Если матрица не квадратная как найти обратную

может ли быть обратная матрица для не квадратной матрицы



Ученик

(69),
закрыт



2 года назад

chi-QN-off

Просветленный

(38475)


13 лет назад

Может, если исходить только из определения, что обратной называется такая матрица, при умножении на которую для заданной матрицы получаем единичную квадратную матрицу.
При этом нужно учесть, что при перестановке матриц сомножителей (при коммутации) могут получаться единичные квадратные матрицы разного порядка.
Например, матрицу с двумя строками и тремя столбцами умножаем справа на матрицу с тремя строками и двумя столбцами. Результатом может быть единичная матрица 2х2. А если переставить матрицы местами в произведении, то получим (если существует) единичную матрицу 3х3.

Матрица BB является обратной матрицей к квадратной матрице AA, если AB=BA=EAB = BA = E.
Из определения можно понять, что обратная матрица BB будет квадратной матрицей аналогичного порядка, какой имеет матрица AA (иначе какое-либо из произведений ABAB или BABA будет не определено).
Обратная матрица для исходной матрицы AA определяется так: A−1A^{-1}. Можно утверждать, что если A−1A^{-1} существует, то AA−1=A−1A=EAA^{-1} = A^{-1} A= E.
Также легко видеть, что (A−1)−1=A(A^{-1})^{-1} = A.

Если детерминант матрицы является нулем, то обратную к ней матрицу нельзя получить.

Онлайн-калькулятор

Квадратную матрицу AA можно назвать вырожденной матрицей тогда, когда определитель матрицы AA равен нулю, и невырожденной, если определитель не равен нулю.

Важно

В том случае, если обратная матрица может существовать, то она будет единственной.

Формула для вычисления обратной матрицы

Обратную матрицу A−1A^{-1} к матрице AA можно найти по формуле:

A−1=1det⁡A⋅A∗A^{-1}=frac{1}{det A}cdot A^*

det⁡Adet A — определитель матрицы A,A,

A∗A^* — транспонированая матрица алгебраических дополнений к матрице A.A.

Задача 1

Нужно найти обратную матрицу для следующей матрицы:

A=(1−20 342 −131)A = begin{pmatrix}
1& -2 & 0\
3 & 4 & 2\
-1& 3& 1 \
end{pmatrix}

Решение

Вычислим детерминант:

det⁡A=∣1−20342−131∣=1∣4231∣−(−2)∣32−11∣+0∣34−13∣=8det A = begin{vmatrix}
1 & -2 & 0 \
3 & 4 & 2 \
-1 & 3 & 1 \
end{vmatrix} = 1 begin{vmatrix}
4 & 2 \
3 & 1 \
end{vmatrix} – (-2) begin{vmatrix}
3 & 2 \
-1 & 1 \
end{vmatrix} +0 begin{vmatrix}
3 & 4 \
-1 & 3 \
end{vmatrix} = 8

Так как det⁡A≠0det A neq 0, то матрица – невырожденная, и обратная для нее существует.

Посчитаем алгебраические дополнение:

A11=(−1)1+1∣4231∣=−2,A_{11} = (-1)^{1+1} begin{vmatrix}
4 & 2 \
3 & 1 \
end{vmatrix} = -2,

A12=(−1)1+2∣32−11∣=−5,A_{12} = (-1)^{1+2} begin{vmatrix}
3 & 2 \
-1 & 1 \
end{vmatrix} = -5,

A13=(−1)1+3∣34−13∣=13A_{13} = (-1)^{1+3} begin{vmatrix}
3 & 4 \
-1 & 3 \
end{vmatrix} = 13
,

A21=(−1)2+1∣−2031∣=2A_{21} = (-1)^{2+1} begin{vmatrix}
-2 & 0 \
3 & 1 \
end{vmatrix} = 2
,

A22=(−1)2+2∣10−11∣=1A_{22} = (-1)^{2+2} begin{vmatrix}
1 & 0 \
-1 & 1 \
end{vmatrix} = 1
,

A23=(−1)2+3∣1−2−13∣=−1A_{23} = (-1)^{2+3} begin{vmatrix}
1 & -2 \
-1 & 3 \
end{vmatrix} = -1
,

A31=(−1)3+1∣−2042∣=−4A_{31} = (-1)^{3+1} begin{vmatrix}
-2 & 0 \
4 & 2 \
end{vmatrix} = -4
,

A32=(−1)3+2∣1032∣=−2A_{32} = (-1)^{3+2} begin{vmatrix}
1 & 0 \
3 & 2 \
end{vmatrix} = -2
,

A33=(−1)3+3∣1−234∣=10.A_{33} = (-1)^{3+3} begin{vmatrix}
1 & -2 \
3 & 4 \
end{vmatrix} = 10.

Обратная матрица:

A−1=18(−22−4−51−213−110)A^{-1} = frac{1}{8} begin{pmatrix}
-2 & 2 & -4 \
-5 & 1 & -2 \
13 & -1 & 10 \
end{pmatrix}

Важно

Чтобы избежать ошибок, необходимо сделать проверку: для этого нужно посчитать произведение первоначальной матрицы на конечную. Если в результате получится единичная матрица, то вы нашли обратную матрицу безошибочно.

Задача 2

Найдите обратную матрицу для матрицы:

A=(13−25)A = begin{pmatrix}
1 & 3\
-2 & 5 \
end{pmatrix}

Решение

det⁡A=11≠0→A−1det A= 11 neq 0 rightarrow A^{-1} – существует.

A11=(−1)1+1⋅5=5A_{11} = (-1)^ {1+1} cdot 5 = 5,

A12=(−1)1+2⋅(−2)=2A_{12} = (-1)^ {1+2} cdot (-2) = 2,

A21=(−1)2+1⋅3=−3A_{21} = (-1)^ {2+1} cdot 3 = -3,

A22=(−1)2+2⋅1=1.A_{22} = (-1)^ {2+2} cdot 1 = 1.

Ответ:

A−1=111(5−321)A^{-1} = frac{1}{11} begin{pmatrix}
5 & -3 \
2 & 1 \
end{pmatrix}

Нами был рассмотрен способ нахождения матрицы с помощью алгебраических дополнений. Существует еще один способ, который называется методом элементарных преобразований.

Метод элементарных преобразований

Метод основан на элементарных преобразованиях матриц, под которыми будем понимать такие преобразования, в результате которых сохраняется эквивалентность матриц:

  1. перестановка местами любых двух рядов (строк или столбцов) матрицы;
  2. умножение любого ряда матрицы (строки или столбца) на некоторое число, отличное от нуля;
  3. прибавление к любому ряду (строке или столбцу) матрицы другого ряда (строки или столбца), умноженного на некоторое число, отличное от нуля.

Рассмотрим алгоритм нахождения обратной матрицы данным методом.

Алгоритм нахождения обратной матрицы методом элементарных преобразований

  1. Из исходной матрицы AA и единичной матрицы EE того же порядка составить расширенную матрицу, т.е. матрицу вида (A∣E)begin{pmatrix}A|Eend{pmatrix}.
  2. С помощью элементарных преобразований над строками расширенной матрицы получить единичную матрицу слева от черты: (E∣A−1)begin{pmatrix}E|A^{-1}end{pmatrix}.
  3. Выписать обратную матрицу, которая находится справа от черты.
Задача 1

Найти матрицу K−1K^{-1}, если K=(1301)K=begin{pmatrix}1&3\0&1end{pmatrix}.

Из матрицы KK второго порядка и единичной матрицы второго порядка составим расширенную матрицу:

(1301∣1001)begin{pmatrix}left.begin{matrix}1&3\0&1end{matrix}right|begin{matrix}1&0\0&1end{matrix}end{pmatrix}.

Произведем элементарные преобразования расширенной матрицы.

Прибавим к строке №1 строку №3, умноженную на -3:

(1301∣1001)∼(1001∣1−301)begin{pmatrix}left.begin{matrix}1&3\0&1end{matrix}right|begin{matrix}1&0\0&1end{matrix}end{pmatrix}sim begin{pmatrix}left.begin{matrix}1&0\0&1end{matrix}right|begin{matrix}1&-3\0&1end{matrix}end{pmatrix}.

Слева получили единичную матрицу.

Выпишем обратную матрицу:

K−1=(1−301)K^{-1}=begin{pmatrix}1&-3\0&1end{pmatrix}.

Сделаем проверку, чтобы убедиться в том, что найденная матрица действительно является обратной.

K⋅K−1=(1301)⋅(1−301)=(1⋅1+3⋅01⋅(−3)+3⋅10⋅1+1⋅00⋅(−3)+1⋅1)=(1001)Kcdot K^{-1}=begin{pmatrix}1&3\0&1end{pmatrix}cdotbegin{pmatrix}1&-3\0&1end{pmatrix}=begin{pmatrix}1cdot1+3cdot0&1cdot(-3)+3cdot1\0cdot1+1cdot0&0cdot(-3)+1cdot1end{pmatrix}=begin{pmatrix}1&0\0&1end{pmatrix}.

Значит, обратная матрица найдена правильно.

Задача 2

Найти матрицу F−1F^{-1}, если F=(110010033)F=begin{pmatrix}1&1&0\0&1&0\0&3&3end{pmatrix}.

Из матрицы FF третьего порядка и единичной матрицы третьего порядка составим расширенную матрицу:

(110010033∣100010001)begin{pmatrix}left.begin{matrix}1&1&0\0&1&0\0&3&3end{matrix}right|begin{matrix}1&0&0\0&1&0\0&0&1end{matrix}end{pmatrix}.

Произведем элементарные преобразования расширенной матрицы.

Прибавим к строке №1 строку №2, умноженную на -1:

(110010033∣100010001)∼(100010033∣1−10010001)begin{pmatrix}left.begin{matrix}1&1&0\0&1&0\0&3&3end{matrix}right|begin{matrix}1&0&0\0&1&0\0&0&1end{matrix}end{pmatrix}sim begin{pmatrix}left.begin{matrix}1&0&0\0&1&0\0&3&3end{matrix}right|begin{matrix}1&-1&0\0&1&0\0&0&1end{matrix}end{pmatrix}.

Прибавим к строке №3 строку №2, умноженную на -3:

(100010033∣1−10010001)∼(100010003∣1−100100−31)begin{pmatrix}left.begin{matrix}1&0&0\0&1&0\0&3&3end{matrix}right|begin{matrix}1&-1&0\0&1&0\0&0&1end{matrix}end{pmatrix}sim begin{pmatrix}left.begin{matrix}1&0&0\0&1&0\0&0&3end{matrix}right|begin{matrix}1&-1&0\0&1&0\0&-3&1end{matrix}end{pmatrix}.

Умножим строку №3 на 13frac{1}{3}:

(100010003∣1−100100−31)∼(100010001∣1−100100−113)begin{pmatrix}left.begin{matrix}1&0&0\0&1&0\0&0&3end{matrix}right|begin{matrix}1&-1&0\0&1&0\0&-3&1end{matrix}end{pmatrix}sim begin{pmatrix}left.begin{matrix}1&0&0\0&1&0\0&0&1end{matrix}right|begin{matrix}1&-1&0\0&1&0\0&-1&frac{1}{3}end{matrix}end{pmatrix}.

Слева получили единичную матрицу.

Выпишем обратную матрицу:

F−1=(1−100100−113)F^{-1}=begin{pmatrix}1&-1&0\0&1&0\0&-1&frac{1}{3}end{pmatrix}.

Сделаем проверку, чтобы убедиться в том, что найденная матрица действительно является обратной.

F⋅F−1=(110010033)⋅(1−100100−113)=(100010001)Fcdot F^{-1}=begin{pmatrix}1&1&0\0&1&0\0&3&3end{pmatrix}cdotbegin{pmatrix}1&-1&0\0&1&0\0&-1&frac{1}{3}end{pmatrix}=begin{pmatrix}1&0&0\0&1&0\0&0&1end{pmatrix}.

Значит, обратная матрица найдена правильно.

Выполнение контрольных работ на заказ недорого от профильных авторов на бирже Студворк!

Обра́тная ма́трица — такая матрица A^{{-1}}, при умножении которой на исходную матрицу A получается единичная матрица E:

{displaystyle AA^{-1}=A^{-1}A=E.}

Обратную матрицу можно определить как:

{displaystyle A^{-1}={frac {{mbox{adj}}A}{|A|}},}
где {displaystyle {mbox{adj}}A} — соответствующая присоединённая матрица,
|A| — определитель матрицы A.

Из этого определения следует критерий обратимости: матрица обратима тогда и только тогда, когда она невырождена, то есть её определитель не равен нулю. Для неквадратных матриц и вырожденных матриц обратных матриц не существует. Однако возможно обобщить это понятие и ввести псевдообратные матрицы, похожие на обратные по многим свойствам.

Свойства обратной матрицы[править | править код]

Пусть квадратные матрицы {displaystyle A,~B} — невырожденные. Тогда:

Способы нахождения обратной матрицы[править | править код]

Если матрица обратима, то для нахождения обратной матрицы можно воспользоваться одним из следующих способов:

Точные (прямые) методы[править | править код]

Метод Жордана—Гаусса[править | править код]

Возьмём две матрицы: саму A и единичную матрицу E. Приведём матрицу A к единичной методом Гаусса—Жордана, применяя преобразования по строкам (можно также применять преобразования и по столбцам). После применения каждой операции к первой матрице применим ту же операцию ко второй. Когда приведение первой матрицы к единичному виду будет завершено, вторая матрица окажется равной A^{{-1}}.

При использовании метода Гаусса первая матрица будет умножаться слева на одну из элементарных матриц Lambda _{i} (трансвекцию или диагональную матрицу с единицами на главной диагонали, кроме одной позиции):

{displaystyle Lambda _{1}cdot dots cdot Lambda _{n}cdot A=Lambda A=ERightarrow Lambda =A^{-1}.}
{displaystyle Lambda _{m}={begin{bmatrix}1&dots &0&-a_{1m}/a_{mm}&0&dots &0\&&&dots &&&\0&dots &1&-a_{m-1m}/a_{mm}&0&dots &0\0&dots &0&1/a_{mm}&0&dots &0\0&dots &0&-a_{m+1m}/a_{mm}&1&dots &0\&&&dots &&&\0&dots &0&-a_{nm}/a_{mm}&0&dots &1end{bmatrix}}.}

Вторая матрица после применения всех операций станет равна Lambda , то есть будет искомой. Сложность алгоритма — O(n^{3}).

С помощью матрицы алгебраических дополнений[править | править код]

Матрица, обратная матрице A, представима в виде:

{displaystyle {A}^{-1}={{{mbox{adj}}(A)} over {det(A)}},}
где {mbox{adj}}(A) — присоединенная матрица (матрица, составленная из алгебраических дополнений для соответствующих элементов транспонированной матрицы).

Сложность алгоритма зависит от сложности {displaystyle O_{det }} алгоритма расчета определителя и равна {displaystyle O(n^{2})cdot O_{det }}.

Использование LU- или LUP-разложения[править | править код]

Матричное уравнение AX=I_{n} для обратной матрицы X можно рассматривать как совокупность n систем вида Ax=b. Обозначим i-й столбец матрицы X через X_{i}; тогда AX_{i}=e_{i}, i=1,ldots ,n, поскольку i-м столбцом матрицы I_{n} является единичный вектор e_{i}. Иными словами, нахождение обратной матрицы сводится к решению n уравнений с одной матрицей и разными правыми частями. Решение этих уравнений может быть упрощено с помощью LU- или LUP-разложения матрицы A. После выполнения LUP-разложения за время O(n^{3}) на решение каждого из n уравнений нужно время O(n^{2}), так что и этот алгоритм требует времени O(n^{3})[1].

Матрицу, обратную к заданной невырожденной матрице A, можно также вычислить непосредственно с помощью матриц, полученных в результате разложения.

Результатом LUP-разложения матрицы A является равенство PA=LU. Пусть PA=B, B^{{-1}}=D. Тогда из свойств обратной матрицы можно записать: D=U^{{-1}}L^{{-1}}. Если умножить это равенство на U и L то можно получить два равенства вида UD=L^{{-1}} и DL=U^{{-1}}. Первое из этих равенств представляет собой систему из n^{2} линейных уравнений, для n(n+1)/2 из которых известны правые части (из свойств треугольных матриц). Второе также представляет систему из n^{2} линейных уравнений, для n(n-1)/2 из которых известны правые части (также из свойств треугольных матриц). Вместе они представляют собой систему из n^{2} равенств. С их помощью можно рекуррентно определить все n^{2} элементов матрицы D. Тогда из равенства {displaystyle (PA)^{-1}=A^{-1}P^{-1}=B^{-1}=D} получаем равенство A^{{-1}}=DP.

В случае использования LU-разложения (A=LU) не требуется перестановки столбцов матрицы D, но решение может разойтись даже если матрица A невырождена.

Сложность обоих алгоритмов — O(n^{3}).

Итерационные методы[править | править код]

Матрицу A^{{-1}} можно вычислить с произвольной точностью в результате выполнения следующего итерационного процесса, называющегося методом Шульца и являющегося обобщением классического метода Ньютона:

{displaystyle X_{k+1}=2X_{k}-X_{k}AX_{k}.}

Последовательность матриц X_{k} сходится к A^{{-1}} при kto infty . Существует также так называемый обобщённый метод Шульца, который описывается следующими рекуррентными соотношениями[2]:

{displaystyle {begin{cases}Psi _{k}=E-AX_{k},\X_{k+1}=X_{k}sum limits _{i=0}^{n}Psi _{k}^{i}.end{cases}}}

Выбор начального приближения[править | править код]

Проблема выбора начального приближения X_{0} в рассматриваемых здесь процессах итерационного обращения матриц не позволяет относиться к ним как к самостоятельным универсальным методам, конкурирующими с прямыми методами обращения, основанными, например, на LU-разложении матриц. Имеются некоторые рекомендации по выбору X_{0}, обеспечивающие выполнение условия {displaystyle rho (Psi _{0})<1} (спектральный радиус матрицы меньше единицы), являющегося необходимым и достаточным для сходимости итерационного процесса. Однако при этом, во-первых, требуется знать оценку сверху спектра обращаемой матрицы A либо матрицы {displaystyle AA^{T}} (а именно, если A — симметричная положительно определённая матрица и {displaystyle rho (A)leqslant beta }, то можно взять {displaystyle X_{0}={alpha }E}, где {displaystyle alpha in left(0,2/beta right)}; если же A — произвольная невырожденная матрица и {displaystyle rho (AA^{T})leqslant beta }, то полагают {displaystyle X_{0}={alpha }A^{T}}, где также {displaystyle alpha in left(0,2/beta right)}; можно, конечно, упростить ситуацию и, воспользовавшись тем, что {displaystyle rho (AA^{T})leqslant {mathcal {k}}AA^{T}{mathcal {k}}}, положить {displaystyle X_{0}=A^{T}/|AA^{T}|}). Во-вторых, при таком задании начальной матрицы нет гарантии, что {displaystyle |Psi _{0}|} будет малой (возможно, даже окажется {displaystyle |Psi _{0}|>1}), и высокий порядок скорости сходимости обнаружится далеко не сразу.

Для метода Ньютона в качестве начального приближения можно выбрать {displaystyle X_{0}=A^{H}/left(||A||_{1}||A||_{infty }right)}, где верхний индекс H обозначает эрмитово сопряжение, {displaystyle ||cdot ||_{1}} и {displaystyle ||cdot ||_{infty }} — соответствующие матричные нормы. Такое X_{0} вычисляется всего за O(n^{2}) операций, где n — порядок матрицы, и обеспечивает сходимость алгоритма[3].

Примеры[править | править код]

Матрица 2 × 2[править | править код]

{displaystyle mathbf {A} ^{-1}={begin{bmatrix}a&b\c&d\end{bmatrix}}^{-1}={frac {1}{det mathbf {A} }}{begin{bmatrix}d&-b\-c&a\end{bmatrix}}={frac {1}{ad-bc}}{begin{bmatrix}d&-b\-c&a\end{bmatrix}}.}[4]

Обращение матрицы 2 × 2 возможно только при условии, что ad-bc=det Aneq 0.

Примечания[править | править код]

  1. Кормен Т., Лейзерсон Ч., Ривест Р., Штайн К. Алгоритмы: построение и анализ, — М.: Вильямс, 2006 (с. 700).
  2. Petković, M. D. Generalized Schultz iterative methods for the computation of outer inverses (англ.) // Computers & Mathematics with Applications. — 2014. — June (vol. 67, iss. 10). — P. 1837—1847. — doi:10.1016/j.camwa.2014.03.019.
  3. Pan, V., Reif, J. Fast and efficient parallel solution of dense linear systems (англ.) // Computers & Mathematics with Applications. — 1989. — Vol. 17, iss. 11. — P. 1481—1491. — doi:10.1016/0898-1221(89)90081-3.
  4. Как найти обратную матрицу? mathprofi.ru. Дата обращения: 18 октября 2017. Архивировано 17 октября 2017 года.

Ссылки[править | править код]

  • Реализация с полным выбором ведущего элемента на C++

Как найти обратную матрицу

  1. Быстрый способ для матриц $2 times 2$
    1. Пример 1
    2. Пример 2
  2. Нахождение с помощью метода Гаусса
    1. Пример 3
    2. Пример 4
  3. Метод союзной матрицы(алгебраические дополнения)
    1. Пример 5

Обратная матрица обозначается $ A^{-1} $ и существует только для матриц, у которых определитель не равен нулю $ det A neq 0 $.

Быстрый способ для матриц $2 times 2$

Пусть задана матрица $A = begin{pmatrix} a&b\c&d end{pmatrix}$. Для быстрого способа нахождения обратной матрицы необходимо поменять местами элементы стоящие на главной диагонали, а для оставшихся элементов поменять знак на противоположный. Затем каждый элемент разделить матрицы разделить на определитель исходной матрицы. Математическая формула выглядит следующим образом $$A^{-1} = frac{1}{det A} begin{pmatrix} d&-b \ -c&a end{pmatrix} = frac{1}{ad-bc} begin{pmatrix} d&-b \ -c&a end{pmatrix}.$$ 

Пример 1
Найти обратную матрицу для $A = begin{pmatrix} 3&4 \ 5&9 end{pmatrix}$.
Решение

Первым делом вычисляем определитель и убеждаемся, что он не равен нулю $$det A = begin{vmatrix} 3&4 \ 5&9 end{vmatrix} = 3cdot9 – 4cdot5 = 27 – 20 = 7.$$

Итак, определитель не равен нулю, значит, обратная матрица существует. Продолжаем наш алгоритм. Меняем элементы на главной диагонали местами, а у оставшихся элементов меняем знак на противоположный. $$A^{-1} = frac{1}{7} begin{pmatrix} 9&-4 \ -5&3 end{pmatrix} = begin{pmatrix} frac{9}{7}&frac{-4}{7} \ frac{-5}{7}&frac{3}{7} end{pmatrix}.$$

Ответ
$$A^{-1} = begin{pmatrix} frac{9}{7}&frac{-4}{7} \ frac{-5}{7}&frac{3}{7} end{pmatrix}$$
Пример 2
Вычислить обратную матрицу для $A = begin{pmatrix} 2&-1 \ 4&-6 end{pmatrix}$.
Решение

Находим определитель $$det A = begin{vmatrix} 2&-1 \ 4&-6 end{vmatrix} = 2cdot(-6) – 4cdot(-1) = -12 + 4 = -8.$$

Меняем местами элементы главной диагонали, а остальным меняем знак на противоположный. Не забываем затем каждый элемент разделить на определитель. $$A^{-1} = frac{1}{-8} begin{pmatrix} -6&1 \ -4&2 end{pmatrix} = begin{pmatrix} frac{-6}{-8}&frac{1}{-8} \ frac{-4}{-8}&frac{2}{-8} end{pmatrix} = begin{pmatrix} frac{3}{4}&-frac{1}{8} \ frac{1}{2}&-frac{1}{4} end{pmatrix}$$

Ответ
$$A^{-1} = begin{pmatrix} frac{3}{4}&-frac{1}{8} \ frac{1}{2}&-frac{1}{4} end{pmatrix}$$

Нахождение с помощью метода Гаусса

На практике чаще всего метод Гаусса используется как способ нахождения обратной матрицы. Суть метода в том, что к основной матрице добавляется дополнительная единичная матрица с такой же размерностью.

$$ Bigg (begin{matrix} a_{11}&a_{12}&a_{13}\a_{21}&a_{22}&a_{23}\a_{31}&a_{32}&a_{33} end{matrix} Bigg | begin{matrix} 1&0&0\0&1&0\0&0&1 end{matrix} Bigg ) $$

Далее нужно путем простейших элементарных преобразований привести левую матрицу к единичной, а одновременно с ней справа получится обратная матрица:

$$ Bigg (begin{matrix} 1&0&0\0&1&0\0&0&1 end{matrix} Bigg | begin{matrix} b_{11}&b_{12}&b_{13}\b_{21}&b_{22}&b_{23}\b_{31}&b_{32}&b_{33} end{matrix} Bigg ) $$

$$A^{-1} = begin{pmatrix} b_{11}&b_{12}&b_{13}\b_{21}&b_{22}&b_{23}\b_{31}&b_{32}&b_{33} end{pmatrix}$$

Пример 3
Найти обратную матрицу элементарными преобразованиями $$A = begin{pmatrix} 2&-1&0 \ 0&2&-1 \ -1&-1&1 end{pmatrix}.$$
Решение

Вычисляем определитель матрицы, чтобы убедиться что он не равен нулю $$det A = begin{vmatrix} 2&-1&0 \ 0&2&-1 \ -1&-1&1 end{vmatrix} = 4-1+0-0-2-0=1 neq 0.$$

Выписываем основную матрицу и добавляем справа единичную матрицу. $$begin{pmatrix} 2&-1&0 &|& 1&0&0 \ 0&2&-1 &|& 0&1&0 \ -1&-1&1 &|& 0&0&1 end{pmatrix}$$

Проводим элементарные преобразования над строками матриц таким образом, чтобы слева получилась единичная матрица. В то же время как справа получим обратную матрицу.

Умножаем третью строку на 2 и прибавляем первую. $$begin{pmatrix} 2&-1&0 &|& 1&0&0 \ 0&2&-1 &|& 0&1&0 \ 0&-3&2 &|& 1&0&2 end{pmatrix}$$

Умножаем третью строку на 2 и прибавляем к ней вторую строку, умноженную на 3. $$begin{pmatrix} 2&-1&0 &|& 1&0&0 \ 0&2&-1 &|& 0&1&0 \ 0&0&1 &|& 2&3&4 end{pmatrix}$$

Теперь запускаем обратный ход преобразований снизу вверх. Ко второй строке прибавляем третью. $$begin{pmatrix} 2&-1&0 &|& 1&0&0 \ 0&2&0 &|& 2&4&4 \ 0&0&1 &|& 2&3&4 end{pmatrix}$$

Умножаем первую строку на 2 и прибавляем к ней вторую строчку матрицы. $$begin{pmatrix} 4&0&0 &|& 4&4&4 \ 0&2&0 &|& 2&4&4 \ 0&0&1 &|& 2&3&4 end{pmatrix}$$

Теперь, чтобы слева получилась единичная матрица нужно первую строку разделить на 4, вторую на 2. $$begin{pmatrix} 1&0&0 &|& 1&1&1 \ 0&1&0 &|& 1&2&2 \ 0&0&1 &|& 2&3&4 end{pmatrix}$$

Справа как видим получилась обратная матрица $$A^{-1} = begin{pmatrix} 1&1&1 \ 1&2&2 \ 2&3&4 end{pmatrix}.$$

Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение онлайн. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя!

Ответ
$$A^{-1} = begin{pmatrix} 1&1&1 \ 1&2&2 \ 2&3&4 end{pmatrix}$$
Пример 4
Дана матрица, найти обратную $$A = begin{pmatrix} 3&2&1 \ 1&0&2 \ 4&1&3 end{pmatrix}.$$
Решение

Первым делом вычисляем определитель, чтобы убедиться в существовании обратной матрицы $$det A = begin{vmatrix} 3&2&1 \ 1&0&2 \ 4&1&3 end{vmatrix} = 0+16+1-0-6-6=5.$$

Теперь справа от матрицы дописываем единичную матрицу $$begin{pmatrix} 3&2&1 &|& 1&0&0 \ 1&0&2 &|& 0&1&0 \ 4&1&3 &|& 0&0&1 end{pmatrix}.$$

Теперь с помощью элементарных преобразований делаем так, чтобы слева стояла единичная матрица. А справа получим одновременно обратную матрицу.

Умножаем вторую строку на 3 и вычитаем из неё первую. Умножаем третью строчку на 3 и вычитаем первую, умноженную на 4. $$begin{pmatrix} 3&2&1 &|& 1&0&0 \ 0&-2&5 &|& -1&3&0 \ 0&-5&5 &|& -4&0&3 end{pmatrix}$$

Умножаем третью строку на 2 и вычитаем вторую, умноженную на 5. $$begin{pmatrix} 3&2&1 &|& 1&0&0 \ 0&-2&5 &|& -1&3&0 \ 0&0&-15 &|& -3&-15&6 end{pmatrix}$$

Третью строку можно разделить на 3, чтобы уменьшить числа для дальнейшего удобства. Сделаем это. $$begin{pmatrix} 3&2&1 &|& 1&0&0 \ 0&-2&5 &|& -1&3&0 \ 0&0&-5 &|& -1&-5&2 end{pmatrix}$$

Начинаем проводить преобразования над строками теперь снизу вверх. Умножаем первую строку на 5 и прибавляем к ней третью. Ко второй строке просто прибавляем третью. $$begin{pmatrix} 15&10&0 &|& 4&-5&2 \ 0&-2&0 &|& -2&-2&2 \ 0&0&-5 &|& -1&-5&2 end{pmatrix}$$

К первой строке прибавляем вторую, умноженную на 5. $$begin{pmatrix} 15&0&0 &|& -6&-15&12 \ 0&-2&0 &|& -2&-2&2 \ 0&0&-5 &|& -1&-5&2 end{pmatrix}$$

Осталось разделить первую строку на 15, вторую на (-2), а третью на (-5). $$begin{pmatrix} 1&0&0 &|& -frac{2}{5}&-1&frac{4}{5} \ 0&1&0 &|& 1&1&-1 \ 0&0&1 &|& frac{1}{5}&1&-frac{2}{5} end{pmatrix}$$

Ответ
$$begin{pmatrix} 1&0&0 &|& -frac{2}{5}&-1&frac{4}{5} \ 0&1&0 &|& 1&1&-1 \ 0&0&1 &|& frac{1}{5}&1&-frac{2}{5} end{pmatrix}$$

Метод союзной матрицы(алгебраические дополнения)

Формула нахождения обратной матрицы через алгебраические дополнения выглядит следующим образом

$$A^{-1} = frac{1}{|A|} (A^*)^T. $$

Матрица $A^*$ называется союзной (присоединенной) матрицей и представляет собой набор алгебраических дополнений матрицы $ A $:

$$ A^* = begin{pmatrix} A_{11}&A_{12}&A_{13}\A_{21}&A_{22}&A_{23}\A_{31}&A_{22}&A_{33} end{pmatrix}, text{ где } A_{ij}=(-1)^{i+j} M_{ij} $$

$M_{ij} $ называется минором матрицы, который получается путем вычеркивания $ i $-ой строки и $ j $-того столбца из матрицы.

Пример 5
Найти обратную матрицу методом алгебраических дополнений $$ A = begin{pmatrix} 3&1&2\-1&3&-2\0&-1&4 end{pmatrix} $$
Решение

Итак, пользуемся формулой $ A^{-1} = frac{1}{|A|} (A^*)^T $

Первым делом вычисляем определитель матрицы $ A $, так как необходимым условием существование обратной матрицы является неравенство его к нулю:

$$ |A| = begin{vmatrix} 3&1&2\-1&3&-2\0&-1&4 end{vmatrix} = 36 + 0 + 2 – 0 – 6 + 4 = 36 neq 0 $$

Находим алгебраические дополнения матрицы $ A $. Для этого удаляем все элементы стоящие в i-ой строке и в j-ом столбце. Оставшиеся элементы матрицы переписываем в определитель и проводим его вычисление.

Вычеркиваем первую строку и первый столбец:

$$ A_{11} = (-1)^{1+1} cdot begin{vmatrix} 3&-2\-1&4 end{vmatrix} = 12 – 2 = 10 $$

Убираем первую строку и второй столбец:

$$ A_{12} = (-1)^{1+2} cdot begin{vmatrix} -1&-2\0&4 end{vmatrix} = -(-4 – 0) = 4 $$

Оставшиеся алгебраические дополнения находим по аналогии с предыдущими двумя.

$$ A_{13} = (-1)^{1+3} cdot begin{vmatrix} -1&3\0&-1 end{vmatrix} = 1 – 0 = 1 $$

$$ A_{21} = (-1)^{2+1} cdot begin{vmatrix} 1&2\-1&4 end{vmatrix} = -(4 + 2) = -6 $$

$$ A_{22} = (-1)^{2+2} cdot begin{vmatrix} 3&2\0&4 end{vmatrix} = 12 – 0 = 12 $$

$$ A_{23} = (-1)^{2+3} cdot begin{vmatrix} 3&1\0&-1 end{vmatrix} = -(-3 – 0) = 3 $$

$$ A_{31} = (-1)^{3+1} cdot begin{vmatrix} 1&2\3&-2 end{vmatrix} = -2 – 6 = -8 $$

$$ A_{32} = (-1)^{3+2} cdot begin{vmatrix} 3&2\-1&-2 end{vmatrix} = -(-6 + 2) = 4 $$

$$ A_{33} = (-1)^{3+3} cdot begin{vmatrix} 3&1\-1&3 end{vmatrix} = 9+1 = 10 $$

Составляем союзную (присоединенную) матрицу $ A^* $ из алгебраических дополнений:

$$ A^* = begin{pmatrix} 10&4&1\-6&12&3\-8&4&10 end{pmatrix}. $$

Транспонируем её и обозначаем $ (A^*)^T $:

$$ (A^*)^T = begin{pmatrix} 10&-6&-8\4&12&4\1&3&10 end{pmatrix} $$

В итоге находим обратную матрицу $ A^{-1} $:

$$ A^{-1} = frac{1}{36} begin{pmatrix} 10&-6&-8\4&12&4\1&3&10 end{pmatrix} $$

Делим каждый элемент матрицы на 36 и получаем следующее: $$begin{pmatrix} frac{5}{18}&-frac{1}{6}&-frac{2}{9}\ frac{1}{9}&frac{1}{3}&frac{1}{9}\frac{1}{36}&frac{1}{12}&frac{5}{18} end{pmatrix}.$$

Ответ
$$A^{-1} =begin{pmatrix} frac{5}{18}&-frac{1}{6}&-frac{2}{9}\ frac{1}{9}&frac{1}{3}&frac{1}{9}\frac{1}{36}&frac{1}{12}&frac{5}{18} end{pmatrix}$$

Добавить комментарий