Как найти ширину и длину квадрата если известна площадь ?(ОЧЕНЬ СРОЧНО)
Карина Валиахметова
Знаток
(468),
на голосовании
9 лет назад
Как найти ширину и длину квадрата если известна только площадь (ну например S=36 см 2)
Дополнен 9 лет назад
корень мы не изучали )
Голосование за лучший ответ
D. Stayn
Мыслитель
(5591)
9 лет назад
Нужно извлечь квадратный корень из площади. У квадрата все стороны равны, так что одна сторона (из примера) будет равна 6 см.
Сергей Маслаков
Мастер
(1153)
9 лет назад
Как бы у квадрата все стороны равны. S=а*b. А так как а=b то они равны 6
Вадим Валеев
Ученик
(126)
9 лет назад
лол вырожения напишите на не a*b
Похожие вопросы
Квадрат | |
---|---|
Квадрат со стороной и диагональю |
|
Рёбра | 4 |
Символ Шлефли | {4} |
Вид симметрии | Диэдрическая группа (D4) |
Площадь | a2 |
Внутренний угол | 90° |
Свойства | |
Выпуклый многоугольник, Изогональная фигура, изотоксальная фигура | |
Медиафайлы на Викискладе |
Квадра́т (от лат. quadratus, четырёхугольный[1]) — правильный четырёхугольник, то есть плоский четырёхугольник, у которого все углы и все стороны равны. Каждый угол квадрата — прямой [2].
Варианты определения[править | править код]
Квадрат может быть однозначно охарактеризован разными способами[3][4].
- Четырёхугольник, диагонали которого равны и взаимно перпендикулярны, причём точка пересечения делит их пополам.
- Четырёхугольник, являющийся одновременно прямоугольником и ромбом.
- Прямоугольник, у которого длины двух смежных сторон равны.
- Прямоугольник, у которого диагонали пересекаются под прямым углом.
- Ромб, у которого диагонали равны.
- Ромб, у которого два соседних угла равны.
- Ромб, один из углов которого — прямой (прочие углы, как легко доказать, тогда также прямые).
- Параллелограмм, у которого длины двух смежных сторон равны, а угол между ними — прямой.
- Параллелограмм, у которого диагонали равны, а угол между ними — прямой.
- Дельтоид, все углы которого прямые.
Свойства[править | править код]
Основной источник: [4]
Далее в этом разделе обозначает длину стороны квадрата, — длину диагонали, — радиус описанной окружности, — радиус вписанной окружности.
Стороны и диагонали[править | править код]
Диагонали квадрата равны, взаимно перпендикулярны, делятся точкой пересечения пополам и сами делят углы квадрата пополам (другими словами, являются биссектрисами внутренних углов квадрата). Длина каждой диагонали
Периметр квадрата равен:
- .
Вписанная и описанная окружности[править | править код]
Вписанная и описанная окружности для квадрата
Центр описанной и вписанной окружностей квадрата совпадает с точкой пересечения его диагоналей.
Радиус вписанной окружности квадрата равен половине стороны квадрата:
Радиус описанной окружности квадрата равен половине диагонали квадрата:
Из этих формул следует, что площадь описанной окружности вдвое больше площади вписанной.
Площадь[править | править код]
-
-
Соединив середины сторон квадрата, получаем квадрат вдвое меньшей площади
Площадь квадрата равна
- .
Из формулы связывающей сторону квадрата с его площадью, видно, почему возведение числа во вторую степень традиционно называется «возведением в квадрат», а результаты такого возведения называются «квадратными числами» или просто квадратами. Аналогично корень 2-й степени называется квадратным корнем.
Квадрат имеет два замечательных свойства[5].
- Из всех четырёхугольников с заданным периметром квадрат имеет наибольшую площадь.
- Из всех четырёхугольников с заданной площадью квадрат имеет наименьший периметр.
К уравнению квадрата; здесь
Уравнение квадрата[править | править код]
В прямоугольной системе координат уравнение квадрата с центром в точке и диагоналями, параллельными осям координат (см. рисунок), может быть записано в виде[6]:
где — радиус описанной окружности, равный половине длины диагонали квадрата. Сторона квадрата тогда равна его диагональ равна а площадь квадрата равна
Уравнение квадрата с центром в начале координат и сторонами, параллельными осям координат (см. рисунок), может быть представлено в одной из следующих форм:
- (легко получается применением поворота на 45° к предыдущему уравнению)
- (в полярных координатах[7])
Математические проблемы[править | править код]
С квадратами связаны ряд проблем, часть из которых до сих пор не имеет решения.
- Квадратура круга — древняя проблема построения циркулем и линейкой квадрата, равновеликого по площади заданному кругу. В 1882 году Фердинанд Линдеман доказал, что это невозможно.
Пример квадрирования квадрата
- Квадрирование квадрата — задача о разбиении квадрата на конечное число меньших квадратов, без «дырок», причём длины сторон квадратов должны отличаться друг от друга (в идеале должны быть все различны). Найден ряд решений этой задачи.
- Долгое время математики пытались доказать, что непрерывное отображение отрезка прямой в квадрат невозможно, пока Джузеппе Пеано не построил свой контрпример.
- Гипотеза Тёплица: на всякой замкнутой плоской жордановой кривой можно отыскать четыре точки, образующие вершины квадрата. Не доказана и не опровергнута.
- Разбиение квадрата сеткой одинаковых более мелких квадратов также приводит к множеству проблем, используемых, в частности, в теории латинских и греко-латинских квадратов, магических квадратов, в игре судоку.
Симметрия[править | править код]
Квадрат обладает наибольшей осевой симметрией среди всех четырёхугольников. Он имеет:
- одну ось симметрии четвёртого порядка — ось, перпендикулярную плоскости квадрата и проходящую через его центр;
- четыре оси симметрии второго порядка (то есть относительно них квадрат отражается сам в себя), из которых две проходят вдоль диагоналей квадрата, а другие две — параллельно сторонам.
Применение[править | править код]
В математике[править | править код]
Единичный квадрат используется как эталон единицы измерения площади, а также в определении площади произвольных плоских фигур. Фигуры, у которых можно определить площадь, называются квадрируемыми.
Теорема Пифагора первоначально формулировалась геометрически: площадь квадрата, построенного на гипотенузе, равна сумме площадей квадратов, построенных на катетах.
Квадратами являются грани куба — одного из пяти правильных многогранников.
В математической физике символ квадрата может означать «оператор Д’Аламбера» (даламбериан) — дифференциальный оператор второго порядка:
Из теоремы Бойяи — Гервина следует, что любой многоугольник равносоставлен квадрату, то есть его можно разрезать на конечное число частей, из которых составляется квадрат (и обратно)[8].
Графы:
K4 полный граф часто изображается как квадрат с шестью рёбрами.
Орнаменты и паркеты[править | править код]
- Мозаики, включающие квадраты
-
-
-
Мозаики, орнаменты и паркеты, содержащие квадраты, широко распространены.
Другие применения[править | править код]
Шахматная доска имеет форму квадрата и поделена на 64 квадрата двух цветов. Квадратная доска для международных шашек поделена на 100 квадратов двух цветов. Квадратную форму имеет боксёрский ринг, площадка для игры в квадрат.
Квадратный флаг Лима поделён на два чёрных и два жёлтых квадрата, будучи поднятым на корабле в гавани, означает, что корабль находится на карантине.
Графика[править | править код]
Символы со сходным начертанием: ロ · ⼝ · ⼞
Ряд символов имеют форму квадрата.
- Символы Юникода U+25A0 — U+25CF
- U+20DE ◌⃞ COMBINING ENCLOSING SQUARE
- ロ (Японский иероглиф «Ро» (катакана))
- 口 (Китайский иероглиф «рот»)
- 囗 (Китайский иероглиф «ограда»)
В Latex для вставки символа квадрата служат конструкции Box
или square
.
В HTML, чтобы заключить произвольный текст в квадрат или прямоугольник, можно использовать конструкцию:
- <span style=”border-style: solid; border-width: 1.5px 1.5px 1.5px 1.5px; padding-left: 4px; padding-right: 4px;”>text</span>; результат: text.
Вариации и обобщения[править | править код]
Многомерное пространство[править | править код]
Квадрат можно рассматривать как двумерный гиперкуб.
Неевклидова геометрия[править | править код]
В неевклидовой геометрии квадрат (в более широком смысле) — многоугольник с четырьмя равными сторонами и равными углами. По величине этих углов можно судить о кривизне плоскости — в евклидовой геометрии и только в ней углы прямые, в сферической геометрии углы сферического квадрата больше прямого, в геометрии Лобачевского — меньше.
Построение квадрата с использованием циркуля и линейки
Складывание квадрата из произвольного куска бумаги
См. также[править | править код]
- Алгоритм «движущиеся квадраты»
- Квадрат Полибия
- Квадратная матрица
- Квадратриса
- Первая теорема Тебо
- Площадь произвольного четырёхугольника
Примечания[править | править код]
- ↑ Квадрат // Советский энциклопедический словарь. — 2-е изд.. — М.: Советская энциклопедия, 1982. — С. 561. — 1600 с.
- ↑ Квадрат // Математическая энциклопедия (в 5 томах). — М.: Советская Энциклопедия, 1982. — Т. 3. — С. 776. — 1184 с.
- ↑ Выгодский М. Я. Справочник по элементарной математике. — М.: АСТ, 2006. — 509 с. — ISBN 5-17-009554-6.
- ↑ 1 2 Каплун, 2014, с. 171—173.
- ↑ Понарин Я. П. Элементарная геометрия: В 2 т. — Т. 1: Планиметрия, преобразования плоскости. — М.: МЦНМО, 2004. — С. 117, 119. — 312 с. — ISBN 5-94057-171-9.
- ↑ Уравнение квадрата в декартовой системе координат. Дата обращения: 9 ноября 2021. Архивировано 9 ноября 2021 года.
- ↑ What is the polar equation for a square, if any?
- ↑ Болтянский В. Г. Третья проблема Гильберта. — М.: Наука, 1977. — 208 с. Архивировано 28 июня 2021 года.
Литература[править | править код]
- Каплун А. И. Математика, Учебно-практический справочник. — Ростов н/Д.: ООО “Феникс”, 2014. — 240 с. — ISBN 978-5-222-20926-3.
Ссылки[править | править код]
- Квадрат, геометрическая фигура // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). — СПб., 1890—1907.
Евдокуша
17 августа, 04:35
Как найти ширину квадрата если известна его площадь и длина
-
Иосиф
17 августа, 05:44
0
Площадь прямоугольника это произведение его длины на ширину. Если известна площадь и длина, то ширину можно найти поделив площадь на длину.
У квадрата длина и ширина равны.
- Комментировать
- Жалоба
- Ссылка
-
В квадрате ширина и длина равны. Если прямоугольник, то площадь разделить на длину получится ширина.
- Комментировать
- Жалоба
- Ссылка
Найди верный ответ на вопрос ✅ «Как найти ширину квадрата если известна его площадь и длина …» по предмету 📙 Математика, а если ответа нет или никто не дал верного ответа, то воспользуйся поиском и попробуй найти ответ среди похожих вопросов.
Искать другие ответы
Новые вопросы по математике
Главная » Математика » Как найти ширину квадрата если известна его площадь и длина
Квадрат. Онлайн калькулятор
С помощю этого онлайн калькулятора можно найти сторону, периметр, диагональ квадрата, радиус вписанной в квадрат окружности, радиус описанной вокруг квадрата окружности и т.д.. Для нахождения незвестных элементов, введите известные данные в ячейки и нажмите на кнопку “Вычислить”. Теоретическую часть и численные примеры смотрите ниже.
Определение 1. Квадрат − это четырехугольник, у которого все углы равны и все стороны равны (Рис.1):
Можно дать и другие определение квадрата.
Определение 2. Квадрат − это прямоугольник, у которого все стороны равны.
Определение 3. Квадрат − это ромб, у которого все углы прямые (или равны).
Свойства квадрата
- Длины всех сторон квадрата равны.
- Все углы квадрата прямые.
- Диагонали квадрата равны.
- Диагонали пересекаются под прямым углом.
- Диагонали квадрата являются биссектрисами углов.
- Диагонали квадрата точкой пересечения делятся пополам.
Изложеннные свойства изображены на рисунках ниже:
Диагональ квадрата
Определение 4. Диагональю квадрата называется отрезок, соединяющий несмежные вершины квадрата.
На рисунке 2 изображен диагональ d, который является отрезком, соединяющим несмежные вершины A и C. У квадрата две диагонали.
Для вычисления длины диагонали воспользуемся теоремой Пифагора:
или
Из равенства (1) найдем d:
Пример 1. Сторона квадрата равна a=53. Найти диагональ квадрата.
Решение. Для нахождения диагонали квадрата воспользуемся формулой (2). Подставляя a=53 в (2), получим:
Ответ:
Окружность, вписанная в квадрат
Определение 5. Окружность называется вписанной в квадрат, если все стороны касаются этого квадрата (Рис.3):
Формула вычисления радиуса вписанной окружности через сторону квадрата
Из рисунка 3 видно, что диаметр вписанной окружности равен стороне квадрата. Следовательно, формула вычисления радиуса вписанной окружности через сторону квадрата имеет вид:
Пример 2. Сторона квадрата равна a=21. Найти радиус вписанной окружности.
Решение. Для нахождения радиуса списанной окружности воспользуемся формулой (3). Подставляя a=21 в (3), получим:
Ответ:
Формула вычисления сторон квадрата через радиус вписанной окружности
Из формулы (3) найдем a. Получим формулу вычисления стороны квадрата через радиус вписанной окружности:
Пример 3. Радиус вписанной в квадрат окружности равен r=12. Найти сторону квадрата.
Решение. Для нахождения стороны квадраиа воспользуемся формулой (4). Подставляя r=12 в (4), получим:
Ответ:
Окружность, описанная около квадрата
Определение 6. Окружность называется описанной около квадрата, если все вершины квадрата находятся на этой окружности (Рис.4):
Формула радиуса окружности описанной вокруг квадрата
Выведем формулу вычисления радиуса окружности, описанной около квадрата через сторону квадрата.
Обозначим через a сторону квадрата, а через R − радиус описанной около квадрата окружности. Проведем диагональ BD (Рис.4). Треугольник ABD является прямоугольным треугольником. Тогда из теоремы Пифагора имеем:
или
Из формулы (5) найдем R:
или, умножая числитель и знаменатель на , получим:
Пример 4. Сторона квадрата равна a=4.5. Найти радиус окружности, описанной вокруг квадрата.
Решение. Для нахождения радиуса окружности описанной вокруг квадрата воспользуемся формулой (7). Подставляя a=4.5 в (7), получим:
Ответ:
Формула стороны квадрата через радиус описанной около квадрата окружности
Выведем формулу вычисления стороны квадрата, через радиус описанной около квадрата окружности.
Из формулы (1) выразим a через R:
Пример 5. Радиус описанной вокруг квадрата окружности равен Найти сторону квадрата.
Решение. Для нахождения стороны квадрата воспользуемся формулой (8). Подставляя в (8), получим:
Ответ:
Периметр квадрата
Периметр квадрата − это сумма всех его сторон. Обозначается периметр латинской буквой P.
Поскольку стороны квадрата равны, то периметр квадрата вычисляется формулой:
где − сторона квадрата.
Пример 6. Сторона квадрата равен . Найти периметр квадрата.
Решение. Для нахождения периметра квадрата воспользуемся формулой (9). Подставляя в (9), получим:
Ответ:
Признаки квадрата
Признак 1. Если в четырехугольнике все стороны равны и один из углов четырехугольника прямой, то этот четырехугольник является квадратом.
Доказательство. По условию, в четырехугольнике противоположные стороны равны, то этот четырехугольник праллелограмм (признак 2 статьи Параллелограмм). В параллелограмме противоположные углы равны. Следовательно напротив прямого угла находится прямой угол. Тогда сумма остальных двух углов равна: 360°-90°-90°=180°, но поскольку они также являются противоположными углами, то они также равны и каждый из них равен 90°. Получили, что все углы четырехугольника прямые и, по определению 1, этот четырехугольник является квадратом.
Признак 2. Если в четырехугольнике диагонали равны, перпендикулярны и точкой пересечения делятся пополам, то такой четырехугольник является квадратом (Рис.5).
Доказательство. Пусть в четырехугольнике ABCD диагонали пересекаются в точке O и пусть
Так как AD и BC перпендикулярны, то
Из (10) и (11) следует, что треугольники OAB, OBD, ODC, OCA равны (по двум сторонам и углу между ними (см. статью на странице Треугольники. Признаки равенства треугольников)). Тогда
Эти реугольники также равнобедренные. Тогда
Из (13) следует, что
Равенства (12) и (14) показывают, что четырехугольник ABCD является квадратом (определение 1).
Смотрите также:
- Площадь квадрата онлайн
Квадрат. Формулы и свойства квадрата
Определение.
Квадрат – это четырехугольник у которого все четыре стороны и углы одинаковы.
Квадраты отличаются между собой только длиной стороны, но все четыре угла у них прямые, то есть по 90°.
Основные свойства квадрата
Квадратом также могут быть параллелограмм, ромб или прямоугольник если они имеют одинаковые длины диагоналей, сторон и одинаковые углы.
1. Все четыре стороны квадрата имеют одинаковую длину, то есть они равны:
AB = BC = CD = AD
2. Противоположные стороны квадрата параллельны:
AB||CD, BC||AD
3. Все четыре угла квадрата прямые:
∠ABC = ∠BCD = ∠CDA = ∠DAB = 90°
4. Сумма углов квадрата равна 360 градусов:
∠ABC + ∠BCD + ∠CDA + ∠DAB = 360°
5. Диагонали квадрата имеют одинаковой длины:
AC = BD
6. Каждая диагональ квадрата делит квадрат на две одинаковые симметричные фигуры
7. Диагонали квадрата пересекаются под прямым углом, и разделяют друг друга пополам:
AC┴BD | AO = BO = CO = DO = | d | |
2 |
8. Точка пересечения диагоналей называется центром квадрата и также является центром вписанной и описанной окружности
9. Каждая диагональ делит угол квадрата пополам, то есть они являются биссектрисами углов квадрата:
ΔABC = ΔADC = ΔBAD = ΔBCD
∠ACB = ∠ACD = ∠BDC = ∠BDA = ∠CAB = ∠CAD = ∠DBC = ∠DBA = 45°
10. Обе диагонали разделяют квадрат на четыре равные треугольника, причем эти треугольники одновременно и равнобедренные и прямоугольные:
ΔAOB = ΔBOC = ΔCOD = ΔDOA
Диагональ квадрата
Определение.
Диагональю квадрата называется любой отрезок, соединяющий две вершины противоположных углов квадрата.
Диагональ любого квадрата всегда больше его стороны в√2 раз.
Формулы определения длины диагонали квадрата
1. Формула диагонали квадрата через сторону квадрата:
d = a·√2
2. Формула диагонали квадрата через площадь квадрата:
d = √2S
3. Формула диагонали квадрата через периметр квадрата:
4. Формула диагонали квадрата через радиус описанной окружности:
d = 2R
5. Формула диагонали квадрата через диаметр описанной окружности:
d = Dо
6. Формула диагонали квадрата через радиус вписанной окружности:
d = 2r√2
7. Формула диагонали квадрата через диаметр вписанной окружности:
d = Dв√2
8. Формула диагонали квадрата через длину отрезка l:
Периметр квадрата
Определение.
Периметром квадрата называется сумма длин всех сторон квадрата.
Формулы определения длины периметра квадрата
1. Формула периметра квадрата через сторону квадрата:
P = 4a
2. Формула периметра квадрата через площадь квадрата:
P = 4√S
3. Формула периметра квадрата через диагональ квадрата:
P = 2d√2
4. Формула периметра квадрата через радиус описанной окружности:
P = 4R√2
5. Формула периметра квадрата через диаметр описанной окружности:
P = 2Dо√2
6. Формула периметра квадрата через радиус вписанной окружности:
P = 8r
7. Формула периметра квадрата через диаметр вписанной окружности:
P = 4Dв
8. Формула периметра квадрата через длину отрезка l:
Площадь квадрата
Определение.
Площадью квадрата называется пространство, ограниченное сторонами квадрата, то есть в пределах периметра квадрата.
Площадь квадрата больше площади любого четырехугольника с таким же периметром.
Формулы определения площади квадрата
1. Формула площади квадрата через сторону квадрата:
S = a2
2. Формула площади квадрата через периметр квадрата:
3. Формула площади квадрата через диагональ квадрата:
4. Формула площади квадрата через радиус описанной окружности:
S = 2R2
5. Формула площади квадрата через диаметр описанной окружности:
6. Формула площади квадрата через радиус вписанной окружности:
S = 4r2
7. Формула площади квадрата через диаметр вписанной окружности:
S = Dв2
8. Формула площади квадрата через длину отрезка l:
Окружность описанная вокруг квадрата
Определение.
Кругом описанным вокруг квадрата называется круг проходящий через четыре вершины квадрата и имеющий центр на пересечении диагоналей квадрата.
Радиус окружности описанной вокруг квадрата всегда больше радиуса вписанной окружности в√2 раз.
Радиус окружности описанной вокруг квадрата равен половине диагонали.
Площадь круга описанного вокруг квадрата большая площадь того же квадрата в π/2 раз.
Формулы определения радиуса окружности описанной вокруг квадрата
1. Формула радиуса окружности описанной вокруг квадрата через сторону квадрата:
2. Формула радиуса окружности описанной вокруг квадрата через периметр квадрата:
3. Формула радиуса окружности описанной вокруг квадрата через площадь квадрата:
4. Формула радиуса круга описанного вокруг квадрата через диагональ квадрата:
5. Формула радиуса круга описанного вокруг квадрата через диаметр описанной окружности:
6. Формула радиуса круга описанного вокруг квадрата через радиус вписанной окружности:
R = r √2
7. Формула радиуса круга описанного вокруг квадрата через диаметр вписанной окружности:
8. формула радиуса круга описанного вокруг квадрата через длину отрезка l:
Окружность вписанная в квадрата
Определение.
Кругом вписанным в квадрат называется круг, который примыкает к серединам сторон квадрата и имеет центр на пересечении диагоналей квадрата.
Радиус вписанной окружности равен половине стороны квадрата.
Площадь круга вписанного в квадрат меньше площади квадрата в 4/π раза.
Формулы определения радиуса круга вписанного в квадрат
1. Формула радиуса круга вписанного в квадрат через сторону квадрата:
2. Формула радиуса круга вписанного в квадрат через диагональ квадрата:
3. Формула радиуса круга вписанного в квадрат через периметр квадрата:
4. Формула радиуса круга вписанного в квадрат через площадь квадрата:
5. Формула радиуса круга вписанного в квадрат через радиус описанной окружности:
6. Формула радиуса круга вписанного в квадрат через диаметр, описанной окружности:
7 Формула радиуса круга вписанного в квадрат через диаметр вписанной окружности:
8. Формула радиуса круга вписанного в квадрат через длину отрезка l: