Формула как найти конечную температуру тела

Как найти в физике начальную и конечную температуру через количество теплоты, удельную теплоту и массу?

Домашние задания

Николай Маслихов

21 декабря 2020  · 3,6 K

Ответить1Уточнить

Сергей Иванов

Математика

158

Мне интересно и нравятся: математика. физика. астрономия, информатика, астрофизика, науки…  · 26 дек 2020  · ivanov610.narod.ru

Формула связи такая Q = cm(t2-t1). Если даны: количество теплоты, удельную теплоту и массу, то из этой формулы можно выразить только изменение температуры. t2-t1 =Q/cm. Чтобы найти конечную или начальную температуры, нужно какую-то из них тоже знать. Знаем конечную, найдем начальную и наоборот.

4,3 K

Комментировать ответ…Комментировать…

Вы знаете ответ на этот вопрос?

Поделитесь своим опытом и знаниями

Войти и ответить на вопрос

Тела, температура которых отличается, могут обмениваться тепловой энергией. То есть, между телами будет происходить теплообмен. Самостоятельно тепловая энергия переходит от более нагретых тел к менее нагретым.

Что такое теплообмен и при каких условиях он происходит

Тела, имеющие различные температуры, будут обмениваться тепловой энергией. Этот процесс называется теплообменом.

Теплообмен – процесс обмена тепловой энергией между телами, имеющими различные температуры.

Рассмотрим два тела, имеющие различные температуры (рис. 1).

Тело, имеющее более высокую температуру, будет остывать и отдавать тепловую энергию телу, имеющему низкую температуру. А тело с низкой температурой будет получать количество теплоты и нагреваться.

Два тела обмениваются тепловой энергией

Рис.1. Два тела во время теплообмена и после

На рисунке, горячее тело имеет розовый оттенок, а холодное изображено голубым цветом.

Когда температуры тел выравниваются, теплообмен прекращается.

Чтобы теплообмен происходил, нужно, чтобы тела имели различные температуры.

Когда температура тел выравняется, теплообмен прекратится.

Тепловое равновесие — это состояние, при котором тела имеют одинаковую температуру.

Уравнение теплового баланса и сохранение тепловой энергии

Когда тело остывает, оно отдает тепловую энергию (теплоту).  Утерянное количество теплоты Q имеет знак «минус».

А когда тело нагревается – оно получает тепловую энергию. Приобретенное количество теплоты Q имеет знак «плюс».

Эти факты отражены на рисунке 2.

Полученное во время теплообмена количество теплоты имеет знак «+», а отданное Q – знак «-»

Рис. 2. Полученное количество теплоты имеет знак «+», а отданное Q – знак «-»

Закон сохранения тепловой энергии: Количество теплоты, отданное горячим телом равно количеству теплоты, полученному холодным телом.

Примечание: Существует и другая формулировка закона сохранения энергии: Энергия не появляется сама собой и не исчезает бесследно. Она переходит из одного вида в другой.

Уравнение теплового баланса

Тот факт, что тепловая энергия сохраняется, можно записать с помощью математики в виде уравнения. Такую запись называют уравнением теплового баланса.

Запишем уравнение теплового баланса для двух тел, обменивающихся тепловой энергией:

[large boxed{ Q_{text{остывания горяч}} + Q_{text{нагревания холод}} = 0 }]

(large Q_{text{остывания горяч}} left( text{Дж} right) ) – это количество теплоты горячее тело теряет.

(large Q_{text{нагревания холод}} left( text{Дж} right) ) – это количество теплоты холодное тело получает.

В левой части уравнения складываем количество теплоты каждого из тел, участвующих в теплообмене.

Записываем ноль в правой части уравнения, когда теплообмен с окружающей средой отсутствует. То есть, теплообмен происходит только между рассматриваемыми телами.

В некоторых учебниках применяют сокращения:

[large Q_{1} + Q_{2} = 0 ]

Примечание: Складывая два числа мы получим ноль, когда эти числа будут:

  • равными по модулю и
  • имеют различные знаки (одно число — знак «плюс», а второе – знак «минус»).

Если несколько тел участвуют в процессе теплообмена

Иногда в процессе теплообмена участвуют несколько тел. Тогда, для каждого тела нужно записать формулу количества теплоты Q. А потом все количества теплоты подставить в уравнение для теплового баланса:

[large boxed{ Q_{1} + Q_{2} + Q_{3} + ldots + Q_{n} = 0 } ]

При этом:

  • Q для каждого нагреваемого тела будет обладать знаком «+»,
  • Q для каждого охлаждаемого тела — знаком «-».

Пример расчетов для теплообмена между холодным и горячим телом

К горячей воде, массой 200 грамм, имеющей температуру +80 градусов Цельсия, добавили холодную воду, в количестве 100 грамм при температуре +15 градусов Цельсия. Какую температуру будет иметь смесь после установления теплового равновесия? Считать, что окружающая среда в теплообмене не участвует.

Примечание: Здесь мы рассматриваем упрощенную задачу, для того, чтобы облегчить понимание закона сохранения энергии. Мы не учитываем в этой задаче, что вода содержится в емкости. И часть тепловой энергии будет затрачиваться на то, чтобы изменить температуру емкости.

При решении других задач обязательно учитывайте, что емкость, в которой будет содержаться вещество, имеет массу. И часть тепловой энергии будет затрачиваться на то, чтобы изменить температуру емкости.

 Решение:

В условии сказано, что окружающая среда в теплообмене не участвует. Поэтому, будем считать рассматриваемую систему замкнутой. А в замкнутых системах выполняются законы сохранения. Например, закон сохранения энергии.

Иными словами, с сосудом и окружающим воздухом теплообмен не происходит и, все тепловая энергия, отданная горячей водой, будет получена холодной водой.

1). Запишем уравнение теплового баланса, в правой части которого можно записать ноль:

[large Q_{text{остывания горяч}} + Q_{text{нагревания холод}} = 0 ]

2). Теперь запишем формулу для каждого количества теплоты:

[large Q_{text{остывания горяч}} = c_{text{воды}} cdot m_{text{горяч}} cdot (t_{text{общ}} — t_{text{горяч}} ) ]

[large Q_{text{нагревания холодн}} = c_{text{воды}} cdot m_{text{холодн}} cdot (t_{text{общ}} — t_{text{холодн}} ) ]

Примечания:

  1. (large c_{text{воды}} ) – удельную теплоемкость воды находим в справочнике;
  2. Массу воды переводим в килограммы;
  3. Горячая вода остывает и отдает тепловую энергию. Поэтому, разность (large (t_{text{общ}} — t_{text{горяч}} ) ) будет иметь знак «минус», потому, что конечная температура горячей воды меньше ее начальной температуры;
  4. Холодная вода получает тепловую энергию и нагревается. Из-за этого, разность (large (t_{text{общ}} — t_{text{холодн}} ) ) будет иметь знак «плюс», потому, что конечная температура холодной воды больше ее начальной температуры;

3). Подставим выражения для каждого Q в уравнение баланса:

[large c_{text{воды}} cdot m_{text{горяч}} cdot (t_{text{общ}} — t_{text{горяч}} ) + c_{text{воды}} cdot m_{text{холодн}} cdot (t_{text{общ}} — t_{text{холодн}} ) = 0 ]

4). Для удобства, заменим символы числами:

[large 4200 cdot 0,2 cdot (t_{text{общ}} — 80 ) + 4200 cdot 0,1 cdot (t_{text{общ}} — 15 ) = 0 ]

Проведем упрощение:

[large 840 cdot (t_{text{общ}} — 80 ) + 420 cdot (t_{text{общ}} — 15 ) = 0 ]

Раскрыв скобки и решив это уравнение, получим ответ:

[large t_{text{общ}} = 58,33 ]

Ответ: Температура смеси после прекращения теплообмена будет равна 58,33 градуса Цельсия.

Задача для самостоятельного решения:

В алюминиевом калориметре массой 100 грамм находится керосин массой 250 грамм при температуре +80 градусов Цельсия. В керосин поместили свинцовый шарик, массой 300 грамм. Начальная температура шарика +20 градусов Цельсия. Найдите температуру тел после установления теплового равновесия. Внешняя среда в теплообмене не участвует.

Примечание к решению: В левой части уравнения теплового баланса теперь будут находиться три слагаемых. Потому, что мы учитываем три количества теплоты:

  • (large Q_{1} ) – охлаждение алюминия от температуры +80 градусов до конечной температуры;
  • (large Q_{2} ) – охлаждение керосина от температуры +80 градусов до конечной температуры;
  • (large Q_{3} ) – нагревание свинца от температуры +20 градусов до конечной температуры;

А справа в уравнение теплового баланса запишем ноль. Так как внешняя среда в теплообмене не участвует.

Выводы

  1. Если тела имеют различную температуру, то между ними возможен обмен тепловой энергией, т. е. теплообмен;
  2. Когда тела будут иметь равную температуру, теплообмен прекратится;
  3. Тело с высокой температурой, отдает тепловую энергию (теплоту) и остывает. Отданное количество теплоты Q имеет знак «минус»;
  4. А тело с низкой температурой получает тепловую энергию и нагревается. Полученное количество теплоты Q имеет знак «плюс»;
  5. Количество теплоты, отданное горячим телом равно количеству теплоты, полученному холодным телом. Это – закон сохранения тепловой энергии;
  6. Сохранение тепловой энергии можно записать в виде уравнения теплового баланса;
  7. В левой части уравнения складываем количества теплоты (всех тел, участвующих в теплообмене);
  8. В правой части уравнения записываем ноль, когда теплообмен с окружающей средой отсутствует.

Расчет количества теплоты при нагревании и охлаждении:

Вы уже знаете, что изменить внутреннюю энергию тела можно передачей ему количества теплоты. Как связано изменение внутренней энергии тела, т. е. количество теплоты, с характеристиками самого тела?

Внутренняя энергия тела есть суммарная энергия всех его частиц. Значит, если массу данного тела увеличить в два или три раза, то и количество теплоты, необходимое для его нагревания на одно и то же число градусов, увеличится в два или три раза. Например, на нагревание двух килограммов воды от 20 °C до 80 °C потребуется в два раза больше теплоты, чем на нагревание одного килограмма воды (рис. 40, а).

Расчет количества теплоты при нагревании и охлаждении в физике - формулы и определение с примерами

Очевидно также, что для нагревания воды на Расчет количества теплоты при нагревании и охлаждении в физике - формулы и определение с примерами

Из этих рассуждений следует подтвержденный опытами вывод. Количество теплоты, необходимое для нагревания тела, прямо пропорционально его массе и изменению температуры.

А зависит ли количество теплоты, идущее на нагревание, от рода вещества, которое нагревается?

Для ответа на этот вопрос проведем опыт. В два одинаковых стакана нальем по 150 г подсолнечного масла и воды. Поместим в них термометры и поставим на нагреватель (рис. 41).

Расчет количества теплоты при нагревании и охлаждении в физике - формулы и определение с примерами

Получив за одинаковое время от нагревателя равное с водой количество теплоты, масло нагрелось больше, чем вода. Значит, для изменения температуры масла на одну и ту же величину требуется меньше теплоты, чем для изменения температуры такой же массы воды.

Поэтому для всех веществ вводят специальную величину — удельную теплоемкость вещества. Эту величину обозначают буквой с (от лат. capacite — емкость, вместимость). Теперь мы можем записать строгую формулу для количества теплоты, необходимого для нагревания:

Расчет количества теплоты при нагревании и охлаждении в физике - формулы и определение с примерами

Выразим из этой формулы с:Расчет количества теплоты при нагревании и охлаждении в физике - формулы и определение с примерами

Удельная теплоемкость есть физическая величина, численно равная количеству теплоты, которое необходимо передать 1 кг данного вещества, чтобы изменить его температуру на 1 °C. Удельная теплоемкость измеряется в джоулях на килограмм-градус Цельсия Расчет количества теплоты при нагревании и охлаждении в физике - формулы и определение с примерами

Для любознательных:

Часто формулу Расчет количества теплоты при нагревании и охлаждении в физике - формулы и определение с примерами записывают в виде Расчет количества теплоты при нагревании и охлаждении в физике - формулы и определение с примерами Здесь величина Расчет количества теплоты при нагревании и охлаждении в физике - формулы и определение с примерами называется теплоемкостью тела (обратите внимание — не вещества). Она численно равна количеству теплоты, необходимому для нагревания всей массы тела на 1 °C. Измеряется теплоемкость тела в джоулях на градус Цельсия Расчет количества теплоты при нагревании и охлаждении в физике - формулы и определение с примерами

В таблице 1 представлены значения удельной теплоемкости различных веществ (в различных состояниях). Как следует из этой таблицы, среди жидкостей максимальное значение удельной теплоемкости имеет вода: для нагревания 1 кг воды на 1 °C требуется 4200 Дж теплоты — это почти в 2,5 раза больше, чем для нагревания 1 кг подсолнечного масла, и в 35 раз больше, чем для нагревания 1 кг ртути.

Формула Расчет количества теплоты при нагревании и охлаждении в физике - формулы и определение с примерами дает возможность найти и выделяемую при охлаждении тела теплоту. Так как конечная температура Расчет количества теплоты при нагревании и охлаждении в физике - формулы и определение с примерами остывшего тела меньше начальной Расчет количества теплоты при нагревании и охлаждении в физике - формулы и определение с примерами то изменение температуры оказывается отрицательным числом. Значит, и выделяемое телом количество теплоты выражается отрицательным числом, что обозначает не рост, а убыль внутренней энергии тела.

В заключение заметим, что при теплообмене двух или нескольких тел абсолютное значение количества теплоты, которое отдано более нагретым телом (телами), равно количеству теплоты, которое получено более холодным телом (телами):
Расчет количества теплоты при нагревании и охлаждении в физике - формулы и определение с примерами

Это равенство называется уравнением теплового баланса и выражает, по сути, закон сохранения энергии. Оно справедливо при отсутствии потерь теплоты.
Таблица 1. Удельная теплоемкость некоторых веществ

Расчет количества теплоты при нагревании и охлаждении в физике - формулы и определение с примерами

Главные выводы:

  1. Количество теплоты, необходимое для нагревания тела (выделившееся при охлаждении), прямо пропорционально его массе, изменению температуры тела и зависит от вещества тела.
  2. Удельная теплоемкость вещества численно равна количеству теплоты, которое надо передать 1 кг данного вещества, чтобы изменить его температуру на 1 °C.
  3. При теплообмене количество теплоты, отданное более горячим телом, равно по модулю количеству теплоты, полученному более холодным телом, если нет потерь теплоты.
  • Заказать решение задач по физике

Пример решения задачи:

Для купания ребенка в ванночку влили холодную воду массой Расчет количества теплоты при нагревании и охлаждении в физике - формулы и определение с примерами= 20 кг при температуре Расчет количества теплоты при нагревании и охлаждении в физике - формулы и определение с примерами = 12 °C. Какую массу горячей воды при температуре Расчет количества теплоты при нагревании и охлаждении в физике - формулы и определение с примерами = 80 °C нужно добавить в ванночку, чтобы окончательная температура воды стала Расчет количества теплоты при нагревании и охлаждении в физике - формулы и определение с примерами = 37 °C? Удельная теплоемкость воды с = 4200 Расчет количества теплоты при нагревании и охлаждении в физике - формулы и определение с примерами
Дано:

Расчет количества теплоты при нагревании и охлаждении в физике - формулы и определение с примерами

Расчет количества теплоты при нагревании и охлаждении в физике - формулы и определение с примерами
Решение

По закону сохранения энергии Расчет количества теплоты при нагревании и охлаждении в физике - формулы и определение с примерами

Отдавала теплоту горячая вода, изменяя свою температуру от Расчет количества теплоты при нагревании и охлаждении в физике - формулы и определение с примерами

Расчет количества теплоты при нагревании и охлаждении в физике - формулы и определение с примерами

Холодная вода получила эту теплоту и нагрелась от Расчет количества теплоты при нагревании и охлаждении в физике - формулы и определение с примерами

Расчет количества теплоты при нагревании и охлаждении в физике - формулы и определение с примерами
Так как нас интересует только модуль Расчет количества теплоты при нагревании и охлаждении в физике - формулы и определение с примерами то можно записать:
Расчет количества теплоты при нагревании и охлаждении в физике - формулы и определение с примерами
Тогда Расчет количества теплоты при нагревании и охлаждении в физике - формулы и определение с примерамиРасчет количества теплоты при нагревании и охлаждении в физике - формулы и определение с примерами

При решении мы пренебрегали потерями теплоты на нагревание ванночки, окружающего воздуха и т. д.

Возможен и другой вариант решения.

Рассчитаем сначала количество теплоты, которое было получено холодной водой:
Расчет количества теплоты при нагревании и охлаждении в физике - формулы и определение с примерами
Полагая, что эта теплота отдана горячей водой, запишем: Расчет количества теплоты при нагревании и охлаждении в физике - формулы и определение с примерами Выразим искомую массу:
Расчет количества теплоты при нагревании и охлаждении в физике - формулы и определение с примерами
Ответ: Расчет количества теплоты при нагревании и охлаждении в физике - формулы и определение с примерами

  • Удельная теплота сгорания топлива
  • Плавление и кристаллизация в физике 
  • Испарение жидкостей в физике
  • Поверхностное натяжение жидкости
  • Излучение тепла в физике
  • Виды излучений в физике
  • Инфракрасные излучения
  • Количество теплоты в физике

Количество теплоты

Автор статьи — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Темы кодификатора ЕГЭ: количество теплоты, удельная теплоёмкость вещества, уравнение теплового баланса.

Как мы знаем, одним из способов изменения внутренней энергии является теплопередача (теплообмен). Предположим, что тело участвует в теплообмене с другими телами, и при этом не совершается механическая работа — ни самим телом, ни другими телами над этим телом.

Если в процессе теплообмена внутренняя энергия тела изменилась на величину Delta U, то говорят, что тело получило соответствующее количество теплоты: Q = Delta U.

Если при этом величина Delta U отрицательна, т.е. тело отдавало энергию, то говорят также, что тело отдавало тепло. Например, вместо формально верной, но несколько нелепой фразы «тело получило —5 Дж тепла» мы скажем: «тело отдало 5 Дж тепла».

Удельная теплоёмкость вещества

Предположим, что в процессе теплообмена агрегатное состояние вещества тела не изменяется (не происходит плавление, кристаллизация, парообразование или конденсация). Начальную температуру тела обозначим t_1, конечную температуру — t_2.

Опыт показывает, что количество теплоты, полученное телом, прямо пропорционально массе тела m и разности конечной и начальной температур:

Q=cmleft ( t_2-t_1 right ).

Коэффициент пропорциональности c называется удельной теплоёмкостью вещества тела. Удельная теплоёмкость не зависит от формы и размеров тела. Удельные теплоёмкости различных веществ можно найти в таблицах.

Введя обозначение Delta t=t_2-t_1, получим также:

Q=cm Delta t.

Чтобы понять физический смысл удельной теплоёмкости, выразим её из последней формулы:

c=frac{displaystyle Q}{displaystyle mDelta t}.

Мы видим, что удельная теплоёмкость численно равна количеству теплоты, которое необходимо для нагревания 1кг данного вещества на rm 1^{circ}C (или, что то же самое, на rm 1K). Измеряется удельная теплоёмкость в Дж/(кг·phantom{1}^{circ}C) или в Дж/(кг·K).

Чем больше удельная теплоёмкость вещества, тем большее количество теплоты требуется для нагревания тела данной массы на заданное количество градусов.

В задачах часто фигурируют вода и лёд. Их удельные теплоёмкости желательно помнить.

Вода: c=4200 Дж/(кг·vphantom{1}^{circ}C).
Лёд: c=2100 Дж/(кг·vphantom{1}^{circ}C).

Произведение удельной теплоёмкости вещества на массу тела называется теплоёмкостью тела и обозначается C:

C = cm.

Соответственно, для количества теплоты имеем:

Q = C(t_2 - t_1).

Уравнение теплового баланса

Рассмотрим два тела (обозначим их 1 и 2), которые образуют замкнутую систему. Это означает, что данные тела могут обмениваться энергией только друг с другом, но не с другими телами. Считаем также, что механическая работа не совершается — внутренняя энергия тел меняется только в процессе теплообмена.

Имеется фундаментальный закон природы, подтверждаемый всевозможными экспериментами — закон сохранения энергии. Он гласит, что полная энергия замкнутой системы тел не меняется со временем.

В данном случае закон сохранения энергии утверждает, что внутренняя энергия нашей системы будет оставаться одной и той же: U_1+U_2 = const. Если изменение внутренней энергии первого тела равно Delta U_1, а изменение внутренней энергии второго тела равно Delta U_2, то суммарное изменение внутренней энергии будет равно нулю:

Delta U_1 + Delta U_2 = 0.

Но Delta U_1 = Q_1 — количество теплоты, полученное первым телом в процессе теплообмена; аналогично Delta U_2 = Q_2 — количество теплоты, полученное вторым телом в процессе теплообмена. Стало быть,

Q_1 + Q_2 = 0. (1)

Попросту говоря, сколько джоулей тепла отдало одно тело, ровно столько же джоулей получило второе тело. Так как система замкнута, ни один джоуль наружу не вышел. Соотношение (1) называется уравнением теплового баланса. В общем случае, когда n тел образуют замкнутую систему и обмениваются энергией только с помощью теплопередачи, из закона сохранения энергии с помощью тех же рассуждений получаем общее уравнение теплового баланса:

Q_1 + Q_2 + ldots + Q_n = 0. (2)

В качестве простого примера применения уравнения теплового баланса рассмотрим следующую задачу.

Смешали m_1=200г воды при температуре t_1=100^{circ}C и m_2=300г воды при температуре t_2=20^{circ}C. Найти установившуюся температуру смеси.

Обозначим искомую установившуюся температуру через Theta. Запишем уравнение теплового баланса (1):

cm_1(Theta - t_1) + cm_2(Theta - t_2) = 0,

где c — удельная теплоёмкость воды. Раскрываем скобки и находим:

Q=frac{displaystyle  m_1t_1+m_2t_2}{displaystyle  m_1+m_2}=52^{circ}C

Благодарим за то, что пользуйтесь нашими материалами.
Информация на странице «Количество теплоты» подготовлена нашими авторами специально, чтобы помочь вам в освоении предмета и подготовке к ЕГЭ и ОГЭ.
Чтобы успешно сдать необходимые и поступить в высшее учебное заведение или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими материалами из разделов нашего сайта.

Публикация обновлена:
08.05.2023

В этой статье тема «найти тепловое равновесие» будет кратко изложена. В состоянии теплового равновесия передача тепла между двумя веществами, находящимися в контакте, отсутствует.

Из нулевого закона термодинамики мы получаем ясное представление о тепловом равновесии. Тепловое равновесие – это состояние между двумя объектами, при котором тепло не передается и объекты контактируют друг с другом. Температура для двух объектов остается одинаковой для условия теплового равновесия.

Очень интересной концепцией, связанной с температурой, является термин тепловое равновесие. Два вещества находятся в состоянии теплового равновесия, если в замкнутой системе температура объектов повышается или снижается до тех пор, пока они не достигнут состояния равновесия, несмотря на то, что между двумя веществами не происходит передачи энергии. Так же, как и когда вещества не находятся в контакте, они также находятся в состоянии теплового равновесия, если, находясь в контакте, тем не менее обмен энергией между двумя веществами не происходит.

найти тепловое равновесие

Изображение – Развитие теплового равновесия в замкнутой системе с течением времени через тепловой поток нивелирует температурные перепады;
Кредит изображения – Википедия

Примеры теплового равновесия:

Некоторые примеры теплового равновесия обсуждаются ниже.

  1. Измерение температуры тела человека термометром хороший пример теплового равновесия. При исследовании температуры с помощью термометра температура набирается термометром и через определенное время, когда температура тела и термометра становится одинаковой, теплопередача между телом и термометром прекращается, что означает, что состояние достигает равновесного состояния.
  2. Внезапно сунуть руку в кубик льда — еще один хороший пример теплового равновесия. Когда рука помещается в кубик льда, в это время температура между кубиком и рукой начинает снижаться. передавать тепло и когда температура между рукой и кубиком льда станет одинаковой, теплопередача будет остановлена, что означает, что состояние достигает состояния равновесия.
  3. Плавление кубика масла также является примером теплового равновесия. Когда кубик масла помещается в естественную в это время температуру между кубиком и атмосферой, попытайтесь достичь той же температуры, таким образом, начнется передача тепла, и когда температура между атмосферой и кубиком масла станет одинаковой, теплопередача прекратится. , означает, что состояние достигает состояния равновесия.

Как найти тепловое равновесие?

Тепловое равновесие – это состояние, при котором теплообмен двух веществ прекращается, когда их температуры достигают одной и той же точки. Тепловое равновесие определяется по этой формуле

Где,

Q = полная энергия удельной материи тела, выраженная в джоулях.

m = масса конкретного вещества тела, выраженная в граммах.

Ce = Удельная теплоемкость удельной материи тела, которая выражается в джоулях на кельвин на килограмм

Δt = температура конкретного вещества тела, выраженная в градусах Кельвина.

Если заданы значения массы вещества и удельной теплоемкости, температуры, то легко подставляя значения в …уравнение (1), мы можем определить величину теплового равновесия.

Теперь с помощью численной задачи обсуждается тепловое равновесие,

Проблема:

Чтобы 40 граммов воды нагрелись до 45 градусов по Цельсию. Теперь определите значение энергии, при котором вода остается в состоянии теплового равновесия.

Решение:-

В задаче приведены данные,

Масса воды (м) = 40 грамм

Удельная теплоемкость воды Ce = 4.17 Дж на грамм-градус Цельсия

Температура Δt = 45 градусов по Цельсию

Мы знаем, что формула теплового равновесия такова:

Q = м х Сe х Δt

Где,

Q = Полная энергия удельной материи тела

m = масса конкретного вещества тела

Ce= Удельная теплоемкость удельного вещества тела

Δt = температура конкретного вещества тела

Теперь мы помещаем значения в уравнение,

Q = 40 х 4.17 х 45

Q = 7506 Дж.

Чтобы 40 граммов воды нагрелись до 45 градусов по Цельсию. Значение энергии, при котором вода остается на тепловое равновесие состояние 7506 Дж.

Когда найти тепловое равновесие?

Когда два тела соприкасаются, тепло (энергия) передается от одного к другому, пока они не достигнут одинаковой температуры (находятся в тепловом равновесии). Когда объекты имеют одинаковую температуру, теплопередача отсутствует.

Формула для расчета теплового равновесия:

Тепло – это поток энергии от более высокой температуры к более низкой температуре. Когда эти температуры уравновешиваются, тепло перестает течь, тогда говорят, что система (или набор систем) находится в тепловом равновесии.

Формула теплового равновесия:

Q = м х Сe х Δt

Где,

Q = полная энергия удельной материи тела, выраженная в джоулях.

m = масса конкретного вещества тела, выраженная в граммах.

Ce= удельная теплоемкость удельного вещества тела, выраженная в джоулях на кельвин на килограмм.

Δt = температура конкретного вещества тела, выраженная в градусах Кельвина.

Как найти конечную температуру в тепловом равновесии?

С помощью числовых значений конечная температура в тепловом равновесии описана ниже,

Кусок железа массой 220 грамм. Температура куска железа составляет 310 градусов по Цельсию. Предположим, что кусок железа опущен на сосуд, наполненный водой. Вес воды 1.2 кг, температура 22 градуса по Цельсию.

Определить конечную температуру теплового равновесия воды.

Решение:-

Пусть конечная температура в тепловом равновесии для воды = Т градусов по Цельсию.

Теперь изменение температуры,

Δт = Токончательный – Тначальный

Изменение тепла,

Q = м х Сe х Δt

Итак, изменение теплоты куска железа равно

  ΔQжелезо = 220/1000 х 450 х (Т – 310) Дж

  ΔQжелезо = 99 (Т – 310) Дж

Итак, изменение теплоты воды равно

ΔQводы = 1.20 х 4200 х (Т – 22) Дж

ΔQводы = 5040 (Т – 22) Дж

Используя закон сохранения энергии, мы можем написать,

ΔQжелезо+ ΔQводы = 0

Помещая полученные значения,

99 (Т – 310) + 5040 (Т – 22) = 0

99 Тл – 30690 + 5040Т – 110880 = 0

5138 Т = 141570

Т = 141570/5138

Т = 27.5 градусов по Цельсию.

Кусок железа массой 220 грамм. Температура куска железа составляет 310 градусов по Цельсию. Предположим, что кусок железа опущен на сосуд, наполненный водой. Вес воды 1.2 кг, температура 22 градуса по Цельсию.

Конечная температура в тепловом равновесии для воды составляет 27.5 градусов по Цельсию.

Проблема: 1

Сколько энергии потребуется для повышения температуры 55 граммов воды на 40 градусов по Цельсию?

Решение:-

Данные данные,

Масса воды (м) = 40 грамм

Удельная теплоемкость воды Ce = 4.17 Дж на грамм-градус Цельсия

Температура ΔT = 55 градусов по Цельсию

Мы знаем, что формула теплового равновесия такова:

Q = м х Сe х ΔТ

Где,

Q = Полная энергия удельной материи тела

m = масса конкретного вещества тела

Ce = Удельная теплоемкость удельного вещества тела

Delta; t = Температура конкретного вещества тела

Q = 40 х 4.17 х 55

Q = 9174 Дж.

Для повышения температуры 9174 граммов воды на 55 градусов по Цельсию требуется энергия 40 Дж.

Проблема: 2

Рамеш, друг Ратана, увлекается коллекционированием камней. Пока Рамеш собирает камни, он всегда бросает их в контейнер. Контейнер изготовлен из металлического алюминия. Вес контейнера 15.2 грамма. Естественно, температура контейнера составляет около 36 градусов по Цельсию. Теперь Рамешу в алюминиевую тару наливают холодную воду. Температура воды будет 22 градуса по Цельсию, а вес воды 32 грамма.

Определите точную температуру, при которой температура алюминиевого сосуда и температура холодной воды будут одинаковыми.

Решение: –

Мы знаем, что формула теплового равновесия такова:

Q = м х Сe х ΔТ

Где,

Q = Полная энергия удельной материи тела

m = масса конкретного вещества тела

Ce = Удельная теплоемкость удельного вещества тела

Delta; t = (Конечная температура – ​​Начальная температура) удельного вещества тела

Для алюминия,

QA = мA * СeA * ΔtA ………….. уравнение (1)

Данные данные,

mA = 15.2 грамма

CeA  = 0.215 калории на грамм-градус Цельсия

ΔtA = (Тf – ТiA) градус Цельсия = (Tf – 36) градусов по Цельсию

Для воды,

QW = мW * СeW * ΔtW ………….. уравнение (1)

Данные данные,

mW = 32 грамм

CeW = 1 калории на грамм-градус Цельсия

ΔtW = (Тf – ТiW) градус Цельсия = (Tf – 22) градусов по Цельсию

Теперь из ………….. уравнения (1) и ………….. уравнения (2) мы можем написать,

QA = мA * СeA * ΔtA знак равно QW = (-) мW * СeW * ΔtW

Подставляя значение из уравнения (1) и уравнения (2),

15.2 х (0.215) х (Тf – 36) = (-) 32 х 1 х (Тf – 22)

(Поместите значение для CeW = 1 калории на грамм-градус Цельсия

3.268 х (Тf – 36) = -32 (Тf – 22)

3.268 Tf – 117.648 = -32 Тлf + 704

3.268 Tf + 32 тf = 704 + 117.648

Tf = 704 + 117.648/35.268

Tf = 23.2 градуса по Цельсию

Рамеш, друг Ратана, увлекается коллекционированием камней. Пока Рамеш собирает камни, он всегда бросает их в контейнер. Контейнер изготовлен из металлического алюминия. Вес контейнера 15.2 грамма. Естественно, температура контейнера составляет около 36 градусов по Цельсию. Теперь Рамешу в алюминиевую тару наливают холодную воду. Температура воды будет 22 градуса по Цельсию, а вес воды 32 грамма.

Точная температура, при которой температура алюминиевого контейнера и температура холодной воды будут одинаковыми, составляет 23.2 градуса по Цельсию.

Проблема: 3

Неустановленный металл хранится в лаборатории. Вес неуказанного металла 6 грамм. Теперь к неуказанному металлу добавлена ​​энергия 248.2 Дж. Температура неуказанного металла повышается до 116 градусов по Цельсию.

Теперь определите количество удельной теплоемкости для неуказанного металла.

Решение:-

Данные данные,

Масса неуказанного металла (м) = 6 грамм

Нужно рассчитать,

Удельная теплоемкость для неуказанного металла Ce знак равно Джоуль на грамм-градус Цельсия

Температура Delta; t = 116 градуса по Цельсию

Общая энергия неуказанного металла (Q) = 248.2 Дж.

Мы знаем, что формула теплового равновесия такова:

Q = м х Сe х ΔТ

Ce = Q/мDelta; t

Где,

Q = Полная энергия удельной материи тела

m = масса конкретного вещества тела

Ce= Удельная теплоемкость удельного вещества тела

Delta; t = Температура конкретного вещества тела

Ce = 248.2 / 6Delta; t

Ce= 248.2/6 х 116

Ce = 0.356 Дж на грамм-градус Цельсия.

Неустановленный металл хранится в лаборатории. Вес неуказанного металла 6 грамм. Теперь к неуказанному металлу добавлена ​​энергия 248.2 Дж. Температура неуказанного металла повышается до 116 градусов по Цельсию. Количество удельной теплоты для неуказанного металла составляет 0.356 Дж на грамм-градус Цельсия.

Вывод:

Две физические системы находятся в тепловом равновесии, если между ними нет чистого потока тепловой энергии, когда они соединены путем, проницаемым для тепла.

Добавить комментарий