Информатика
7 класс
Урок № 6
Единицы измерения информации
Перечень вопросов, рассматриваемых в теме:
- Алфавитный подход к измерению информации.
- Наименьшая единица измерения информации.
- Информационный вес одного символа алфавита и информационный объём всего сообщения.
- Единицы измерения информации.
- Задачи по теме урока.
Тезаурус:
Каждый символ информационного сообщения несёт фиксированное количество информации.
Единицей измерения количества информации является бит – это наименьшаяединица.
1 байт = 8 бит
1 Кб (килобайт) = 1024 байта= 210байтов
1 Мб (мегабайт) = 1024 Кб = 210Кб
1 Гб (гигабайт) = 1024 Мб = 210 Мб
1 Тб (терабайт) =1024 Гб = 210 Гб
Формулы, которые используются при решении типовых задач:
Информационный вес символа алфавита и мощность алфавита связаны между собой соотношением: N = 2i.
Информационный объём сообщения определяется по формуле:
I = К · i,
I – объём информации в сообщении;
К – количество символов в сообщении;
i – информационный вес одного символа.
Основная литература:
- Босова Л. Л. Информатика: 7 класс. // Босова Л. Л., Босова А. Ю. – М.: БИНОМ, 2017. – 226 с.
Дополнительная литература:
- Босова Л. Л. Информатика: 7–9 классы. Методическое пособие. // Босова Л. Л., Босова А. Ю., Анатольев А. В., Аквилянов Н.А. – М.: БИНОМ, 2019. – 512 с.
- Босова Л. Л. Информатика. Рабочая тетрадь для 7 класса. Ч 1. // Босова Л. Л., Босова А. Ю. – М.: БИНОМ, 2019. – 160 с.
- Босова Л. Л. Информатика. Рабочая тетрадь для 7 класса. Ч 2. // Босова Л. Л., Босова А. Ю. – М.: БИНОМ, 2019. – 160 с.
- Гейн А. Г. Информатика: 7 класс. // Гейн А. Г., Юнерман Н. А., Гейн А.А. – М.: Просвещение, 2012. – 198 с.
Теоретический материал для самостоятельного изучения.
Любое сообщение несёт некоторое количество информации. Как же его измерить?
Одним из способов измерения информации является алфавитный подход, который говорит о том, что каждый символ любого сообщения имеет определённый информационный вес, то есть несёт фиксированное количество информации.
Сегодня на уроке мы узнаем, чему равен информационный вес одного символа и научимся определять информационный объём сообщения.
Что же такое символ в компьютере? Символом в компьютере является любая буква, цифра, знак препинания, специальный символ и прочее, что можно ввести с помощью клавиатуры. Но компьютер не понимает человеческий язык, он каждый символ кодирует. Вся информация в компьютере представляется в виде нулей и единичек. И вот эти нули и единички называются битом.
Информационный вес символа двоичного алфавита принят за минимальную единицу измерения информации и называется один бит.
Алфавит любого понятного нам языка можно заменить двоичным алфавитом. При этом мощность исходного алфавита связана с разрядностью двоичного кода соотношением: N = 2i.
Эту формулу можно применять для вычисления информационного веса одного символа любого произвольного алфавита.
Рассмотрим пример:
Алфавит древнего племени содержит 16 символов. Определите информационный вес одного символа этого алфавита.
Составим краткую запись условия задачи и решим её:
Дано:
N=16, i = ?
Решение:
N = 2i
16 = 2i, 24 = 2i, т. е. i = 4
Ответ: i = 4 бита.
Информационный вес одного символа этого алфавита составляет 4 бита.
Сообщение состоит из множества символов, каждый из которых имеет свой информационный вес. Поэтому, чтобы вычислить объём информации всего сообщения, нужно количество символов, имеющихся в сообщении, умножить на информационный вес одного символа.
Математически это произведение записывается так: I = К · i.
Например: сообщение, записанное буквами 32-символьного алфавита, содержит 180 символов. Какое количество информации оно несёт?
Дано:
N = 32,
K = 180,
I= ?
Решение:
I = К · i,
N = 2i
32 = 2i, 25 = 2 i, т.о. i = 5,
I = 180 · 5 = 900 бит.
Ответ: I = 900 бит.
Итак, информационный вес всего сообщения равен 900 бит.
В алфавитном подходе не учитывается содержание самого сообщения. Чтобы вычислить объём содержания в сообщении, нужно знать количество символов в сообщении, информационный вес одного символа и мощность алфавита. То есть, чтобы определить информационный вес сообщения: «сегодня хорошая погода», нужно сосчитать количество символов в этом сообщении и умножить это число на восемь.
I = 23 · 8 = 184 бита.
Значит, сообщение весит 184 бита.
Как и в математике, в информатике тоже есть кратные единицы измерения информации. Так, величина равная восьми битам, называется байтом.
Бит и байт – это мелкие единицы измерения. На практике для измерения информационных объёмов используют более крупные единицы: килобайт, мегабайт, гигабайт и другие.
1 байт = 8 бит
1 Кб (килобайт) = 1024 байта= 210байтов
1 Мб (мегабайт) = 1024 Кб = 210Кб
1 Гб (гигабайт) = 1024 Мб = 210 Мб
1 Тб (терабайт) =1024 Гб = 210 Гб
Итак, сегодня мы узнали, что собой представляет алфавитный подход к измерению информации, выяснили, в каких единицах измеряется информация и научились определять информационный вес одного символа и информационный объём сообщения.
Материал для углубленного изучения темы.
Как текстовая информация выглядит в памяти компьютера.
Набирая текст на клавиатуре, мы видим привычные для нас знаки (цифры, буквы и т.д.). В оперативную память компьютера они попадают только в виде двоичного кода. Двоичный код каждого символа, выглядит восьмизначным числом, например 00111111. Теперь возникает вопрос, какой именно восьмизначный двоичный код поставить в соответствие каждому символу?
Все символы компьютерного алфавита пронумерованы от 0 до 255. Каждому номеру соответствует восьмиразрядный двоичный код от 00000000 до 11111111. Этот код ‑ просто порядковый номер символа в двоичной системе счисления.
Таблица, в которой всем символам компьютерного алфавита поставлены в соответствие порядковые номера, называется таблицей кодировки.Таблица для кодировки – это «шпаргалка», в которой указаны символы алфавита в соответствии порядковому номеру. Для разных типов компьютеров используются различные таблицы кодировки.
Таблица ASCII (или Аски), стала международным стандартом для персональных компьютеров. Она имеет две части.
В этой таблице латинские буквы (прописные и строчные) располагаются в алфавитном порядке. Расположение цифр также упорядочено по возрастанию значений. Это правило соблюдается и в других таблицах кодировки и называется принципом последовательного кодирования алфавитов. Благодаря этому понятие «алфавитный порядок» сохраняется и в машинном представлении символьной информации. Для русского алфавита принцип последовательного кодирования соблюдается не всегда.
Запишем, например, внутреннее представление слова «file». В памяти компьютера оно займет 4 байта со следующим содержанием:
01100110 01101001 01101100 01100101.
А теперь попробуем решить обратную задачу. Какое слово записано следующим двоичным кодом:
01100100 01101001 01110011 01101011?
В таблице 2 приведен один из вариантов второй половины кодовой таблицы АSСII, который называется альтернативной кодировкой. Видно, что в ней для букв русского алфавита соблюдается принцип последовательного кодирования.
Вывод: все тексты вводятся в память компьютера с помощью клавиатуры. На клавишах написаны привычные для нас буквы, цифры, знаки препинания и другие символы. В оперативную память они попадают в форме двоичного кода.
Из памяти же компьютера текст может быть выведен на экран или на печать в символьной форме.
Сейчас используют целых пять систем кодировок русского алфавита (КОИ8-Р, Windows, MS-DOS, Macintosh и ISO). Из-за количества систем кодировок и отсутствия одного стандарта, очень часто возникают недоразумения с переносом русского текста в компьютерный его вид. Поэтому, всегда нужно уточнять, какая система кодирования установлена на компьютере.
Разбор решения заданий тренировочного модуля
№1. Определите информационный вес символа в сообщении, если мощность алфавита равна 32?
Варианты ответов:
3
5
7
9
Решение:
Информационный вес символа алфавита и мощность алфавита связаны между собой соотношением: N = 2i.
32 = 2i, 32 – это 25, следовательно, i =5 битов.
Ответ: 5 битов.
№2. Выразите в килобайтах 216 байтов.
Решение:
216 можно представить как 26 · 210.
26 = 64, а 210 байт – это 1 Кб. Значит, 64 · 1 = 64 Кб.
Ответ: 64 Кб.
№3. Тип задания: выделение цветом
8х = 32 Кб, найдите х.
Варианты ответов:
3
4
5
6
Решение:
8 можно представить как 23. А 32 Кб переведём в биты.
Получаем 23х=32 · 1024 ·8.
Или 23х = 25 · 210 · 23.
23х = 218.
3х = 18, значит, х=6.
Ответ: 6.
Добрый день, сегодня мы познакомимся с заданием №1 ОГЭ по информатике. Сама суть идёт из темы про кодирование информации. Когда мы пытаемся найти какое количество нужно выделить памяти у компьютера на один символ. Символ — это не только цифры (0-9) и буквы разных алфавитов, но и прочие специальные символы (знаки препинания, вопросительные, восклицательные знаки и т.д.). Пробел так же, как и любой другой символ занимает память при его использовании/наличии.
Само вычисление необходимого количества памяти происходит по формуле объёма информации:
- I – объём информации (сколько весит файл/сообщение);
- K – количество символов в сообщении/в файле;
- i – количество информации (сколько памяти занимает один символ).
У этих переменных есть свои единицы измерения. Для количества символов – символы. А для объёма информации и количества информации — это бит, байт, кбайт и т.д.
Теперь, после некоторого введения в теорию мы обладаем инструментами для решения данной задачи. Осталось только определить, как применить полученные знания и каков алгоритм наших действий.
Задача №1
В кодировке КОИ-8 каждый символ кодируется 8 битами. Андрей написал текст (в нём нет лишних пробелов):
«Обь, Лена, Волга, Москва, Макензи, Амазонка — реки».
Ученик вычеркнул из списка название одной из рек. Заодно он вычеркнул лишние запятые и пробелы — два пробела не должны идти подряд. При этом размер нового предложения в данной кодировке оказался на 8 байт меньше, чем размер исходного предложения. Напишите в ответе вычеркнутое название реки.
Решение
Теперь попробуем разобрать данную задачу. У нас тут есть кодировка “КОИ-8”, которая говорит нам о том, что каждый символ весит 8 бит. А 8 бит это ровно 1 байт информации. Всё, что заключено в кавычки нас, интересует. Далее ученик вычеркнул слово (название реки) и, окружавшие его, запятую и пробел. После всех этих действий объём сообщения уменьшился на 8 байт.
Теперь мы обладаем всей полезной информацией и можем сделать некоторые выводы и суждения:
- 1 символ = 1 байту;
- удалили запятую и пробел – минус два символа, то есть 2 байта;
- 8 байт – 2 байта = 6 байт;
- 6 байт = 6 символов (в данном случае букв);
- Следовательно, необходимо найти слово (в данном случае название реки), в котором есть ровно шесть букв – Москва.
Существуют задачи, где необходимо посчитать какое количество байт будет весить файл. Попробуем разобраться с этим видом задания.
Задача №2
Статья, набранная на компьютере, содержит 20 страниц, на каждой странице 40 строк, в каждой строке 48 символов. В одном из представлений Unicode каждый символ кодируется двумя байтами. Определите информационный объём статьи в Кбайтах в этом варианте представления Unicode.
Решение
Как можем заметить тут речь идёт о файле, в котором есть 20 страниц. В каждой странице 40 строк и на каждой строке 48 символов. Исходя из этих значений найдём сколько ВСЕГО символов в файле. Также сказано что каждый символ занимает (весит) 2 байта информации. Следовательно, умножив общее количество символов на вес символа, найдём информационный объём файла (сколько он будет весить на компьютере). На словах вроде решили, теперь решим и “на бумаге”.
Для начала найдем количество символов:
После этого никто не мешает найти объем информации:
Получили достаточно большой ответ. Поскольку здесь мы умножали количество символов на байты (их вес), то и ответ получился тоже в байтах. Если бы умножали на бит, то и информационный объём тоже был бы в единицах измерения — бит. Но в самом задание сказано определить информационный объём в Кбайтах. Для этого необходимо полученное число разделить на 1024 (исходя из таблицы переводов сверху).
Вышел достаточно лаконичный ответ – 75 Кбайт.
Понравилась статья? Хочешь разбираться в информатике, программировании и уметь работать в разных программах? Тогда ставь лайк, подпишись на канал и поделись статьей с друзьями!
Читайте также:
#информатика #огэ #разбор #задания #решение #экзамен
Набор символов знаковой системы (алфавит) можно рассматривать как различные возможные состояния (события).
Тогда, если считать, что появление символов в сообщении равновероятно, количество возможных событийN можно вычислить как N=2i
Количество информации в сообщении I можно подсчитать умножив количество символов K на информационный вес одного символа i
Итак, мы имеем формулы, необходимые для определения количества информации в алфавитном подходе:
Если к этим задачам добавить задачи на соотношение величин, записанных в разных единицах измерения, с использованием представления величин в виде степеней двойки мы получим 9 типов задач.
Рассмотрим задачи на все типы. Договоримся, что при переходе от одних единиц измерения информации к другим будем строить цепочку значений. Тогда уменьшается вероятность вычислительной ошибки.
Задача 1. Получено сообщение, информационный объем которого равен 32 битам. чему равен этот объем в байтах?
Решение: В одном байте 8 бит. 32:8=4
Ответ: 4 байта.
Задача 2. Объем информацинного сообщения 12582912 битов выразить в килобайтах и мегабайтах.
Решение: Поскольку 1Кбайт=1024 байт=1024*8 бит, то 12582912:(1024*8)=1536 Кбайт и
поскольку 1Мбайт=1024 Кбайт, то 1536:1024=1,5 Мбайт
Ответ:1536Кбайт и 1,5Мбайт.
Задача 3. Компьютер имеет оперативную память 512 Мб. Количество соответствующих этой величине бит больше:
1) 10 000 000 000бит 2) 8 000 000 000бит 3) 6 000 000 000бит 4) 4 000 000 000бит Решение: 512*1024*1024*8 бит=4294967296 бит.
Ответ: 4.
Задача 4. Определить количество битов в двух мегабайтах, используя для чисел только степени 2.
Решение: Поскольку 1байт=8битам=23битам, а 1Мбайт=210Кбайт=220байт=223бит. Отсюда, 2Мбайт=224бит.
Ответ: 224бит.
Задача 5. Сколько мегабайт информации содержит сообщение объемом 223бит?
Решение: Поскольку 1байт=8битам=23битам, то
223бит=223*223*23бит=210210байт=210Кбайт=1Мбайт.
Ответ: 1Мбайт
Задача 6. Один символ алфавита “весит” 4 бита. Сколько символов в этом алфавите?
Решение:
Дано:
i=4 | По формуле N=2i находим N=24, N=16 |
Найти: N – ? |
Ответ: 16
Задача 7. Каждый символ алфавита записан с помощью 8 цифр двоичного кода. Сколько символов в этом алфавите?
Решение:
Дано:
i=8 | По формуле N=2i находим N=28, N=256 |
Найти:N – ? |
Ответ: 256
Задача 8. Алфавит русского языка иногда оценивают в 32 буквы. Каков информационный вес одной буквы такого сокращенного русского алфавита?
Решение:
Дано:
N=32 | По формуле N=2i находим 32=2i, 25=2i,i=5 |
Найти: i– ? |
Ответ: 5
Задача 9. Алфавит состоит из 100 символов. Какое количество информации несет один символ этого алфавита?
Решение:
Дано:
N=100 | По формуле N=2i находим 32=2i, 25=2i,i=5 |
Найти: i– ? |
Ответ: 5
Задача 10. У племени “чичевоков” в алфавите 24 буквы и 8 цифр. Знаков препинания и арифметических знаков нет. Какое минимальное количество двоичных разрядов им необходимо для кодирования всех символов? Учтите, что слова надо отделять друг от друга!
Решение:
Дано:
N=24+8=32 | По формуле N=2i находим 32=2i, 25=2i,i=5 |
Найти: i– ? |
Ответ: 5
Задача 11. Книга, набранная с помощью компьютера, содержит 150 страниц. На каждой странице — 40 строк, в каждой строке — 60 символов. Каков объем информации в книге? Ответ дайте в килобайтах и мегабайтах
Решение:
Дано:
K=360000 | Определим количество символов в книге 150*40*60=360000. Один символ занимает один байт. По формуле I=K*iнаходим I=360000байт 360000:1024=351Кбайт=0,4Мбайт |
Найти: I– ? |
Ответ: 351Кбайт или 0,4Мбайт
Задача 12. Информационный объем текста книги, набранной на компьютере с использованием кодировки Unicode, — 128 килобайт. Определить количество символов в тексте книги.
Решение:
Дано:
I=128Кбайт,i=2байт | В кодировке Unicode один символ занимает 2 байта. Из формулыI=K*i выразимK=I/i,K=128*1024:2=65536 |
Найти: K– ? |
Ответ: 65536
Задача 13.Информационное сообщение объемом 1,5 Кб содержит 3072 символа. Определить информационный вес одного символа использованного алфавита
Решение:
Дано:
I=1,5Кбайт,K=3072 | Из формулы I=K*i выразимi=I/K,i=1,5*1024*8:3072=4 |
Найти: i– ? |
Ответ: 4
Задача 14.Сообщение, записанное буквами из 64-символьного алфавита, содержит 20 символов. Какой объем информации оно несет?
Решение:
Дано:
N=64, K=20 | По формуле N=2i находим 64=2i, 26=2i,i=6. По формуле I=K*i I=20*6=120 |
Найти: I– ? |
Ответ: 120бит
Задача 15. Сколько символов содержит сообщение, записанное с помощью 16-символьного алфавита, если его объем составил 1/16 часть мегабайта?
Решение:
Дано:
N=16, I=1/16 Мбайт | По формуле N=2i находим 16=2i, 24=2i,i=4. Из формулы I=K*i выразим K=I/i, K=(1/16)*1024*1024*8/4=131072 |
Найти: K– ? |
Ответ: 131072
Задача 16. Объем сообщения, содержащего 2048 символов,составил 1/512 часть мегабайта. Каков размер алфавита, с помощью которого записано сообщение?
Решение:
Дано:
K=2048,I=1/512 Мбайт | Из формулы I=K*i выразим i=I/K, i=(1/512)*1024*1024*8/2048=8. По формулеN=2iнаходим N=28=256 |
Найти: N– ? |
Ответ: 256
Задачи для самостоятельного решения:
- Каждый символ алфавита записывается с помощью 4 цифр двоичного кода. Сколько символов в этом алфавите?
- Алфавит для записи сообщений состоит из 32 символов, каков информационный вес одного символа? Не забудьте указать единицу измерения.
- Информационный объем текста, набранного на компьюте¬ре с использованием кодировки Unicode (каждый символ кодируется 16 битами), — 4 Кб. Определить количество символов в тексте.
- Объем информационного сообщения составляет 8192 бита. Выразить его в килобайтах.
- Сколько бит информации содержит сообщение объемом 4 Мб? Ответ дать в степенях 2.
- Сообщение, записанное буквами из 256-символьного ал¬фавита, содержит 256 символов. Какой объем информации оно несет в килобайтах?
- Сколько существует различных звуковых сигналов, состоящих из последовательностей коротких и длинных звонков. Длина каждого сигнала — 6 звонков.
- Метеорологическая станция ведет наблюдение за влажностью воздуха. Результатом одного измерения является целое число от 20 до 100%, которое записывается при помощи минимально возможного количества бит. Станция сделала 80 измерений. Определите информационный объем результатом наблюдений.
- Скорость передачи данных через ADSL-соединение равна 512000 бит/с. Через данное соединение передают файл размером 1500 Кб. Определите время передачи файла в секундах.
- Определите скорость работы модема, если за 256 с он может передать растровое изображение размером 640х480 пикселей. На каждый пиксель приходится 3 байта. А если в палитре 16 миллионов цветов?
Тема определения количества информации на основе алфавитного подхода используется в заданиях А1, А2, А3, А13, В5 контрольно-измерительных материалов ЕГЭ.
Задачи, связанные с определением количества информации, занимают довольно большое место как в общем курсе 9-11 классов, так и при итоговой аттестации разного типа.
Обычно решение подобных задач не представляет трудности для учащихся с хорошими способностями к анализу ситуаций. Но большинство учеников поначалу путаются в понятиях и не знают, как приступить к решению.
Тем не менее, к 9-му классу учащиеся уже имеют определенный опыт решения задач по другим предметам (более всего – физика) с применением формул. Определить, что в задаче дано, что необходимо найти, и выразить одну переменную через другую – действия довольно привычные, и с ними справляются даже слабые ученики. Представляется возможным ввести некоторые дополнительные формулы в курсе информатики и найти общий стиль их применения в решении задач.
Оттолкнемся от одной из главных формул информатики – формулы Хартли N=2i. При ее использовании учащиеся могут еще не знать понятия логарифма, достаточно вначале иметь перед глазами, а затем запомнить таблицу степеней числа 2 хотя бы по 10-й степени.
При этом формула может применяться в решении задач разного типа, если правильно определить систему обозначений.
Выделим в системе задач на количество информации задачи следующих типов:
- Количество информации при вероятностном подходе;
- Кодирование положений;
- Количество информации при алфавитном подходе (кодирование текста);
- Кодирование графической информации;
- Кодирование звуковой информации
Все задачи группы A (в случае, если мы имеем дело с равновероятными событиями) решаются непосредственно по формуле Хартли с ее привычными обозначениями:
- N – количество равновероятных событий;
- i – количество бит в сообщении о том, что событие произошло,
Причем в задаче может быть определена любая из переменных с заданием найти вторую. В случае если число N не является непосредственно числом, представляющим ту или иную степень числа 2, количество бит нам необходимо определить «с запасом». Так для гарантированного угадывания числа в диапазоне от 1 до 100 необходимо задать минимально 7 вопросов (27=128).
Решение задач для случаев неравновероятных событий в этой статье не рассматривается.
Для решения задач групп B-E дополнительно введем еще одну формулу:
Q=k*i
и определим систему обозначений для задач разного типа.
Для задач группы B значение переменных в формуле Хартли таково:
- i – количество «двоичных элементов», используемых для кодирования;
- N – количество положений, которые можно закодировать посредством этих элементов.
Так:
- два флажка позволяют передать 4 различных сообщения;
- с помощью трех лампочек можно потенциально закодировать 8 различных сигналов;
- последовательность из 8 импульсов и пауз при передаче информации посредством электрического тока позволяет закодировать 256 различных текстовых знаков;
и т.п.
Рассмотрим структуру решения по формуле:
Задача 1: Сколько существует различных последовательностей из символов «плюс» и «минус» длиной ровно в пять символов?
Дано: i = 5
Найти: N
Решение: N = 25
Ответ: 5
Каждый элемент в последовательности для кодирования несет один бит информации.
Очевидно, что при определении количества элементов, необходимых для кодирования N положений, нас всегда интересует минимально необходимое для этого количество бит.
При однократном кодировании необходимого количества положений мы определяем необходимое количество бит и ограничиваемся формулой Хартли. Если кодирование проводится несколько раз, то это количество мы обозначаем как k и, определяя общее количество информации для всего кода (Q), применяем вторую формулу.
Задача 2: Метеорологическая станция ведет наблюдение за влажностью воздуха, результатом которых является целое число от 1 до 100%, которое кодируется посредством минимально возможного количества бит. Станция сделала 80 измерений. Какой информационный объем результатов наблюдений.
Дано: N = 100; k = 80
Найти: Q
Решение:
По формуле Хартли i = 7 (с запасом); Q = 80 * 7 = 560
Ответ: 560 бит
(Если в задаче даны варианты ответов с использованием других единиц измерения количества информации, осуществляем перевод: 560 бит = 70 байт).
Отметим дополнительно, что, если для кодирования используются нe «двоичные», а скажем, «троичные» элементы, то мы меняем в формуле основание степени.
Задача 3: Световое табло состоит из лампочек. Каждая из лампочек может находиться в одном из трех состояний («включено», «выключена» или «мигает»). Какое наименьшее количество лампочек должно находиться на табло, чтобы с его помощью можно было передать 18 различных сигналов.
В данном случае N = 18, основание степени – 3. Необходимо найти i. Если логарифмы еще не знакомы, определяем методом подбора – 5. Ответ: 5 лампочек
Далее рассмотрим решение задач на кодирование текстовой, графической и звуковой информации.
Здесь важно провести параллели:
Информация, которая обрабатывается на компьютере, должна быть представлена в виде конечного множества элементов (символ для текста, точка – для графики, фрагмент звуковой волны – для звука), каждый из которых кодируется отдельно с использованием заданного количества бит. Зависимость количества элементов, которые могут быть закодированы, от количества бит, отводимых, на кодирование одного элемента, как и раньше, определяем по формуле Хартли.
А путем умножения количества элементов (k) на «информационный вес» одного из них, определяем общее количество информации в текстовом, графическом, звуковом фрагменте (Q).
Каждую задачу можно решить, обозначив заданными переменными известные данные, и выразив одну переменную через другую. Только необходимо помнить, что непосредственно расчеты чаще всего производятся в минимальных единицах измерения (битах, секундах, герцах), а потом, если необходимо, ответ переводится в более крупные единицы измерения.
Рассмотрим конкретные примеры:
Алфавитный подход позволяет определить количество информации, заключенной в тексте. Причем под «текстом» в данном случае понимают любую конечную последовательность знаков, несущую информационную нагрузку. Поэтому обозначения переменных для задач группы C одинаково применимы как для задач на передачу обычной текстовой информации посредством компьютера (i = 8, N = 256 или i = 16, N = 16256) так и для задач на передачу сообщений посредством любых других алфавитов (здесь и далее используются разные названия, встречающиеся в задачах):
- i – количество бит, используемое для кодирования одного текстового знака, равнозначно: количество информации (в битах), в нем содержащееся, информационный «вес», информационный «объем» одного знака;
- N – полное количество знаков в алфавите, используемом для передачи сообщения, мощность алфавита;
- k – количество знаков в сообщении;
- Q – количество информации в сообщении (информационный «вес», «объем» сообщения), количество памяти, отведенное для хранения закодированной информации;
Задача 4: Объем сообщения – 7,5 кбайт. Известно, что данное сообщение содержит 7680 символов. Какова мощность алфавита?
Дано:
Q = 7,5 Кбайт = 7680 байт ( в данном случае нет необходимости перевода в биты);
k = 7680
Найти: N
Решение: i = Q / k = 1 байт = 8 бит; N = 28 = 256
Ответ: 256 знаков
Задача 5: Дан текст из 600 символов. Известно, что символы берутся из таблицы размером 16 на 32. Определите информационный объем текста в битах.
Дано:
k = 600; N = 16 * 32
Найти: Q
Решение:
N = 24 * 25 = 29; i = 9; Q = 600 * 9 = 5400 бит;
Ответ: 5400 бит
Задача 6: Мощность алфавита равна 64. Сколько кбайт памяти потребуется, чтобы сохранить 128 страниц текста, содержащего в среднем 256 символов на каждой странице?
Дано:
N = 64; k = 128 * 256
Найти: Q
Решение:
64 = 2i; i = 6; Q = 128 * 256 * 6 = 196608 бит = 24576 байт = 24 Кбайт;
Ответ: 24 Кбайт
Задача 7: Для кодирования нотной записи используется 7 значков-нот. Каждая нота кодируется одним и тем же минимально возможным количеством бит. Чему равен информационный объем сообщения, состоящего из 180 нот?
Дано:
N = 7; k = 180
Найти: Q
Решение:
7 = 2i; i = 3 (с запасом); Q = 180 * 3 = 540 бит;
Ответ: 540 бит
Рассматривая задачи групп D и E, вспоминаем, что при кодировании графики и звука производится дискретизация, то есть разбиение изображения на конечное множество элементов (пикселей) и звуковой волны на конечное множество отрезков, количество которых зависит от количества измерений в секунду уровня звука (частоты дискретизации) и времени звучания звукового файла.
То есть –
- общее количество элементов в графическом файле (k) равно разрешению изображения или разрешению экрана монитора, если изображение формируется на весь экран,
- общее количество элементов в звуковом файле (k) равно произведению частоты дискретизации на время звучания (важно при этом использовать в качестве единиц измерения минимальные единицы – герцы и секунды).
Рассмотрим всю систему обозначений для данного типа задач:
- i – количество бит, используемое для кодирования одного элемента изображения или звукового фрагмента, равнозначно: глубина цвета, звука;
- N – насыщенность цвета, равнозначно: количество цветов в палитре изображения, цветовое разрешение изображения; насыщенность звука (в задачах обычно не используется);
- k – количество точек в изображении, равнозначно: разрешение изображения (или экрана) или количество фрагментов дискретной звуковой волны (равно произведению частоты дискретизации на время звучания);
- Q – количество информации, содержащееся в графическом (звуковом) файле, равнозначно: информационный «объем», «вес» графического (звукового) файла, объем памяти (видеопамяти), необходимый для хранения заданного файла.
Задача 8: Для хранения растрового изображения размером 64 на 64 пикселя отвели 512 байтов памяти. Каково максимально возможное число цветов в палитре изображения?
Дано:
k = 64 * 64 = 212; Q = 512 байтов = 29 * 23 = 212 бит;
Найти: N
Решение:
i = Q / k = 212 / 212 = 1; N = 21 = 2
Ответ: 2 цвета
Задача 9: Сколько памяти нужно для хранения 64-цветного растрового графического изображения размером 32 на 128 точек?
Дано:
N = 64; k = 32 * 128;
Найти: Q
Решение:
i = 6 (по формуле Хартли); Q = 32 * 128 * 6 = 24576 бит = 3072 байт = 3 Кбайт
Ответ: 3 Кбайт
Задача 10: Оцените информационный объем моноаудиофайла длительностью звучания 1 минута, если глубина кодирования равна 16 бит при частоте дискретизации 8 кГц
Дано:
k = 60 * 8000; i = 16;
Найти: Q
Решение:
Q = 60 * 8000 * 16 = 7680000 бит = 960000 байт = 937,5 Кбайт
Ответ: 937,5 Кбайт
(Если файл стерео, Q будет больше в 2 раза).
Задача 11: Рассчитайте время звучания моноаудиофайла, если при 16-битном кодировании и частоте дискретизации 32 кГц его объем равен 625 Кбайт
Дано:
i = 16; k = 32000 * t; Q = 625 кбайт = 640000 байт = 5120000 бит;
Найти: t
Решение:
k = Q / i; k = 5120000 / 16 = 320000; t = 320000 / 32000 = 10 сек
Ответ: 10 секунд
В эту же схему укладывается решение задач на скорость передачи информации любого типа, если в хорошо известной учащимся формуле:
S = V * t принять S = Q (количество переданной информации вместо расстояния).
Задача 12: Сколько секунд потребуется обычному модему, передающему сообщения со скоростью 28800 бит/сек, чтобы передать цветное растровое изображение размером 640 на 480 пикселей, при условии, что цвет каждого пикселя кодируется тремя байтами?
Дано:
V = 28800 бит/сек; k = 640 * 480; i = 3 байт = 24 бит;
Найти: t
Решение:
t = S (Q) / V; Q = k * i = 640 * 480 * 24 = 7372800 бит; t = 7372800 / 28800 = 256 сек.
Ответ: 256 сек
В заключение отметим, что после определенной тренировки решения задач по формулам, многие учащиеся перестают нуждаться в их прописывании в задаче, сразу определяя порядок необходимых арифметических действий для ее решения.
Определение информационного объема сообщения. Информатика в 7 классе.
Тема: «Измерение информации»
Формулы
Для определения информационного объема сообщения потребуются две формулы:
1. ( N= 2^i )
N — мощность алфавита
i — информационный объём одного символа в алфавите
2. ( I = k * i )
I — информационный объём сообщения
k — количество символов в сообщении
i — информационный объём одного символа в алфавите
Формула нахождения k:
( k = frac{mathrm I}{mathrm i} )
Формула нахождения i:
( i = frac{mathrm I}{mathrm k} )
Задачи
Задача №1. Сообщение, записанное буквами из 128-символьного алфавита, содержит 30 символов. Найти информационный объем всего сообщения?
Решение. Запишем, что дано по условию задачи и что необходимо найти:
N = 128
k = 30
( I = ? )
( i = ? )
Сначала найдем вес одного символа по формуле:
( N= 2^i ) = ( 128= 2^7 )
( i = 7 ) бит. Какая степень двойки, такой вес одного символа в алфавите. Далее определяем информационный объем сообщения по формуле:
( I = k * i ) = 30 * 7 = 210 бит
Ответ: 210 бит
Задача №2. Информационное сообщение объемом 4 Кбайта содержит 4096 символов. Сколько символов содержит алфавит, при помощи которого было записано это сообщение?
Решение. Запишем, что дано по условию задачи и что необходимо найти:
( I = 4 ) Кб
k = 4096
( N = ? )
( i = ? )
Очень важно перевести все числа в степени двойки:
1 Кб = ( 2^{13} ) бит
( I = 4 ) Кб = ( 2^2 ) * ( 2^{13} ) = ( 2^{15} ) бит
k = 4096 = ( 2^{12} )
Сначала найдем вес одного символа по формуле:
( i = frac{mathrm I}{mathrm k} ) = ( 2^{15} ) : ( 2^{12} ) = ( 2^3 ) = 8 бит
Далее находим мощность алфавита по формуле:
( N= 2^i ) ( 2^8 =256)
Ответ: 256 символов в алфавите.
Задача №3. Сколько символов содержит сообщение, записанное с помощью 16-символьного алфавита, если его объем составляет 1/16 Мб?
Решение. Запишем, что дано по условию задачи и что необходимо найти:
N = 16
( I = frac{mathrm 1}{mathrm 16} ) Мб
( k = ? )
( i = ? )
Представим ( I = frac{mathrm 1}{mathrm 16} ) Мб в степень двойки:
1 Мб = ( 2^{23} ) бит
( I = frac{mathrm 1}{mathrm 16} ) Мб = ( 2^{23} ) : ( 2^4 ) = ( 2^{19} ) бит.
Сначала найдем вес одного символа по формуле:
( N= 2^i ) = ( 2^4 = 16 )
( i = 4 ) бит = ( 2^2 )
Теперь найдём количество символов в сообщении k:
( k = frac{mathrm I}{mathrm i} ) = ( 2^{19} ) : ( 2^2 ) = ( 2^{17} ) = 131072
Ответ: 131072 символов в сообщении.