Фаза колебаний как найти угол

Чтобы описать колебательные процессы и отличить одни колебания от других, используют 6 характеристик. Они называются так (рис. 1):

  • амплитуда,
  • период,
  • частота,
  • циклическая частота,
  • фаза,
  • начальная фаза.

Характеристики колебаний

Рис. 1. Основные характеристики колебаний – это амплитуда, период и начальная фаза

Такие величины, как амплитуду и период, можно определить по графику колебаний.

Начальную фазу, так же, определяют по графику, с помощью интервала времени (large Delta t), на который относительно нуля сдвигается начало ближайшего периода.

Частоту и циклическую частоту вычисляют из найденного по графику периода, по формулам. Они находятся ниже в тексте этой статьи.

А фазу определяют с помощью формулы, в которую входит интересующий нас момент времени t колебаний. Читайте далее.

Что такое амплитуда

Амплитуда – это наибольшее отклонение величины от равновесия, то есть, максимальное значение колеблющейся величины.

Измеряют в тех же единицах, в которых измерена колеблющаяся величина. К примеру, когда рассматривают механические колебания, в которых изменяется координата, амплитуду измеряют в метрах.

В случае электрических колебаний, в которых изменяется заряд, ее измеряют в Кулонах. Если колеблется ток – то в Амперах, а если – напряжение, то в Вольтах.

Часто обозначают ее, приписывая к букве, обозначающей амплитуду индекс «0» снизу.

К примеру, пусть колеблется величина ( large x ). Тогда символом ( large x_{0} ) обозначают амплитуду колебаний этой величины.

Иногда для обозначения амплитуды используют большую латинскую букву A, так как это первая буква английского слова «amplitude».

С помощью графика амплитуду можно определить так (рис. 2):

Амплитуду на графике находят так

Рис. 2. Амплитуда – это максимальное отклонение от горизонтальной оси либо вверх, либо вниз. Горизонтальная ось проходит через уровень нуля на оси, на которой отмечены амплитуды

Что такое период

Когда колебания повторяются точно, изменяющаяся величина принимает одни и те же значения через одинаковые кусочки времени. Такой кусочек времени называют периодом.

Обозначают его обычно большой латинской буквой «T» и измеряют в секундах.

( large T left( c right) ) – период колебаний.

Одна секунда – достаточно большой интервал времени. Поэтому, хотя период и измеряют в секундах, но для большинства колебаний он будет измеряться долями секунды.

Чтобы по графику колебаний определить период (рис. 3), нужно найти два одинаковых значения колеблющейся величины. После, провести от этих значений к оси времени пунктиры. Расстояние между пунктирами – это период колебаний.

Период – это расстояние между двумя одинаковыми значениями колеблющейся величины

Рис. 3. Период колебаний – это горизонтальное расстояние между двумя похожими точками на графике

Период – это время одного полного колебания.

На графике период найти удобнее одним из таких способов (рис. 4):

По графику колебаний период удобно определять так

Рис. 4. Удобно определять период, как расстояние между двумя соседними вершинами, либо между двумя впадинами

Что такое частота

Обозначают ее с помощью греческой буквы «ню» ( large nu ).

Частота отвечает на вопрос: «Сколько полных колебаний выполняется за одну секунду?» Или же: «Сколько периодов умещается в интервал времени, равный одной секунде?».

Поэтому, размерность частоты — это единицы колебаний в секунду:

( large nu left( frac{1}{c} right) ).

Иногда в учебниках встречается такая запись ( large displaystyle nu left( c^{-1} right) ), потому, что по свойствам степени ( large  displaystyle frac{1}{c} = c^{-1} ).

Начиная с 1933 года частоту указывают в Герцах в честь Генриха Рудольфа Герца. Он совершил значимые открытия в физике, изучал колебания и доказал, что существуют электромагнитные волны.

Одно колебание в секунду соответствует частоте в 1 Герц.

[ large displaystyle boxed{ frac{ 1 text{колебание}}{1 text{секунда}} = 1 text{Гц} }]

Чтобы с помощью графика определить частоту, нужно на оси времени определить период. А затем посчитать частоту по такой формуле:

[ large boxed{ nu = frac{1}{T} }]

Существует еще один способ определить частоту с помощью графика колеблющейся величины. Нужно отмерить на графике интервал времени, равный одной секунде, и сосчитать количество периодов колебаний, уместившихся в этот интервал (рис. 5).

Частота – это количество периодов, уместившихся в одну секунду

Рис. 5. На графике частота – это количество периодов, уместившихся в одну секунду

Что такое циклическая частота

Колебательное движение и движение по окружности имеют много общего – это повторяющиеся движения. Одному полному обороту соответствует угол (large 2pi) радиан. Поэтому, кроме интервала времени 1 секунда, физики используют интервал времени, равный (large 2pi) секунд.

Число полных колебаний для такого интервала времени, называется циклической частотой и обозначается греческой буквой «омега»:

( large displaystyle omega left( frac{text{рад}}{c} right) )

Примечание: Величину ( large omega ) так же называют круговой частотой, а еще — угловой скоростью (ссылка).

Циклическая частота отвечает на вопрос: «Сколько полных колебаний выполняется за (large 2pi) секунд?» Или же: «Сколько периодов умещается в интервал времени, равный (large 2pi) секунд?».

Обычная ( large nu ) и циклическая ( large omega ) частота колебаний связаны формулой:

[ large boxed{ omega = 2pi cdot nu }]

Слева в формуле количество колебаний измеряется в радианах на секунду, а справа – в Герцах.

Чтобы с помощью графика колебаний определить величину ( large omega ), нужно сначала найти период T.

Затем, воспользоваться формулой ( large displaystyle nu = frac{1}{T} ) и вычислить частоту ( large nu ).

И только после этого, с помощью формулы ( large omega = 2pi cdot nu ) посчитать циклическую ( large omega ) частоту.

Для грубой устной оценки можно считать, что циклическая частота превышает обычную частоту примерно в 6 раз численно.

Определить величину ( large omega ) по графику колебаний можно еще одним способом. На оси времени отметить интервал, равный (large 2pi), а затем, сосчитать количество периодов колебаний в этом интервале (рис. 6).

Циклическая частота – это количество периодов, уместившихся в 2 пи секунд

Рис. 6. На графике циклическая (круговая) частота – это количество периодов, уместившихся в 2 пи секунд

Что такое начальная фаза и как определить ее по графику колебаний

Отклоним качели на некоторый угол от равновесия и будем удерживать их в таком положении. Когда мы отпустим их, качели начнут раскачиваться. А старт колебаний произойдет из угла, на который мы их отклонили.

Такой, начальный угол отклонения, называют начальной фазой колебаний. Обозначим этот угол (рис. 7) какой-нибудь греческой буквой, например, (large varphi_{0} ).

(large varphi_{0} left(text{рад} right) ) — начальная фаза, измеряется в радианах (или градусах).

Начальная фаза колебаний – это угол, на который мы отклонили качели, перед тем, как их отпустить. Из этого угла начнется колебательный процесс.

Начальная фаза – это угол отклонения качелей перед началом их колебаний

Рис. 7. Угол отклонения качелей перед началом колебаний

Рассмотрим теперь, как величина (large varphi_{0} ) влияет на график колебаний (рис. 8). Для удобства будем считать, что мы рассматриваем колебания, которые происходят по закону синуса.

Кривая, обозначенная черным на рисунке, начинает период колебаний из точки t = 0. Эта кривая является «чистым», не сдвинутым синусом. Для нее величину начальной фазы (large varphi_{0} ) принимаем равной нулю.

Начальная фаза влияет на сдвиг графика по горизонтальной оси

Рис. 8. Вертикальное положение стартовой точки в момент времени t = 0 и сдвиг графика по горизонтали определяется начальной фазой

Вторая кривая на рисунке обозначена красным цветом. Начало ее периода сдвинуто вправо относительно точки t = 0. Поэтому, для красной кривой, начавшей новый период колебаний спустя время (large Delta t), начальный угол (large varphi_{0} ) будет отличаться от нулевого значения.

Определим угол (large varphi_{0} ) с помощью графика колебаний.

Обратим внимание (рис. 8) на то, что время, лежащее на горизонтальной оси, измеряется в секундах, а величина (large varphi_{0} ) — в радианах. Значит, нужно связать формулой кусочек времени (large Delta t) и соответствующий ему начальный угол (large varphi_{0} ).

Как вычислить начальный угол по интервалу смещения

Алгоритм нахождения начального угла состоит из нескольких несложных шагов.

  • Сначала определим интервал времени, обозначенный синими стрелками на рисунке. На осях большинства графиков располагают цифры, по которым это можно сделать. Как видно из рис. 8, этот интервал (large Delta t) равен 1 сек.
  • Затем определим период. Для этого отметим одно полное колебание на красной кривой. Колебание началось в точке t = 1, а закончилось в точке t =5. Взяв разность между этими двумя точками времени, получим значение периода.

[large T = 5 – 1 = 4 left( text{сек} right)]

Из графика следует, что период T = 4 сек.

  • Рассчитаем теперь, какую долю периода составляет интервал времени (large Delta t). Для этого составим такую дробь (large displaystyle frac{Delta t }{T} ):

[large frac{Delta t }{T} = frac{1}{4} ]

Полученное значение дроби означает, что красная кривая сдвинута относительно точки t = 0 и черной кривой на четверть периода.

  • Нам известно, что одно полное колебание — один полный оборот (цикл), синус (или косинус) совершает, проходя каждый раз угол (large 2pi ). Найдем теперь, как связана найденная доля периода с углом (large 2pi ) полного цикла.

Для этого используем формулу:

[large boxed{ frac{Delta t }{T} cdot 2pi = varphi_{0} }]

(large displaystyle frac{1}{4} cdot 2pi = frac{pi }{2} =varphi_{0} )

Значит, интервалу (large Delta t) соответствует угол (large displaystyle frac{pi }{2} ) – это начальная фаза для красной кривой на рисунке.

  • В заключение обратим внимание на следующее. Начало ближайшего к точке t = 0 периода красной кривой сдвинуто вправо. То есть, кривая запаздывает относительно «чистого» синуса.

Чтобы обозначить запаздывание, будем использовать знак «минус» для начального угла:

[large varphi_{0} = — frac{pi }{2} ]

Примечание: Если на кривой колебаний начало ближайшего периода лежит левее точки t = 0, то в таком случае, угол (large displaystyle frac{pi }{2} ) имеет знак «плюс».

Для не сдвинутого влево, либо вправо, синуса или косинуса, начальная фаза нулевая (large varphi_{0} = 0 ).

Для синуса или косинуса, сдвинутого влево по графику и опережающего обычную функцию, начальная фаза берется со знаком «+».

А если функция сдвинута вправо и запаздывает относительно обычной функции, величину (large varphi_{0} ) записываем со знаком «-».

Примечания:

  1. Физики начинают отсчет времени из точки 0. Поэтому, время в задачах будет величиной не отрицательной.
  2. На графике колебаний начальная фаза ( varphi_{0}) влияет на вертикальный сдвиг точки, из которой стартует колебательный процесс. Значит, можно для простоты сказать, что колебания имеют начальную точку.

Благодаря таким допущениям график колебаний при решении большинства задач можно изображать, начиная из окрестности нуля и преимущественно в правой полуплоскости.

Что такое фаза колебаний

Рассмотрим еще раз обыкновенные детские качели (рис. 9) и угол их отклонения от положения равновесия. С течением времени этот угол изменяется, то есть, он зависит от времени.

Фаза изменяется в процессе колебаний

Рис. 9. Угол отклонения от равновесия – фаза, изменяется в процессе колебаний

В процессе колебаний изменяется угол отклонения от равновесия. Этот изменяющийся угол называют фазой колебаний и обозначают (varphi).

Различия между фазой и начальной фазой

Существуют два угла отклонения от равновесия – начальный, он задается перед началом колебаний и, угол, изменяющийся во время колебаний.

Первый угол называют начальной ( varphi_{0}) фазой (рис. 10а), она считается неизменной величиной. А второй угол – просто ( varphi) фазой (рис. 10б) – это величина переменная.

Фаза и начальная фаза имеют различия

Рис. 10. Перед началом колебаний задаем начальную фазу — начальный угол отклонения от равновесия. А угол, который изменяется во время колебаний, называют фазой

Как на графике колебаний отметить фазу

На графике колебаний фаза (large varphi) выглядит, как точка на кривой. С течением времени эта точка сдвигается (бежит) по графику слева направо (рис. 11). То есть, в разные моменты времени она будет находиться на различных участках кривой.

На рисунке отмечены две крупные красные точки, они соответствуют фазам колебаний в моменты времени t1 и t2.

Фазу обозначают бегущей по кривой точкой

Рис. 11. На графике колебаний фаза – это точка, скользящая по кривой. В различные моменты времени она находится в разных положениях на графике

А начальная фаза на графике колебаний выглядит, как место, в котором находится точка, лежащая на кривой колебаний, в момент времени t=0. На рисунке дополнительно присутствует одна мелкая красная точка, она соответствует начальной фазе колебаний.

Как определить фазу с помощью формулы

Пусть нам известны величины (large omega) — циклическая частота и (large varphi_{0}) — начальная фаза. Во время колебаний эти величины не изменяются, то есть, являются константами.

Время колебаний t будет величиной переменной.

Фазу (large varphi), соответствующую любому интересующему нас моменту t времени, можно определить из такого уравнения:

[large boxed{ varphi = omega cdot t + varphi_{0} }]

Левая и правая части этого уравнения имеют размерность угла (т. е. измеряются в радианах, или градусах). А подставляя вместо символа t в это уравнение интересующие нас значения времени, можно получать соответствующие им значения фазы.

Что такое разность фаз

Обычно понятие разности фаз применяют, когда сравнивают два колебательных процесса между собой.

Рассмотрим два колебательных процесса (рис. 12). Каждый имеет свою начальную фазу.

Обозначим их:

( large varphi_{01}) – для первого процесса и,

( large varphi_{02}) – для второго процесса.

Разность фаз двух колебаний

Рис. 12. Для двух колебаний можно ввести понятие разности фаз

Определим разность фаз между первым и вторым колебательными процессами:

[large boxed{ Delta varphi = varphi_{01} —  varphi_{02} }]

Величина (large Delta varphi ) показывает, на сколько отличаются фазы двух колебаний, она называется разностью фаз.

Как связаны характеристики колебаний — формулы

Движение по окружности и колебательное движение имеют определенную схожесть, так как эти виды движения могут быть периодическими.

Поэтому, основные формулы, применимые для движения по окружности, подойдут так же, для описания колебательного движения.

  • Связь между периодом, количеством колебаний и общим временем колебательного процесса:

[large boxed{ T cdot N = t }]

( large T left( c right) ) – время одного полного колебания (период колебаний);

( large N left( text{шт} right) ) – количество полных колебаний;

( large t left( c right) ) – общее время для нескольких колебаний;

  • Период и частота колебаний связаны так:

[large boxed{ T = frac{1}{nu} }]

(large nu left( text{Гц} right) ) – частота колебаний.

  • Количество и частота колебаний связаны формулой:

[large boxed{ N = nu cdot t}]

  • Связь между частотой и циклической частотой колебаний:

[large boxed{ nu cdot 2pi = omega }]

(large displaystyle omega left( frac{text{рад}}{c} right) ) – циклическая (круговая) частота колебаний.

  • Фаза и циклическая частота колебаний связаны так:

[large boxed{ varphi = omega cdot t + varphi_{0} }]

(large varphi_{0} left( text{рад} right) ) — начальная фаза;

(large varphi left( text{рад} right) ) – фаза (угол) в выбранный момент времени t;

  • Между фазой и количеством колебаний связь описана так:

[large boxed{ varphi = N cdot 2pi }]

  • Интервал времени (large Delta t ) (сдвигом) и начальная фаза колебаний связаны:

[large boxed{ frac{Delta t }{T} cdot 2pi = varphi_{0} }]

(large Delta t left( c right) ) — интервал времени, на который относительно точки t=0 сдвинуто начало ближайшего периода.

Содержание материала

  1. Фаза колебаний
  2. Видео
  3. Что такое разность фаз
  4. Как найти разность фаз колебаний, формула
  5. Пружинный маятник
  6. Амплитуда и фаза колебаний
  7. Что такое начальная фаза и как определить ее по графику колебаний
  8. Как вычислить начальный угол по интервалу смещения
  9. Сложение колебаний и начальная фаза
  10. Характеристики колебаний
  11. Фазы колеблющейся величины, ее скорости и ускорения
  12. Что мы узнали?
  13. Звук

Фаза колебаний

Подробности
Просмотров: 833

Фаза колебаний (φ) характеризует гармонические колебания. Выражается фаза в угловых единицах — радианах.

При заданной амплитуде колебаний координата колеблющегося тела в любой момент времени однозначно определяется аргументом косинуса или синуса: φ = ωt.

Фаза колебаний определяет при заданной амплитуде состояние колебательной системы (значение координаты, скорости и ускоренияв) любой момент времени.

Что такое разность фаз

Обычно понятие разности фаз применяют, когда сравнивают два колебательных процесса между собой.

Рассмотрим два колебательных процесса (рис. 12). Каждый имеет свою начальную фазу.

Обозначим их:

( large varphi_{01}) – для первого процесса и,

( large varphi_{02}) – для второго процесса.

Рис. 12. Для двух колебаний можно ввести понятие р

Рис. 12. Для двух колебаний можно ввести понятие разности фаз

Определим разность фаз между первым и вторым колебательными процессами:

[large boxed{ Delta varphi = varphi_{01} —  varphi_{02} }]

Величина (large Delta varphi ) показывает, на сколько отличаются фазы двух колебаний, она называется разностью фаз.

Видео

Как найти разность фаз колебаний, формула

Пусть имеется два гармонических колебания, изменяющихся по одному закону и с одинаковой амплитудой и частотой, т.е Xm1=Xm2иω1=ω2. Такие колебания будут отличаться друг от друга только значением начальных фаз.

Запишем уравнение колебаний для каждого:x1=Xm1·sinω1·t+φ01и x2=Xm2·sinω2·t+φ02. Введем обозначение для разности фаз — ∆φ. Так как амплитуда и частота равны, то ∆φ определяется выражением:

∆φ=φ02—φ01.

На рисунке показаны два графика гармонических колебаний, разность фаз которых составляет π радиан.


 

Разность фаз также называют сдвигом фаз.

Определение 2

Колебания, разность фаз которых не зависит от времени, называются когерентными.

Рассмотрим два гармонических когерентных колебания с одинаковым периодом и направлением:x1=Xm1·cosω·t+φ01иx2=Xm2·cosω·t+φ02. Величину результирующей амплитуды X_m определим по правилу сложения векторов: Xm2=Xm12+Xm22+2·Xm1·Xm2·cosφ02—φ01. Из формулы видно, что суммарная амплитуда колебаний зависит от сдвига фаз. Приведем два варианта:

  1. Сдвиг фаз равен четному числу π:,2π,4π,6π и т.д. В этом случае: cosφ02—φ01=1. Суммарная амплитуда: Xm=Xm1+Xm2. Такие колебания называют синфазными. Пример синфазных колебаний приведен на рисунке.Сдвиг фаз равен нечетному числу π:π,3π,5π&nbs
  2. Сдвиг фаз равен нечетному числу π:π,3π,5π и т.д. В этом случае: cosφ02—φ01=—1. Суммарная амплитуда: Xm=Xm1—Xm2. О таких колебаниях говорят, что они находятся в противофазе. Если Xm1=Xm2,тоXm=. Пример двух противофазных колебаний с одинаковыми амплитудами приведен на рисунке.

Пружинный маятник

Пружинный маятник — это груз, прикрепленный к пружине, массой которой можно пренебречь.

В пружинном маятнике колебания совершаются под действием силы упругости. Пока пружина не деформирована, сила упругости на тело не действует.

Формула периода колебания пружинного маятника

T — период [с]

T — период [с]

m — масса маятника [кг]

k — жесткость пружины [Н/м]

π = 3,14

Амплитуда и фаза колебаний

Амплитуда колебаний – модуль наибольшего смещения тела от положения равновесия. Обозначение – ​( A, (X_{max}) )​, единицы измерения – м.

Фаза колебаний – это величина, которая определяет состояние колебательной системы в любой момент времени. Обозначение – ​( varphi )​, единицы измерения – рад (радиан).

Фаза колебаний – это величина, стоящая под знаком

Фаза колебаний – это величина, стоящая под знаком синуса или косинуса. Она показывает, какая часть периода прошла от начала колебаний. Фаза гармонических колебаний в процессе колебаний изменяется. ​( varphi_0 )​ – начальная фаза колебаний. Начальная фаза колебаний – величина, которая определяет положение тела в начальный момент времени.

Важно! Путь, пройденный телом за одно полное колебание, равен четырем амплитудам.

Что такое начальная фаза и как определить ее по графику колебаний

Отклоним качели на некоторый угол от равновесия и будем удерживать их в таком положении. Когда мы отпустим их, качели начнут раскачиваться. А старт колебаний произойдет из угла, на который мы их отклонили.

Такой, начальный угол отклонения, называют начальной фазой колебаний. Обозначим этот угол (рис. 7) какой-нибудь греческой буквой, например, (large varphi_{0} ).

(large varphi_{0} left(text{рад} right) ) — начальная фаза, измеряется в радианах (или градусах).

Начальная фаза колебаний – это угол, на который мы отклонили качели, перед тем, как их отпустить. Из этого угла начнется колебательный процесс.

Рис. 7. Угол отклонения качелей перед началом коле

Рис. 7. Угол отклонения качелей перед началом колебаний

Рассмотрим теперь, как величина (large varphi_{0} ) влияет на график колебаний (рис. 8). Для удобства будем считать, что мы рассматриваем колебания, которые происходят по закону синуса.

Кривая, обозначенная черным на рисунке, начинает период колебаний из точки t = 0. Эта кривая является «чистым», не сдвинутым синусом. Для нее величину начальной фазы (large varphi_{0} ) принимаем равной нулю.

Рис. 8. Вертикальное положение стартовой точки в м

Рис. 8. Вертикальное положение стартовой точки в момент времени t = 0 и сдвиг графика по горизонтали определяется начальной фазой

Вторая кривая на рисунке обозначена красным цветом. Начало ее периода сдвинуто вправо относительно точки t = 0. Поэтому, для красной кривой, начавшей новый период колебаний спустя время (large Delta t), начальный угол (large varphi_{0} ) будет отличаться от нулевого значения.

Определим угол (large varphi_{0} ) с помощью графика колебаний.

Обратим внимание (рис. 8) на то, что время, лежащее на горизонтальной оси, измеряется в секундах, а величина (large varphi_{0} ) — в радианах. Значит, нужно связать формулой кусочек времени (large Delta t) и соответствующий ему начальный угол (large varphi_{0} ).

Как вычислить начальный угол по интервалу смещения

Алгоритм нахождения начального угла состоит из нескольких несложных шагов.

  • Сначала определим интервал времени, обозначенный синими стрелками на рисунке. На осях большинства графиков располагают цифры, по которым это можно сделать. Как видно из рис. 8, этот интервал (large Delta t) равен 1 сек.
  • Затем определим период. Для этого отметим одно полное колебание на красной кривой. Колебание началось в точке t = 1, а закончилось в точке t =5. Взяв разность между этими двумя точками времени, получим значение периода.

[large T = 5 – 1 = 4 left( text{сек} right)]

Из графика следует, что период T = 4 сек.

  • Рассчитаем теперь, какую долю периода составляет интервал времени (large Delta t). Для этого составим такую дробь (large displaystyle frac{Delta t }{T} ):

[large frac{Delta t }{T} = frac{1}{4} ]

Полученное значение дроби означает, что красная кривая сдвинута относительно точки t = 0 и черной кривой на четверть периода.

  • Нам известно, что одно полное колебание — один полный оборот (цикл), синус (или косинус) совершает, проходя каждый раз угол (large 2pi ). Найдем теперь, как связана найденная доля периода с углом (large 2pi ) полного цикла.

Для этого используем формулу:

[large boxed{ frac{Delta t }{T} cdot 2pi = varphi_{0} }]

(large displaystyle frac{1}{4} cdot 2pi = frac{pi }{2} =varphi_{0} )

Значит, интервалу (large Delta t) соответствует угол (large displaystyle frac{pi }{2} ) – это начальная фаза для красной кривой на рисунке.

  • В заключение обратим внимание на следующее. Начало ближайшего к точке t = 0 периода красной кривой сдвинуто вправо. То есть, кривая запаздывает относительно «чистого» синуса.

Чтобы обозначить запаздывание, будем использовать знак «минус» для начального угла:

[large varphi_{0} = — frac{pi }{2} ]

Примечание: Если на кривой колебаний начало ближайшего периода лежит левее точки t = 0, то в таком случае, угол (large displaystyle frac{pi }{2} ) имеет знак «плюс».

Для не сдвинутого влево, либо вправо, синуса или косинуса, начальная фаза нулевая (large varphi_{0} = 0 ).

Для синуса или косинуса, сдвинутого влево по графику и опережающего обычную функцию, начальная фаза берется со знаком «+».

А если функция сдвинута вправо и запаздывает относительно обычной функции, величину (large varphi_{0} ) записываем со знаком «-».

Примечания:

  1. Физики начинают отсчет времени из точки 0. Поэтому, время в задачах будет величиной не отрицательной.
  2. На графике колебаний начальная фаза ( varphi_{0}) влияет на вертикальный сдвиг точки, из которой стартует колебательный процесс. Значит, можно для простоты сказать, что колебания имеют начальную точку.

Благодаря таким допущениям график колебаний при решении большинства задач можно изображать, начиная из окрестности нуля и преимущественно в правой полуплоскости.

Сложение колебаний и начальная фаза

Тело, совершающее колебания, способно принимать участие в нескольких колебательных процессах одновременно. В таком случае возникает необходимость выяснить, каким будет результирующее колебание.

Допустим, что два колебания с равными частотами происходят по одной прямой. Уравнением результирующих колебаний будет выражение:

тогда амплитуда суммарного колебания равна:

где $A_1$; $A_2$ – амплитуды складывающихся колебаний; $<varphi >_2;;<varphi >_1$ – начальные фазы суммирующихся колебаний. При этом начальную фазу полученного колебания ($varphi $) вычисляют, применяя формулу:

Уравнение траектории точки, которая принимает участие в двух взаимно перпендикулярных колебаниях с амплитудами $A_1$и $A_2$ и начальными фазами $<varphi >_2и<varphi >_1$:

В случае равенства начальных фаз составляющих колебаний уравнение траектории имеет вид:

что говорит о движении точки по прямой линии.

Если разность начальных фаз складываемых колебаний составляет $Delta varphi =<varphi >_2-<varphi >_1=frac<pi ><2>,$ уравнением траектории становится формула:

что означает, траектория движения эллипс.

Характеристики колебаний

Чтобы перейти к гармоническим колебаниям, нам нужно описать величины, которые помогут нам эти колебания охарактеризовать. Любое колебательное движение можно описать величинами: период, частота, амплитуда, фаза колебаний.

Период — это время одного полного колебания. Измеряется в секундах и обозначается буквой T.

Формула периода колебаний

T  = t/N

T — период [с]

t — время [с]

N — количество колебаний [—]

Также есть величина, обратная периоду — частота. Она показывает, сколько колебаний совершает система в единицу времени.

Формула частоты

ν  = N/t = 1/T

ν — частота [Гц]

t — время [с]

T — период [с]

N — количество колебаний [—]

Амплитуда — это максимальное отклонение от положения равновесия. Измеряется в метрах и обозначается либо буквой A, либо xmax.

Она используется в уравнении гармонических колебаний:

Фазы колеблющейся величины, ее скорости и ускорения

Возьмем первую производную от параметра $xi $, совершающего гармонические колебания:

Тогда вторая производная от $xi $ задается функцией:

Уравнения (2) и (3) показывают, что скорость и ускорение $xi $ совершают гармонические колебания с циклической частотой ${omega }_0$. Амплитуды данных колебаний равны:

Фаза скорости (${omega }_0t+varphi +frac{pi }{2}$) отличается от фазы ускорения (${omega }_0t+varphi +pi $) на величину равную $frac{pi }{2}$. Фаза ускорения отлична от фазы колеблющейся величины на $pi $. Это значит, что в тот момент времени, когда $xi =0$ скорость ее изменения ($frac{dxi }{dt}$) становится максимальной. При $xi $ равной наибольшему значению меньшему нуля, ее ускорение превращается в максимальное положительное.

Что мы узнали?

Фаза колебания — это аргумент гармонической функции в ее формуле. Фактически это конкретный момент колебания. Начальная фаза — это аргумент в нулевой момент времени. Наибольшее значение начальная фаза колебаний играет при сравнении различных колебаний с одинаковой частотой.

Звук

Звук – это колебания упругой среды, воспринимаемые органом слуха.

Условия, необходимые для возникновения и ощущения звука:

Звуковые волны – это упругие волны, вызывающие у человека ощущение звука, представляющие собой зоны сжатия и разряжения, передающиеся на расстояние с течением времени.

Классификация звуковых волн:

  • инфразвук (​( nu )​ < 16 Гц);
  • звуковой диапазон (16 Гц < ( nu ) < 20 000 Гц);
  • ультразвук (( nu ) > 20 000 Гц).

Скорость звука – это скорость распространения фазы колебания, т. е. области сжатия и разряжения среды.

Теги

Теги

Фаза незатухающих гармонических колебаний, формула

Гармонические колебания — это колебание проекции точки двигающейся равномерно по окружности на прямую.

Если построить график отклонения точки от нуля в зависимости от угла поворота точки по окружности получится график функции синус, или синусоида.

Угол поворота точки по окружности при равномерном вращении пропорционален времени. Соответственно фаза гармонического колебания это угол, соответствующий времени.

Для любых колебаний отклонение у, мгновенная скорость u и мгновенное ускорение a являются функциями времени t, а также фазы φ поскольку φ = ωt.

Фаза колебаний

Фаза колебаний

При определении фазы необходимо учитывать начальную фазу φ0, т. е. значение фазы в начальный момент (t = 0).

Если

φ фаза, радиан
φ0 начальная фаза, радиан
ω круговая частота, радиан / секунда
f линейная частота, Герц
t время, секунда

то выполняется соотношение

[
φ = ωt + φ_0 = 2πf t + φ_0
]

Найти, вычислить фазу колебаний по формуле (1) через круговую частоту ω

Найти, вычислить фазу колебаний по формуле (1) через линейную частоту f

Фаза незатухающих гармонических колебаний

стр. 538

Параметры гармонического колебания

Любой колебательный процесс — это изменения некоторого параметра около среднего значения. Колебания бывают периодическими (маятник) и непериодическими (флаг на ветру). Если построить график колебательного процесса, то среднее значение на нём будет представлено горизонтальной прямой, а значение колеблющегося параметра — кривой, постоянно возвращающейся к среднему. При этом для непериодического колебания возвраты будут хаотичными, а для периодического — строго через одинаковый промежуток времени. Этот промежуток называется периодом колебания $T$.

Периодические и непериодические колебания

Рис. 1. Периодические и непериодические колебания.

Простейшим периодическим колебанием является колебание, которое совершается по закону круговых функций (синуса или косинуса). Оно называется гармоническим. Поскольку в высшей математике доказывается, что любое колебание (в том числе непериодическое) можно представить в виду бесконечной суммы гармонических колебаний, то в первую очередь изучаются именно они. А по определению любое гармоническое колебание можно представить в виде функции:

$$A=A_0sin Bigg ( {2piover T} t +varphi_0 Bigg ),$$

где:

  • $A_0$ — амплитуда колебания, максимальное отклонение мгновенного значения функции от нуля;
  • $T$ — период колебаний;
  • $t$ — свободная переменная — момент времени, для которого находится мгновенное значение амплитуды;
  • $varphi_0$ — начальная фаза колебаний.

Коэффициент ${2piover T}=omega$ при свободной переменной $t$ называется угловой частотой. Его физический смысл состоит в том, что это угол, проходимый гармонической функцией за единицу времени. Значение выражения ${2piover T} t +varphi_0=varphi$, которое является аргументом функции синуса, называется полной фазой колебания.

Рис. 2. Фаза колебания.

Характеристики колебаний

Чтобы описать колебательные процессы и отличить одни колебания от других, используют 6 характеристик. Они называются так (рис. 1):

  • амплитуда,
  • период,
  • частота,
  • циклическая частота,
  • фаза,
  • начальная фаза.

Такие величины, как амплитуду и период, можно определить по графику колебаний.

Начальную фазу, так же, определяют по графику, с помощью интервала времени (large Delta t), на который относительно нуля сдвигается начало ближайшего периода.

Частоту и циклическую частоту вычисляют из найденного по графику периода, по формулам. Они находятся ниже в тексте этой статьи.

А фазу определяют с помощью формулы, в которую входит интересующий нас момент времени t колебаний. Читайте далее.

Фаза гармонического колебания

Из формулы гармонического колебания можно понять физический смысл фазы. Поскольку аргументом функции $sin(x)$ является угол поворота единичного вектора на координатной плоскости, выраженный в радианах, и его период равен $2pi$, то фаза — это часть периода колебания, соответствующая моменту $t$. Она еще выражается в радианах и тоже имеет период $2pi$.

Из формулы также можно видеть, что если $t=0$, то $varphi=varphi_0$ (полная фаза в начальный момент равна начальной фазе).

Примечания

  1. ГОСТ Р 52002-2003. Электротехника. Термины и определения основных понятий. ГОСТ даёт определение: «Фаза (синусоидального электрического) тока — аргумент синусоидального электрического тока, отсчитываемый от точки перехода значения тока через нуль к положительному значению»
  2. Хотя нет принципиальной причины не сделать противоположный выбор, что иногда и делается некоторыми авторами.
  3. Таким образом, обычно, в соответствии с этим соглашением начальная фаза колебания вида Asin⁡(ωt){displaystyle Asin(omega t)} считается равной −π2{displaystyle -pi /2} (синус отстает от косинуса по фазе
    ).
  4. Хотя в части случаев с наложением условий на скорость изменения и т.п., несколько ограничивающих произвольность функции.
  5. Существуют системы, формализм действия к которым применять неудобно и даже такие, к которым он по сути неприменим, однако в современном понимании такие системы делятся на два класса: 1) не фундаментальные (то есть описываемые неточно, и мыслится, что будучи описана более точно такая система может быть — в принципе — описана через действие), 2) относящиеся к далеко не общепризнанным теоретическим построениям.

Разность фаз

Для одного колебательного процесса фаза не играет большой роли. В самом деле, если брать разные моменты времени за начальные, мы можем получать любое значение фазы, колебательный процесс при этом никак не изменится. Однако, когда речь идет о нескольких колебательных процессах, то значение фазы существенно возрастает. Именно фазой определяется разница мгновенных значений двух колебаний.

Рис. 3. Графики колебаний с различными фазами.

Если частоты колебаний неодинаковы, то каждый момент времени фазы будут различны, их разность также будет изменяться. Если же частоты колебаний одинаковы, то несмотря на изменение со временем фазы каждого колебания, разность фаз этих двух колебаний будет постоянной. Это может приводить к интересным ситуациям.

Например, если мы возьмем два колебания с одинаковыми амплитудами и частотами, но у первого начальная фаза будет равна нулю, а у второго — $pi$, то эти два колебания никогда не будут иметь одинаковых ненулевых значений. Более того, если эти колебания сложить, то их сумма всегда будет равна нулю. Говорят, что такие процессы происходят в противофазе.

Что такое фаза колебаний

Рассмотрим еще раз обыкновенные детские качели (рис. 9) и угол их отклонения от положения равновесия. С течением времени этот угол изменяется, то есть, он зависит от времени.

В процессе колебаний изменяется угол отклонения от равновесия. Этот изменяющийся угол называют фазой колебаний и обозначают (varphi).

Различия между фазой и начальной фазой

Существуют два угла отклонения от равновесия – начальный, он задается перед началом колебаний и, угол, изменяющийся во время колебаний.

Первый угол называют начальной ( varphi_) фазой (рис. 10а), она считается неизменной величиной. А второй угол – просто ( varphi) фазой (рис. 10б) – это величина переменная.

Как на графике колебаний отметить фазу

На графике колебаний фаза (large varphi) выглядит, как точка на кривой. С течением времени эта точка сдвигается (бежит) по графику слева направо (рис. 11). То есть, в разные моменты времени она будет находиться на различных участках кривой.

На рисунке отмечены две крупные красные точки, они соответствуют фазам колебаний в моменты времени t1 и t2.

А начальная фаза на графике колебаний выглядит, как место, в котором находится точка, лежащая на кривой колебаний, в момент времени t=0. На рисунке дополнительно присутствует одна мелкая красная точка, она соответствует начальной фазе колебаний.

Как определить фазу с помощью формулы

Пусть нам известны величины (large omega) — циклическая частота и (large varphi_) — начальная фаза. Во время колебаний эти величины не изменяются, то есть, являются константами.

Время колебаний t будет величиной переменной.

Фазу (large varphi), соответствующую любому интересующему нас моменту t времени, можно определить из такого уравнения:

Левая и правая части этого уравнения имеют размерность угла (т. е. измеряются в радианах, или градусах). А подставляя вместо символа t в это уравнение интересующие нас значения времени, можно получать соответствующие им значения фазы.

Значение начальной фазы колебательного процесса

Точка начальной фазы колебаний характеризует значение параметра функции в нулевой момент времени. Учитывая, что для того, чтобы система начала колебаться, она должна быть выведена из положения равновесия, начальная фаза колебаний характеризует именно это начальное отклонение, которое хорошо видно на графике функции.

Для нитяного или пружинного маятника зачастую начальная фаза колебаний также характеризует точку максимального отклонения.

Но наибольшее значение начальная фаза колебаний принимает для случая, когда происходит два и более колебательных процесса одинаковой частоты. При одинаковой частоте разность фаз колебаний в этих процессах будет постоянна. Следовательно, именно от начальной фазы зависит взаимное значение колебаний.

Например, если в обоих колебательных процессах, происходящих с равной частотой, начальные фазы будут равны, то нулевые и амплитудные значения обоих процессов будут всегда достигаться одновременно. Говорят, что процессы происходят синфазно.

Если начальная фаза в одном процессе будет равна нулю, а в другом — $pi$, то в этом случае нулевые значения будут достигаться процессами одновременно, а вот амплитудные — нет. Более того, в момент, когда амплитуда одного процесса будет максимально положительной, амплитуда другого процесса будет максимально отрицательной. Говорят, что эти два процесса происходят в противофазе.

При других начальных фазах такие процессы будут меняться «с отставанием» или «с опережением», в зависимости от конкретных значений. И, поскольку их частота одинакова, то отставание или опережение будет постоянно. Нулевые и амплитудные значения никогда не будут достигнуты одновременно.

Рис. 3. Разность фаз колебаний.

Примечания

  1. ГОСТ Р 52002-2003. Электротехника. Термины и определения основных понятий. ГОСТ даёт определение: «Фаза (синусоидального электрического) тока — аргумент синусоидального электрического тока, отсчитываемый от точки перехода значения тока через нуль к положительному значению»
  2. Хотя нет принципиальной причины не сделать противоположный выбор, что иногда и делается некоторыми авторами.
  3. Таким образом, обычно, в соответствии с этим соглашением начальная фаза колебания вида Asin⁡(ωt){displaystyle Asin(omega t)} считается равной −π2{displaystyle -pi /2} (синус отстает от косинуса по фазе
    ).
  4. Хотя в части случаев с наложением условий на скорость изменения и т.п., несколько ограничивающих произвольность функции.
  5. Существуют системы, формализм действия к которым применять неудобно и даже такие, к которым он по сути неприменим, однако в современном понимании такие системы делятся на два класса: 1) не фундаментальные (то есть описываемые неточно, и мыслится, что будучи описана более точно такая система может быть — в принципе — описана через действие), 2) относящиеся к далеко не общепризнанным теоретическим построениям.

Примечания

  1. ГОСТ Р 52002-2003. Электротехника. Термины и определения основных понятий. ГОСТ даёт определение: «Фаза (синусоидального электрического) тока — аргумент синусоидального электрического тока, отсчитываемый от точки перехода значения тока через нуль к положительному значению»
  2. Хотя нет принципиальной причины не сделать противоположный выбор, что иногда и делается некоторыми авторами.
  3. Таким образом, обычно, в соответствии с этим соглашением начальная фаза колебания вида Asin⁡(ωt){displaystyle Asin(omega t)} считается равной −π2{displaystyle -pi /2} (синус отстает от косинуса по фазе
    ).
  4. Хотя в части случаев с наложением условий на скорость изменения и т.п., несколько ограничивающих произвольность функции.
  5. Существуют системы, формализм действия к которым применять неудобно и даже такие, к которым он по сути неприменим, однако в современном понимании такие системы делятся на два класса: 1) не фундаментальные (то есть описываемые неточно, и мыслится, что будучи описана более точно такая система может быть — в принципе — описана через действие), 2) относящиеся к далеко не общепризнанным теоретическим построениям.

( 1 оценка, среднее 5 из 5 )

Гармоническое колебание это простейшее периодическое колебание, при котором смещение х меняется со временем по закону синуса (или косинуса).

Гармоническое колебание

Что такое гармоническое колебание

Это периодически повторяющееся движение, при котором тело отклоняется от некоторого среднего положения то в одну, то в другую сторону, называется колебательным движением; этот вид движения весьма распространен в природе.

Оно свойственно частицам вещества: атомам и молекулам, с колебательным движением частиц среды связаны звуковые явления, оно лежит в основе многих электрических явлении, например переменного тока, электрических колебаний, электромагнитных волн и т. п.

Изучение колебательного движения начнем с наиболее простого случая — механических колебаний. При этом обратим главное внимание на колебательное движение таких тел, которые имеют только одно положение устойчивого равновесия.

Если такое тело выведено из положения равновесия внешней силой, то оно под действием внутренних сил возвращается в него постепенно путем многократных колебаний около этого положения.

Такое колебательное движение могут совершать, например ножки камертона, натянутая струна, любое свободно подвешенное тело (качели, маятник) и т. п.

При колебательном движении положение тела в каждый данный момент времени определяется расстоянием его от среднего положения, которое называется смещением, а также направлением движения.

Весьма распространенным видом колебательного движения является простое, или гармоническое, колебание.

Оно происходит под действием силы, прямо пропорциональной смещению и направленной к положению равновесия.

Характерным признаком гармонического колебания является изменение смещения во времени по закону синуса или косинуса.

Пример гармонического колебания

Пример гармонического колебанияВ качестве примера рассмотрим свободное колебание горизонтального пружинного маятника (рис. 2, а).

Маятник состоит из тела С, подвешенного к стойке АВ, с помощью тяги АС и упорного стержня ВС, которые могут свободно поворачиваться вокруг оси стойки.

Такая подвеска полностью уравновешивает силу тяжести тела С при любом его положении. 

С обеих сторон к телу С прикреплены пружины F, закрепленные в неподвижной раме Е. При отклонении тела С от среднего положения одна из пружин растягивается. Сила F, с которой пружина действует на тело, прямо пропорциональна его смещению s и направлена в сторону, обратную смещению:

F = — ks,

где — коэффициент пропорциональности, зависящий от свойств пружины, а знак минус указывает, что действие силы обратно направлению смещения.

Если отклонить тело С из среднего положения и затем представить действию упругих сил пружин, то оно будет совершать колебательное движение: возвратившись под действием силы пружин к среднему положению, тело по инерции пройдет его и отклонится в противоположную сторону; достигнув максимального отклонения, тело под действием силы пружин снова возвратится в исходное сложение, по инерции пройдет его в обратном направлении и т. д.

Как характеризуются колебательные движения

Колебательное движение, в том числе и гармоническое колебание, характеризуются:

  1. Наибольшим смещением или амплитудой колебания
  2. Периодом колебания или временем, в течение которого совершается одно полное колебание.

Период колебания Т измеряется в секундах. Вместо периода колебание можно характеризовать частотой v. Частота колебаний— это величина, обратная периоду v = 1/Т.

Иначе, частота — это число колебаний, которое тело совершает в течение сек. Размерность частоты 1/сек или сек-1Практически частота измеряется в единицах, называемых герц (гц).

Герц — это частота, при которой за сек происходит одно полное колебание. В герцах измеряют частоту колебаний любой природы.

Изучение колебаний

Изучение колебанийГармоническое колебание удобно изучать, например, с помощью модели. На горизонтальном диске А, который вращается с постоянной скоростью, укреплен на стержне маленький шарик N.

Шарик совершает равномерное движение по окружности. Рассмотрим движение, которое совершает точка п, являющаяся проекцией шарика на любой из диаметров окружности.

В качестве проекции шарика на диаметр окружности можно рассматривать его тень, отбрасываемую на экран Э, установленный рядом с диском перпендикулярно направлению световых лучей. При вращении диска тень шарика на экране будет совершать колебательное движение.

Составим уравнение для этого движения, которое связывает между собой смещение s, амплитуду а и период Т (или частоту v) колебания и таким образом позволяет определить величину и знак смещения в любой заданный момент времени.

Рассмотрим положение точек и п в какой-либо момент времени (рис. 3). Соединим точку с центром окружности. Радиус ON совершает вращательное движение с угловой скоростью:

ω = 2π/Т ,

где Т — есть период обращения. За начало отсчета времени = 0 примем момент, когда точка находится на горизонтальном диаметре, а точка п соответственно — в центре окружности. Тогда угол φ, пройденный радиусом ON за время t, будет:

φ = ωt = 2πt/Т

Из треугольника ONn (угол при вершине которого равен углу φ как угол имеющий параллельные стороны) следует, что On = ON sin φ, где On — смещение точки п в момент времени t, ON—радиус окружности или амплитуда а колебания. Подставляя эти значения, получим:

s = sin φ = sin ωt.

Смещение изменяется от времени по закону синуса, следовательно, точка п совершает гармоническое колебание. Уравнению можно придать также и несколько иной вид:

s = a sin(2πt/Т) = a sin 2πvt

Величина, находящаяся под знаком синуса, т. е.

φ = ωt = 2πvt = 2πt/Т

называется фазой колебания и измеряется в градусах или радианах. Величину ω = 2πv = 2πt/Т входящую в выражение для фазы колебания, называют круговой частотой гармонического колебания.

Что такое фаза колебания

Фаза колебания есть величина, характеризующая состояние колебательного процесса в каждый заданный момент времени.

Зная фазу колебания и его амплитуду, можно для любого момента времени определить величину и знак смещения, т. е. определить положение колеблющегося тела.

Имея в виду, что определенным частям периода соответствуют определенные величины фазы колебания, можно, зная эти величины и найдя соответствующие им синусы углов, определить величину смещения в долях амплитуды а.

Можно построить график, соответствующий уравнению гармонического колебания. График показывает изменение смещения тела (откладывается по оси ординат) от времени t, которое отложено по оси абсцисс.

По форме график является синусоидой (рис. 4) и может быть построен, пользуясь данными таблицы.

График колебания

График колебанияГрафик колебания можно получить также и путем непосредственной записи движения тела на равномерно движущейся бумажной ленте.

Например, к телу С нашего горизонтального маятника можно прикрепить воронку с мелким песком, а под ним расположить лист смазанной клеем белой бумаги, который равномерно передвигается в направлении, перпендикулярном направлению колебаний (см. рис2, а). 

Тогда песочная струйка запишет на бумаге кривую (см. рис. 2, б), ординаты которой соответствуют смещениям маятника в различные последующие моменты времени.

Полученная таким образом кривая совпадает по характеру с графиком (рис4). В обоих случаях кривые изображают колебание, развернутое по времени: каждая точка кривой является концом ординаты, изображающей смещение тела в последующие, равномерно расположенные по горизонтальной оси моменты времени.

В первом случае это получается в результате движения ленты, во втором — это обеспечивается в самом процессе построения графика.

Амплитуда гармонических колебаний

Энергия Е тела, совершающего гармоническое колебание, состоит из кинетической и потенциальной, которые в процессе колебания периодически переходят одна в другую.

В момент наибольшего смещения скорость тела на мгновение делается равной нулю и вся энергия тела является потенциальной:

Е=ЕП.

По мере движения тела к положению равновесия скорость его увеличивается и потенциальная энергия постепенно переходит в кинетическую.

При прохождении телом положения равновесия скорость его максимальна и вся энергия переходит в кинетическую: 

Е=ЕК.

Определим эту энергию. рассмотренной модели гармонического колебания (см. рис. 2) наибольшая скорость υm точки п при прохождении среднего положения равняется скорости υ движения точки по окружности, так как в этот момент скорости этих точек параллельны и одинаковы по величине.

Эта скорость υm = 2πа/Т, где а — амплитуда колебания или радиус окружности, а Т — период колебания. Поэтому для энергии Е тела с массой т, совершающего гармоническое колебание, можно написать следующее выражение:

Е =Ек = (mυ2m)/2

Подставляя значение скорости υmполучаем:

Е = (mυ2m)/2 = m/2((2πa/T)2) = 2π2ma2v2

Энергия тела, совершающего гармоническое колебание, прямо пропорциональна массе тела, квадрату амплитуды и квадрату частоты.

Пример амплитуды гармонических колебаний

Рассмотрим колебание тела, которое началось на промежуток времени t0 раньше момента начала отсчета времени (обычно время t0 выражают в долях периода Т колебания).

В этом случае к началу отсчета времени тело уже имеет смещение s0, как это показано на графике рис. 5, а. Смещению s0 соответствует фаза колебания φ0, которая называется начальной фазой, и по общему правилу может быть представлена так:

φ0 = ωt0 = (2πt0)/T = 2πvt0

График колебаний для начальной фазыСоставим уравнение для данного колебанияУгол φ‘, определяющий положение радиуса точки в момент времени t, будет φ‘=φ + φ0где φ0—угол, соответствующий начальной фазе колебания (величина постоянная), а φ — угол, образуемый при движении точки и прямо пропорциональный промежутку времени tφt.

Тогда, рассуждая аналогично предыдущему случаю (см. рис 3), можно написать:

s = sin (ωt + φ0) = sin (2π/T) ((t+ t0)) = a sin 2πv (t+ t0).

График колебания, описываемый этим уравнением, изображен на рис. 5, а.

Рассуждая аналогично, можно убедиться, что если колебание началось на промежуток времени t0 позже начала отсчета времени, то его уравнение будет иметь вид:

s = sin (ωt — φ0) = sin (2π/T) ((t — t0)) = a sin 2πv (t — t0).

Его график изображен на рис. 5, б.

Если два колебания одинаковой частоты начинаются одновременно, то говорят, что они имеют одинаковую фазу или что они находятся в фазе.

Если сопоставляются два колебания одинаковой частоты, начавшиеся не одновременно, то говорят, что они имеют разность фаз или сдвиг фазы φ1-2, соответствующий разнице во времени t1-2 между началами колебания (рис. 5, в).

При этом одно из них называют опережающим (или наоборот, запаздывающим) по фазе относительно другого.

Про два колебания, разность фаз у которых составляет π или 180°, говорят, что они находятся в противофазе.

Связь между гармоническим колебанием и равномерным движением по окружности

Связь между гармоническим колебанием и равномерным движением по окружностиПредставим себе произвольную точку D, равномерно вращающуюся по окружности радиуса А против часовой стрелки с постоянной угловой скоростью ω рад/с (рис. ). Уравнение движения точки D примет вид

φ φ0 + ωt,

где φ — угол поворота подвижного радиуса 0D относительно неподвижного OK, а φ0— начальное значение угла φ в момент времени t = 0.

В то время как точка вращается по окружности от К к и снова к K, проекция точки на диаметр MN — точка D’ — движется вдоль отрезка МN от одного из его концов к другому и обратно, совершая колебательное движение.

Обозначим расстояние 0D’ через х. Тогда уравнение движения точки D’можно записать в виде

х sin φ = sin (ωt + φ0).

Если в момент времени t = 0 начальное значение угла φ0 = 0, то уравнение движения точки D’ примет вид

х = sin φ = sin ωt.

Функция sin ωt является простейшей периодической функцией от времени, значит точка D’ совершает периодические колебания.

Если на оси ординат откладывать значения смещения х, а на оси абсцисс время t, то можно получить график гармонического колебания, который представляет собой синусоиду.

Поскольку sin φ меняется в пределах от +1 до —1, то смещение х точки D’ от центра колебаний 0 находится в пределах:

—A≤x≤A.

Максимальная величина этого смещения |х|макс A называется амплитудой колебания.

Затухающие и незатухающие колебания

Колебания, происходящие с неизменной амплитудой, называются незатухающими. Колебания, происходящие с уменьшающейся амплитудой, называются затухающими.

Чтобы поддерживать незатухающие колебания, необходимо создать такой механизм, который за одно полное колебание точки сообщит ей дополнительно столько энергии, сколько потеряно точкой за это же время на преодоление трения, сопротивления и т. п.

Аргумент ωt стоящий под знаком синуса, называется фазой колебания. Величина со, характеризующая угловую скорость вращения точки D, называется циклической частотой гармонического колебания точки D’.

Время, в течение которого тело совершает одно полное колебание (время между двумя последовательными прохождениями точки через положение равновесия в одном и том же направлении), называется периодом полного колебания Т.

Время движения колеблющегося тела от положения равновесия до максимального отклонения и обратно до положения равновесия называется периодом простого колебания. Период простого колебания равен половине периода полного колебания.

Циклическая частота со связана с периодом Т и обычной частотой v (v — число колебаний за единицу времени) такими соотношениями

ω = 2π/Т

но 

v = 1/Т,

тогда

ω = 2πv.

Частота v измеряется в герцах. 1 Гц равен 1 колебанию в секунду. Фазу колебания φ можно записать в виде

φ = ωt = (2π/T)t.

Фаза показывает, какая часть периода прошла от момента начала колебания.

Статья на тему Гармоническое колебание

Добавить комментарий