Формула как найти радиус вектора

Что такое радиус-вектор

Радиус-вектор – это вектор, начало которого совпадает с точкой (0 ; 0) — началом координат.

Почему радиус-вектор так называют

Если начертить окружность с центром в точке (0 ; 0), этот вектор станет её радиусом.

Любой вектор можно превратить в радиус-вектор. Для этого сдвигаем его так, чтобы начало этого вектора совместить с точкой (0 ; 0).

При этом, помним: перемещать вектор можно, а поворачивать его нельзя!

Чем радиус-вектор удобен для использования

Чтобы найти координаты вектора, нужно найти разности соответственных координат точек, расположенных в конце и начале вектора.

Для радиус-вектора вычислять координаты не нужно. Можно воспользоваться правилом:

Координаты радиус-вектора — это координаты его конечной точки.

Сравните координаты конечной точки и координаты вектора на рисунке 2.

Как найти радиус вектора

Получите бесплатный курс по основам математики. Эти знания необходимы для решения задач по физике.

Векторная алгебра с нуля!

Получите бесплатный курс по Векторной алгебре. Он необходим для решения задач по физике.

Книги по изучению физики и для подготовки к ЕГЭ

Радиус-вектор

Радиус-вектор точки – это вектор, начало которого совпадает с началом системы координат, а конец – с данной точкой.

Таким образом, особенностью радиус-вектора, отличающего его от всех других векторов, является то, что его начало всегда находится в точке начала координат (рис. 17).

Введение понятия радиус-вектора оказалось чрезвычайно плодотворным при изучении различных физических явлений. В частности, это понятие широко используется в механике.

Как известно, положение точки можно задать с помощью ее координат. Так, если известны координаты x1 и y1 точки В или координаты x2 и y2 точки С, то мы легко находим положения этих точек на плоскости. Этот способ определения положения точки с помощью ее координат называется координатным способом.

Но можно определить положение точки и по-другому, а именно с помощью радиус-вектора. Если известен радиус-вектор данной точки, то и ее положение оказывается известным, поскольку точка конца радиус-вектора совпадает с данной точкой. Так, положение точки В – это конец ее радиус-вектора r1, а положение точки С – это конец ее радиус-вектора r2. Этот способ определения положения точки с помощью ее радиус-вектора называется векторным способом.

Эти способы эквивалентны друг другу. Покажем это. Найдем проекции радиус-вектора r1 точки В на координатные оси. Напомню, чтобы найти проекцию вектора на ось нужно из координаты конца вектора вычесть координату его начала. Тогда

Аналогично для проекций радиус-вектора r2 точки С:

r2y = y2 − 0 = y2. Таким образом, проекции радиус-векторов точек являются координатами этих точек (рис. 18).

На практике применяются как координатный, так и векторный способы. Более того, при решении многих задач их применяют совместно, что является мощным методом решения, поскольку он позволяет использовать единый подход для решения совершенно разных задач.

Книги по изучению физики и для подготовки к ЕГЭ
Эти книги должен иметь каждый старшеклассник, абитуриент и студент!

Пожалуйста, не забудьте поделиться о прочитанном со своими друзьями в соц. сетях (см. кнопки ниже).

© Коллекция подготовительных материалов для успешной сдачи ЕГЭ по физике от Н. Чернова 2012 – 2015 | Контакты: , +79212839427, (81554) 65780

Физика

А Вы уже инвестируете?
Слышали про акцию в подарок?

Зарегистрируйся по этой ссылке
и получи акцию до 100.000 руб

План урока:

Механическое движение. Система отсчёта. Закон относительности движения

Механическим движением в физике называется изменение с течением времени положения тела (или его частей) в пространстве относительно других тел.

То есть, чтобы сказать, что тело или система совершает механическое движение, нам необходимо: 1) наблюдать его во времени; 2) сравнивать его положение с положением какого-то другого тела (относительно этого тела).

Например, пассажир в едущем автомобиле неподвижен относительно кресла, на котором он сидит, но он движется относительно людей, стоящих на автобусной остановке и самой остановки. А сама автобусная остановка неподвижна относительно стоящих людей, ждущих автобус (см. рисунок 1). Однако она движется относительно проезжающих мимо машин. В первом случае наблюдаемым объектом был человек в машине, а точкой отсчета кресло и люди на остановке. Во втором случае наблюдаемой была автобусная остановка, а точками отсчета – люди на остановке и проезжающие мимо машины.

Рисунок 1 – Иллюстрация к примеру

Из примеров можно сделать вывод, что важно, какой именно объект находится под наблюдением и относительно какого объекта – тела отсчета – рассматривается его движение. Отсюда можно сформулировать закон относительности движения: характер движения тела зависит от того, относительно какого объекта мы рассматриваем данное движение.

Тело (или точка) отсчета, связанная с ним система координат и часы, вместе образуют систему отсчета. То есть все сказанное выше можно переформулировать в одно предложение: для наблюдения механического движения важно в какой системе отсчета будет происходить наблюдение.

Рисунок 2 – Пример системы отсчета (наблюдаемы объект – летящий мяч, тело отсчета – камень, лежащий в начале координат, система координат и секундомер для отсчета времени)

Однако объекты могут быть очень сложными для наблюдения. Например, автомобиль едет по прямой несколько километров и необходимо описать его движение относительно камня на обочине. Казалось бы, все просто. Но как именно описать движение автомобиля, если корпус его движется по прямой, а колеса совершают вращательные движения.

Для удобства решения подобных задач принято упрощение: если размер и форма тела в данной задаче не играют важной роли для наблюдателя, можно считать это тело за материальную точку.

Материальная точка – это такое тело, размером и формой которого в условиях данной задачи можно пренебречь.

Приведем пример: когда автобус едет из города А в город Б, его можно рассматривать как материальную точку. Когда пассажир идет из одного конца этого автобуса в другой, считать автобус материальной точкой нельзя. В общем случае можно сказать, что тело можно считать материальной точкой, если его размеры значительно меньше расстояния, на которое оно перемещается.

Уравнения движения. Радиус-вектор. Проекция вектора

Для описания движения тела необходимо уметь рассчитывать его положение в каждый момент времени. Как это сделать?

Самый очевидный способ – координатный. Если вернуться к примеру на рисунке 2, можно увидеть, что летящий мяч в каждый момент времени имеет три координаты по осям OX, OY и OZ. Эти координаты являются функциями времени (т.е. они зависят от времени), а значит, их можно записать в виде системы:

Вид этих уравнений будет зависеть от многих вещей: от того, с какой силой бросили мяч в начале, от массы мяча, под каким углом его бросили и так далее. В любом случае, если эти уравнения заданы, можно найти координаты (то есть положение) тела в любой момент времени. Поиск этих уравнений – основная задача кинематики.

Эта система является кинематическими уравнениями движения тела или материальной точки, записанными в координатной форме. Повторим: если вид уравнений движения задан, можно узнать координату движущейся точки в любой момент времени.

В общем случае, координат три, но иногда можно обойтись двумя или даже одной координатой. Например, для описания движения бильярдного шара достаточно двух координат (так как шар не может двигаться вверх и вниз), а для описания движения шарика, катящегося по прямому горизонтальному желобку достаточно одной координаты (шарик не может двигаться вверх-вниз и вправо-влево).

Еще один способ описания движения – векторный.

*Перед дальнейшим прочтением данной статьи желательно вспомнить основную теорию по теме «Векторы» и «Метод координат»

Вектор, проведенный из начала координат к материальной точке, называется радиус-вектором (см. рисунок 3).

Рисунок 3 – Радиус-вектор (серой линией изображены траектория движения материальной точки, r1 и r2* радиус-векторы, проведенные к этой материальной точке в разные моменты времени)

Радиус-вектор проведенный к материальной точке в разные моменты времени будет разным. Значит, его тоже можно представить, как функцию времени:

r = r(t)

Такая функция и будет уравнением движения в векторной форме. Если ее вид задан, можно описать движение тела с той же полнотой, как и при координатной записи.

Еще раз обозначим отличия: при записи уравнения движения в координатной форме в каждый момент времени наблюдающий будет знать три координаты тела; при записи в векторной форме в каждый момент времени известен радиус-вектор (его модуль и направление). Обе записи равносильны.

*На письме векторы обычно обозначаются стрелкой сверху, над величиной. Однако в печатном тексте не всегда удобно нагромождать формулы дополнительными знаками, поэтому в печати векторные величины пишут просто жирным шрифтом. В данной статье далее жирным шрифтом будут написаны только векторные величины.

Покажем, что векторная и координатная записи равносильны. Для этого необходимо вспомнить, как построить проекцию вектора на ось (см. рисунок 4).

Рисунок 4 – Построение проекции вектора на ось

Чтобы построить проекцию вектора на ось, необходимо опустить перпендикуляра из начала и конца вектора на эту ось. Длина получившегося отрезка между проекциями начала и конца вектора, взятая со знаком «+», если вектор а сонаправлен с осью Х, или со знаком «-», если вектор а противонаправлен оси Х, – это и есть искомая проекция.

Если вектор выходит из начала координат, задача облегчается – необходимо опустить перпендикуляр только из конца вектора.

Напоминания из геометрии:

два вектора равны, если они параллельны или лежат на одной прямой, сонаправлены, а их модули равны;

проекции равных векторов равны.

Рассмотрим пример (см. рисунок 5)

Рисунок 5 – Задача на нахождение проекции векторов

Предлагаем читателю самому подумать, а затем сравнить свои рассуждения с приведенными ниже.

Итак, вектор а: его начала соответствует координате хн=1, а конец хк = 4. Значит ax = хк – хн = 4-1 = 3. Вектор b: его начало лежит в точке хн=2, а конец хк =0. Значит bx = хк – хн = 0-2 = -2.

В двумерном случае, проецировать нужно на две оси, но принцип остается тем же.

Иногда еще нужно находить составляющие компоненты вектора ах и ау. Рассмотрим пример, для простоты возьмем вектор, выходящий из начал координат (см. рисунок 6).

Сумма векторов ах и ау равна а. Модули векторов ах и ау численно равны координатам точек, куда попали перпендикуляры, опущенные из конца вектора а на оси ОХ и ОУ.

Еще следует отметить, что, если известен угол β между вектором а и осью ОХ, воспользовавшись основами тригонометрии, можно найти величины проекций:

Если бы вектор а совпадал с радиус-вектором какой-нибудь точки, то величины ах и ау совпадали бы с координатами тела по осям ОХ и ОY.

Способ с использованием тригонометрических функций удобен, когда координата конца вектора попадает в нецелое число и опустив перпендикуляр на ось его трудно найти точно. В физических задачах такое часто случается.

Рисунок 6 – Нахождение компонент вектора а

Рассмотрим пример (см. рисунок 7). Модуль вектора r равен 2. Сам вектор направлен под углом в 45 градусов к оси ОХ. Необходимо найти величины проекций (они же координаты) этого вектора на оси ОХ и ОУ.

Рисунок 7 – Задача на нахождение проекций вектора в двумерном пространстве

В общем случае радиус-вектор находится в трехмерном пространстве (см. рисунок 8). Построение проекции осуществляется по тому же принципу, что и в рассмотренных выше примерах. Когда строятся проекции на оси ОХ и ОУ, перпендикуляр сначала опускается на плоскость, в которой лежат оси ОХ и ОУ, а затем точка, в которую упал перпендикуляр к плоскости, проецируется на оси ОХ и ОУ.

Точки, в которые попал перпендикуляры к осям – rx, ry, rz – это и есть координаты x, y, z тела в текущий момент времени.

Следует оговориться, что большинство задач 10-го класса будут ограничиваться двумерным пространством.

Рисунок 8 – Построение проекций радиус-вектора

Траектория. Путь. Перемещение

Траектория – это линия, вдоль которой движется тело.

Траектория движения может быть прямолинейной, если тело движется по прямой линии, и криволинейной, если тело движется по кривой.

Путь (S), пройденный телом, равен длине траектории.

Перемещение (r)* – это вектор, проведенный из начала пути в конец.

В случае прямолинейного движения путь и модуль перемещения тела совпадают (см. рисунок 9а). В случае криволинейного – путь и перемещение различаются (см. рисунок 9б), так как длина линии движения тела больше длины вектора, соединяющего начало и конец траектории.

Рисунок 9 – Путь (S) и перемещение (r) при прямолинейном (а) и криволинейном (б) движении

*Иногда перемещение так же, как и путь, называют буквой S – (на письме с вектором над ней, при печати – жирным шрифтом, так как это векторная величина). В данной статье, чтобы не путаться, перемещение называется только буквой r. В целом, обозначения равноправны, поэтому при решении задач можно использовать то, которое удобнее. Однако не стоит забывать отмечать, что именно обозначено под той или иной буквой.

Равномерное прямолинейное движение: скорость и уравнение движения

Путь и перемещение при равномерном прямолинейном движении

Прямолинейное равномерное движение уже рассматривалось в курсе физики ранее, однако приведем основные определения.

Прямолинейное движение – это движение по прямой линии. Равномерное движение – такое, в процессе которого тело за равные временные промежутки проходит один и тот же путь. Если объединить эти два определения получится третье:

  • равномерное прямолинейное движение – это такое движение, в ходе которого 1) тело совершает движение по прямой линии; 2) за одинаковые временные промежутки проходит одинаковый путь.

Зная определения пути и перемещения, это определение можно упростить: прямолинейное равномерное движение тела – это такое движение, в процессе которого тело за одинаковые временные промежутки совершает равные перемещения.

Важной характеристикой является скорость механического движения. Предположим, что при равномерном прямолинейном движении тело за промежуток времени △t перемещается из точки А в точку Б (см. рисунок 8). Радиус-вектор, проведенный в точку A обозначим r0, а радиус-вектор в точку Б обозначим r1. Изменение радиус-вектора назовем r – нетрудно заметить, что это есть перемещение тела за время △t.

Рисунок 8 – Поиск перемещения тела через радиус-векторы при равномерном прямолинейном движении

Тогда скорость движения (v) будет вычисляться по формуле:

Так как △r – вектор, △t – скаляр, скорость v тоже будет вектором, сонаправленным перемещению.

Если тело начинает двигаться в момент начала отсчета, то △t = t*. Из правила сложения векторов следует, что △r = r1 – r0. Тогда выражение для скорости можно переписать в виде:

Из этого выражения следует:

Это выражение можно применить к любому произвольно взятому моменту времени, поэтому можно опустить индекс в левой части и переписать:

Данное уравнение является уравнением движения при прямолинейном равномерном движении.

*Напоминание: символом (дельта) обозначают изменение какой-нибудь величины. Например t = t – t1, где t – конечный момент времени, t1 – начальный. Если же начальный момент времени совпадает с началом отсчета t1 = 0, то t = t – 0 = t.

Фактически уравнение равномерного прямолинейного движения означает, что радиус-вектор в произвольный момент времени t можно посчитать, сложив начальный радиус-вектор и приращение v*t.

Найдя проекции радиус-вектора и вектора скорости, можно разложить уравнение движения тела на три составляющие вдоль осей ОX, ОY и ОZ.

В этих выражениях r0x, r0y, r0z и vx, vy, vz – это компоненты изначальных векторов r0 и v вдоль осей ОХ, ОY и ОZ соответственно. И теперь можно перейти к скалярному виду:

Стоит отметить, что при проецировании какие-то компоненты вектора могут стать отрицательными, тогда знаки в выражениях поменяются на противоположные.

В рассмотренном выше примере движение происходит только вдоль оси ОХ (остальные координаты не изменяются). На рисунке 9 приведены проекции начальной (х0) и конечной (х1) точки на ось ОХ.

Рисунок 9 – Перемещение тела в координатном представлении

Уравнение координаты (х) движения будет выглядеть:

А это уже похоже на знакомую из прошедшего курса физики формулу для нахождения пути:

Если точка начала двигаться из начала отсчета S0 = 0, можно переписать эту формулу в виде:

Отсюда следуют известные уже формулы для нахождения скорости и времени при равномерном прямолинейном движении:

Приведем последний в этой статье пример: известно, что тело движется вдоль оси ОХ, начиная из точки x0 = 3 см. Скорость тела равна v = 5 м/с и направлена вдоль оси ОХ. Необходимо записать уравнение движения по координате х для этого тела.

Итак, для начала приведем все единицы измерения к СИ:

Теперь можно записывать уравнение для координаты х:

Из этого уравнения можно найти координату тела в любой момент времени. Например, через 2 секунды после начала отсчета тело находилось в точке:

x(2) = 0,03 + 5*2 = 10, 03.

А какой путь прошло тело к этому моменту? В начале оно находилось в точке x(2) = 0,03 м, а через 2 секунды оно стало находиться в точке x(2) = 10, 03. Значит за 2 секунды тело прошло:

S = x(2) – x0 = 10, 03 – 0,03 = 10 м.

А если скорость тела была направлена противоположно оси ОХ, как тогда выглядело бы уравнение движения?

Тогда проекция вектора скорости на ось ОХ была бы отрицательной и в уравнении знак перед скоростью поменялся бы на противоположный:

[spoiler title=”источники:”]

http://cours.su/Vektory/radius_vektor.html

http://100urokov.ru/predmety/kinematika-tverdogo-tela-chast-1

[/spoiler]

В прошлой статье мы немножко разобрались с тем, что такое механика  и зачем она нужна. Мы уже знаем, что такое система отсчета,  относительность движения и материальная точка. Что ж, пора двигаться дальше!  Здесь мы рассмотрим основные понятия кинематики, соберем вместе самые полезные формулы по основам кинематики  и приведем практический пример решения задачи.

Присоединяйтесь к нам в телеграм и получайте ежедневную рассылку с полезной информацией по актуальным студенческим вопросам.

Траектория, радиус-вектор, закон движения тела

Кинематикой занимался еще Аристотель. Правда, тогда это не называлось кинематикой. Затем очень большой вклад  в развитие механики, и кинематики в частности, внес Галилео Галилей, изучавший свободное падение и инерцию тел.

Итак, кинематика решает вопрос: как тело движется. Причины, по которым оно пришло в движение, ее не интересуют. Кинематике не важно, сама поехала машина, или ее толкнул гигантский динозавр. Абсолютно все равно.

Сейчас мы будем рассматривать самую простую кинематику – кинематику точки. Представим, что тело (материальная точка) движется. Не важно, что это за тело, все равно мы рассматриваем его, как материальную точку. Может быть, это НЛО в небе, а может быть, бумажный самолетик, который мы запустили из окна. А еще лучше, пусть это будет новая машина, на которой мы едем в путешествие. Перемещаясь из точки А в точку Б, наша точка описывает воображаемую линию, которая называется траекторией движения. Другое определение траектории – годограф радиус вектора, то есть линия, которую описывает конец радиус-вектора материальной точки при движении.

Радиус-вектор – вектор, задающий положение точки в пространстве.

Для того, чтобы узнать положение тела в пространстве в любой момент времени, нужно знать закон движения тела – зависимость координат  (или радиус-вектора точки) от времени.

Перемещение и путь

Тело переместилось из точки А в точку Б. При этом перемещение тела – отрезок, соединяющий данные точки напрямую – векторная величина. Путь, пройденный телом – длина его траектории. Очевидно, перемещение и путь не стоит путать. Модуль вектора перемещения и длина пути совпадают лишь в случае прямолинейного движения.

Перемещение и путь

 

В системе СИ перемещение и длина пути измеряются в метрах.

Перемещение равно разнице радиус-векторов в начальный и конечный моменты времени. Другими словами, это приращение радиус вектора.

Скорость и ускорение

Средняя скорость – векторная физическая величина, равная отношению вектора перемещения к промежутку времени, за которое оно произошло

Скорость и ускорение

А теперь представим, что промежуток времени уменьшается, уменьшается, и становится совсем коротким, стремится к нулю. В таком случае о средней скорости говорить на приходится, скорость становится мгновенной. Те, кто помнит основы математического анализа, тут же поймут, что в дальнейшем нам не обойтись без производной.

Мгновенная скорость – векторная физическая величина, равная производной  от радиус вектора по времени. Мгновенная скорость всегда направлена по касательной к траектории.

Мгновенная скорость формула

В системе СИ скорость измеряется в метрах в секунду

Если тело движется не равномерно и прямолинейно, то у него есть не только скорость, но и ускорение.

Ускорение (или мгновенное ускорение) – векторная физическая величина, вторая производная от радиус-вектора по времени, и, соответственно, первая производная от мгновенной скорости

Мгновенное ускорение формула

Ускорение показывает, как быстро изменяется скорость тела. В случае прямолинейного движения, направления векторов скорости и ускорения совпадают. В случае же криволинейного движения, вектор ускорения можно разложить на две составляющие: ускорение тангенциальное, и ускорение нормальное.

Тангенциальное ускорение показывает, как быстро изменяется скорость тела по модулю и направлено по касательной к траектории

Тангенциальное ускорение формула

Нормальное же ускорение характеризует быстроту изменения скорости по направлению. Векторы нормального и тангенциального ускорения взаимно перпендикулярны, а вектор нормального ускорения направлен к центру окружности, по которой движется точка.

Нормальное ускорение как найти

Здесь R – радиус окружности, по которой движется тело.

Векторы нормального, тангенциального и полного ускорения

 

Закон равноускоренного движения

Рассмотрим далее закон равноускоренного движения, то есть движения с постоянным ускорением. Будем рассматривать простейший случай, когда тело движется вдоль оси x.

Закон равноускоренного движения

Здесь  – x нулевое- начальная координата. v нулевое – начальная скорость. Продифференцируем по времени, и получим скорость

Закон равноускоренного движения

Производная по скорости от времени даст значение ускорения a, которое является константой.

Пример решения задачи

Теперь, когда мы рассмотрели физические основы кинематики, пора закрепить знания на практике и решить какую-нибудь задачу. Причем, чем быстрее, тем лучше.

Кстати! Для всех наших читателей сейчас действует скидка 10% на любой вид работы

Решим такую задачу: точка движется по окружности радиусом 4 метра. Закон ее движения выражается уравнением S=A+Bt^2. А=8м, В=-2м/с^2. В какой момент времени нормальное ускорение точки равно 9 м/с^2? Найти скорость, тангенциальное и полное ускорение точки для этого момента времени.

Решение: мы знаем, что для того, чтобы найти скорость нужно взять первую производную по времени от закона движения, а нормальное ускорение равняется частному квадрата скорости и радиуса окружности, по которой точка движется. Вооружившись этими знаниями, найдем искомые величины.

Кинематика пример решения задачи

Нужна помощь в решении задач? Профессиональный студенческий сервис готов оказать ее.

Раздел 1.

ФИЗИЧЕСКИЕ
ОСНОВЫ МЕХАНИКИ.

МЕХАНИЧЕСКИЕ
КОЛЕБАНИЯ.

ЭЛЕМЕНТЫ
РЕЛЯТИВИСТСКОЙ

ДИНАМИКИ

К
примерам решения задач

К
вариантам задач

К
титулу

1 2

Основные формулы Радиус-вектор, определяющий положение материальной точки в пространстве, и его модуль

r
=
xi
+
yj
+
zk,

где
x,
y,
z
– координаты точки; i,
j,
k
– единичные векторы, направленные по
осям прямоугольной системы координат.

Кинематическое уравнение движения материальной точки

r(t)
=
xi
+
yj
+
zk,

где
x
= f1(t),
y
= f2(t),
z
= f3(t)
– функции, выражающие зависимость
координат точки от времени t.

Средняя
скорость

v
= ,

где
r
– вектор перемещения.

Мгновенная
скорость и ее модуль

,

Среднее
ускорение

a
= .

Мгновенное
ускорение и его модуль

,

Ускорение при
криволинейном движении:


тангенциальное

;


нормальное

;


полное

,

где
R
– радиус кривизны траектории; n
– единичный вектор нормали к траектории;

– единичный
вектор, направленный по касательной к
траектории.

Средняя угловая
скорость


3 4

,

где

= (t)
– вектор угла вращения абсолютно твердого
тела, направленный вдоль оси вращения.

Мгновенная
угловая скорость

.

Угловое
ускорение

.

Связь
между линейными и угловыми величинами

s
=
R, v
=
R,

a
=
R, an
=
2R.

Импульс
(количество движения) материальной
точки

p
=
mv.

Основное
уравнение динамики материальной точки
(второй закон Ньютона)

Виды сил:

сила
гравитационного взаимодействия

,

где

– гравитационная постоянная; m1
и m2
– взаимодействующие массы; r
– расстояние между ними;

сила
тяжести

P
=
mg,

где
g
– ускорение свободного падения;

сила
упругости

F
= –
kx,

где
k
– коэффициент упругости (жесткость); x
– абсолютная деформация.

сила
трения

Fтр
=
kN,

где
k
– коэффициент трения; N
– сила нормального давления.

Работа,
совершаемая переменной силой

.

Мощность

Кинетическая
энергия тела при поступательном движении

.

Потенциальная
энергия:

упругодеформированной
пружины (стержня)

5 6

;

гравитационного
взаимодействия двух масс

;

тела,
находящегося в однородном поле силы
тяжести вблизи поверхности Земли

П
=
mgh,

где
h
– расстояние между телом и поверхностью
Земли.

Закон сохранения механической энергии в замкнутой системе из n материальных тел, между которыми действуют консервативные силы

Закон сохранения
импульса для изолированной системы
материальных тел

где
n
– число материальных тел; mi
– их массы.

Основное
уравнение динамики вращательного
движения абсолютно твердого тела
относительно неподвижной оси вращения
z

Mz
= J
z,

где
Mz
– результирующий момент внешних сил;
действующих на тело относительно оси
z;
Jz
– момент инерции тела относительно оси
вращения; 
– угловое ускорение.

Момент
инерции материальной точки

J
=
mr2,

где
m
– масса материальной точки; r
-расстояние от точки до оси вращения.

Момент
инерции:

однородного
шара радиусом
R
и массы
m
(если ось вращения проходит через центр
шара)

;

сплошного
цилиндра или диска радиусом
R
и массы
m
(если ось вращения проходит через центр
масс перпендикулярно плоскости основания)

;

тонкого
обруча или кольца радиусом
R
и массы
m
(если ось вращения проходит через центр
масс перпендикулярно плоскости обруча)

Jz
=
mR2;

однородного
тонкого стержня длиной
l
и массы
m
(если ось вращения проходит через центр
масс стержня перпендикулярно стержню)


7 8

;

однородного
тонкого стержня длиной
l
и массы
m
(если ось вращения проходит через конец
стержня перпендикулярно стержню)

.

Момент
инерции тела массы
m
относительно неподвижной оси, не
проходящей через центр масс и параллельной
оси
z

J
=
Jz
+
ma2,

где
Jz
– момент инерции тела относительно оси
z;
проходящей через центр масс; a –
расстояние между осями.

Момент силы

М
=
r

F.

Момент
импульса тела

L
=
J.

Основное
уравнение динамики вращательного
движения твердого тела

.

Проекция момента
импульса тела на неподвижную ось вращения

Lz
=
Jz.

Закон
сохранения

момента
импульса для изолированной системы
твердых тел


;

момента
импульса для изолированной системы
твердых тел относительно неподвижной
оси вращения
z


.

Работа
постоянного момента внешних сил при
вращении твердого тела

A
=
Mz,

где

– угол поворота.

Мощность,
развиваемая моментом внешних сил

.

Кинетическая
энергия тела, вращающегося вокруг
неподвижной оси
z


или
.

Кинематическое
уравнение гармонических колебаний
материальной точки

9 10

x
=
Acos(t+o)

{x
=
Asin(t+o)},

где
x
– смещение колеблющейся точки от положения
равновесия; A
– амплитуда; 
– круговая (циклическая) частота; o
– начальная фаза колебаний.

Ра́диус-ве́ктор (обозначается буквой r со стрелкой: {vec {r}} или набираемой жирным шрифтом: mathbf {r} ) — вектор, задающий положение точки в пространстве (например, евклидовом) относительно некоторой заранее фиксированной точки, называемой началом координат. Понятие используется в математике (геометрии) и физике.

Радиус-вектор в геометрии[править | править код]

Для произвольной точки в пространстве радиус-вектор — это вектор, идущий из начала координат в эту точку.

Длина, или модуль радиус-вектора — расстояние, на котором точка находится от начала координат, стрелка вектора — указывает направление на эту точку пространства.

На плоскости углом радиус-вектора называется угол, на который радиус-вектор повёрнут относительно оси абсцисс в направлении против часовой стрелки.

Запись в различных системах координат[править | править код]

Двумерное пространство[править | править код]

Трёхмерное пространство[править | править код]

n-мерное пространство[править | править код]

  • Декартовы координаты: {displaystyle quad {vec {r}}=x_{1}{vec {e}}_{1}+x_{2}{vec {e}}_{2}+...+x_{n}{vec {e}}_{n}}

Радиус-вектор в кинематике[править | править код]

В кинематике изменение радиус-вектора со временем, то есть функция {vec  r}(t), определяет движение материальной точки. Если указанная функция известна, на её основе могут быть вычислены скорость и ускорение:

{displaystyle {vec {v}}(t)={frac {{mbox{d}}{vec {r}}(t)}{{mbox{d}}t}}={dot {vec {r}}}(t)}
{displaystyle {vec {a}}(t)={frac {{mbox{d}}^{2}{vec {r}}(t)}{{mbox{d}}t^{2}}}={ddot {vec {r}}}(t)},

где точка сверху обозначает дифференцирование по времени, а две точки — двукратное дифференцирование.

В таком виде запись применима к системе координат любого типа. Но переход к трём координатам декартовой, цилиндрической и сферической систем осуществляется по-разному. Например, если для декартовых координат {displaystyle {vec {v}}={dot {x}}{vec {e}}_{x}+{dot {y}}{vec {e}}_{y}+{dot {z}}{vec {e}}_{z}}, то для цилиндрической системы имеем не
{displaystyle {vec {v}}={dot {rho }}{vec {e}}_{rho }+{dot {varphi }}{vec {e}}_{varphi }+{dot {z}}{vec {e}}_{z}}, а выражение: {displaystyle {vec {v}}={dot {rho }}{vec {e}}_{rho }+rho {dot {varphi }}{vec {e}}_{varphi }+{dot {z}}{vec {e}}_{z}}; ускорение в последнем случае: {displaystyle {vec {a}}=({ddot {rho }}-rho {dot {varphi }}^{2}){vec {e}}_{rho }+(2{dot {rho }}{dot {varphi }}+rho {ddot {varphi }}){vec {e}}_{varphi }+{ddot {z}}{vec {e}}_{z}}.

Координаты вектора

Правило

Координаты вектора

Координаты вектора a = AB, a (x1, y1), B (x2, y2).

Координаты вектора формула:

Координаты вектора формула

Обозначения:

a = (a1; a2);  a (a1, a2);  (a1; a2)

Радиус вектор

Правило

Радиус вектор

Радиус вектор точки M (x, y) – это вектор r = OM, где O (0; 0) – начало координат;

r = (x, y).

Добавить комментарий