Формула как найти сторону прямоугольного параллелепипеда

Параллелепипед

Общая характеристика

В мире имеется множество предметов с формой параллелепипеда. Люди обычно не задумываются об этом, но архитектура и различные массивные строения состоят из нескольких граней. Выглядеть параллелепипед может по-разному в зависимости от типа.

Основные понятия и классификация

Определение параллелепипеда, пирамиды, куба и других многогранников было известно с древнейших времен. Основными характеристиками являются простота и значимость.

Выведенные формулы V и S значимы для решения различных задач с практическим содержанием и доказательства теорем (по чертежам). Виды параллелепипеда:

Параллелепипед задачи

  1. Прямой. Четыре боковые грани имеют углы по 90 градусов.
  2. Прямоугольный. Каждая сторона фигуры является прямоугольной.
  3. Наклонный.
  4. Двугранный, трехгранный. Состоит из нескольких граней под углом 90 градусов.
  5. Наклонный, диагональный. Боковые грани не перпендикулярны основаниям.
  6. Ромбоэдр. Стороны являются одинаковыми ромбами.
  7. Куб. Параллелепипед с равными (квадратными) сторонами.

В 6 классе на уроке геометрии изучают планиметрию (плоские фигуры). Здесь представлена развертка плоскостей.

Две стороны параллелепипеда, не имеющие общего ребра, называются противоположными, а содержащие единую линию — смежными. С точки зрения плоскостей, расположенных параллельно, внутри пересекаются три их пары. Эти вершины соединяет отрезок — диагональ. Длина трех ребер правильного многогранника называется измерением. Главным условием является общая вершина.

При решении задач важно понятие высоты — перпендикуляра, опущенного из любой вершины на обратную сторону. Грань, на которую опускается высота, считается основанием. Свойства параллелепипеда:

  • любые стороны являются параллелограммами (с симметрией);
  • стороны, расположенные друг против друга, будут параллельными и равными.

Свойства параллелепипеда

Кирпич — отличный пример прямоугольного параллелепипеда (ПП). Также его форму имеют девятиэтажные панельные дома, шифоньеры, шкафы-купе, контейнеры для хранения продуктов и прочие предметы быта.

Диагонали поверхности пересекаются и этой центральной точкой делятся на несколько частей. Они равны d2=a2+b2+c2

Грани параллелепипеда спереди и сзади равнозначны, также как верхняя и нижняя стороны, но не равны, поскольку не противоположные, а смежные.

Формулы и анализ

Для ПП верно мнение, что его объем равен величине тройного произведения векторов трех сторон, исходящих из единой вершины. Формулы для ПП:

Всё о параллелепипеде

  1. V=a*b*c.
  2. S б =2*c*(a+b).
  3. S п =2*(a*b+b*c+a*c).

Расшифровка обозначений: V — объем фигуры, S — площадь поверхности, a — длина, b — ширина, c — высота.

Особым случаем параллелепипеда, в котором все стороны квадраты, является куб. Если любую из сторон обозначить буквой a, то для поверхности и объема используются формулы: S=6*a*2, V=3*а. В них V — объем фигуры, a — длина грани.

Правила параллелепипеда

Последняя разновидность параллелепипеда — прямой тип. Его основанием будет параллелограмм, а основанием ПП — прямоугольник. Формулы, используемые в математике и геометрии: Sб=Ро*h, Sп=Sб+2Sо, V=Sо*h.

Для нахождения ответов недостаточно знать только свойства геометрической фигуры. Могут пригодиться формулы для вычисления S и V.

Диагональ ПП равна сложению квадратов его измерений: d2 = a2 + b2 + c2. Эта формула получается из теоремы Пифагора.

∆BAD — прямоугольный, поэтому BD2 = AB2 + AD2 = b2 + c2.

∆BDD1 является прямоугольным, значит, BD12 = BD2 + DD12. Нужно подставить значение: d2 = a2 + b2 + c2.

Стандартная формула: V= Sосн*h. Расшифровка обозначений: V — объем параллелепипеда, Sосн — площадь основания, h — высота.

S находится так же, как показатель параллелограмма или прямоугольника. При решении тестов и экзаменационных задач легче вычислять показатели призмы, в основе которой находится прямой угол. Также может пригодиться формула расчета стороны параллелепипеда Sбок = P*h, где:

Задачи с параллелепипедом

  • Sбок — площадь параллелепипеда;
  • Р — периметр;
  • h — высота, перпендикулярная основанию.

Объем фигуры равен величине смешанного произведения нескольких векторов, выпущенных из единой точки.

Практическое применение

Для вычисления объема, высоты и прочих характеристик фигуры нужно знать теоретические основы и формулы. Решение задач входит в программу сдачи ЕГЭ и билеты при поступлении в вуз.

Доказательство теорем

Теоретически S боковой поверхности ПП равна S б. п. = 2 (a+b)c. S полной поверхности равна Sполн. поверхности ПП=2 (ab+ac+bc).

Объем ПП равен произведению трех его боковых частей, выходящих из единой вершины (три измерения ПП): abc.

Доказательство: так как у ПП боковые ребра перпендикулярны основанию, то они являются и его высотами — h=AA1=c. Если в основании лежит прямоугольник, то Sосн=AB ⋅ AD=ab. Диагональ d ПП можно найти по формуле d2=a2+b2+c2, где a, b, c — измерения ПП.

Если в основании расположен прямоугольник, то △ ABD прямоугольный, значит, по теореме Пифагора BD2=AB2+AD2=a2+b2. Если все боковые грани перпендикулярны основной линии, то BB1 ⊥ (ABC) ⇒ BB1 ⊥ BD.

Когда △ BB1D прямоугольный, то по теореме Пифагора B1D=BB12+BD2.

Решение задач

Параллелепипед фото

Задача 1: известны ПП: 3, 4, 12 см, необходимо найти длину главной диагонали фигуры.

Поиск ответа на вопрос начинается с выстраивания схематического изображения, на котором означаются величины. Используется формула B1D2 = AB2 + AD2 + AA12. После вычислений получается выражение b2=169, b=13.

Задача 2: ребра ПП, выходящие из общей точки, равны 3 и 4, общая S — 94. Нужно найти третье ребро, выходящее из той же вершины.

Ребра обозначаются а1 и а2, а неизвестное — а3. Площадь поверхности выражается S = 2 (a1a2 + a1a3 + a2a3).

Далее получаем a3 (a1 + a2) = S/2 — a1a2. Неизвестное ребро: a3 = S/2 — a1a2/a1 + a2 = 47−12/7 = 5.

Задача 3: два ребра прямоугольного параллелепипеда, выходящие из общей точки, составляют 72 и 18, диагональ равна 78. Нужно определить объем фигуры.

Для решения требуется найти диагональ по формуле вычисления квадратного корня из суммы (a2 + b2 + c2), где a, b, c — ребра фигуры. 78 — корень из суммы 722 + 182 + c2. Решение:

Факты о параллелепипеде

  • 78 = корень из суммы 5508+с2
  • 782 = 5508 + с2
  • с2 = 6084 — 5508.
  • С2 = 576.

Ответ: объем составляет 576.

Задача 4: ребро наклонного параллелепипеда составляет 10 см, прямоугольник KLNM с измерениями 5 и 7 см является сечением фигуры, параллельным ребру. Нужно определить площадь боковой поверхности призмы.

KL и AD не являются равными, как пара ML и DC. Боковая S фигуры эквивалентна S сечения, умноженной на AA1, так как ребро перпендикулярно сечению. Ответ: 240 см².

Задача 5: ABCDA1B1C1D1 = 3, 4 см, боковое ребро — 12 см. Нужно определить диагональ ПП.

В основании лежит прямоугольник со сторонами АВ 3 см и AD 4 см. Боковое ребро составляет 3 см. BB1 является высотой ПП и равняется 12 см. Диагональ B1D2 = AB2 + BB1 2 += 9+16+144 = 169. B1D= 13 см.

Задача 6: основанием ПП служит квадрат, одна из вершин его верхнего основания одинаково удалена от всех вершин нижней части. Нужно найти высоту фигуры, если диагональ основания равна 8 см, а боковое ребро — 5 см.

Основные понятия параллелепипеда

Одна из вершин основания (F) равнозначно удалена от всех вершин нижнего основания параллелепипеда. Вместе с диагональю нижней части (AC) она образует равнобедренный ∆AFC. AF = AC по условию. AF является ребром фигуры.

В равнобедренном ∆AFC стороны одинаковы: AF=FC=5 см, AC=8 см. Высота ∆AFC будет являться высотой параллелепипеда.

Высота треугольника делит его основание пополам. По теореме Пифагора она равна:

  • FK2 + (AC/2)2 = FC2;
  • FK2 + 16 = 25;
  • FK2 =25−16 = 9;
  • FK = 3 см.

Высота фигуры составляет 3 см.

Установленные теоремы, доказательства, а также выведенные формулы помогают вычислить различные значения для фигуры.

Параллелепипед

Что за слово такое мудреное – «параллелепипед»? Что за многогранник скрывается за этим словом?

Что-то должно быть связано с параллельностью, не правда ли?

Читай статью, смотри вебинар и ты все про него будешь знать!

Параллелепипед — коротко о главном

Параллелепипед — это четырехугольная призма (многогранник с ( displaystyle 6) гранями), все грани которой — параллелограммы.

Прямой параллелепипед —это параллелепипед, у которого ( displaystyle 4) боковые грани — прямоугольники.

Прямоугольный параллелепипед — параллелепипед, у которого все грани — прямоугольники

Куб — параллелепипед, у которого все грани квадраты.

Высота параллелепипеда – перпендикуляр, опущенный из любой вершины параллелепипеда на противоположную грань.

Свойства параллелепипеда

  • Противолежащие грани параллелепипеда параллельны и равны.
  • Диагонали параллелепипеда пересекаются в одной точке и делятся ею пополам.
  • Любой отрезок с концами, принадлежащими поверхности параллелепипеда и проходящий через точку пересечения диагоналей (центр параллелепипеда), делится ею пополам.
  • Все диагонали прямоугольного параллелепипеда равны между собой и равны сумме квадратов его измерений. ( displaystyle ^>=>+^>+^>).

Параллелепипед — подробнее

Параллелепипед – многоугольник, образованный пересечением трех пар параллельных плоскостей.

Если слишком сложно, просто посмотри на картинку.

Какую фигуру из планиметрии (геометрии с «плоскими» фигурами) напоминает параллелепипед?

Немного похоже на параллелограмм, правда? Только «потолще» и слово подлиннее.

Далее смотри на картинки, запоминай и не путай!

Высота – перпендикуляр, опущенный из любой вершины параллелепипеда на противоположную грань.

Та грань, на которую опущена высота, называется основанием.

Свойства параллелепипеда

  • Всеграни параллелепипеда – параллелограммы.
  • Противоположные грани параллелепипеда параллельны и равны.

Внимание: передняя и задняя грани параллелепипеда равны, верхняя и нижняя – тоже равны, но не равны (не обязаны быть равны) передняя и верхняя грани – потому что они не противоположные, а смежные.

Геометрические фигуры. Прямоугольный параллелепипед.

Прямоугольный параллелепипед — прямой параллелепипед с прямоугольником в основании. У прямоугольного параллелепипеда каждая из шести граней является прямоугольником.

Описание: C:UsersiriffochkaDesktopCuboid_01.png

Примерами прямоугольного параллелепипеда являются спортивный зал, коробок спичек или системный блок компьютера.

Формулы прямоугольного параллелепипеда.

Прямоугольный параллелепипед с одинаковыми измерениями является кубом. Все 6 граней куба являются равными квадратами.

Обозначим длину ребра куба как n, тогда площадь 1-ой грани:

Площадь поверхности куба:

У прямоугольного параллелепипеда есть еще одно измерение – объем параллелепипеда (обозначается как V).

Прямоугольники, которые составляют поверхность параллелепипеда, являются гранями параллелепипеда.

Прямоугольный параллелепипед определяют 3-мя измерениями:

Высота (обозначают как h) равняется длине ребра № 1.

Длина (обозначают как m) равняется длине ребра № 2.

Ширина (обозначают как n) равняется длине ребра № 3.

Площадь всей поверхности параллелепипеда обозначают как S:

В прямоугольном параллелепипеде квадрат любой диагонали равен сумме квадратов трех его измерений.

Прямоугольный параллелепипед

Параллелепипед называется прямоугольным, если его боковые ребра перпендикулярны к основанию, а основания представляют собой прямоугольники.

На рисунке изображен прямоугольный параллелепипед $ABCDA_1B_1C_1D_1$. Его основаниями являются прямоугольники $ABCD$ и $A_1B_1C_1D_1$, а боковые ребра $AA_1, BB_1, CC_1$ и $DD_1$ перпендикулярны к основаниям.

Свойства прямоугольного параллелепипеда:

  1. В прямоугольном параллелепипеде $6$ граней и все они являются прямоугольниками.
  2. Противоположные грани попарно равны и параллельны.
  3. Все двугранные углы прямоугольного параллелепипеда – прямые.
  4. Диагонали прямоугольного параллелепипеда равны.
  5. Прямоугольный параллелепипед имеет $4$ диагонали, которые пересекаются в одной точке и делятся в ней пополам.
  6. Любая грань прямоугольного параллелепипеда может быть принята за основание.
  7. Прямоугольный параллелепипед, у которого все ребра равны, называется кубом.
  8. Квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов трех его измерений (длины, ширины, высоты).

Формулы вычисления объема и площади поверхности прямоугольного параллелепипеда.

Чтобы были понятны формулы, введем обозначения:

$с$ — высота(она же боковое ребро);

$P_$ — периметр основания;

$S_$ — площадь основания;

$S_$ — площадь боковой поверхности;

$S_$ — площадь полной поверхности;

$V=a·b·c$ – объем равен произведению трех измерений прямоугольного параллелепипеда.

$S_=P_·c=2(a+b)·c$ – площадь боковой поверхности равна произведению периметра основания на боковое ребро.

Дополнительные сведения, которые пригодятся для решения задач:

$а$ — длина стороны.

$d=a√3$ – диагональ равна длине стороны, умноженной на $√3$.

Пирамида

Пирамидой называется многогранник, одна грань которого (основание) – многоугольник, а остальные грани (боковые) — треугольники, имеющие общую вершину.

Высотой ($h$) пирамиды является перпендикуляр, опущенный из ее вершины на плоскость основания.

Объем любой пирамиды равен трети произведения основания и высоты.

В основании у произвольной пирамиды могут лежать различные многоугольники, рассмотрим площади некоторых из них.

В основании лежит треугольник.

  • $S=/$, где $h_a$ — высота, проведенная к стороне $а$.
  • $S=/$, где $a,b$ — соседние стороны, $α$ — угол между этими соседними сторонами.
  • Формула Герона $S=√

    $, где $р$ — это полупериметр $p=/$.

  • $S=p·r$, где $r$ — радиус вписанной окружности.
  • $S=/$, где $R$ — радиус описанной окружности.
  • Для прямоугольного треугольника $S=/$, где $а$ и $b$ — катеты прямоугольного треугольника.
  • Для равностороннего треугольника $S=/$, где $а$ — длина стороны.

В основании лежит четырехугольник.

  1. Прямоугольник.
    $S=a·b$, где $а$ и $b$ — смежные стороны.
  2. Ромб.
    $S=/$, где $d_1$ и $d_2$ — диагонали ромба.
    $S=a^2·sin⁡α$, где $а$ — длина стороны ромба, а $α$ — угол между соседними сторонами.
  3. Трапеция.
    $S=/$, где $а$ и $b$ — основания трапеции, $h$ — высота трапеции.
  4. Квадрат.
    $S=a^2$, где $а$ — сторона квадрата.

Найдите объём многогранника, вершинами которого являются точки $C, A_1, B_1, C_1, D_1$ параллелепипеда $ABCDA_1B_1C_1D_1$, у которого $AB=8, AD=12, AA_1=4$.

Изобразим прямоугольный параллелепипед и на нем отметим вершины многогранника $C, A_1, B_1, C_1, D_1$, получим в итоге четырехугольную пирамиду. В основании пирамиды лежит прямоугольник, так основание пирамиды и прямоугольного параллелепипеда совпадают.

Объем пирамиды, в основании которой лежит прямоугольник

Для нашего рисунка стороны прямоугольника – это $А_1В_1$ и $A_1D_1$.

В прямоугольном параллелепипеде противоположные ребра равны и параллельны, следовательно, $AB=А_1В_1=8; AD=A_1D_1=12$.

Высотой в пирамиде $CA_1B_1C_1D_1$ будет являться ребро $СС_1$, так как оно перпендикулярно основанию (из прямоугольного параллелепипеда).

В прямоугольном треугольнике сумма квадратов катетов равна квадрату гипотенузы.

Как найти сторону прямоугольного параллелепипеда напишите формулу пожалуйста.

Егор Ковалёв



Знаток

(263),
на голосовании



10 лет назад

Голосование за лучший ответ

Рита Ш…

Знаток

(286)


10 лет назад

просто так ее не найти. . должно быть условие, известные данные какие-либо. . высота там или еще что-нибудь.. угол какой..

Похожие вопросы

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 26 мая 2022 года; проверки требуют 4 правки.

Параллелепи́пед (др.-греч. παραλληλ-επίπεδον[1] от др.-греч. παρ-άλληλος — «параллельный» и др.-греч. ἐπί-πεδον — «плоскость») — четырёхугольная призма, все грани которой являются параллелограммами.

Типы параллелепипеда[править | править код]

Прямоугольный параллелепипед

Различается несколько типов параллелепипедов:

  • Наклонный — боковые грани не перпендикулярны основанию.
  • Прямой — боковые грани перпендикулярны основанию.
  • Прямоугольный — все грани являются прямоугольниками.
  • Ромбоэдр — все грани являются равными ромбами.
  • Куб — все грани являются квадратами.

Основные элементы[править | править код]

Две грани параллелепипеда, не имеющие общего ребра, называются противоположными, а имеющие общее ребро — смежными. Две вершины параллелепипеда, не принадлежащие одной грани, называются противоположными. Отрезок, соединяющий противоположные вершины, называется диагональю параллелепипеда. Длины трёх рёбер прямоугольного параллелепипеда, имеющих общую вершину, называют его измерениями.

Свойства[править | править код]

  • Параллелепипед симметричен относительно середины его диагонали.
  • Любой отрезок с концами, принадлежащими поверхности параллелепипеда и проходящий через середину его диагонали, делится ею пополам; в частности, все диагонали параллелепипеда пересекаются в одной точке и делятся ею пополам.
  • Противолежащие грани параллелепипеда параллельны и равны.
  • Квадрат длины диагонали прямоугольного параллелепипеда равен сумме квадратов трёх его измерений.

Основные формулы[править | править код]

Прямой параллелепипед[править | править код]

Площадь боковой поверхности
Sбо*h, где Ро — периметр основания, h — высота

Площадь полной поверхности
Sп=Sб+2Sо, где Sо — площадь основания

Объём
V=Sо*h

Прямоугольный параллелепипед[править | править код]

Площадь боковой поверхности
Sб=2c(a+b), где a, b — стороны основания, c — боковое ребро прямоугольного параллелепипеда

Площадь полной поверхности
Sп=2(ab+bc+ac)

Объём
V=abc, где a, b, c — измерения прямоугольного параллелепипеда.

Куб[править | править код]

Площадь поверхности: S=6a^{2}

Объём: V=a^{3}, где a — ребро куба.

Произвольный параллелепипед[править | править код]

Объём и соотношения в наклонном параллелепипеде часто определяются с помощью векторной алгебры. Объём параллелепипеда равен абсолютной величине смешанного произведения трёх векторов, определяемых тремя сторонами параллелепипеда, исходящими из одной вершины. Соотношение между длинами сторон параллелепипеда и углами между ними даёт утверждение, что определитель Грама указанных трёх векторов равен квадрату их смешанного произведения[2]:215.

В математическом анализе[править | править код]

В математическом анализе под n-мерным прямоугольным параллелепипедом B понимают множество точек x=(x_{1},ldots ,x_{n}) вида B={x|a_{1}leqslant x_{1}leqslant b_{1},ldots ,a_{n}leqslant x_{n}leqslant b_{n}}

Сечение параллелепипеда плоскостью[править | править код]

В зависимости от расположения секущей плоскости и параллелепипеда сечение параллелепипеда может быть треугольником, четырехугольником, пятиугольником и шестиугольником.

Примечания[править | править код]

  1. Древнегреческо-русский словарь Дворецкого «παραλληλεπίπεδον»
  2. Гусятников П.Б., Резниченко С.В. Векторная алгебра в примерах и задачах. — М.: Высшая школа, 1985. — 232 с.

Ссылки[править | править код]

  • Прямоугольный параллелепипед Архивная копия от 21 февраля 2020 на Wayback Machine

Прямоугольный параллелепипед. Формулы и свойства прямоугольного параллелепипеда

Определение.

Прямоугольный параллелепипед — это многогранная объемная фигура ограничена шестью прямоугольниками.

Куб является частным случаем прямоугольного параллелепипеда.

Изображение прямоугольного параллелепипеда с обозначениями
Рис.1

Основные свойства правильного прямоугольного параллелепипеда

Противоположные грани прямоугольного параллелепипеда параллельны и равны.

Ребра прямоугольного параллелепипеда, которые сходятся в одной вершине взаимно перпендикулярны.

Не параллельные грани прямоугольного параллелепипеда пересекаются под прямым углом.

У прямоугольного параллелепипеда четыре диагонали.

Диагонали прямоугольного параллелепипеда равны между собой и пересекаются в одной точке.

Объем прямоугольного параллелепипеда

Формула. Объем прямоугольного параллелепипеда равна произведению длин его сторон:

V = a · b · c

Площадь поверхности прямоугольного параллелепипеда

Определение. Поверхность прямоугольного параллелепипеда состоит из суммы площадей прямоугольников, ограничивающие его.

Формула. Площадь поверхности прямоугольного параллелепипеда через длины его сторон:

S = 2a·b + 2a·c + 2b·c

Диагональ прямоугольного параллелепипеда

Определение. Диагональ прямоугольного параллелепипеда – это отрезок, соединяющий две не соседние вершины, лежащие на разных гранях.

Формула. Длина диагонали прямоугольного параллелепипеда через длины его сторон:

d = √a2 + b2 + c2

Добавить комментарий