данной шкале расположение конечной точки данного отрезка. Полученное количество целых делений шкалы и будет являться длиной отрезка, выраженной в см. и мм.

Метод координат на плоскости

Если известны координаты отрезка (х1;у1) и (х2;у2), то следует рассчитать его длину следующим образом. Из координат на плоскости второй точки следует вычесть координаты первой точки. В итоге должно получиться два числа. Каждое из таких чисел необходимо возвести в квадрат, а потом найти сумму этих квадратов. Из полученного числа следует извлечь квадратный корень, который будет являться расстоянием между точками. Поскольку данные точки являются концами отрезка, то данное значение и будет его длиной.

Рассмотрим пример, как найти длину отрезка по координатам. Есть координаты двух точек (-1;2) и (4;7). При нахождении разности координат точек получаем следующие значения: х = 5, у =5. Полученные числа и будут являться координатами отрезка. Затем каждое число возводим в квадрат и находим сумму результатов, она равна 50. Из этого числа извлекаем квадратный корень. Результат таков: 5 корней из 2. Это длина отрезка.

Метод координат в пространстве

Для этого необходимо рассмотреть, как найти длину вектора. Именно он и будет являться отрезком в евклидовом пространстве. Находится он почти таким же образом, как длина отрезка на плоскости. Построение вектора происходит в разных плоскостях
. Как найти длину вектора?

  1. Найдите координаты вектора, для этого из координат его конечной точки нужно вычесть координаты его начальной точки.
  2. После этого нужно возвести каждую координату вектора в квадрат.
  3. Затем складываем квадраты координат.
  4. Чтобы найти длину вектора, нужно извлечь квадратный корень из суммы квадратов координат.

Рассмотрим алгоритм вычисления на примере. Необходимо найти координаты вектора АВ. Точки А и В имеют следующие координаты: А (1;6;3) и В (3;-1;7). Начало вектора лежит в точке А, конец расположен в точке В. Таким образом, чтобы найти его координаты, необходимо вычесть координаты точки А из координат точки В: (3 — 1; -1 — 6;7 — 3) = (2;-7;4).

Теперь возводим каждую координату в квадрат и складываем их: 4+49+16=69. И наконец, извлекает квадратный корень из данного числа. Его трудно извлечь, поэтому результат записываем таким образом: длина вектора равна корню из 69.

Если же вам не важно самому высчитывать длину отрезков и векторов, а нужен просто результат, то вы можете воспользоваться онлайн-калькулятором, например, этим .

Теперь, изучив данные способы и рассмотрев представленные примеры, вы без проблем сможете найти длину отрезка в любой задаче.

Длина, как уже отмечалось, обозначается знаком модуля.

Если даны две точки плоскости и , то длину отрезка можно вычислить по формуле

Если даны две точки пространства и , то длину отрезка можно вычислить по формуле

Примечание:

Формулы останутся корректными, если переставить местами соответствующие координаты:
и
, но более стандартен первый вариант

Пример 3

Решение:
по соответствующей формуле:

Ответ:

Для наглядности выполню чертёж

Отрезок – это не вектор
, и перемещать его куда-либо, конечно, нельзя. Кроме того, если вы выполните чертеж в масштабе: 1 ед. = 1 см (две тетрадные клетки), то полученный ответ можно проверить обычной линейкой, непосредственно измерив длину отрезка.

Да, решение короткое, но в нём есть ещё пара важных моментов, которые хотелось бы пояснить:

Во-первых, в ответе ставим размерность: «единицы». В условии не сказано, ЧТО это, миллиметры, сантиметры, метры или километры. Поэтому математически грамотным решением будет общая формулировка: «единицы» – сокращенно «ед.».

Во-вторых, повторим школьный материал, который полезен не только для рассмотренной задачи:

Обратите внимание на важный технический приём
вынесение множителя из-под корня
. В результате вычислений у нас получился результат и хороший математический стиль предполагает вынесение множителя из-под корня (если это возможно). Подробнее процесс выглядит так: . Конечно, оставить ответ в виде не будет ошибкой – но недочетом-то уж точно и весомым аргументом для придирки со стороны преподавателя.

Вот другие распространенные случаи:

Нередко под корнем получается достаточно большое число, например . Как быть в таких случаях? На калькуляторе проверяем, делится ли число на 4: . Да, разделилось нацело, таким образом: . А может быть, число ещё раз удастся разделить на 4? . Таким образом: . У числа последняя цифра нечетная, поэтому разделить в третий раз на 4 явно не удастся. Пробуем поделить на девять: . В результате:
Готово.

Вывод:
если под корнем получается неизвлекаемое нацело число, то пытаемся вынести множитель из-под корня – на калькуляторе проверяем, делится ли число на: 4, 9, 16, 25, 36, 49 и т.д.

В ходе решения различных задач корни встречаются часто, всегда пытайтесь извлекать множители из-под корня во избежание более низкой оценки да ненужных заморочек с доработкой ваших решений по замечанию преподавателя.

Давайте заодно повторим возведение корней в квадрат и другие степени:

Правила действий со степенями в общем виде можно найти в школьном учебнике по алгебре, но, думаю, из приведённых примеров всё или почти всё уже ясно.

Задание для самостоятельного решения с отрезком в пространстве:

Пример 4

Даны точки и . Найти длину отрезка .

Решение и ответ в конце урока.

Существуют три основных системы координат, используемых в геометрии, теоретической механике, других разделах физики: декартова, полярная и сферическая. В этих системах координат вся точка имеет три координаты. Зная координаты 2-х точек, дозволено определить расстояние между этими двумя точками.

Вам понадобится

  • Декартовы, полярные и сферические координаты концов отрезка

Инструкция

1.
Разглядите для начала прямоугольную декартову систему координат. Расположение точки в пространстве в этой системе координат определяется координатами

x,y и z. Из начала координат к точке проводится радиус-вектор. Проекции этого радиус-вектора на координатные оси и будут координатами
этой точки.Пускай у вас сейчас есть две точки с координатами
x1,y1,z1 и x2,y2 и z2 соответственно. 2))

Видео по теме

Существует целая группа заданий (входящих в экзаменационные типы задач), связанная с координатной плоскостью. Это задачи начиная с самых элементарных, которые решаются устно (определение ординаты или абсциссы заданной точки, либо точки симметричной заданной и другие), заканчивая задачами в которых требуется качественное знание, понимание и хорошие навыки (задачи связанные с угловым коэффициентом прямой).

Постепенно мы с вами рассмотрим все их. В этой статье начнём с элементарных. Это простые задачи на определение: абсциссы и ординаты точки, длинны отрезка, середины отрезка, синуса или косинуса угла наклона прямой.
Большинству эти задания будут не интересны. Но изложить их считаю необходимым.

Дело в том, что не все учатся в школе. Очень многие сдают ЕГЭ спустя 3-4 и более лет после её окончания и что такое абсцисса и ордината помнят смутно. Будем разбирать и другие задачи, связанные с координатной плоскостью, не пропустите, подпишитесь, на обновление блога. Теперь н
емного теории.

Построим на координатной плоскости точку А с координатами х= 6, y=3.

Говорят, что абсцисса точки А равна шести, ордината точки А равна трём.

Если выразиться просто, то ось ох это ось абсцисс, ось оу это ость ординат.

То есть, абсцисса это точка на оси ох в которую проецируется точка заданная на координатной плоскости; ордината это точка на оси оу в которую проецируется оговоренная точка.

Длина отрезка на координатной плоскости

Формула для определения длины отрезка, если известны координаты его концов:

Как вы видите, длина отрезка — это длина гипотенузы в прямоугольными треугольнике с катетами равными

Х В – Х А и У В – У А

* * *

Середина отрезка. Её Координаты.

Формула для нахождения координат середины отрезка:

Уравнение прямой проходящей через две данные точки

Формула уравнения прямой походящей через две данные точки имеет вид:

где (х 1
;у 1
) и (х 2
;у 2
) координаты заданных точек.

Подставив значения координат в формулу, она приводится к виду:

y = kx + b
, где k — это угловой коэффициент прямой

Эта информация нам понадобиться при решении другой группы задач связанных с координатной плоскостью. Статья об этом будет, не пропустите!

Что ещё можно добавить?

Угол наклона прямой (или отрезка) это угол между осью оХ и этой прямой, лежит в пределах от 0 до 180 градусов.

Рассмотрим задачи.

Из точки (6;8) опущен перпендикуляр на ось ординат. Найдите ординату основания перпендикуляра.

Основание перпендикуляра опущенного на ось ординат будет иметь координаты (0;8). Ордината равна восьми.

Ответ: 8

Найдите расстояние от точки A
с координатами (6;8) до оси ординат.

Расстояние от точки А до оси ординат равно абсциссе точки А.

Ответ: 6.

A
(6;8) относительно оси Ox
.

Точка симметричная точке А относительно оси оХ имеет координаты (6;– 8).

Ордината равна минус восьми.

Ответ: – 8

Найдите ординату точки, симметричной точке A
(6;8) относительно начала координат.

Точка симметричная точке А относительно начала координат имеет координаты (– 6;– 8).

Её ордината равна – 8.

Ответ: –8

Найдите абсциссу середины отрезка, соединяющего точки
O
(0;0) и
A
(6;8).

Для того, решить поставленную задачу необходимо найти координаты середины отрезка. Координаты концов нашего отрезка (0;0) и (6;8).

Вычисляем по формуле:

Получили (3;4). Абсцисса равна трём.

Ответ: 3

*Абсциссу середины отрезка можно определить без вычисления по формуле, построив данный отрезок на координатной плоскости на листе в клетку. Середину отрезка несложно будет определить по клеткам.

Найдите абсциссу середины отрезка, соединяющего точки A
(6;8) и B
(–2;2).

Для того, решить поставленную задачу необходимо найти координаты середины отрезка. Координаты концов нашего отрезка (–2;2) и (6;8).

Вычисляем по формуле:

Получили (2;5). Абсцисса равна двум.

Ответ: 2

*Абсциссу середины отрезка можно определить без вычисления по формуле, построив данный отрезок на координатной плоскости на листе в клетку.

Найдите длину отрезка, соединяющего точки (0;0) и (6;8).

Длина отрезка при данных координатах его концов вычисляется по формуле:

в нашем случае имеем О(0;0) и А(6;8). Значит,

*Порядок координат при вычитании не имеет значения. Можно из абсциссы и ординаты точки О вычесть абсциссу и ординату точки А:

Ответ:10

Найдите косинус угла наклона отрезка, соединяющего точки O
(0;0) и A
(6;8), с осью абсцисс.

Угол наклона отрезка – это угол между этим отрезком и осью оХ.

Из точки А опустим перпендикуляр на ось оХ:

То есть, угол наклона отрезка это угол
ВОА
в прямоугольном треугольнике АВО.

Косинусом острого угла в прямоугольном треугольнике является

отношение прилежащего катета к гипотенузе

Необходимо найти гипотенузу
ОА.

По теореме Пифагора:
В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов.

Таким образом, косинус угла наклона равен 0,6

Ответ: 0,6

Из точки (6;8) опущен перпендикуляр на ось абсцисс. Найдите абсциссу основания перпендикуляра.

Через точку (6;8) проведена прямая, параллельная оси абсцисс. Найдите ординату ее точки пересечения с осью оУ
.

Найдите расстояние от точки A
с координатами (6;8) до оси абсцисс.

Найдите расстояние от точки A
с координатами (6;8) до начала координат.

Как найти середину отрезка на координатной плоскости?

Как найти середину отрезка на координатной плоскости?

Расстояние между точками определяется модулем разницы их координат, т. е. Из первого равенства выведем формулу для координаты точки C : xC=xA+xB2 x C = x A + x B 2 (полусумма координат концов отрезка). Полученная формула будет основой для определения координат середины отрезка на плоскости или в пространстве.

Как найти точку в векторе?

Основное соотношение. Чтобы найти координаты вектора AB, зная координаты его начальной точек А и конечной точки В, необходимо из координат конечной точки вычесть соответствующие координаты начальной точки.

Как определить широту и долготу на карте?

Важно: Географическая долгота измеряется от 0 до 180° . Чтобы определить географическую широту, нужно от заданной точки провести воображаемую прямую вдоль ближайшей параллели. Это и будет географическая широта. Она будет указана сбоку на карте.

Как найти широту и долготу география?

Важно: Географическая долгота измеряется от 0 до 180° . Чтобы определить географическую широту, нужно от заданной точки провести воображаемую прямую вдоль ближайшей параллели. Это и будет географическая широта.

Как правильно писать географические координаты?

Как правильно вводить координаты

  1. Вместо d используйте символ градуса.
  2. Используйте в качестве десятичного разделителя точку, а не запятую. Неправильно: 2,17403 . …
  3. Указывайте сначала широту, а затем долготу.
  4. Для широты используйте значения в диапазоне от -90 до 90.
  5. Долготу указывайте в диапазоне от -180 до 180.

Как определить квадрат на топографической карте?

Квадрат, в котором находится цель (объект), указывают подписями (номерами) образующих его километровых линий, вначале нижней горизонтальной линии (абсциссы X), а затем левой вертикальной линии (ординаты У).

Что такое квадрат на карте?

Квадрат всегда указывается цифрами километровых линий, пересечением которых образован юго-западный (нижний левый) угол. При указании квадрата карты придерживаются правила: сначала называют две цифры, подписанные у горизонтальной линии (у западной стороны), т. е.

Что значит по улитке 8?

Во многих советских и российских военных фильмах, где по сюжету солдаты вынуждены прибегать к помощи артиллерии в ходя тяжёлого боя, вы могли слышать примерно следующую фразу: Требуется заградительный огонь по квадрату шестьдесят пять-двенадцать по улитке 8.

Как на топографических картах изображаются судоходные реки или судоходные участки рек?

Реки в зависимости от ширины русла изображаются масштабным или внемасштабным (в одну и две линии) условным знаком. … Судоходные реки (участки рек) и каналы выделяются на картах начертанием подписей их названий, которые в отличие от названий несудоходных рек пишутся без выделения заглавной буквы (приложение VII-4).

Каким цветом на топографических картах показаны горизонтали?

Горизонтали — это линии, соединяющие точки с одинаковой абсолютной высотой. Горизонтали обычно наносят коричневым цветом и указывают значения абсолютной высоты в метрах. В легенде карты указывают, через сколько метров высоты проведены горизонтали. Горизонтали помогают определять и крутизну склонов.

Что такое Ситуация на топографических картах и планах?

Ситуация — совокупность контуров и предметов местности. Рельеф — совокупность неровностей земной поверхности. Ситуация и рельеф местности изображаются на топографической карте условными знаками.

Что можно определить по топографической карте?

Топографическая карта содержит сведения об опорных геодезических пунктах, рельефе, гидрографии, растительности, грунтах, хозяйственных и культурных объектах, дорогах, коммуникациях, границах и других объектах местности. Полнота содержания и точность топографических карт позволяют решать технические задачи.

Чем географическая карта отличается от топографического плана?

Главное отличие топографической карты от географической — масштаб: на географической используют мелкий масштаб, на топографической — крупный. … Разное количество деталей — на топографической больше деталей и изображены маленькие объекты.

Для чего создаются топографические карты?

Назначение топографических карт — представить участок конкретной местности в объемном трехмерном изображении. При помощи, так называемых горизонталей изображается рельеф местности. Это линии, соединяющие одинаковые высоты над уровнем моря.

Где используются топографические карты?

Топографические карты необходимы во всех областях хозяйственной деятельности, когда требуется точное и подробное изображение местности: при строительстве, на транспорте, в сельском хозяйстве, промышленности, военном деле и т.

Что обозначают пунктиром на карте?

Пунктиром изображаются четко определяемые на местности контуры участков растительного покрова, грунтов и пашен. Контуры пашен особым условным знаком не заполняются.

Что называется топографической картой?

«Топографическими картами называются такие карты, на которых неровности земной поверхности и все местные предметы изображены настолько подробно, что по ним можно представить действительную местность со всеми ее подробностями.

Что такое план местности кратко?

Теория: Всю Землю и большие её участки наносят на глобус, географические карты, а при изображении небольших территорий используют план местности. План местности — это чертёж, на котором условными знаками подробно показана небольшая территория в уменьшенном виде. План местности необходим людям многих профессий.

Калькулятор конечной точки

Создано Maciej Kowalski, кандидатом наук

Отредактировано Bogna Szyk и Jack Bowater

Последнее обновление: 26 сентября 2022 г.

Содержание:

  • Определение конечной точки в геометрии
  • Как найти конечную точку?
  • Формула конечной точки
  • Пример: использование калькулятора отсутствующей конечной точки
  • Часто задаваемые вопросы

Добро пожаловать в Omni калькулятор конечной точки , где мы узнаем как найти конечную точку сегмента линии , если мы знаем его другой конец и его середину. Как вы могли догадаться, эта тема связана с вычислением средней точки, поэтому формула конечной точки очень похожа на формулу калькулятора средней точки . Но, прежде чем мы углубимся в детали, мы медленно пройдемся по определению конечной точки в геометрии, чтобы лучше понять, с чем мы здесь имеем дело.

Итак, расслабьтесь, заварите себе чашку чая в дорогу, и приступим к делу !

Определение конечной точки в геометрии

В просторечии конечная точка — это точка, которая лежит на конце . Мы уверены, что это заявление было для вас таким же шоком, как и для нас, когда мы услышали его впервые. Но, с другой стороны, баклажан на вкус совсем не похож на яйцо, так что никогда нельзя быть слишком уверенным в угадывании значения слова , не так ли?

Однако бывают случаи, например, когда вы делите пиццу на несколько человек, когда вам нужно быть чуть точнее , а к кому еще обратиться за этим , как не к математикам ?

В своей простейшей форме определение конечной точки в геометрии фокусируется на отрезках , то есть прямых линиях, соединяющих две точки. Да, вы уже догадались — эти точки называются конечными точками . Обратите внимание, что в соответствии с этим определением каждый сегмент имеет две конечные точки (если только это не вырожденный случай, когда они являются одной и той же точкой, т. е. интервал представляет собой одну точку).

Для простоты расчетов назовем одну из них начальной точкой (как это сделано в калькуляторе конечных точек). Имейте в виду, однако, что начало может быть концом, если вы посмотрите на это с другой стороны .

Вот это прозвучало жутко философски , тебе не кажется? Но давайте оставим « Кто мы и куда мы идем?» вопросов на тот случай, когда мы не можем заснуть. Мы должны сосредоточиться на сегментах, которые мы упомянули, и на том, как найти конечные точки.0003

Как найти конечную точку?

Для того, чтобы получить конечную точку, нам нужно иметь некоторую точку отсчета для начала. Другими словами, поскольку мы имеем дело с сегментом линии и одним из его компонентов, , нам нужно знать, как выглядит остальная часть .

Простейшая и наиболее распространенная ситуация, когда нам не хватает конечной точки, хотя мы знаем начальную точку и середину . Последний — это просто, как следует из названия, точка, обозначающая середину сегмента. Это все, что нам нужно, чтобы найти конечную точку; в конце концов, он должен лежать на другом конце средней точки от начальной точки и находиться на таком же расстоянии.

Следовательно, интуитивно мы можем уже геометрически описать, как найти конечную точку .

  1. Имея начальную точку AAA и среднюю точку BBB, нарисуйте отрезок , соединяющий их.
  2. Нарисуйте линию , идущую дальше от BBB от AAA до бог знает куда.
  3. Измерьте расстояние от AAA до BBB и отметьте то же расстояние от BBB в обратном направлении.
  4. Приступайте к победному танцу .

Однако есть люди (и мы не утверждаем, что мы из тех людей), которым не очень нравится рисовать линии . Ведь для этого нужна линейка, а Лорд трудно найти… (Да, это была ужасная шутка, и мы склоняем головы от стыда. Но, тем не менее, с легким хихиканьем.)

🔎 Вместо рисования линий , вы можете использовать наш калькулятор расстояния для двух заданных точек.

Во всяком случае, для людей, предпочитающих числа и расчеты (и мы могли бы на самом деле предположить, что мы являемся этими людьми), мы сосредоточимся на том, как найти конечную точку алгебраически в следующем разделе. Пожалуйста, не бойтесь слова «алгебраически» — через секунду вы увидите, как оно переводится как « легко и без усилий » — девиз нашего недостающего калькулятора конечной точки .

Формула конечной точки

В координатной геометрии мы работаем с объектами, которые встроены в то, что мы называем евклидовым пространством . Сейчас не так важно понимать его математическое определение, но для наших целей достаточно знать, что это означает, что в таких пространствах точки , скажем, ААА или ВВВ, имеют две координаты : A=(x1 ,y1)A = (x_1, y_1)A=(x1​,y1​) и B=(x2,y2)B = (x_2, y_2)B=(x2​,y2​).

Числа x1x_1x1​ и x2x_2x2​ обозначают положение точек относительно горизонтальной оси (обычно обозначаются xxx), а y1y_1y1​ и y2y_2y2​ используются для вертикальной оси (чаще всего обозначаются yyy). Вместе такая пара чисел (x1,y1)(x_1, y_1)(x1​,y1​) определяет точку в пространстве . Более того, координаты помогают нам анализировать более сложные объекты в нашем евклидовом пространстве . Например, они появляются в формуле конечной точки .

Скажем, у вас есть отрезок, идущий от A=(x1,y1)A = (x_1, y_1)A=(x1​,y1​) к… ну, мы пока не знаем. Теперь мы объясним как найти конечную точку B=(x2,y2)B = (x_2, y_2)B=(x2​,y2​) если мы знаем середину M=(x,y)M = (х, у)М=(х,у).

Из определения средней точки мы знаем, что расстояние от AAA до MMM должно быть таким же, как расстояние от MMM до BBB. Просто B находится с другой стороны. Это означает, что для нахождения ВВВ достаточно « сдвинуть » МММ по прямой, проходящей через ААА и МММ, на ту же длину, что и отрезок АМАМАМ. Или, если хотите пофантазировать, вектором АМАМАМ.

Другими словами, имеем:

x2=x+(x−x1)=2x−x1x_2 = x + (x — x_1) = 2x — x_1x2​=x+(x−x1​)=2x−x1​, и

y2=y+(y−y1)=2y−y1y_2 = y + (y — y_1) = 2y — y_1y2​=y+(y−y1​)=2y−y1​.

Подводя итог, если вам нравится иметь всю необходимую информацию в одном абзаце , то вот она.

💡 Конечная точка отрезка, идущего от A=(x1,y1)A = (x_1, y_1)A=(x1​,y1​) к средней точке M=(x,y)M = (x, y)M=(x,y) — это точка B=(2x−x1,2y−y1)B = (2x — x_1, 2y — y_1)B=(2x−x1​,2y−y1​).

Обратите внимание, что выше мы упомянули линию, проходящую через A и М . Такие линии весьма полезны при обучении нахождению конечной точки или средней точки . Ведь в этой строке содержится отрезок AB . Если для вашего упражнения или задачи требуется дополнительная информация о них, ознакомьтесь с калькуляторами координатной геометрии Omni и найдите тот, который соответствует вашим потребностям !

Уф, сколько времени было потрачено на теорию! Как насчет того, чтобы оставить эту техническую чепуху и посмотреть числовой пример ? В конце концов, время – это деньги, по крайней мере, так говорит нам формула временной стоимости денег!

Пример: использование отсутствующего калькулятора конечной точки

Допустим, четыре месяца назад вы начали размещать видео на YouTube. Ничего особенного, просто несколько рецептов приготовления, которые являются традиционными для вашего региона. Это началось как хобби, но человек, похоже, наслаждаются шоу , и вы видите число зрителей, линейно увеличивающееся со временем . Почему бы нам не попытаться найти отсутствующую конечную точку с помощью нашего калькулятора, чтобы проверить сколько их должно быть через четыре месяца ?

Прежде всего, обратите внимание, что, хотя проблема вовсе не кажется геометрической, мы действительно можем найти ответ, используя определение конечной точки из геометрии . В конце концов, отправной точкой, то есть нулевым месяцем, было время, когда вы начали публиковать видео, так что на тот момент у нас было 90 157 0 90 158 зрителей. Сейчас мы находимся на четвертом месяце, который будет нашей средней точкой (поскольку мы хотим найти количество зрителей еще через четыре месяца). Другими словами, конечной точкой будет наш ответ .

Скажем, что на данный момент, у вас 54000 подписчиков , и давайте попробуем перевести все эти данные таким образом, чтобы калькулятор конечной точки понял, что мы от него хотим.

Согласно приведенному выше разделу, чтобы найти ответ, нам нужна начальная точка и средняя точка . Обозначим их A = (x₁, y₁) и M = (x, y) соответственно. Для нас x будут обозначать количество месяцев в нас , а y будет количество зрителей . Поскольку нашей отправной точкой был нулевой месяц, а сейчас прошло 4 месяца, у нас есть (и мы можем ввести в калькулятор конечной точки)

x₁ = 0 ,

x = 4 .

Теперь пришло время для абонентов . Опять же, отправная точка была, когда у нас никого не было, а сейчас, спустя четыре месяца, мы на 54 000 . Следовательно, имеем

y₁ = 0 ,

г = 54 000 .

Как только мы введем все эти данные в калькулятор конечной точки, он выдаст ответ . Но давайте пока не будем раскрывать это! Как насчет того, чтобы увидеть , как найти конечную точку самостоятельно, используя формулу конечной точки ?

Давайте возьмем лист бумаги и вспомним информацию, которую мы уже упоминали выше. Наша начальная точка была в нулевой месяц с нулевым количеством подписчиков , что означает, что наша начальная точка A = (0, 0) . Сейчас , мы находимся на четвертом месяце с 54 000 подписчиков , что наполовину меньше того, что мы хотели бы рассчитать. Это означает, что наша средняя точка равна (4, 54,000) .

Все, что нам нужно сделать сейчас, это использовать формулу конечной точки из предыдущего раздела. Если обозначить координаты конечной точки как B = (x₂, y₂) , то

x₂ = 2*4 - 0 = 8 ,

y₂ = 2*54 000 - 0 = 108 0080 .

Это означает, что если тренд продолжится, мы должны получить 108,000 подписчиков за четыре месяца . Теперь, это довольно много, если вы спросите нас! К счастью, все это делается онлайн, поэтому проблем с социальным дистанцированием быть не должно. А теперь иди и воплощай свои кулинарные мечты!

Часто задаваемые вопросы

Как найти отсутствующую конечную точку?

Предположим, что у вас есть конечная точка A = (x₁, y₁) и средняя точка M = (x, y) :

  1. Двойной координаты средних точек: 2x , 2 года .

  2. Вычтите координату x известной конечной точки из первого значения , чтобы получить координату x отсутствующей конечной точки: x₂ = 2x - x₁ .

  3. Вычтите координату y известной конечной точки из второго значения , чтобы получить координату y отсутствующей конечной точки: y₂ = 2y - y₁ .

  4. Отлично, вы нашли недостающую конечную точку: B = (x₂, y₂) .

Могут ли одна из конечных точек и средняя точка иметь одинаковые координаты?

. Если конечная точка и средняя точка имеют одинаковые координаты, расстояние между ними равно нулю. Следовательно, вторая конечная точка тоже должна иметь точные координаты, а все три представляют собой одну точку, а не отрезок .

Какова другая конечная точка отрезка с одной конечной точкой в ​​(1,3) и средней точкой в ​​(3,5)?

Чтобы найти вторую конечную точку:

  1. Двойные координаты средних точек:
    2x = 6 , 2y = 10 .

  2. Вычтите первое значение и известную координату x конечной точки:
    6 - 1 = 5 .

  3. Вычтите второе значение и известную координату y конечной точки:
    10 - 3 = 7 .

  4. Результирующие разности представляют собой x- и y-координаты отсутствующей конечной точки соответственно:
    Б = (5,7) .

Какое расстояние между двумя конечными точками (3,5) и (6,6)?

Для оценки недостающего расстояния:

  1. Найти разность между соответствующими координатами :
    Δx = 6 - 3 = 3 , Δy = 6 - 5 = 1 .

  2. Возведение обеих разностей в квадрат :
    (Δx)² = 3² = 9 , (Δy)² = 1² = 1 .

  3. Добавьте эти два значения:
    (Δx)² + (Δy)² = 9 + 1 = 10 .

  4. Извлеките квадратный корень из суммы :
    √((Δx)² + (Δy)²) = √10 .

  5. Хорошая работа! Искомое расстояние равно √10 , что примерно равно 3,16 .

Мацей Ковальский, кандидат наук

Координаты начальной точки

Координаты средней точки

Координаты конечной точки

Ознакомьтесь с 38 похожими калькуляторами координатной геометрии 📈

Средняя скорость измененияБилинейная интерполяцияКатенарная кривая… Еще 35

Середина | Superprof

Как следует из названия, формула средней точки находит середину отрезка. Неважно, какой длины линия или в каком направлении она идет, вы можете использовать эту формулу на любой прямой линии, которую хотите. Единственное условие - это должна быть линейная линия, вы не можете использовать эту формулу на кривой. Общее определение состоит в том, что середина — это точка на отрезке, которая делит отрезок на две равные части. Иногда она может стать точкой симметрии, но это другой разговор, и мы обсудим его позже в этом блоге.

В координатной геометрии существует множество формул, но есть что-то уникальное в формуле средней точки. Это единственная формула в координатной геометрии, которая может найти две координаты в одном решении. Ниже приведена формула для вычисления середины отрезка:

Представьте прямую, которая начинается в точке A и заканчивается в точке B. Чтобы вычислить середину этой линии, вам нужно знать координаты обеих точек.

Середина этой линии представлена ​​как M на картинке выше. Поскольку у вас есть координаты обеих точек, теперь вы можете использовать формулу средней точки, чтобы найти координаты M. Либо вы можете использовать приведенную выше формулу напрямую, чтобы найти среднюю точку, либо разбить ее на два шага. Оба метода просты, но второй метод немного дольше, но вероятность ошибки меньше. Первый шаг состоит в том, чтобы добавить координату x обеих точек, а затем сделать то же самое с координатой y.

Второй шаг - разделить их оба на и вот как вы найдете середину, используя второй метод:

Примеры

Вычислить координаты середины отрезка AB.

Вычислите координаты точки C на отрезке AC, зная, что середина равна , а конечная точка .

Если и являются серединами сторон, составляющих треугольник, то каковы координаты вершин?

Если отрезок AB с концами и разделен на четыре равные части, каковы координаты точек деления?

Q  is the midpoint of AB

is the midpoint of AQ

is the midpoint of  QB

The best Maths tutors available

Поехали

Симметричная точка

Предположим, есть точка A и другая точка A'. Между обеими точками есть середина. Если обе точки равноудалены от средней точки и обе точки также совпадают друг с другом, если одна из них повернута, то можно с уверенностью сказать, что средняя точка является точкой симметрии. Проще говоря, если A' является симметричным A относительно M, , то M является серединой отрезка 9.0021 АА'.

Вычислить симметричную точку с серединой .

Вычислите симметричную точку средней точки.

Три коллинеарные точки

Слово «коллинеарность» означает, что два или более объекта или вещи лежат на одной линии. В мире координатной геометрии коллинеарные точки означают, что две или более точек, лежащих на одной линии, независимо от того, как далеко они находятся, будут коллинеарными точками.

Определить, являются ли и совмещенными точками.

Рассчитайте значение a в следующих выровненных точках.

Координаты центра тяжести

Каждый объект в этой вселенной имеет центральную точку. В области физики это очень важная вещь. На самом деле, у них есть отдельный поддомен для этого. Найти центр непросто, существуют разные методы нахождения центра для разных объектов. В случае треугольников мы используем понятие центроида. В координатной геометрии координаты центроида определяют центр треугольника. Его находят тремя линейными линиями, пересекающими центр каждой стороны треугольника. Точка, в которой пересекаются все три линии, является точкой центра, рассмотрим приведенную выше диаграмму в качестве примера. У каждой стороны есть линия, проходящая через центр каждой стороны соответственно. Точка G — это точка, где пересекаются все три линии, и это центр треугольника. Ниже приведена формула для нахождения координат центра треугольника.

Обратите внимание, что эта формула действительна только для треугольника, если вы попытаетесь использовать эту формулу для других форм или объектов, она не будет работать.

Учитывая вершины треугольника и , вычислить координаты центроида.

Если две вершины треугольника равны и , а центр тяжести равен , вычислите третью вершину.

Если вы можете найти середину отрезка, вы можете разделить его на две равные части. Нахождение середины каждой из двух равных частей позволяет найти точки, необходимые для разделения всего отрезка на четыре равные части. Нахождение середины каждого из этих сегментов дает вам восемь равных частей и так далее.

Разделение отрезка

Вы можете разделить отрезок на множество равных частей. Это зависит от того, сколько частей вы хотите, но одно можно сказать наверняка, что все эти части будут равными. Разделите отрезок на две части, найдя его середину. Теперь у вас есть две части: начало линии до середины и от середины до конечной точки.

No related posts.

Содержание:

Декартовы координаты на плоскости:

Изучая материал этой лекции, вы расширите свои знания о координатной плоскости.

Вы научитесь находить длину отрезка и координаты его середины, зная координаты его концов.

Сформируете представление об уравнении фигуры, выведете уравнения прямой и окружности.

Ознакомитесь с методом координат, позволяющим решать геометрические задачи средствами алгебры.

Расстояние между двумя точками с заданными координатами. Координаты середины отрезка

В 6 классе вы ознакомились с координатной плоскостью, то есть с плоскостью, на которой изображены две перпендикулярные координатные прямые (ось абсцисс и ось ординат) с общим началом отсчета (рис. 8.1). Вы умеете отмечать на ней точки по их координатам и наоборот, находить координаты точки, отмеченной на координатной плоскости.

Декартовы координаты на плоскости - определение и примеры с решением

Договорились координатную плоскость с осью Декартовы координаты на плоскости - определение и примеры с решением

Координаты точки на плоскости Декартовы координаты на плоскости - определение и примеры с решением называют декартовыми координатами в честь французского математика Рене Декарта (см. рассказ на с. 103).

Декартовы координаты на плоскости - определение и примеры с решением

Вы знаете, как находить расстояние в между двумя точками, заданными своими координатами на координатной прямой. Для точек Декартовы координаты на плоскости - определение и примеры с решением (рис. 8.2) имеем:

Декартовы координаты на плоскости - определение и примеры с решением

Научимся находить расстояние между точками Декартовы координаты на плоскости - определение и примеры с решениемзаданными на плоскости Декартовы координаты на плоскости - определение и примеры с решением

Рассмотрим случай, когда отрезок Декартовы координаты на плоскости - определение и примеры с решением не перпендикулярен ни одной из координатных осей (рис. 8.3).

Через точки Декартовы координаты на плоскости - определение и примеры с решением проведем прямые, перпендикулярные координатным осям. Получим прямоугольный треугольник Декартовы координаты на плоскости - определение и примеры с решением в котором Декартовы координаты на плоскости - определение и примеры с решением Отсюда Декартовы координаты на плоскости - определение и примеры с решениемДекартовы координаты на плоскости - определение и примеры с решением

Тогда формулу расстояния между точками Декартовы координаты на плоскости - определение и примеры с решением можно записать так:

Декартовы координаты на плоскости - определение и примеры с решением

Докажите самостоятельно, что эта формула остается верной и для случая, когда отрезок Декартовы координаты на плоскости - определение и примеры с решением перпендикулярен одной из осей координат.

Пусть Декартовы координаты на плоскости - определение и примеры с решением — точки плоскости Декартовы координаты на плоскости - определение и примеры с решением Найдем координаты Декартовы координаты на плоскости - определение и примеры с решением точки Декартовы координаты на плоскости - определение и примеры с решением — середины отрезка Декартовы координаты на плоскости - определение и примеры с решением

Декартовы координаты на плоскости - определение и примеры с решением

Рассмотрим случай, когда отрезок Декартовы координаты на плоскости - определение и примеры с решением не перпендикулярен ни одной из координатных осей (рис. 8.4). Будем считать, что Декартовы координаты на плоскости - определение и примеры с решением (случай, когда Декартовы координаты на плоскости - определение и примеры с решениемрассматривается аналогично). Через точки Декартовы координаты на плоскости - определение и примеры с решениемДекартовы координаты на плоскости - определение и примеры с решением проведем прямые, перпендикулярные оси абсцисс, которые пересекут эту ось соответственно в точках Декартовы координаты на плоскости - определение и примеры с решением По теореме Фалеса Декартовы координаты на плоскости - определение и примеры с решением тогда Декартовы координаты на плоскости - определение и примеры с решением Поскольку Декартовы координаты на плоскости - определение и примеры с решениемто можем записать: Декартовы координаты на плоскости - определение и примеры с решением Отсюда Декартовы координаты на плоскости - определение и примеры с решением Аналогично можно показать что Декартовы координаты на плоскости - определение и примеры с решением

Формулы для нахождения координат середины отрезка остаются верными и для случая, когда отрезок Декартовы координаты на плоскости - определение и примеры с решением перпендикулярен одной из осей координат. Докажите это самостоятельно.

Пример №1

Докажите, что треугольник с вершинами в точках Декартовы координаты на плоскости - определение и примеры с решением является равнобедренным прямоугольным.

Решение:

Используя формулу расстояния между двумя точками, найдем стороны данного треугольника:

Декартовы координаты на плоскости - определение и примеры с решением

Следовательно, Декартовы координаты на плоскости - определение и примеры с решением то есть треугольник Декартовы координаты на плоскости - определение и примеры с решением равнобедренный.

Поскольку Декартовы координаты на плоскости - определение и примеры с решением то треугольник Декартовы координаты на плоскости - определение и примеры с решением прямоугольный. Декартовы координаты на плоскости - определение и примеры с решением

Пример №2

Точка Декартовы координаты на плоскости - определение и примеры с решением — середина отрезка Декартовы координаты на плоскости - определение и примеры с решением Найдите координаты точки Декартовы координаты на плоскости - определение и примеры с решением

Решение:

Обозначим Декартовы координаты на плоскости - определение и примеры с решением — координаты точки Декартовы координаты на плоскости - определение и примеры с решениемДекартовы координаты на плоскости - определение и примеры с решением — координаты точки Декартовы координаты на плоскости - определение и примеры с решением — координаты точки Декартовы координаты на плоскости - определение и примеры с решением

Поскольку Декартовы координаты на плоскости - определение и примеры с решением то получаем: Декартовы координаты на плоскости - определение и примеры с решением

Аналогично Декартовы координаты на плоскости - определение и примеры с решением

Ответ: Декартовы координаты на плоскости - определение и примеры с решением

Пример №3

Докажите, что четырехугольник Декартовы координаты на плоскости - определение и примеры с решением с вершинами в точках Декартовы координаты на плоскости - определение и примеры с решением является прямоугольником.

Решение:

Пусть точка Декартовы координаты на плоскости - определение и примеры с решением — середина диагонали Декартовы координаты на плоскости - определение и примеры с решением Тогда

Декартовы координаты на плоскости - определение и примеры с решением

Следовательно, Декартовы координаты на плоскости - определение и примеры с решением

Пусть точка Декартовы координаты на плоскости - определение и примеры с решением — середина диагонали Декартовы координаты на плоскости - определение и примеры с решением Тогда

Декартовы координаты на плоскости - определение и примеры с решением

Следовательно, Декартовы координаты на плоскости - определение и примеры с решением

Таким образом, точки Декартовы координаты на плоскости - определение и примеры с решением совпадают, то есть диагонали четырехугольника Декартовы координаты на плоскости - определение и примеры с решением имеют общую середину. Отсюда следует, что четырехугольник Декартовы координаты на плоскости - определение и примеры с решением — параллелограмм.

Найдем диагонали параллелограмма:

Декартовы координаты на плоскости - определение и примеры с решением

Следовательно, диагонали параллелограмма Декартовы координаты на плоскости - определение и примеры с решением равны. Отсюда следует, что этот параллелограмм является прямоугольником. Декартовы координаты на плоскости - определение и примеры с решением

Уравнение фигуры. Уравнение окружности

Из курса алгебры 7 класса вы знаете, какую фигуру называют графиком уравнения. В этом пункте вы ознакомитесь с понятием уравнения фигуры.

Координаты Декартовы координаты на плоскости - определение и примеры с решением каждой точки параболы, изображенной на рисунке 9.1, являются решением уравнения Декартовы координаты на плоскости - определение и примеры с решением И наоборот, каждое решение уравнения с двумя переменными Декартовы координаты на плоскости - определение и примеры с решением является координатами точки, лежащей на этой параболе. В этом случае говорят, что уравнение параболы, изображенной на рисунке 9.1, имеет вид Декартовы координаты на плоскости - определение и примеры с решением

Декартовы координаты на плоскости - определение и примеры с решением

Определение. Уравнением фигуры Декартовы координаты на плоскости - определение и примеры с решением заданной на плоскости Декартовы координаты на плоскости - определение и примеры с решением называют уравнение с двумя переменными Декартовы координаты на плоскости - определение и примеры с решением обладающее следующими свойствами:

  1. если точка принадлежит фигуре Декартовы координаты на плоскости - определение и примеры с решением то ее координаты являются решением данного уравнения;
  2. любое решение Декартовы координаты на плоскости - определение и примеры с решением данного уравнения является координатами точки, принадлежащей фигуре Декартовы координаты на плоскости - определение и примеры с решением

Например, уравнение прямой, изображенной на рисунке 9.2, имеет вид Декартовы координаты на плоскости - определение и примеры с решением а уравнение гиперболы, изображенной на рисунке 9.3, имеет вид Декартовы координаты на плоскости - определение и примеры с решением Принято говорить, что, например, уравнения Декартовы координаты на плоскости - определение и примеры с решением задают прямую и гиперболу соответственно.

Декартовы координаты на плоскости - определение и примеры с решением

Если данное уравнение является уравнением фигуры Декартовы координаты на плоскости - определение и примеры с решением то эту фигуру можно рассматривать как геометрическое место точек (ГМТ), координаты которых удовлетворяют данному уравнению.

Пользуясь этими соображениями, выведем уравнение окружности радиуса Декартовы координаты на плоскости - определение и примеры с решением с центром в точке Декартовы координаты на плоскости - определение и примеры с решением

Пусть Декартовы координаты на плоскости - определение и примеры с решением — произвольная точка данной окружности (рис. 9.4). Тогда Декартовы координаты на плоскости - определение и примеры с решением Используя формулу расстояния между точками, получим:

Декартовы координаты на плоскости - определение и примеры с решением

Отсюда

Декартовы координаты на плоскости - определение и примеры с решением

Мы показали, что координаты Декартовы координаты на плоскости - определение и примеры с решением произвольной точки Декартовы координаты на плоскости - определение и примеры с решением данной окружности являются решением уравнения Декартовы координаты на плоскости - определение и примеры с решением Теперь покажем, что любое решение уравнения Декартовы координаты на плоскости - определение и примеры с решением является координатами точки, принадлежащей данной окружности.

Пусть пара чисел Декартовы координаты на плоскости - определение и примеры с решением — произвольное решение уравнения Декартовы координаты на плоскости - определение и примеры с решением

Тогда Декартовы координаты на плоскости - определение и примеры с решением Отсюда Декартовы координаты на плоскости - определение и примеры с решением

Это равенство показывает, что точка Декартовы координаты на плоскости - определение и примеры с решением удалена от центра окружности Декартовы координаты на плоскости - определение и примеры с решением на расстояние, равное радиусу окружности, а следовательно, точка Декартовы координаты на плоскости - определение и примеры с решением принадлежит данной окружности.

Итак, мы доказали следующую теорему.

Теорема 9.1. Уравнение окружности радиуса Декартовы координаты на плоскости - определение и примеры с решением с центром в точке Декартовы координаты на плоскости - определение и примеры с решением имеет вид

Декартовы координаты на плоскости - определение и примеры с решением

Верно и такое утверждение: любое уравнение вида Декартовы координаты на плоскости - определение и примеры с решением где Декартовы координаты на плоскости - определение и примеры с решением некоторые числа, причем Декартовы координаты на плоскости - определение и примеры с решением является уравнением окружности радиуса Декартовы координаты на плоскости - определение и примеры с решением с центром в точке с координатами Декартовы координаты на плоскости - определение и примеры с решением

Если центром окружности является начало координат (рис. 9.5), то Декартовы координаты на плоскости - определение и примеры с решением В этом случае уравнение окружности имеет вид Декартовы координаты на плоскости - определение и примеры с решением

Декартовы координаты на плоскости - определение и примеры с решением

Пример №4

Составьте уравнение окружности, диаметром которой является отрезок Декартовы координаты на плоскости - определение и примеры с решением если Декартовы координаты на плоскости - определение и примеры с решением

Решение:

Поскольку центр окружности является серединой диаметра, то можем найти координаты Декартовы координаты на плоскости - определение и примеры с решением центра Декартовы координаты на плоскости - определение и примеры с решением окружности:

Декартовы координаты на плоскости - определение и примеры с решением

Следовательно, Декартовы координаты на плоскости - определение и примеры с решением

Радиус окружности Декартовы координаты на плоскости - определение и примеры с решением равен отрезку Декартовы координаты на плоскости - определение и примеры с решением Тогда

Декартовы координаты на плоскости - определение и примеры с решением

Следовательно, искомое уравнение имеет вид

Декартовы координаты на плоскости - определение и примеры с решением

Ответ: Декартовы координаты на плоскости - определение и примеры с решением

Пример №5

Докажите, что уравнение Декартовы координаты на плоскости - определение и примеры с решением задает окружность. Найдите координаты центра и радиус этой окружности.

Решение:

Представим данное уравнение в виде Декартовы координаты на плоскости - определение и примеры с решением

Декартовы координаты на плоскости - определение и примеры с решением

Следовательно, данное уравнение является уравнением окружности с центром в точке Декартовы координаты на плоскости - определение и примеры с решением и радиусом Декартовы координаты на плоскости - определение и примеры с решением

Ответ: Декартовы координаты на плоскости - определение и примеры с решением

Пример №6

Докажите, что треугольник с вершинами в точках Декартовы координаты на плоскости - определение и примеры с решением является прямоугольным, и составьте уравнение окружности, описанной около треугольника Декартовы координаты на плоскости - определение и примеры с решением

Решение:

Найдем квадраты сторон данного треугольника:

Декартовы координаты на плоскости - определение и примеры с решением

Поскольку Декартовы координаты на плоскости - определение и примеры с решением то данный треугольник является прямоугольным с прямым углом при вершине Декартовы координаты на плоскости - определение и примеры с решением Центром описанной окружности является середина гипотенузы Декартовы координаты на плоскости - определение и примеры с решением — точка Декартовы координаты на плоскости - определение и примеры с решением радиус окружности Декартовы координаты на плоскости - определение и примеры с решениемСледовательно, искомое уравнение имеет вид

Декартовы координаты на плоскости - определение и примеры с решением

Ответ: Декартовы координаты на плоскости - определение и примеры с решением

Уравнение прямой

В предыдущем пункте, рассматривая окружность как ГМТ, равноудаленных от данной точки, мы вывели ее уравнение. Для того чтобы вывести уравнение прямой, рассмотрим ее как ГМТ, равноудаленных от двух данных точек.

Декартовы координаты на плоскости - определение и примеры с решением

Пусть Декартовы координаты на плоскости - определение и примеры с решением — данная прямая. Выберем две точки Декартовы координаты на плоскости - определение и примеры с решением и Декартовы координаты на плоскости - определение и примеры с решением так, чтобы прямая Декартовы координаты на плоскости - определение и примеры с решением была серединным перпендикуляром отрезка Декартовы координаты на плоскости - определение и примеры с решением (рис. 10.1).

Пусть Декартовы координаты на плоскости - определение и примеры с решением — произвольная точка прямой Декартовы координаты на плоскости - определение и примеры с решением Тогда по свойству серединного перпендикуляра отрезка выполняется равенство Декартовы координаты на плоскости - определение и примеры с решением то есть

Декартовы координаты на плоскости - определение и примеры с решением

Мы показали, что координаты Декартовы координаты на плоскости - определение и примеры с решением произвольной точки Декартовы координаты на плоскости - определение и примеры с решением прямой Декартовы координаты на плоскости - определение и примеры с решением являются решением уравнения Декартовы координаты на плоскости - определение и примеры с решением

Теперь покажем, что любое решение уравнения Декартовы координаты на плоскости - определение и примеры с решением является координатами точки, принадлежащей данной прямой Декартовы координаты на плоскости - определение и примеры с решением

Пусть Декартовы координаты на плоскости - определение и примеры с решением — произвольное решение уравнения Декартовы координаты на плоскости - определение и примеры с решением Тогда Декартовы координаты на плоскости - определение и примеры с решением Это равенство означает, что точка Декартовы координаты на плоскости - определение и примеры с решением равноудалена от точек Декартовы координаты на плоскости - определение и примеры с решением следовательно, точка Декартовы координаты на плоскости - определение и примеры с решением принадлежит серединному перпендикуляру отрезка Декартовы координаты на плоскости - определение и примеры с решением то есть прямой Декартовы координаты на плоскости - определение и примеры с решением

Итак, мы доказали, что уравнение Декартовы координаты на плоскости - определение и примеры с решением является уравнением данной прямой Декартовы координаты на плоскости - определение и примеры с решением

Однако из курса алгебры 7 класса вы знаете, что уравнение прямой выглядит гораздо проще, а именно: Декартовы координаты на плоскости - определение и примеры с решением где Декартовы координаты на плоскости - определение и примеры с решением и Декартовы координаты на плоскости - определение и примеры с решением — некоторые числа, причем Декартовы координаты на плоскости - определение и примеры с решением не равны нулю одновременно. Покажем, что уравнение Декартовы координаты на плоскости - определение и примеры с решением можно преобразовать к такому виду. Возведем обе части уравнения Декартовы координаты на плоскости - определение и примеры с решением в квадрат. Имеем:

Декартовы координаты на плоскости - определение и примеры с решением

Раскроем скобки и приведем подобные слагаемые. Получим:

Декартовы координаты на плоскости - определение и примеры с решением

Обозначив Декартовы координаты на плоскости - определение и примеры с решением получим уравнение Декартовы координаты на плоскости - определение и примеры с решением

Поскольку точки Декартовы координаты на плоскости - определение и примеры с решением различны, то хотя бы одна из разностей Декартовы координаты на плоскости - определение и примеры с решением не равна нулю. Следовательно, числа Декартовы координаты на плоскости - определение и примеры с решением и Декартовы координаты на плоскости - определение и примеры с решением не равны нулю одновременно.

Итак, мы доказали следующую теорему.

Теорема 10.1. Уравнение прямой имеет вид?

Декартовы координаты на плоскости - определение и примеры с решением

где Декартовы координаты на плоскости - определение и примеры с решением — некоторые числа, причем Декартовы координаты на плоскости - определение и примеры с решением не равны нулю одновременно.

Верно и такое утверждение: любое уравнение вида Декартовы координаты на плоскости - определение и примеры с решением где Декартовы координаты на плоскости - определение и примеры с решением — некоторые числа, причем Декартовы координаты на плоскости - определение и примеры с решением не равны нулю одновременно, является уравнением прямой.

Если Декартовы координаты на плоскости - определение и примеры с решением то графиком уравнения Декартовы координаты на плоскости - определение и примеры с решением является вся плоскость Декартовы координаты на плоскости - определение и примеры с решениемЕсли Декартовы координаты на плоскости - определение и примеры с решением то уравнение не имеет решений.

Из курса алгебры 7 класса вы знаете, что уравнение вида Декартовы координаты на плоскости - определение и примеры с решением называют линейным уравнением с двумя переменными. Уравнение прямой является частным видом линейного уравнения. Схема, изображенная на рисунке 10.2, иллюстрирует сказанное.

Декартовы координаты на плоскости - определение и примеры с решением

на уроках алгебры в 7 классе мы приняли без доказательства тот факт, что графиком линейной функции Декартовы координаты на плоскости - определение и примеры с решением является прямая. Сейчас мы можем это доказать.

Перепишем уравнение Декартовы координаты на плоскости - определение и примеры с решением Мы получили уравнение вида Декартовы координаты на плоскости - определение и примеры с решением для случая, когда Декартовы координаты на плоскости - определение и примеры с решением Поскольку в этом уравнении Декартовы координаты на плоскости - определение и примеры с решением то мы получили уравнение прямой.

А любую ли прямую на плоскости можно задать уравнением вида Декартовы координаты на плоскости - определение и примеры с решениемОтвет на этот вопрос отрицательный.

Дело в том, что прямая, перпендикулярная оси абсцисс, не может являться графиком функции, а следовательно, не может быть задана уравнением вида Декартовы координаты на плоскости - определение и примеры с решением

Вместе с тем, если в уравнении прямой Декартовы координаты на плоскости - определение и примеры с решением принять Декартовы координаты на плоскости - определение и примеры с решением то его можно переписать так: Декартовы координаты на плоскости - определение и примеры с решением Мы получили частный вид уравнения прямой, все точки которой имеют одинаковые абсциссы. Следовательно, эта прямая перпендикулярна оси абсцисс. Ее называют вертикальной.

Если Декартовы координаты на плоскости - определение и примеры с решением то уравнение прямой Декартовы координаты на плоскости - определение и примеры с решением можно записать так:

Декартовы координаты на плоскости - определение и примеры с решением Обозначив Декартовы координаты на плоскости - определение и примеры с решением получим уравнение Декартовы координаты на плоскости - определение и примеры с решением

Следовательно, если Декартовы координаты на плоскости - определение и примеры с решением то уравнение прямой Декартовы координаты на плоскости - определение и примеры с решением задает вертикальную прямую; если Декартовы координаты на плоскости - определение и примеры с решением то это уравнение задает невертикальную прямую.

Уравнение невертикальной прямой удобно записывать в виде Декартовы координаты на плоскости - определение и примеры с решением

Данная таблица подытоживает материал, рассмотренный в этом пункте.

Декартовы координаты на плоскости - определение и примеры с решением

Пример №7

Составьте уравнение прямой, проходящей через точки:

Декартовы координаты на плоскости - определение и примеры с решением

Решение:

1) Поскольку данные точки имеют равные абсциссы, то прямая Декартовы координаты на плоскости - определение и примеры с решением является вертикальной. Ее уравнение имеет вид Декартовы координаты на плоскости - определение и примеры с решением

2) Поскольку данные точки имеют разные абсциссы, то прямая Декартовы координаты на плоскости - определение и примеры с решением не является вертикальной. Тогда можно воспользоваться уравнением прямой в виде Декартовы координаты на плоскости - определение и примеры с решением

Подставив координаты точек Декартовы координаты на плоскости - определение и примеры с решением в уравнение Декартовы координаты на плоскости - определение и примеры с решением получаем систему уравнений:

Декартовы координаты на плоскости - определение и примеры с решением

Решив эту систему уравнений, находим, что Декартовы координаты на плоскости - определение и примеры с решением

Ответ: Декартовы координаты на плоскости - определение и примеры с решением

Пример №8

Найдите периметр и площадь треугольника, ограниченного прямой Декартовы координаты на плоскости - определение и примеры с решением и осями координат.

Решение:

Найдем точки пересечения данной прямой с осями координат.

С осью абсцисс: при Декартовы координаты на плоскости - определение и примеры с решением получаем Декартовы координаты на плоскости - определение и примеры с решением

С осью ординат: при Декартовы координаты на плоскости - определение и примеры с решением получаем Декартовы координаты на плоскости - определение и примеры с решением

Декартовы координаты на плоскости - определение и примеры с решением

Следовательно, данная прямая и оси координат ограничивают прямоугольный треугольник Декартовы координаты на плоскости - определение и примеры с решением (рис. 10.3) с вершинами Декартовы координаты на плоскости - определение и примеры с решением Найдем стороны треугольника: Декартовы координаты на плоскости - определение и примеры с решением

Декартовы координаты на плоскости - определение и примеры с решением Тогда искомые периметр и площадь соответственно равны Декартовы координаты на плоскости - определение и примеры с решением

Ответ: Декартовы координаты на плоскости - определение и примеры с решением

Угловой коэффициент прямой

Рассмотрим уравнение Декартовы координаты на плоскости - определение и примеры с решением Оно задает невертикальную прямую, проходящую через начало координат.

Покажем, что прямые Декартовы координаты на плоскости - определение и примеры с решением где Декартовы координаты на плоскости - определение и примеры с решением параллельны.

Точки Декартовы координаты на плоскости - определение и примеры с решением принадлежат прямой Декартовы координаты на плоскости - определение и примеры с решением а точки Декартовы координаты на плоскости - определение и примеры с решением и Декартовы координаты на плоскости - определение и примеры с решением принадлежат прямой Декартовы координаты на плоскости - определение и примеры с решением (рис. 11.1). Легко убедиться (сделайте это самостоятельно), что середины диагоналей Декартовы координаты на плоскости - определение и примеры с решением четырехугольника Декартовы координаты на плоскости - определение и примеры с решением совпадают. Следовательно, четырехугольник Декартовы координаты на плоскости - определение и примеры с решением — параллелограмм. Отсюда Декартовы координаты на плоскости - определение и примеры с решением

Теперь мы можем сделать такой вывод: если Декартовы координаты на плоскости - определение и примеры с решением то прямые Декартовы координаты на плоскости - определение и примеры с решением параллельны (1).

Пусть прямая Декартовы координаты на плоскости - определение и примеры с решением пересекает единичную полуокружность в точке Декартовы координаты на плоскости - определение и примеры с решением (рис. 11.2). Угол Декартовы координаты на плоскости - определение и примеры с решением называют углом между данной прямой и положительным направлением оси абсцисс.

Если прямая Декартовы координаты на плоскости - определение и примеры с решением совпадает с осью абсцисс, то угол между этой прямой и положительным направлением оси абсцисс считают равным Декартовы координаты на плоскости - определение и примеры с решением

Декартовы координаты на плоскости - определение и примеры с решением Если прямая Декартовы координаты на плоскости - определение и примеры с решением образует с положительным направлением оси абсцисс угол Декартовы координаты на плоскости - определение и примеры с решением то считают, что и прямая Декартовы координаты на плоскости - определение и примеры с решением параллельная прямой Декартовы координаты на плоскости - определение и примеры с решением также образует угол Декартовы координаты на плоскости - определение и примеры с решением с положительным направлением оси абсцисс (рис. 11.3).

Рассмотрим прямую Декартовы координаты на плоскости - определение и примеры с решением уравнение которой имеет вид Декартовы координаты на плоскости - определение и примеры с решением(рис. 11.2). Если Декартовы координаты на плоскости - определение и примеры с решением Поскольку точка Декартовы координаты на плоскости - определение и примеры с решением принадлежит прямой Декартовы координаты на плоскости - определение и примеры с решением Отсюда Декартовы координаты на плоскости - определение и примеры с решением Таким образом, для прямой Декартовы координаты на плоскости - определение и примеры с решением получаем, что

Декартовы координаты на плоскости - определение и примеры с решением

где Декартовы координаты на плоскости - определение и примеры с решением — угол, который образует эта прямая с положительным направлением оси абсцисс. Поэтому коэффициент Декартовы координаты на плоскости - определение и примеры с решением называют угловым коэффициентом этой прямой.

Если невертикальные прямые параллельны, то они образуют равные углы с положительным направлением оси абсцисс. Тогда тангенсы этих углов равны, следовательно, равны и их угловые коэффициенты. Таким образом,

если прямые Декартовы координаты на плоскости - определение и примеры с решением параллельны, то Декартовы координаты на плоскости - определение и примеры с решением (2).

Выводы (1) и (2) объединим в одну теорему.

Теорема 11.1. Прямые Декартовы координаты на плоскости - определение и примеры с решением параллельны тогда и только тогда, когда Декартовы координаты на плоскости - определение и примеры с решением

Пример №9

Составьте уравнение прямой, которая проходит через точку Декартовы координаты на плоскости - определение и примеры с решением и параллельна прямой Декартовы координаты на плоскости - определение и примеры с решением

Решение:

Пусть уравнение искомой прямой Декартовы координаты на плоскости - определение и примеры с решением Поскольку эта прямая и прямая Декартовы координаты на плоскости - определение и примеры с решением параллельны, то их угловые коэффициенты равны, то есть Декартовы координаты на плоскости - определение и примеры с решением

Следовательно, искомое уравнение имеет вид Декартовы координаты на плоскости - определение и примеры с решением Учитывая, что данная прямая проходит через точку Декартовы координаты на плоскости - определение и примеры с решением получаем: Декартовы координаты на плоскости - определение и примеры с решением Отсюда Декартовы координаты на плоскости - определение и примеры с решением

Искомое уравнение имеет вид Декартовы координаты на плоскости - определение и примеры с решением

Ответ: Декартовы координаты на плоскости - определение и примеры с решением

Метод координат

Мы часто говорим: прямая Декартовы координаты на плоскости - определение и примеры с решением парабола Декартовы координаты на плоскости - определение и примеры с решением окружность Декартовы координаты на плоскости - определение и примеры с решением тем самым отождествляя фигуру с ее уравнением. Такой подход позволяет сводить задачу о поиске свойств фигуры к задаче об исследовании ее уравнения. В этом и состоит суть метода координат.

Проиллюстрируем сказанное на таком примере.

Из наглядных соображений очевидно, что прямая и окружность имеют не более двух общих точек. Однако это утверждение не является аксиомой, поэтому его надо доказывать.

Эта задача сводится к исследованию количества решений системы уравнений

Декартовы координаты на плоскости - определение и примеры с решением

где числа Декартовы координаты на плоскости - определение и примеры с решением одновременно не равны нулю и Декартовы координаты на плоскости - определение и примеры с решением

Решая эту систему методом подстановки, мы получим квадратное уравнение, которое может иметь два решения, одно решение или вообще не иметь решений. Следовательно, для данной системы существует три возможных случая:

  1. система имеет два решения — прямая и окружность пересекаются в двух точках;
  2. система имеет одно решение — прямая касается окружности;
  3. система не имеет решений — прямая и окружность не имеют общих точек.

С каждым из этих случаев вы встречались, решая задачи 10.17-10.19.

Метод координат особенно эффективен в тех случаях, когда требуется найти фигуру, все точки которой обладают некоторым свойством, то есть найти геометрическое место точек.

Отметим на плоскости две точки Декартовы координаты на плоскости - определение и примеры с решением Вы хорошо знаете, какой фигурой является геометрическое место точек Декартовы координаты на плоскости - определение и примеры с решением таких, что Декартовы координаты на плоскости - определение и примеры с решением

Это серединный перпендикуляр отрезка Декартовы координаты на плоскости - определение и примеры с решением Интересно выяснить, какую фигуру образуют все точки Декартовы координаты на плоскости - определение и примеры с решением для которых Декартовы координаты на плоскости - определение и примеры с решением Решим эту задачу для Декартовы координаты на плоскости - определение и примеры с решением

Плоскость, на которой отмечены точки Декартовы координаты на плоскости - определение и примеры с решением «превратим» в координатную. Сделаем это так: в качестве начала координат выберем точку Декартовы координаты на плоскости - определение и примеры с решением в качестве единичного отрезка — отрезок Декартовы координаты на плоскости - определение и примеры с решением ось абсцисс проведем так, чтобы точка Декартовы координаты на плоскости - определение и примеры с решением имела координаты Декартовы координаты на плоскости - определение и примеры с решением (рис. 11.6).

Декартовы координаты на плоскости - определение и примеры с решением

Пусть Декартовы координаты на плоскости - определение и примеры с решением — произвольная точка искомой фигуры Декартовы координаты на плоскости - определение и примеры с решением Тогда Декартовы координаты на плоскости - определение и примеры с решением Отсюда

Декартовы координаты на плоскости - определение и примеры с решением

Следовательно, если точка Декартовы координаты на плоскости - определение и примеры с решением принадлежит фигуре Декартовы координаты на плоскости - определение и примеры с решением то ее координаты являются решением уравнения Декартовы координаты на плоскости - определение и примеры с решением

Пусть Декартовы координаты на плоскости - определение и примеры с решением — некоторое решение уравнения Декартовы координаты на плоскости - определение и примеры с решением Тогда легко показать, что Декартовы координаты на плоскости - определение и примеры с решением А это означает, что точка Декартовы координаты на плоскости - определение и примеры с решением такова, что Декартовы координаты на плоскости - определение и примеры с решением Тогда Декартовы координаты на плоскости - определение и примеры с решением Следовательно, точка Декартовы координаты на плоскости - определение и примеры с решением принадлежит фигуре Декартовы координаты на плоскости - определение и примеры с решением

Таким образом, уравнением фигуры Декартовы координаты на плоскости - определение и примеры с решением является уравнение Декартовы координаты на плоскости - определение и примеры с решением то есть фигура Декартовы координаты на плоскости - определение и примеры с решением — это окружность с центром в точке Декартовы координаты на плоскости - определение и примеры с решением и радиусом Декартовы координаты на плоскости - определение и примеры с решением

Мы решили задачу для частного случая, когда Декартовы координаты на плоскости - определение и примеры с решением Можно показать, что искомой фигурой для любого положительного Декартовы координаты на плоскости - определение и примеры с решением будет окружность. Эту окружность называют окружностью АполлонияДекартовы координаты на плоскости - определение и примеры с решением

Как строили мост между геометрией и алгеброй

Идея координат зародилась очень давно. Ведь еще в старину люди изучали Землю, наблюдали звезды, а по результатам своих исследований составляли карты, схемы.

Во II в. до н. э. древнегреческий ученый Гиппарх впервые использовал идею координат для определения места расположения объектов на поверхности Земли.

Только в XIV в. французский ученый Николя Орем (ок. 1323-1382) впервые применил в математике идею Гиппарха: он разбил плоскость на клетки (как разбита страница вашей тетради) и стал задавать положение точек широтой и долготой.

Однако огромные возможности применения этой идеи были раскрыты лишь в XVII в. в работах выдающихся французских математиков Пьера Ферма и Рене Декарта. В своих трудах эти ученые показали, как благодаря системе координат можно переходить от точек к числам, от линий к уравнениям, от геометрии к алгебре.

Несмотря на то что П. Ферма опубликовал свою роботу на год раньше Р. Декарта, систему координат, которой мы сегодня пользуемся, называют декартовой. Р. Декарт в своей работе «Рассуждение о методе» предложил новую удобную буквенную символику, которой с незначительными изменениями мы пользуемся и сегодня. Вслед за Декартом мы обозначаем переменные последними буквами латинского алфавита Декартовы координаты на плоскости - определение и примеры с решением а коэффициенты — первыми: Декартовы координаты на плоскости - определение и примеры с решениемДекартовы координаты на плоскости - определение и примеры с решением Привычные нам обозначения степеней Декартовы координаты на плоскости - определение и примеры с решением и т. д. также ввел Р. Декарт.

Декартовы координаты на плоскости - определение и примеры с решением

Справочный материал

Расстояние между двумя точками

Расстояние между точками Декартовы координаты на плоскости - определение и примеры с решением можно найти по формуле Декартовы координаты на плоскости - определение и примеры с решением

Координаты середины отрезка

Координаты Декартовы координаты на плоскости - определение и примеры с решением середины отрезка с концами Декартовы координаты на плоскости - определение и примеры с решением можно найти по формулам:

Декартовы координаты на плоскости - определение и примеры с решением

Уравнение фигуры

Уравнением фигуры Декартовы координаты на плоскости - определение и примеры с решением заданной на плоскости Декартовы координаты на плоскости - определение и примеры с решением называют уравнение с двумя переменными Декартовы координаты на плоскости - определение и примеры с решением обладающее следующими свойствами:

1) если точка принадлежит фигуре Декартовы координаты на плоскости - определение и примеры с решением то ее координаты являются решением данного уравнения;

2) любое решение Декартовы координаты на плоскости - определение и примеры с решением данного уравнения является координатами точки, принадлежащей фигуре Декартовы координаты на плоскости - определение и примеры с решением

Уравнение окружности

Уравнение окружности радиуса Декартовы координаты на плоскости - определение и примеры с решением с центром в точке Декартовы координаты на плоскости - определение и примеры с решением имеет вид Декартовы координаты на плоскости - определение и примеры с решением

Любое уравнение вида Декартовы координаты на плоскости - определение и примеры с решением где Декартовы координаты на плоскости - определение и примеры с решением — некоторые числа, причем Декартовы координаты на плоскости - определение и примеры с решением является уравнением окружности радиуса Декартовы координаты на плоскости - определение и примеры с решением с центром в точке с координатами Декартовы координаты на плоскости - определение и примеры с решением

Уравнение прямой

Уравнение прямой имеет вид Декартовы координаты на плоскости - определение и примеры с решением — некоторые числа, причем Декартовы координаты на плоскости - определение и примеры с решением не равны нулю одновременно. Любое уравнение вида Декартовы координаты на плоскости - определение и примеры с решением — некоторые числа, причем Декартовы координаты на плоскости - определение и примеры с решением не равны нулю одновременно, является уравнением прямой.

Если Декартовы координаты на плоскости - определение и примеры с решением то уравнение прямой Декартовы координаты на плоскости - определение и примеры с решением задает вертикальную прямую; если Декартовы координаты на плоскости - определение и примеры с решением то это уравнение задает невертикальную прямую.

Угловой коэффициент прямой

Коэффициент Декартовы координаты на плоскости - определение и примеры с решением в уравнении прямой Декартовы координаты на плоскости - определение и примеры с решением называют угловым коэффициентом прямой, и он равен тангенсу угла, который образует эта прямая с положительным направлением оси абсцисс.

Необходимое и достаточное условие параллельности невертикальных прямых

Прямые Декартовы координаты на плоскости - определение и примеры с решением параллельны тогда и только тогда, когда Декартовы координаты на плоскости - определение и примеры с решением

  • Декартовы координаты в пространстве
  • Геометрические преобразования в геометрии
  • Планиметрия – формулы, определение и вычисление
  • Стереометрия – формулы, определение и вычисление
  • Перпендикулярность прямой и плоскости
  • Взаимное расположение прямых в пространстве, прямой и плоскости
  • Перпендикулярность прямых и плоскостей в пространстве
  • Ортогональное проецирование

Содержание

  • Как найти координаты точки середины отрезка?
  • Как находить координаты отрезка?
  • Как посчитать середину отрезка?
  • Как вычислить координаты точки?
  • Как найти отрезок?
  • Как найти координаты середину вектора?
  • Как найти длину отрезка 6 класс?
  • Как найти координаты отрезка по двум точкам?
  • Как найти середину интервала?
  • Какие координаты имеет середина отрезка AB если A (- 6 7?
  • Как найти координаты середины отрезка 9 класс?
  • Как определить координаты точки 5 класс?
  • Как найти длину отрезка на координатной прямой?
  • Как искать координату?

Как найти координаты точки середины отрезка?

Каждая координата середины отрезка равна полусумме соответствующих координат концов отрезка.

Как находить координаты отрезка?

Расстояние между точками определяется модулем разницы их координат, т. е. Из первого равенства выведем формулу для координаты точки C : xC=xA+xB2 x C = x A + x B 2 (полусумма координат концов отрезка). Полученная формула будет основой для определения координат середины отрезка на плоскости или в пространстве.

Как посчитать середину отрезка?

Для нахождения середины отрезка на плоскости можно сначала построить две дуги равного (и достаточно большого) радиуса с центрами в концах отрезка, а затем через точки пересечения этих дуг провести прямую. Точка, где полученная прямая пересекает отрезок, является его серединой.

Как вычислить координаты точки?

Следовательно, координаты точки можно выразить с помощью следующих формул: х = ОА*cos(a), y = OA*sin(a).

Как найти отрезок?

Найдем длины проекций (X и Y) исходного отрезка на координатные оси. Их вычислим путем нахождения разницы координат точек по отдельной оси: X = X2-X1, Y = Y2-Y1. Рассчитаем длину отрезка А, для этого найдем квадратный корень: A = √(X²+Y²) = √ ((X2-X1)²+(Y2-Y1)²).

Как найти координаты середину вектора?

Чтобы найти середину вектора по координатам нужно вычислить сумму координат начала и конца вектора и разделить на два. Откуда выведена формула? Если вектор спроецировать на координатную ось Ox , то можно будет применить формулу для нахождения середины отрезка к самому вектору.

Как найти длину отрезка 6 класс?

Если отрезок состоит из двух отрезков, то его длина равна сумме длин его частей. PB + AP = AB.

Как найти координаты отрезка по двум точкам?

Определеие. Чтобы найти координаты вектора AB, зная координаты его начальной точки А и конечной точки В, необходимо из координат конечной точки вычесть соответствующие координаты начальной точки.

Как найти середину интервала?

Минимальное значение интервала (его начало) сложите с максимальным (окончанием) и разделите результат пополам – это один из способов вычисления среднеарифметического значения.

Какие координаты имеет середина отрезка AB если A (- 6 7?

Ответ: O(-1; -1).

Как найти координаты середины отрезка 9 класс?

Если даны координаты конечных точек отрезка, знания о действиях с векторами и координатами векторов дают возможность определить координаты серединной точки отрезка. Для этого расположим отрезок AB в системе координат. A x 1 ; y 1 , B x 2 ; y 2 — конечные точки отрезка с данными координатами.

Как определить координаты точки 5 класс?

Чтобы найти координаты точки на плоскости, нужно опустить из этой точки перпендикуляры на оси координат. Точка пересечения с осью «x» называется абсциссой точки «А», а с осью y называется ординатой точки «А». Обозначают координаты точки, как указано выше (·) A (2; 3).

Как найти длину отрезка на координатной прямой?

Чтобы найти длину отрезка на координатной прямой, нужно из координаты его правого конца вычесть координату его левого конца.

Как искать координату?

Как узнать координаты места

  1. Откройте приложение “Google Карты” на устройстве Android.
  2. Нажмите на нужное место на карте и удерживайте, пока не появится красный маркер.
  3. Координаты появятся в окне поиска в верхней части экрана.

Интересные материалы:

Как сделать закладку в Adobe Reader?
Как сделать закладку в документе Word?
Как сделать закладку в файле PDF?
Как сделать Закреп в ВК на своей странице?
Как сделать закругленные углы в Индизайне?
Как сделать закрытую трансляцию на ютубе?
Как сделать закрытые истории в ВК?
Как сделать закрытым профиль в контакте?
Как сделать заливку абзаца в ворде?
Как сделать замазку для прививки деревьев?

Добавить комментарий