Формула как найти площадь шестиугольника правильного формула

На этой странице вы найдете калькуляторы и формулы, которые помогут найти и рассчитать площадь правильного шестиугольника по стороне или радиусам вписанной и описанной окружностей.

Шестиугольник представляет собой многоугольник, к которого все внутренние углы равны 120 градусов, а все стороны равны между собой.

Содержание:
  1. калькулятор площади правильного шестиугольника
  2. формула площади правильного шестиугольника через длину стороны
  3. формула площади правильного шестиугольника через радиус вписанной окружности
  4. формула площади правильного шестиугольника через радиус описанной окружности
  5. формула площади правильного шестиугольника через периметр
  6. примеры задач

Формула площади правильного шестиугольника через длину стороны

Площадь правильного шестиугольника через длину стороны

S = dfrac{3 sqrt{3} a^2}{2}

a – длина стороны шестиугольника

Формула площади правильного шестиугольника через радиус вписанной окружности

Площадь правильного шестиугольника через радиус вписанной окружности

S = 2 sqrt{3}r^2

r – радиус вписанной окружности

Формула площади правильного шестиугольника через радиус описанной окружности

Площадь правильного шестиугольника через радиус описанной окружности

S = dfrac{3 sqrt{3} R^2}{2}

R – радиус описанной окружности

Формула площади правильного шестиугольника через периметр

Площадь правильного шестиугольника через периметр

S = dfrac{P^2 sqrt{3}}{24}

P – периметр шестиугольника

Примеры задач на нахождение площади правильного шестиугольника

Задача 1

Найдите площадь правильного шестиугольника, радиус вписанной окружности которого равен 9 см.

Решение

Исходя из того, что из условия задачи нам известен радиус вписанной окружности, мы воспользуемся формулой.

S = 2 sqrt{3}r^2 = 2 sqrt{3} cdot 9^2 = 2 sqrt{3} cdot 81 = 162 sqrt{3} : см^2 approx 280.59223 : см^2

Ответ: 162 sqrt{3} : см^2 approx 280.59223 : см^2

Проверить правильность решения нам поможет калькулятор .

Задача 2

Найдите площадь правильного шестиугольника со стороной равной 1 см.

Решение

Для этой задачи нам подойдет формула.

S = dfrac{3 sqrt{3} a^2}{2} = dfrac{3 sqrt{3} cdot 1^2}{2} = dfrac{3 sqrt{3} cdot 1}{2} = dfrac{3 sqrt{3}}{2} : см^2 approx 2.59808 : см^2

Ответ: dfrac{3 sqrt{3}}{2} : см^2 approx 2.59808 : см^2

Проверим ответ .

Как рассчитать площадь правильного шестиугольника

На данной странице калькулятор поможет рассчитать площадь правильного шестиугольника онлайн. Для расчета задайте длину стороны или радиус окружности.

Шестиугольник – многоугольник у которого все стороны равны, а все внутренние углы равны 120°.

Через сторону


Площадь правильного шестиугольника

a:

Результат


Ответы:

Формула для нахождения площади правильного шестиугольника через сторону:

a – сторона шестиугольника.


Через радиус описанной окружности


Площадь правильного шестиугольника

r:

Результат


Ответы:

Формула для нахождения площади правильного шестиугольника через радиус описанной окружности:

r – радиус описанной окружности.


Через радиус вписанной окружности


Площадь правильного шестиугольника

r:

Результат


Ответы:

Формула для нахождения площади правильного шестиугольника через радиус вписанной окружности:

r – радиус вписанной окружности.

Калькулятор

Правильный шестиугольник: свойства, формулы, площадь

Знаете ли вы, как выглядит правильный шестиугольник?
Этот вопрос задан не случайно. Большинство учащихся 11 класса не знают на него ответа.

Правильный шестиугольник — такой, у которого все стороны равны и все углы тоже равны.

Железная гайка. Снежинка. Ячейка сот, в которых живут пчелы. Молекула бензола. Что общего у этих объектов? — То, что все они имеют правильную шестиугольную форму.

Правильный шестиугольник

Многие школьники теряются, видя задачи на правильный шестиугольник, и считают, что для их решения нужны какие-то особые формулы. Так ли это?

Проведем диагонали правильного шестиугольника. Мы получили шесть равносторонних треугольников.
Правильный шестиугольник

Мы знаем, что площадь правильного треугольника: S_1 = genfrac{}{}{}{0}{displaystyle sqrt{3}}{displaystyle 4}a^2.

Тогда площадь правильного шестиугольника — в шесть раз больше.

S = genfrac{}{}{}{0}{displaystyle 3sqrt{3}}{displaystyle 2}a^2, где a — сторона правильного шестиугольника.

Обратите внимание, что в правильном шестиугольнике расстояние от его центра до любой из вершин одинаково и равно стороне правильного шестиугольника.

Значит, радиус окружности, описанной вокруг правильного шестиугольника, равен его стороне.
Радиус окружности, вписанной в правильный шестиугольник, нетрудно найти.
Он равен genfrac{}{}{}{0}{displaystyle sqrt{3}}{displaystyle 2}a.
Теперь вы легко решите любые задачи ЕГЭ, в которых фигурирует правильный шестиугольник.

1. Найдите радиус окружности, вписанной в правильный шестиугольник со стороной sqrt{3}.

Рисунок к задаче 1

Радиус такой окружности равен genfrac{}{}{}{0}{displaystyle sqrt{3}}{displaystyle 2}a.

Ответ: 1,5.

2. Чему равна сторона правильного шестиугольника, вписанного в окружность, радиус которой равен 6?

Рисунок к задаче 2

Мы знаем, что сторона правильного шестиугольника равна радиусу описанной вокруг него окружности.

Ответ: 6.

Благодарим за то, что пользуйтесь нашими публикациями.
Информация на странице «Правильный шестиугольник: свойства, формулы, площадь» подготовлена нашими авторами специально, чтобы помочь вам в освоении предмета и подготовке к ЕГЭ и ОГЭ.
Чтобы успешно сдать необходимые и поступить в ВУЗ или техникум нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими статьями из разделов нашего сайта.

Публикация обновлена:
08.05.2023

Правильный шестиугольник – это геометрическая фигура; правильный многоугольник с 6 равными углами и сторонами.

  • Общая формула вычисления площади

  • Площадь правильного шестиугольника, вписанного в окружность

  • Примеры задач

Общая формула вычисления площади

Площадь (S) правильного шестиугольника вычисляется по формуле ниже, где a – длина его стороны:

Формула площади правильного шестиугольника

Площадь правильного шестиугольника

Формула получена следующим образом:

Правильный шестиугольник состоит из шести равных равносторонних треугольников. Площадь каждого рассчитывается так:

Формула площади равностороннего треугольника

Площадь правильного шестиугольника

Следовательно, площадь правильного шестиугольника равна:

Формула площади правильного шестиугольника

Площадь правильного шестиугольника, вписанного в окружность

Сторона правильного шестиугольника равняется радиусу окружности, описанной вокруг него (a=r).

Описанная вокруг правильного шестиугольника окружность

Это значит, что формула площади может быть представлена в таком виде (а заменяем на r):

Формула площади правильного шестиугольника

Примеры задач

Задание 1
Сторона правильного шестиугольника равна 8 см. Найдите его площадь.

Решение:
Используем первую формулу, в которой задействована длина стороны:
Вычисление площади правильного шестиугольника

Задание 2
Вычислите площадь правильного шестиугольника, ели радиус описанной вокруг нее окружности равен 15 см.

Решение:
Воспользуемся второй формулой (через радиус окружности):
Вычисление площади правильного шестиугольника

Шестиугольник — многоугольник, у которого есть шесть сторон и шесть углов. В правильном заданном
многоугольном геометрическом объекте все стороны равняются друг другу, а углы формируют шесть
равносторонних треугольников.

Площадь правильной фигуры с шестью углами — положительная величина некоторой области плоскости,
занимаемой данным многоугольным геометрическим объектом.

Выделяют ряд методов нахождения площади этого многоугольника, зависимо от его типа.

  • Площадь правильного шестиугольника через длину стороны
  • Площадь правильного шестиугольника через радиус описаной окружности
  • Площадь правильного шестиугольника через радиус вписаной окружности
  • Площадь правильного шестиугольника через длинную диагональ
  • Площадь правильного шестиугольника через короткую диагональ
  • Площадь правильного шестиугольника через периметр

Через длину стороны

Рис 1

По той причине, что выпуклый шестиугольник включает в себя шесть равносторонних треугольников, тогда
формула нахождения требуемой величины через длину стороны выглядит следующим образом:

S = (3√3*)/2

где a — это продолжительность стороны.

Цифр после запятой:

Результат в:

Рассмотрим пример. Пусть длина стороны эквивалентна 8. Тогда, согласно этой формуле, заданную
характеристику замкнутого выпуклого шестиугольника будет примерно равна 166.

Всё достаточно
просто, если сторона заранее известна. Если же эта величина нам не дана, но известен периметр или
апофема — высота одного из шести равносторонних треугольников — тогда длину стороны можно
высчитать.

В случае, если известен периметр, его необходимо поделить на шесть, таким образом получается длина
стороны. К примеру, если периметр равен 36, то, поделив 36 на 6, получается 6 — это и есть
протяжённость стороны.

Если известна лишь апофема, тогда можно посчитать длину стороны, подставив апофему в формулу b = x√3 и умножив ответ на 2. Всё это потому, что апофема — это сторона
x√3 составляемого ей треугольника с углами 30, 60 и 90 градусов. К примеру, если апофема 11√3, то
x = 11, а протяжённость стороны будет эквивалентна 22.

Через периметр

Рис 6

Если при изучении правильной фигуры с шестью углами нам известен только его периметр, несложно
рассчитать площадь этой фигуры по такой формуле:

Цифр после запятой:

Результат в:

S = (3√3*(p/6)²)/2

где p — это периметр фигуры.

Допустим, если периметр будет равняться 24, тогда площадь будет примерно эквивалентна 42. Если в
качестве периметра возьмём число 50, тогда площадь фигуры окажется 180.

Через длинную диагональ

Рис 4

Длинная или большая диагональ шестиугольника — это диаметр описанной вокруг него плоской кривой, как
правило, она равняется двум его сторонам.

Цифр после запятой:

Результат в:

Используем такое выражение для подсчёта площади подобного правильного многоугольного геометрического
объекта через длинную диагональ этого множества точек:

S = (3√3*)/8

где D — это длинный отрезок, соединяющий несмежные вершины.

К примеру, если D = 6, тогда заданная характеристика замкнутого выпуклого
многоугольника будет приблизительно равна 23. Если в качестве длинной диагонали возьмём 8, тогда
величина будет примерно эквивалентна 42.

Через короткую диагональ

Рис 5

Меньшая или короткая диагональ правильного шестиугольника в √3 раз длиннее его стороны, также она
образует с ней прямой угол.

Цифр после запятой:

Результат в:

Если известна короткая диагональ такого выпуклого многоугольника, то с её помощью можно найти площадь
этой фигуры следующим образом:

S = (√3*)/2

где D — это протяжённость короткого отрезка, соединяющего несмежные
вершины.

К примеру, если длина такой диагонали будет равна 14, тогда необходимая характеристика фигуры будет
примерно равняться 170. Если же в качестве D мы возьмём 2, тогда величина
окажется всего лишь 3.

Через радиус описанной окружности

Рис 2

Шестиугольник считается правильным многоугольником, ведь все его стороны и углы эквивалентны друг
другу. Соответственно, около такого многоугольника можно описать окружность.

Чтобы найти площадь выпуклого многоугольника через радиус описанной окружности, необходимо
воспользоваться такой формулой:

S = (3√3*)/2

где R — это отрезок, соединяющий центр и любую точку описанной замкнутой
плоской кривой.

Цифр после запятой:

Результат в:

К примеру, если отрезок, соединяющий центр и любую точку, равняется 5, тогда заданная характеристика
замкнутой фигуры будет примерно равна 65. Если же в качестве радиуса возьмём число 12,
соответственно, заданная характеристика замкнутой фигуры получится примерно 374.

Через радиус вписанной окружности

Рис 3

Шестиугольник считается правильным многоугольником, ведь все его стороны и углы равны друг другу.
Соответственно, во всякий шестиугольник можно вписать окружность.

Формула для расчёта площади следующего выпуклой фигуры с шестью углами через радиус вписанной
окружности будет выглядеть следующим образом:

S = √3*

где r — это отрезок, соединяющий центр и любую точку вписанной замкнутой
плоской кривой.

Цифр после запятой:

Результат в:

К примеру, если этот отрезок, соединяющий центр и любую точку, равен 14, тогда необходимая величина
этого множества точек будет примерно равна 679. Если в качестве отрезка, соединяющего центр и любую
точку, возьмем 4, тогда площадь будет приблизительно равна 55.

Что такое правильный шестиугольник

Этот многоугольный геометрический объект имеет определённые свойства:

  • Каждый угол этой фигуры равняется 120 градусам;
  • Вокруг правильного шестиугольника можно описать окружность, причем единственную, а её радиус
    равняется его стороне;
  • Большие диагонали такого выпуклого многоугольника разделяют его на шесть равносторонних
    треугольников, высота каждого равняется радиусу вписанной в выпуклый многоугольник окружности;
  • Центры вписанной и описанной окружностей около подобного выпуклого многоугольника — это точка
    пересечения больших диагоналей этого множества точек.

Эта фигура очень часто встречается в природе, технике и культуре. К примеру:

  • Пчелиные соты изображают разделение плоскости на выпуклые шестиугольники;
  • Некоторые сложные молекулы углерода имеют гексагональную кристаллическую решётку;
  • Сечение гайки и большинства карандашей описывается таким выпуклым многоугольником;
  • Гексаграмма — это шестиконечная звезда, сформированная двумя правильными треугольниками. Также
    её называют звездой Давида, она считается символом иудаизма.

Добавить комментарий