Физика как найти дельту массы

как найти дельту m если m = 280г.

—>

дельта m =m1-m2
должно быть еще одно значение

1)нужно найти цену деления весов
2)затем делишь цену деления на 2 и тем самым находишь погрешность т. е. дельту
3) в ответе пишешь : m= 280г +- погрешность
вот и все все просто

Дельта — буква, знак и его происхождение, применение в науке

В данной статье поговорим о знаке Дельта — что он из себя представляет, в каких сферах применяется и для чего вообще используется. Также вы узнаете, как выглядит знак и как его можно вставить в текст в такой программе, какой является Ворд из Майкрософт Оффис.

Знак Дельта применяется во многих сферах жизнедеятельности, к примеру, в физике, текстовых редакторах, формулах и других сферах. Чаще всего именно при печати учебной литературы, докладов и других видов документов применяют знак дельта, который имеется в разных версиях ВОРД от Виндовс и других приложениях для создания документов текстового формата на ПК.

Обозначение дельта знака

О происхождения знака

Появление символа связано с греческими языком, но сама буква появилась от стародревнего финийского языка, в котором именовалась – далет, что обозначало («вход в дверь»). Выглядела «далет» как перевернутый влево равнобедренный треугольник. В греческом алфавите, была такая буква. Позже эта буква дала начало всем известной буквы латинского набора – D , которая и поныне есть во многих алфавитных рядах разных государств мира, к примеру, английский алфавит ее содержит.

Буква, которая служит аналогом в русском алфавите – Д, а вот символ везде одинаков и изображается, как геометрическая фигура, а именно треугольник с равными сторонами (Δ). Эта версия является заглавной, прописная версия выглядит немного иначе, представляя собой кружок с хвостиком, похожий на обозначение в физике плотности (δ).

Значение буквы

Где применяется данный символ?

Кроме использования в правописании греков, символ начали активно применять в математике, геометрии, алгебре, физике, химии и географии.

Поговорим отдельно о применении дельта в каждых научных сферах:

  1. География. Дельта подразумевает в географическом смысле начальную часть реки, океана или моря, имеет смысловое, нежели символическое, буквенное понятие и восприятие. Почему именно область впадения реки принято так называть? Все просто, дело в форме данной области, если сделать снимок сверху, то отток реки будет иметь форму правильного треугольника, а символ дельта, как раз представляет собой такой геометрический объект. Ярчайшим представителем с выраженной дельтой является река Нил (Египет), которая впадает в Средиземное море, а также Амазонка с ее впадением в океан Атлантики.
  2. Применение в математике, алгебре, геометрии. Очень часто знак применяют в математической сфере для таких целей, как: 1) Приращение аргумента подразумевает под дельтой измененную переменную. К примеру, сложим 5 и 4 в итоге получим число 9. Дельтой будет являться увеличение 5 на 4. 2) Применение в теории вероятности по системе Лапласа. Такой метод преподают в ВУЗах, а не школах и в нем используют такой знак. 3) А также символ применяется при обозначении прямой и обратной матриц. 4) Дельта, буква, применяемая в написании формул (как письменным методом, так и через компьютер);
  3. Также в математике применяют прописную версию дельта. А именно, такой символ обозначает производную от числа. Обозначение выглядит следующим образом — δy/δx. 2) Используется для описания бесконечной функции-дельта. Бесконечная функция возможна, если все значения аргумента равны нулю. 3) При помощи δ еще обозначают символику Кронекера, символ равен всегда 1, при условии того, что все его индексы равны, либо нулевые при заданных условиях.
  4. Физика, астрономия, космогония. Граничащие меж собой научные дисциплины, все особо важные и по-своему интересные, в каждой из дисциплин можно встретить знак дельта. В физике связь всех производных осуществляется при помощи формул с интеграцией. К примеру, формула скорости, которая выглядит следующим образом — δS к δt , является отношением одной части к другой. В данном случае расстояние, которое преодолел объект, соотносится со временем, затраченном на преодоление. Вторая производная – это ускорение, где тоже важна взаимосвязь одной составляющей формулы к другой. В космологии и астрономии применяют формулы, расчеты с данным символом, только в прописном варианте.

Дельта знак

Как ввести в «Ворд»?

Для вставки символа заходим в верхние меню редактора и ищем колонку «Вставка», наводим на колонку курсором мыши без нажатия правой кнопки. Высвечивается несколько наименования разделов, необходимо нажать на «Символ» , где можно путем перелистывания за счет колеса мыши искать необходимый знак, либо в строке поиска выбрать категорию (статистические или математические) и найти знак. Прописной или заглавный символ высветится в рабочей области окна вставки , вам только стоит нажать правой кнопкой мыши «вставить» или «окей».

  • slide3

§2. Законы Ньютона. Импульс или количество движения материальной точки

В основе динамики материальной точки лежат законы (аксиомы) Ньютона. Напомним ключевые определения и законы.

Система отсчёта, в которой любая материальная точка, не взаимодействующая с другими телами (такая точка называется свободной), движется равномерно и прямолинейно или покоится, называется инерциальной.

инерциальные системы отсчёта (ИСО) существуют

в ИСО приращение импульса материальной точки пропорционально силе и происходит по направлению силы:

`Delta vec p = vec F * Delta t` (1)

Импульсом (или количеством движения) материальной точки называют физическую величину, определяемую произведением её массы на вектор скорости в данной системе отсчёта:

`vec p = m * vec v`.

`vec F` — сумма сил, действующих на материальную точку. Величину `vec F * Delta t` называют импульсом силы за время от `t` до `t + Delta t`, в течение которого силу можно считать неизменной по величине и направлению. Величину `Delta vec p = vec p (t + Delta t) — vec p (t)` называют приращением импульса материальной точки за время от `t` до `t + Delta t`. Поэтому второй закон Ньютона для материальной точки можно сформулировать так:

в ИСО приращение импульса материальной точки равно импульсу силы.

Отметим, что при изучении динамики второй закон Ньютона часто формулируют следующим образом:

в ИСО ускорение материальной точки прямо пропорционально сумме сил, действующих на неё, и обратно пропорционально её массе:

`vec a = vec F/m` (2)

Если масса тела остаётся неизменной, то `Delta vec p = Delta (m vec v) = m Delta vec v`, и соотношение (1) принимает вид `m Delta vec v = vec F Delta t`. С учётом `vec a = (Delta vec v)/(Delta t)` приходим к эквивалентности соотношений (1) и (2) в рассматриваемом случае.

В настоящем Задании представлены задачи, для решения которых привлекается второй закон Ньютона (см.(1)), устанавливающий равенство приращений импульса материальной точки и импульса силы.

при взаимодействии двух материальных точек сила `vecF_(12)`, действующая на первую материальную точку со стороны второй, равна по величине и противоположна по направлению силе `vecF_(21)`, действующей со стороны первой материальной точки на вторую:

1) силы возникают парами и имеют одинаковую природу, они приложены к разным материальным точкам,

2) эти силы равны по величине,

3) они действуют вдоль одной прямой в противоположных направлениях.

Заметим, что согласно третьему закону Ньютона обе силы должны быть равны по величине в любой момент времени независимо от движения взаимодействующих тел. Другими словами, если в системе двух взаимодействующих тел изменить положение одного из тел, то это изменение мгновенно скажется на другом теле, как бы далеко оно ни находилось. На самом деле скорость распространения взаимодействий конечная; она не может превзойти скорость света в вакууме. Поэтому третий закон Ньютона имеет определённые пределы применимости. Однако в классической механике при малых скоростях взаимодействующих тел он выполняется с большой точностью.

Второй закон Ньютона (уравнение движения) можно представить в виде теоремы об изменении импульса материальной точки:

Скорость изменения импульса материальной точки в инерциальной системе отсчёта равна сумме сил, действующих на эту точку.

Напомним, что для решения задач динамики материальной точки следует:

привести «моментальную фотографию» движущегося тела, указать приложенные к нему силы;

выбрать инерциальную систему отсчёта;

составить уравнение (3);

перейти к проекциям приращения импульса и сил на те или иные направления;

решить полученную систему.

Рассмотрим характерные примеры.

На рис. 1 показаны ИСО и силы, действующие на тело в процессе разгона. По второму закону Ньютона

`(Delta vec p)/(Delta t) = M vec g + vec N + vecF_(«тр») + vec F`.

Переходя к проекциям на горизонтальную ось, находим элементарные приращения импульса в процессе разгона

и в процессе торможения `(F = 0)`

Просуммируем все приращения импульса тела от старта до остановки:

`sum Delta p_x = sum_(0 <= t <= t_1) (F — F_sf»тр») Delta t + sum_(t_1 <= t <= t_1 + t_2) (-F_sf»тр» ) Delta t`.

Напомним, что для любой физической величины сумма приращений равна разности конечного и начального значений. Тогда

Далее рассмотрим пример, в котором одна из сил зависит от времени.

На какое максимальное расстояние `L_max` улетит мяч, если в процессе удара футболист действует на мяч постоянной по направлению силой, величина которой изменяется по закону, представленному на рис. 2. Длительность удара τ = 8 · 10 — 3 c tau=8cdot10^;mathrm c , максимальная сила F max = 3,5 · 10 3 H F_max=3,5cdot10^3;mathrm H , масса мяча m = 0,5 кг m=0,5;mathrm . Здесь и далее ускорение свободного падения g = 10 м / с 2 g=10;mathrm м/mathrm с^2 . Сопротивление воздуха не учитывайте.

Так как `mg < < F_max`, силой тяжести пренебрежём. Из кинематики известно, что максимальная дальность полёта наблюдается при старте под углом `alpha = pi/4`. Процесс удара показан на рис. 3.

По второму закону Ньютона приращение импульса равно импульсу силы `Delta vec p = vec F * Delta t`. Переходя к проекциям приращения импульса и силы на ось `Ox`, получаем

`Delta p_x = F Delta t`.

Просуммируем элементарные приращения импульса мяча за время удара

`sum Delta p_x = mv — 0 = sum_(0 <= t <= tau) F Delta t`.

Импульс силы `sum_(0 <= t <= tau) F(t) Delta t` за время удара численно равен площади под графиком зависимости этой силы от времени (каждое слагаемое `F(t) Delta t` в импульсе силы можно интерпретировать как площадь элементарного прямоугольника со сторонами `F(t)` и `Delta t` на графике зависимости `F(t)`). Тогда импульс силы `F` за время удара равен

`sum_(0 <= t <= tau) F Delta t = (F_max tau)/2`

и в рассматриваемом случае не зависит от того, в какой именно момент времени сила достигает максимального значения (площадь треугольника равна половине произведения основания на высоту!). Далее находим импульс мяча в момент окончания действия силы

`mv = 1/2 F_max * tau`.

Отсюда находим начальную скорость полёта мяча

`v = (F_max * tau)/(2m) = (3,5 * 10^3 * 8 * 10^-3)/(2 * 0,5) = 28 sf»м/с»`

и максимальную дальность (старт под углом `alpha = pi/4`) полёта

`L_max = (v^2)/g = (28^2)/(10)

В рассматриваемом модельном примере получен несколько завышенный по сравнению с наблюдениями результат.

На вступительных испытаниях и олимпиадах в вузах России регу­лярно предлагаются задачи динамики, в которых наряду с «традицион­ными» силами: силой тяжести, силой Архимеда и т. д., на тело дейст­вует сила лобового сопротивления. Такая сила возникает, например, при движении тел в жидкостях и газах. Вопрос о движении тел в жидкостях и газах имеет большое практическое значение. Знакомство с действием такого рода сил уместно начинать, как это принято в физике, с простейших модельных зависимостей, в которых сила сопротивления принимается пропорциональной скорости или её квадрату.

Мяч, брошенный с горизонтальной поверхности земли под углом `alpha = 60^@` к горизонту со скоростью `v = 10 sf»м/с»`, упал на землю, имея вертикальную составляющую скорости по абсолютной величине на `delta = 30 %` меньшую, чем при бросании. Найдите время по­лёта мяча. Считать, что сила сопротивления движению мяча пропорциональна его скорости.

Согласно второму закону Ньютона приращение импульса пропорционально силе и происходит по направлению силы:

`m * Delta vec v = (m vec g — k vec v) * Delta t`.

Переходя к проекциям сил и приращения скорости на вертикальную ось, получаем

`m * Delta v_y = — mg * Delta t — k * v_y * Delta t`.

Заметим, что элементарное перемещение мяча по вертикали равно `Delta y = v_y * Delta t`, и перепишем последнее соотношение в виде:

`m * Delta v_y = — mg * Delta t — k * Delta y`.

Просуммируем все приращения вертикальной проекции импульса по всему времени полёта, т. е. от `t = 0` до `t = T`:

`m * (sum Delta v_y) = — mg * (sum Delta t) — k* (sum Delta y)`.

Переходя к конечным приращениям, получаем

`m (v_y (T) — v_y (0)) = — mg (T — 0) — k (y (T) — y (0))`.

Точки старта и финиша находятся в одной горизонтальной плоскости, поэтому перемещение мяча по вертикали за время полёта нулевое

Тогда `- (1 — delta) mv_0 sin alpha — mv_0 sin alpha = — mgT`. Отсюда находим продолжительность полёта мяча:

`T = (v_0 sin alpha)/(g) (2 — delta) = (10 * sin 60^@)/(10) (2,0 — 0,3)

В следующем примере рассматривается удар, в ходе которого две очень большие силы, «согласованно» действуют во взаимно перпендикулярных направлениях.

Кубик, движущийся поступа­тельно со скоростью `v` (рис. 4) по гладкой горизонтальной поверхности, испытывает соударение с шероховатой вертикальной стенкой.

Коэффициент трения `mu` скольжения кубика по стенке и угол `alpha` известны. Одна из граней кубика параллельна стенке. Под каким углом `beta` кубик отскочит от стенки? Считайте, что перпендикулярная стенке составляющая скорости кубика в результате соударения не изменяется по величине.

Силы, действующие на кубик в процессе соударения, показаны на рис. 5.

По второму закону Ньютона

`Delta vec p = (m vec g + vecN_(«г») + vecF_(«тр») + vecN_(«в») ) * Delta t`.

Переходя к проекциям на горизонтальные оси `Ox` и `Oy`, получаем

`Delta p_x = — F_sf»тр» Delta t`, `Delta p_y = N_sf»в» Delta t`.

Просуммируем приращения `Delta p_y = N_sf»в» Delta t` по всему времени `tau` соуда­рения, получим:

`sum Delta p_y = p_y (tau) — p_y (0) = mv sin alpha — (- mv sin alpha) = sum_(0 <= t <= tau) N_sf»в» Delta t`.

В процессе удара в любой момент времени `F_sf»тр» = mu N_sf»в»`, следовательно, во столько же раз отличаются импульсы этих сил за время соударения

`sum_(0 <= t <= tau) F_sf»тр» Delta t = mu sum_(0 <= t <= tau) N_sf»в» Delta t = mu 2 mv sin alpha`.

Тогда легко вычислить проекцию `v_x (tau)` скорости кубика после соударения. Для этого просуммируем приращения

`Delta p_x = — F_sf»тр» Delta t = — mu N_sf»в» Delta t`

по всему времени `tau` соударения, получим:

`sum Delta p_x = p_x (tau) — p_x (0) = mv_x (tau) — mv cos alpha = — sum _(0 <= t<= tau) F_sf»тр» Delta t =- mu 2 mv sin alpha`.

Отсюда `v_x (tau) = v (cos alpha — 2 mu sin alpha)`. Далее, считая `v_x (tau) > 0`, получаем

`bbb»tg» beta = (v_y (tau))/(v_x (tau)) = (sin alpha)/(cos alpha — 2 mu sin alpha)`.

Измерение массы и объема. Плотность вещества

  1. Закон инерции
  2. Инертность тела
  3. Инертная и гравитационная масса
  4. Измерение массы с помощью весов
  5. Плотность вещества
  6. Задачи
  7. Лабораторная работа №5. Определение плотности жидкостей
  8. Лабораторная работа №6. Определение плотности твердых тел

п.1. Закон инерции

Как свидетельствуют многочисленные эксперименты и наш повседневный опыт, чтобы неподвижное тело сдвинулось с места, на него должно подействовать другое тело. С другой стороны, чтобы остановить тело, уже находящееся в движении, или изменить его траекторию, также необходимо внешнее воздействие (обычно, причиной остановки в механике является трение; причиной изменения траектории – столкновение с другим телом и т.п.).

Возникает вопрос: а что будет с телом, если на него не действуют никакие другие тела?

Очевидно, если тело покоилось, то оно продолжит покоиться.

А если оно двигалось, что тогда произойдет?

А теперь представим себе идеальный случай: трение полностью отсутствует.

В этом случае шарик будет двигаться с постоянной скоростью бесконечно долго.

Закон инерции
Если на тело не действуют другие тела, оно либо покоится, либо движется прямолинейно и равномерно.

Закон инерции впервые был сформулирован Галилео Галилеем в его работе «Диалог о двух главнейших системах мира» (опубликована в 1632 г.). Однако Галилей ошибочно считал, что свободное равномерное движение тела возможно не только по прямой, но и по окружности.

В 1644 г. Рене Декарт уточнил формулировку Галилея, указав, что для изменения направления скорости также необходимо внешнее воздействие. Т.к. при равномерном движении по окружности направление скорости всё время меняется, оно не является свободным. Следовательно, свободное движение может быть только прямолинейным.

п.2. Инертность тела

Инертность – это свойство тела сохранять состояние покоя или прямолинейное и равномерное движение.

Благодаря инертности, тело не может мгновенно перейти из состояния покоя в движение или из состояния движения в покой. Для изменения скорости тела необходимо определенное время.

При взаимодействии инертность проявляется в том, что разные тела под одинаковым внешним воздействием получают разные ускорения (об ускорении – см. §11 данного справочника).

п.3. Инертная и гравитационная масса

Инертная масса – это количественная мера инертности, показатель того, в какой степени данное тело будет препятствовать изменению своей скорости.

Гравитационная масса – это количественная характеристика способности тела к взаимодействию по закону всемирного тяготения.

На сегодняшний день с высоким уровнем точности (относительная ошибка (sim 10^{-13}) в эксперименте 2009 г.) установлено, что значения инертной и гравитационной массы одного и того же тела равны. Поэтому инертную и гравитационную массы на практике не различают (принцип эквивалентности) и рассматривают «просто» массу тела.

Единицей массы в системе СИ является килограмм (кг).

Масса является одной из семи основных единиц системы СИ (см. §2 данного справочника).

При изучении очень больших или очень малых физических тел удобней использовать внесистемные единицы массы.

Например, в астрофизике единицей для сравнения масс небесных тел служит масса Солнца, (M_{odot}approx 1,99cdot 10^{30} text{кг}). А в физической химии при определении масс атомов и молекул используется атомная единица массы, равная 1/12 массы свободного покоящегося атома углерода, (1 text{а.е.м.}approx 1,66cdot 10^{-27} text{кг}).

п.4. Измерение массы с помощью весов

Весы – это прибор для измерения массы по весу тела на основании принципа эквивалентности инертной и гравитационной масс.

Весы
Весы равноплечие рычажные лабораторные и наборы гирек к ним
Вес тела определяется сравнением с весом эталонной массы (гири).
Весы находятся в равновесии, если помещенные на их чаши тела одинаково притягиваются к Земле.

Чтобы найти массу тела, его кладут на одну чашу весов, а на другую – гири известной массы, пока весы не уравновесятся.
Гири граммового набора рекомендуется брать руками в медицинских перчатках, а миллиграммового – пинцетом, чтобы не изменить их массу.
Уравновешивание следует начинать с гирь большей массы, а затем переходить к меньшим разновесам, т.к. иначе их может не хватить.

Метод двойного взвешивания (метод Гаусса)
Шаг 1. Поместить тело для взвешивания на левую чашку весов, а на правую чашку весов поставить гири до полного уравновешивания. Записать полученный результат (m_1).
Шаг 2. Переложить тело на правую чашку весов, а гири – на левую. Повторить уравновешивание. Записать полученный результат (m_2).
Шаг 3. Найти массу тела как среднее арифметическое $$ m=frac{m_1+m_2}{2}. $$ Абсолютная погрешность двойного взвешивания – это большая из двух величин $$ Delta m=max(|m_1-m_2|; 0,01text{%}m) $$ т.к. (delta_m=0,01text{%}) – относительная погрешность для весов класса точности III.

п.5. Плотность вещества

Плотность вещества однородного тела – это физическая величина, равная отношению массы тела к его объему: $$ rho=frac mv $$

Единицей плотности в системе СИ является килограмм на метр кубический (кг/м3).

Плотности различных веществ тщательно измерены и занесены в справочные таблицы.

Плотности в справочнике даны для химически чистых веществ (содержание основного вещества 98% и выше), при нормальных условиях (давление 760 мм рт.ст. и температура 0°С), если не указаны другие значения давления и температуры.

Плотность зависит от следующих свойств вещества:

  • масса молекул (атомов) вещества. Например, масса атомов алюминия 27 а.е.м., а атомов золота 197 а.е.м. При этом плотность алюминия 2700 кг/м3, а плотность золота 19300 кг/м3, что приблизительно соответствует соотношению масс атомов. Небольшое различие можно объяснить большим расстоянием между более крупными атомами золота в кристаллической решетке (гранецентрированный куб, как для алюминия, так и для золота).
  • расположение частиц вещества. Например, расстояния между слоями атомов углерода в графите в 3 раза больше, чем межатомные расстояния в самих слоях; а вот в алмазе атомы углерода упакованы очень плотно. В результате плотность графита 2160 кг/м3, а плотность алмаза 3510 кг/м3, хотя оба вещества состоят из атомов углерода.
  • агрегатное состояние, в котором находится вещество. Наименьшие плотности у газов, наибольшие – у твердых веществ. Например, плотность воздуха (газ) 1,29 кг/м3, плотность воды (жидкость) 1000 кг/м3, плотность железа (твердое тело) 7900 кг/м3.

п.6. Задачи

Задача 1. Найдите плотность мела, если масса кусочка равна 7,2 г, а объем – 3,6 см3.

Дано:
(m=7,2 text{г}=7,2cdot 10^{-3} text{кг})
(V=3,6 text{см}^3=3,6cdot 10^{-6} text{м}^3)
__________________
(rho-?)

Плотность (rho=frac mv) $$ rho=frac{7,2cdot 10^{-3}}{3,6cdot 10^{-6}}=2cdot 10^3=2000 (text{кг/м}^3) $$ Ответ: (2000 text{кг/м}^3)

Задача 2. Найдите объем тела человека массой 60 кг, ели средняя плотность человеческого тела равна плотности воды. Ответ дайте в литрах.

Дано:
(m=60 text{кг})
(rho=1000 text{кг/м}^3)
__________________
(V-?)

Плотность (rho=frac mv Rightarrow) Объем (V=frac mp) $$ V=frac{60}{1000}=0,06 (text{м}^3)=60 (text{л}) $$ Ответ: 60 л.

Задача 3. Алюминиевая кастрюля имеет массу 0,5 кг. Если кастрюлю таких же размеров изготовить из стали, какая у неё будет масса?

Дано:
(m_1=0,5 text{кг})
(rho_1=2700 text{кг/м}^3)
(rho_2=7800 text{кг/м}^3)
__________________
(m_2-?)

У кастрюль одинаковых размеров одинаковый объем. Получаем: begin{gather*} V=frac{m_1}{rho_1}=frac{m_2}{rho_2}Rightarrow m_2=frac{rho_2}{rho_1}m_1\ m_2=frac{7800}{2700}cdot 0,5approx 1,4 (text{кг}) end{gather*} Ответ: ≈1,4 кг.

Задача 4*. В банку, до краев наполненную водой, опустили кусок золота массой 1 кг. В другую такую же банку опустили кусок меди массой 1 кг. Где больше вылилось воды и насколько больше? (ответ дайте в миллилитрах).

Дано:
(m=1 text{кг})
(rho_1=19320 text{кг/м}^3)
(rho_2=8940 text{кг/м}^3)
__________________
(Delta V-?)

Объем вытесненной воды равен объему погруженного тела: $$ V_1=frac{m}{rho_1}, V_2=frac{m}{rho_2} $$ Т.к. (rho_1gt rho_2, V_1lt V_2), объем воды, вытесненной медью, больше. $$ Delta V=V_2-V_1=frac{m}{rho_2}-frac{m}{rho_1}=mleft(frac{1}{rho_2}-frac{1}{rho_2}right)=mfrac{rho_1-rho_2}{rho_1rho_2} $$ Подставляем: begin{gather*} Delta V=1cdotfrac{19320-8940}{19320cdot 8940}approx 6,01cdot 10^{-5} text{м}^3\ 1 text{л}=10^{-3} text{м}^3, 1 text{мл}=1 text{cм}^3=10^{-3} text{л}=10^{-6} text{м}^3\ Delta Vapprox 60,1 text{мл} end{gather*} Ответ: ≈60,1 мл; больше вылилось во втором случае, для меди.

п.7. Лабораторная работа №5. Определение плотности жидкостей

Цель работы
Научиться измерять массу и объем жидкостей. Научиться определять жидкости по плотности, оценивать погрешность полученных результатов.

Теоретические сведения
Для определения массы тел в данной работе используется метод двойного взвешивания (см. выше в данном параграфе).

Масса тела определяется как среднее арифметическое двух взвешиваний на разных чашках весов: $$ m=frac{m_1+m_2}{2}. $$ Абсолютная погрешность двойного взвешивания – это большая из двух величин $$ Delta m=max(|m_1-m_2|; 0,01text{%}m) $$ Пусть масса стакана с жидкостью равна (M), абсолютная погрешность этого взвешивания (Delta M); масса пустого стакана (m_{text{ст}}), абсолютная погрешность (Delta m_{text{ст}}). Тогда масса жидкости $$ m=M-m_{text{ст}} $$ Абсолютная и относительная погрешности определения массы жидкости $$ Delta m=Delta M+Delta m_{text{ст}}, delta_m=frac{Delta m}{m}cdot 100text{%} $$ Мерный цилиндр проградуирован в миллилитрах. Для расчёта плотности жидкости в системе СИ необходимо помнить, что $$ 1 text{мл}=1 text{cм}^3=10^{-6} text{м}^3 $$ Абсолютная погрешность измерения объема жидкости равна половине цены деления мерного цилиндра $$ Delta V=frac d2 $$ Относительная погрешность равна $$ delta_V=frac{Delta V}{V}cdot 100text{%}. $$ Плотность жидкости равна $$ rho=frac mv. $$ Относительная погрешность результата $$ delta_{rho}=delta_m+delta_V. $$ Абсолютная погрешность результата $$ Deltarho=rhocdot delta_{rho} $$ Перевод полученных результатов в систему СИ $$ 1frac{text{г}}{text{см}^3}= frac{10^{-3} text{кг}}{10^{-6} text{м}^3}=10^3frac{text{кг}}{text{м}^3}=1000frac{text{кг}}{text{м}^3} $$

Приборы и материалы
Два стакана с неизвестными жидкостями; мерный цилиндр; весы с разновесом.

Ход работы
1. Приготовьте весы к взвешиванию.
2. Поставьте на весы первый стакан с жидкостью. Методом двойного взвешивания определите массу стакана и жидкости (M_1). Оцените абсолютную погрешность взвешивания.
3. Вылейте жидкость из первого стакан в мерный цилиндр и определите её объем (V_1). Оцените абсолютную погрешность измерения объема.
4. Методом двойного взвешивания определите массу первого стакана (m_{text{ст1}}). Оцените абсолютную погрешность взвешивания.
5. По формулам, данным в теоретической части, определите плотность жидкости, относительную и абсолютную погрешности полученного результата.
6. По таблице в справочнике определите, какая жидкость находится в первом стакане.
7.-11. Повторите шаги 2.-6. для второго стакана с жидкостью.
12. Сделайте выводы о проделанной работе.

Результаты измерений и вычислений

Цена деления мерного цилиндра (d=1 text{мл}=1 text{см}^3)
Первый стакан

Стадии двойного взвешивания (M, text{г}) (m_{text{ст}}, text{г})
(m_1) 151,2 50,1
(m_2) 150,8 49,9
(m=frac{m_1+m_2}{2}) 151,0 50,0
(|m_1-m_2|) 0,4 0,2
(0,01text{%}m) 0,015 0,005
(Delta m) 0,4 0,2

Масса первой жидкости

begin{gather*} m=151,0-50,0=101,0,\ Delta m=0,4+0,2=0,6,\ delta_m=frac{0,6}{101,0}cdot 100text{%}=0,59text{%} end{gather*}

Объем первой жидкости

begin{gather*} V=109 text{мл},\ Delta V=frac d2=0,5 text{мл},\ delta_V=frac{0,5}{109}cdot 100text{%}=0,46text{%} end{gather*}

Плотность первой жидкости

begin{gather*} rho=frac mV=frac{101,0}{109}approx 0,927frac{text{г}}{text{см}^3}=927frac{text{кг}}{text{м}^3},\ delta_{rho}=delta_m+delta_V=0,59text{%}+0,46text{%}approx 1,1text{%},\ delta rho=rhocdotdelta_{rho}=927cdot 0,011approx 10frac{text{кг}}{text{м}^3},\ rho=(927pm 10)frac{text{кг}}{text{м}^3},\ delta_{rho}=1,1text{%} end{gather*}

В первом стакане – подсолнечное масло.

Второй стакан

Стадии двойного взвешивания (M, text{г}) (m_{text{ст}}, text{г})
(m_1) 100,4 50,0
(m_2) 100,2 49,9
(m=frac{m_1+m_2}{2}) 100,3 49,95≈50,0
(|m_1-m_2|) 0,2 0,1
(0,01text{%}m) 0,01 0,005
(Delta m) 0,2 0,1

Масса второй жидкости

begin{gather*} m=100,3-50,0=50,3,\ Delta m=0,2+0,1=0,3,\ delta_m=frac{0,3}{50,3}cdot 100text{%}=0,6text{%} end{gather*}

Объем второй жидкости

begin{gather*} V=50 text{мл},\ Delta V=frac d2=0,5 text{мл},\ delta_V=frac{0,5}{50}cdot 100text{%}=1,0text{%} end{gather*}

Плотность второй жидкости

begin{gather*} rho=frac mV=frac{50,3}{50,0}= 1,006frac{text{г}}{text{см}^3}=1006frac{text{кг}}{text{м}^3},\ delta_{rho}=delta_m+delta_V=0,6text{%}+1,0text{%}= 1,6text{%},\ delta rho=rhocdotdelta_{rho}=1006cdot 0,016approx 16frac{text{кг}}{text{м}^3},\ rho=(1006pm 16)frac{text{кг}}{text{м}^3},\ delta_{rho}=1,6text{%} end{gather*}

Во втором стакане – вода.

Выводы
На основании проделанной работы можно сделать следующие выводы.

Для определения плотности жидкости в работе методом двойного взвешивания измерялась масса (стакана с жидкостью и пустого стакана) и объем жидкости в мерном цилиндре.

Результаты для двух данных жидкостей

begin{gather*} rho_1=(927pm 10)frac{text{кг}}{text{м}^3}, delta_{rho 1}=1,1text{%}\ rho_2=(1006pm 16)frac{text{кг}}{text{м}^3}, delta_{rho 2}=1,6text{%} end{gather*}

По таблицам в справочнике было определено, что в первом стакане – растительное масло, а во втором – вода. Полученные результаты также подтверждаются цветом (желтоватый – для масла, прозрачный – для воды) и запахом (характерный запах у масла и отсутствие запаха у воды).

п.8. Лабораторная работа №6. Определение плотности твердых тел

Цель работы
Научиться измерять массу и объем твердых тел неправильной формы. Научиться определять вещества твердых тел по плотности, оценивать погрешность полученных результатов.

Теоретические сведения
Для определения массы тел в данной работе используется метод двойного взвешивания (см. выше в данном параграфе).

Масса тела определяется как среднее арифметическое двух взвешиваний на разных чашках весов: $$ m=frac{m_1+m_2}{2}. $$ Абсолютная погрешность двойного взвешивания – это большая из двух величин $$ Delta m=max(|m_1-m_2|; 0,01text{%}m) $$ Относительная погрешность $$ delta_m=frac{Delta m}{m}cdot 100text{%} $$ Объем твердого тела неправильной формы определяется с помощью погружения в жидкость.
Пусть объем жидкости в мерном цилиндре до погружения тела (V_0), после погружения – (V’).
Тогда объем самого тела (V=V’-V_0).
Абсолютная погрешность измерения объема равна половине цены деления мерного цилиндра (Delta V_0=frac d2) для прямого измерения. Для разности двух прямых измерений общая абсолютная погрешность $$ Delta V=2Delta V_0=d $$ Относительная погрешность $$ delta_V=frac dVcdot 100text{%}. $$ Плотность твердого тела равна $$ rho=frac mv. $$ Относительная погрешность результата $$ delta_{rho}=delta_m+delta_V. $$ Абсолютная погрешность результата $$ Deltarho=rhocdot delta_{rho} $$ Перевод полученных результатов в систему СИ $$ 1frac{text{г}}{text{см}^3}= frac{10^{-3} text{кг}}{10^{-6} text{м}^3}=10^3frac{text{кг}}{text{м}^3}=1000frac{text{кг}}{text{м}^3} $$

Приборы и материалы
Мерный цилиндр, наполненный водой наполовину; два тела неправильной формы из металлов; весы с разновесом.

Ход работы
1. Приготовьте весы к взвешиванию.
2. Методом двойного взвешивания определите массу первого тела. Найдите абсолютную и относительную погрешность взвешивания.
3. С помощью погружения первого тела в жидкость найдите его объем. Абсолютная погрешность равна цене деления мерного цилиндра. Рассчитайте относительную погрешность.
4. По формулам, данным в теоретической части, определите плотность твердого тела, относительную и абсолютную погрешности полученного результата.
5. По таблице в справочнике определите, из какого вещества изготовлено первое тело.
6-9. Повторите шаги 2.-5. для второго твердого тела неправильной формы.
10. Сделайте выводы о проделанной работе.

Результаты измерений и вычислений

Цена деления мерного цилиндра (d=0,5 text{мл}=0,5 text{см}^3)
Первое тело

Стадии двойного взвешивания (m, text{г})
(m_1) 22,34
(m_2) 22,38
(m=frac{m_1+m_2}{2}) 22,36
(|m_1-m_2|) 0,04
(0,01text{%}m) 0,002
(Delta m) 0,04
(delta m) 0,18%

Стадии определения объема (V, text{см}^3)
(V_0) 50,0
(V’) 58,5
(V=V’-V_0) 8,5
(Delta V=d) 0,5
(delta_V) 5,9%

Плотность первого тела

begin{gather*} rho=frac mV=frac{22,36}{8,5}approx 2,631frac{text{г}}{text{см}^3}=2631frac{text{кг}}{text{м}^3},\ delta_{rho}=delta_m+delta_V=0,18text{%}+5,9text{%}approx 6,1text{%},\ delta rho=rhocdotdelta_{rho}=2631cdot 0,061approx 160frac{text{кг}}{text{м}^3},\ rho=(2630pm 160)frac{text{кг}}{text{м}^3},\ delta_{rho}=6,1text{%} end{gather*}

Первое тело изготовлено из алюминия.

Второе тело

Стадии двойного взвешивания (m, text{г})
(m_1) 101,21
(m_2) 101,27
(m=frac{m_1+m_2}{2}) 101,25
(|m_1-m_2|) 0,06
(0,01text{%}m) 0,005
(Delta m) 0,06
(delta m) 0,06%

Стадии определения объема (V, text{см}^3)
(V_0) 50,0
(V’) 63,0
(V=V’-V_0) 13,0
(Delta V=d) 0,5
(delta_V) 3,8%

Плотность второго тела

begin{gather*} rho=frac mV=frac{101,25}{13,0}approx 7,788frac{text{г}}{text{см}^3}=7788frac{text{кг}}{text{м}^3},\ delta_{rho}=delta_m+delta_V=0,06text{%}+3,8text{%}approx 3,9text{%},\ delta rho=rhocdotdelta_{rho}=7788cdot 0,039approx 300frac{text{кг}}{text{м}^3},\ rho=(7790pm 300)frac{text{кг}}{text{м}^3},\ delta_{rho}=3,9text{%} end{gather*}

Второе тело изготовлено из железа.

Выводы
На основании проделанной работы можно сделать следующие выводы.

Для определения плотности твердых металлических тел неправильной формы в работе методом двойного взвешивания измерялась масса тел. Объем определялся методом погружения в мерном цилиндре.

Результаты для двух данных тел

begin{gather*} rho_1=(2630pm 160)frac{text{кг}}{text{м}^3}, delta_{rho 1}=6,1text{%}\ rho_2=(7790pm 300)frac{text{кг}}{text{м}^3}, delta_{rho 2}=3,9text{%} end{gather*}

По таблицам в справочнике было определено, что первое тело изготовлено из алюминия, второе – из железа.

Опытным путём было доказано, что масса ядра оказывается меньше, чем масса протонов и нейтронов, из которых состоит ядро. Разница между этими массами называется дефектом массы ядра.

Дефект массы ядра (

Δm

) — это разница между суммарной массой свободных нуклонов, из которых состоит ядро, и массой ядра.

Почему же масса нуклонов, связанных ядерными силами в ядро, оказывается меньше массы этих же нуклонов в свободном состоянии? Оказывается, что масса и энергия взаимосвязаны.

Всякое тело массой m обладает энергией, которая называется энергией покоя (

E0

):

E0=mc2

, где c — скорость света в вакууме.

Впервые соотношение между энергией и массой вывел Альберт Эйнштейн, поэтому это выражение и получило название «уравнение Эйнштейна».

Уменьшение энергии покоя нуклонов в ядре вызвано наличием ядерных сил, которые удерживают протоны и нейтроны в ядре. Работа, которую необходимо совершить для разрыва ядерных сил и разъединения нуклонов, равна энергии, которая связывает нуклоны вместе. Эта энергия называется энергией связи (

Eсв

) ядра.

Энергия связи и дефект массы ядра связаны между собой уравнением Эйнштейна:

 Удельной энергией связи ядра называют энергию связи, приходящуюся на (1) нуклон:

Удельная энергия равна средней энергии, необходимой для отрыва (1) нуклона от ядра.

Вычисления показали, что наибольшей удельной энергией связи обладают элементы, находящиеся в центре Периодической системы химических элементов. С увеличением порядкового номера начинает уменьшаться удельная энергия связи. Именно поэтому ядра элементов с порядковым номером больше (83) являются радиоактивными. Благодаря небольшой удельной энергии связи они способны самопроизвольно распадаться.

Единицы измерения энергии

В ядерной физике принято измерять энергию в мегаэлектронвольтах ((1) МэВ):

(1) МэВ (=) 

106

 эВ

≈1,6⋅10−13

 Дж.

Для вычисления энергии связи удобно пользоваться переводным коэффициентом для массы и энергии.

Дефекту массы в (1) а. е. м. соответствует энергия, равная

ΔE=Δmc2≈1,66⋅10−27

 кг

⋅(3⋅108

 м/с

)2≈1,49⋅10−10

 Дж 

=931,5

 МэВ.

Обрати внимание!

Для выражения изменения энергии системы в мегаэлектронвольтах нужно
изменение массы системы в атомных единицах массы умножить на переводной коэффициент (931,5) МэВ/а. е. м.

(1) а. е. м. (=) (931,5) МэВ.

Обновлено: 16.05.2023

Физика. Наука, изучающая явления природы, свойства и строение материи.

Материя . Всё, что есть во Вселенной.

Молекула . Мельчайшая частица данного вещества.

Диффузия . Взаимное перемешивание молекул одного вещества с молекулами другого.

Механическое движение . Изменение положения тела относительно других тел с течением времени.

Путь . Длина траектории.

Траектория . Линия, по которой движется тело.

Равномерное движение. Движение, при котором тело за любые равные промежутки времени проходит одинаковые пути.

Скорость . Величина, равная отношению пути ко времени, за которое этот путь пройден.

Инерция . Явление сохранения скорости тела при отсутствии действия на него других тел.

Тормозной путь . Путь, который проходит автомобиль после выключения двигателя до полной остановки.

Плотность . Физическая величина, равная отношению массы тела к его объёму.

Сила. Мера механического воздействия на тело со стороны других тел.

Масса. Мера инертности.

Вес. Сила, с которой тело вследствие притяжения к Земле действует на горизонтальную опору или подвес.

Равнодействующая сила . Сила, которая производит на тело такое же действие, как несколько одновременно действующих сил.

Сила трения . Сила, возникающая при движении одного тела по поверхности другого и направленная против движения.

Давление . Величина, равная отношению силы, действующей перпендикулярно поверхности, к площади этой поверхности.

Атмосфера . Воздушная оболочка Земли.

Архимедова сила . Сила, выталкивающая тело из жидкости или газа.

Работа. Величина, равная произведению приложенной силы на пройденный путь.

Мощность. Величина, равная отношению работы ко времени, за которое она была совершена.

Рычаг. Твёрдое тело, которое может вращаться вокруг неподвижной опоры.

КПД. Отношение полезной работы к полной работе.

Потенциальная энергия . Энергия взаимодействия.

Кинетическая энергия . Энергия движения.

Определения и формулы

Измерение физических величин

Измерение физических величин

  1. из значения верхней границы (ВГ) шкалы вычесть значение нижней границы (НГ) шкалы и результат разделить на количество делений (N);
  2. найти разницу между значениями двух соседних числовых меток (А и Б) шкалы и разделить на количество делений между ними (n).

ЦД = (ВГ — НГ) / N

ЦД = (Б — А) / n

Механическое движение

Скорость (ʋ) — физическая величина, численно равна пути (S), пройденного телом за единицу времени (t).

Путь (S) — длина траектории, по которой двигалось тело, численно равен произведению скорости (ʋ) тела на время (t) движения.

Время движения (t) — равно отношению пути (S), пройденного телом, к скорости (ʋ) движения.

Средняя скорость (ʋ ср ) — равна отношению суммы участков пути (S1, S2, S3, …), пройденного телом, к промежутку времени (t1 + t2+ t3+ …), за который этот путь пройден.

ʋср = (S1 + S2 + S3 + …) / (t1 + t2 + t3 + …)

Сила тяжести, вес, масса, плотность

Сила тяжести — сила (FТ), с которой Земля притягивает к себе тело, равная произведению массы (т) тела на коэффициент пропорциональности (g) — постоянную величину для Земли. (g = 9,8 H/кг)

FТ = m*g

Вес (Р) — сила, с которой тело действует на горизонтальную опору или вертикальный подвес, равная произведению массы (т) тела на коэффициент (g).

Масса (т) — мера инертности тела, определяемая при его взвешивании как отношение силы тяжести (Р) к коэффициенту (g).

т = Р / g

Плотность (ρ) — масса единицы объёма вещества, численно равная отношению массы (т) вещества к его объёму (V).

Механический рычаг, момент силы

Момент силы (М) равен произведению силы (F) на сё плечо (l)

М = F*l

Условие равновесия рычага — рычаг находится в равновесии, если плечи (l1, l2)действующих на него двух сил (F1, F2) обратно пропорциональны значениям сил.

a) F1 / F2 = l1 / l2

Давление, сила давления

Давление (р) — величина, численно равная отношению силы (F), действующей перпендикулярно поверхности, к площади (S) этой поверхности

Сила давления (F) — сила, действующая перпендикулярно поверхности тела, равная произведению давления (р) на площадь этой поверхности (S)

Давление газов и жидкостей

Давление однородной жидкости (р) — на дно сосуда зависит только от её плотности (ρ) и высоты столба жидкости (h).

Закон Архимеда — на тело, погруженное в жидкость (или газ), действует выталкивающая сила — архимедова сила (FВ). равная весу жидкости (или газа), в объёме (VТ) этого тела.

FВ = ρ*g*Vт

Условие плавания тел — если архимедова сила (FВ) больше силы тяжести (FТ)тела, то тело всплывает.

FВ > FТ

Закон гидравлической машины — силы (F1, F2), действующие на уравновешенные поршни гидравлической машины, пропорциональны площадям (S1, S2) этих поршней.

F1 / F2 = S1 / S2

Закон сообщающихся сосудов — однородная жидкость в сообщающихся сосудах находится на одном уровне (h)

Работа, энергия, мощность

Механическая работа Работа (A) — величина, равная произведению перемещения тела (S) на силу (F), под действием которой это перемещение произошло.

Формула:

А = F*S

Коэффициент полезного действия механизма (КПД) — коэффициент полезного действия (КПД) механизма — число, показывающее, какую часть от всей выполненной работы (АВ) составляет полезная работа (АП).

ɳ = АП / АВ *100%

Потенциальная энергия (Е П ) тела, поднятого над Землей, пропорциональна его массе (т) и высоте (h) над Землей.

Формула:

ЕП = m*g*h

Кинетическая энергия (Е К ) движущегося тела пропорциональна его массе (m) и квадрату скорости (ʋ 2 ).

ЕК = m*ʋ 2 / 2

Сохранение и превращение механической энергии — Сумма потенциальной (ЕП) и кинетической (ЕК) энергии в любой момент времени остается постоянной.

EП + EК = const

Мощность (N) — величина, показывающая скорость выполнения работы и равная:
а) отношению работы (А) ко времени (t), за которое она выполнена;
б) произведению силы (F), под действием которой перемещается тело, на среднюю скорость (ʋ) его перемещения.

Формулы меры длины и веса и соотношения между единицами

формулы.jpg

12 самых востребованных формул по физике в 7 классе

формулы1.jpg

формулы2.jpg

Тест для закрепления материала

  • Сколько в теле молекул
  • Чему равна масса тела из данного вещества
  • Что массы разных тел неодинаковы
  • Отношение массы тела к его объему

2 Вычислите скорость (в м/с) равномерного по­лёта воздушного шара в течение 1,5 мин., за которые он пролетел 540 м

Дельта-функция применяется в математической физике при решении задач, в которые входят сосредоточенные величины.

ĘЕЛЬТА-ԘУНКЦИЯ, d-функция Дирака, символ, применяемый в математической физике при решении задач, в которые входят сосредоточенные величины (нагрузка, заряд и т. п.) . Дельта-функция — простейшая обобщенная функция; она характеризует, напр. , плотность распределения масс, при котором в одной точке сосредоточена единичная масса, а любой интервал, не содержащий этой точки, свободен от масс.

разность напр. сила пружины= Г=к*дельтаХ
(г- вместо ф латинского, дельтаХ- величина растяжения пружины)

Физика 7 класс все формулы понятия определения

Физика

Понятия и определения

Физика — наука, изучающая явления природы, свойства и строение материи.

Материя — все то, что реально существует во Вселенной, независимо от нашего сознания.

Молекула — наименьшая частица вещества, определяющая его свойства и способная к самостоятельному существованию.

Диффузия — взаимное перемешивание молекул одного вещества с молекулами другого.

Механическое движение — изменение положения тела относительно других тел с течением времени.

Путь — длина траектории.

Траектория — линия, по которой движется тело.

Равномерное движение — движение, при котором тело за любые равные промежутки времени проходит одинаковые пути.

Скорость — величина, равная отношению пути ко времени, за которое этот путь пройден.

Инерция — явление сохранения скорости тела при отсутствии действия на него других тел.

Тормозной путь — путь, который проходит автомобиль после выключения двигателя до полной остановки.

Плотность — физическая величина, равная отношению массы тела к его объёму.

Сила — мера механического воздействия на тело со стороны других тел.

Масса — мера инертности.

Вес — сила, с которой тело вследствие притяжения к Земле действует на горизонтальную опору или подвес.

Равнодействующая сил — сила, которая производит на тело такое же действие, как несколько одновременно действующих сил.

Сила трения — сила, возникающая при движении одного тела по поверхности другого и направленная против движения.

Давление — величина, равная отношению силы, действующей перпендикулярно поверхности, к площади этой поверхности.

Атмосфера — воздушная оболочка Земли.

Архимедова сила — сила, выталкивающая тело из жидкости или газа.

Работа — величина, равная произведению приложенной силы на пройденный путь.

Мощность — величина, равная отношению работы ко времени, за которое она была совершена.

Рычаг — твёрдое тело, которое может вращаться вокруг неподвижной опоры.

В данной статье поговорим о знаке Дельта – что он из себя представляет, в каких сферах применяется и для чего вообще используется. Также вы узнаете, как выглядит знак и как его можно вставить в текст в такой программе, какой является Ворд из Майкрософт Оффис.

Знак Дельта применяется во многих сферах жизнедеятельности, к примеру, в физике, текстовых редакторах, формулах и других сферах. Чаще всего именно при печати учебной литературы, докладов и других видов документов применяют знак дельта, который имеется в разных версиях ВОРД от Виндовс и других приложениях для создания документов текстового формата на ПК.

Обозначение дельта знака

О происхождения знака

Буква, которая служит аналогом в русском алфавите – Д, а вот символ везде одинаков и изображается, как геометрическая фигура, а именно треугольник с равными сторонами (Δ). Эта версия является заглавной, прописная версия выглядит немного иначе, представляя собой кружок с хвостиком, похожий на обозначение в физике плотности (δ).

Значение буквы

Где применяется данный символ?

Кроме использования в правописании греков, символ начали активно применять в математике, геометрии, алгебре, физике, химии и географии.

Поговорим отдельно о применении дельта в каждых научных сферах:

  1. География. Дельта подразумевает в географическом смысле начальную часть реки, океана или моря, имеет смысловое, нежели символическое, буквенное понятие и восприятие. Почему именно область впадения реки принято так называть? Все просто, дело в форме данной области, если сделать снимок сверху, то отток реки будет иметь форму правильного треугольника, а символ дельта, как раз представляет собой такой геометрический объект. Ярчайшим представителем с выраженной дельтой является река Нил (Египет), которая впадает в Средиземное море, а также Амазонка с ее впадением в океан Атлантики.
  2. Применение в математике, алгебре, геометрии. Очень часто знак применяют в математической сфере для таких целей, как: 1) Приращение аргумента подразумевает под дельтой измененную переменную. К примеру, сложим 5 и 4 в итоге получим число 9. Дельтой будет являться увеличение 5 на 4. 2) Применение в теории вероятности по системе Лапласа. Такой метод преподают в ВУЗах, а не школах и в нем используют такой знак. 3) А также символ применяется при обозначении прямой и обратной матриц. 4) Дельта, буква, применяемая в написании формул (как письменным методом, так и через компьютер);
  3. Также в математике применяют прописную версию дельта. А именно, такой символ обозначает производную от числа. Обозначение выглядит следующим образом – δy/δx. 2) Используется для описания бесконечной функции-дельта. Бесконечная функция возможна, если все значения аргумента равны нулю. 3) При помощи δ еще обозначают символику Кронекера, символ равен всегда 1, при условии того, что все его индексы равны, либо нулевые при заданных условиях.
  4. Физика, астрономия, космогония. Граничащие меж собой научные дисциплины, все особо важные и по-своему интересные, в каждой из дисциплин можно встретить знак дельта. В физике связь всех производных осуществляется при помощи формул с интеграцией. К примеру, формула скорости, которая выглядит следующим образом – δS к δt , является отношением одной части к другой. В данном случае расстояние, которое преодолел объект, соотносится со временем, затраченном на преодоление. Вторая производная – это ускорение, где тоже важна взаимосвязь одной составляющей формулы к другой. В космологии и астрономии применяют формулы, расчеты с данным символом, только в прописном варианте.

Дельта знак

Поставь лайк, это важно для наших авторов, подпишись на наш канал в Яндекс.Дзен и вступай в группу Вконтакте

Читайте также:

      

  • История названия каспийского моря кратко
  •   

  • История адама и евы в исламе кратко
  •   

  • Освобождение анголы и мозамбика кратко
  •   

  • Конституционная реформа 2005 года в великобритании кратко
  •   

  • Эдуард лимонов биография кратко

Содержание:

  • Определение и формула массы тела
  • Инертная масса
  • Гравитационная масса
  • Формула расчета массы через плотность тела
  • Масса в специальной теории относительности
  • Примеры решения задач

Определение и формула массы тела

Определение

В механике Ньютона массой тела называют скалярную физическую величину, которая является мерой инерционных его свойств и
источником гравитационного взаимодействия. В классической физике масса всегда является положительной величиной.

Масса – аддитивная величина, что означает: масса каждой совокупности материальных точек (m) равна
сумме масс всех отдельных частей системы (mi):

$$m=sum_{i=1}^{n} m_{i}(1)$$

В классической механике считают:

  • масса тела не является зависимой от движения тела, от воздействия других тел, расположения тела;
  • выполняется закон сохранения массы: масса замкнутой механической системы тел неизменна во времени.

Инертная масса

Свойство инертности материальной точки состоит в том, что если на точку действует внешняя сила, то у нее возникает конечное по модулю ускорение.
Если внешних воздействий нет, то в инерциальной системе отсчета тело находится в состоянии покоя или движется равномерно и прямолинейно. Масса входит во второй закон Ньютона:

$$bar{F}=m bar{a}(2)$$

где масса определяет инертные свойства материальной точки (инертная масса).

Гравитационная масса

Масса материальной точки входит в закон всемирного тяготения, при этом она определяет гравитационные свойства данной точки.при этом она носит
название гравитационной (тяжелой) массы.

Эмпирически получено, что для всех тел отношения инертных масс к гравитационным являются одинаковыми. Следовательно, если правильно избрать
величину постоянной гравитации, то можно получить, что для всякого тела инертная и гравитационная массы одинаковы и связываются с силой
тяжести (Ft) избранного тела:

$$m=frac{F_{t}}{g}(3)$$

где g – ускорение свободного падения. Если проводить наблюдения в одной и той же точке, то ускорения свободного падения одинаковы.

Формула расчета массы через плотность тела

Масса тела может быть рассчитана как:

$$m=int_{V} rho d V(4)$$

где $rho$ – плотность вещества тела, где интегрирование
проводится по объему тела. Если тело однородное ( $rho = const$ ),
то масса может быть рассчитана как:

$m = rho V (5)$

Масса в специальной теории относительности

В СТО масса инвариантна, но аддитивной не является. Она здесь определена как:

$$m=sqrt{frac{E^{2}}{c^{4}}-frac{p^{2}}{c^{2}}}$$

где E – полная энергия свободного тела, p- импульс тела, c – скорость света.

Релятивистская масса частицы определяется формулой:

$$m=frac{m_{0}}{sqrt{1-frac{v^{2}}{c^{2}}}}(7)$$

где m0 – масс покоя частицы, v – скорость движения частицы.

Основной единицей измерения массы в системе СИ является: [m]=кг.

В СГС: [m]=гр.

Примеры решения задач

Пример

Задание. Две частицы летят навстречу друг другу со скоростями равными v (скорость близка к скорости света).
При их соударении происходит абсолютно неупругий удар. Какова масса частицы, которая образовалась после соударения? Массы частиц
до соударения равны m.

Решение. При абсолютно неупругом соударении частиц, которые до удара имели одинаковые массы и скорости образуется одна покоящаяся частица (рис.1) энергия покоя которой равна:

$$E^{prime}=M c^{2}(1.1)$$

В нашем случае выполняется закон сохранения механической энергии. Частицы обладают только кинетической энергией.
По условию задачи скорость частиц близка к скорости света, следовательно? оперируем понятиями релятивистской механики:

$$E_{1}=frac{m c^{2}}{sqrt{1-frac{v^{2}}{c^{2}}}}=E_{2}(1.2)$$

где E1 – энергия первой частицы до удара, E2 – энергия второй частицы до соударения.

Закон сохранения энергии запишем в виде:

$$E_{1}+E_{2}=E^{prime} ; frac{m c^{2}}{sqrt{1-frac{v^{2}}{c^{2}}}}+frac{m c^{2}}{sqrt{1-frac{v^{2}}{c^{2}}}}=M c^{2} rightarrow frac{2 m c^{2}}{sqrt{1-frac{v^{2}}{c^{2}}}}=M c^{2}(1.3)$$

Из выражения (1.3) следует, что масса полученной в результате слияния частицы равна:

$$M=frac{2 m}{sqrt{1-frac{v^{2}}{c^{2}}}}$$

236

проверенных автора готовы помочь в написании работы любой сложности

Мы помогли уже 4 396 ученикам и студентам сдать работы от решения задач до дипломных на отлично! Узнай стоимость своей работы за 15 минут!

Пример

Задание. Какова масса 2м3 меди?

Решение. Будем считать, что медь однородна и для решения задачи используем формулу:

$$m=rho V$$

При этом если известно вещество (медь), то можно при помощи справочника найти ее плотность. Плотность меди будем считать равной
$rho$ Cu=8900 кг/м3 . Для расчета все величины известны. Проведем вычисления:

$m=8900 cdot 2=17800$ (кг)

Ответ. $m=8900 cdot 2=17800$ (кг)

Читать дальше: Формула момента силы.

Добавить комментарий