Формула мощности постоянного тока как найти сопротивление

Как посчитать мощность тока

  1. Главная
  2. /
  3. Физика
  4. /
  5. Как посчитать мощность тока

Чтобы посчитать мощность тока (электрическую мощность) воспользуйтесь нашим очень удобным онлайн калькулятором:

Онлайн калькулятор

Мощность тока (Р) или электрическая мощность — физическая величина, которая характеризует скорость передачи или преобразования электрической энергии. В системе СИ единицей измерения мощности тока является ватт (Вт).

Найти мощность зная ток и напряжение

Напряжение: U =В
Сила тока: I =A

Мощность тока: P =

0

Вт

Формула

P = U ⋅ I

Пример

Если электрическое напряжение U = 12 В, а сила тока I = 5 А, то:

Электрическая мощность P = 12 ⋅ 5 = 60 Вт

Найти мощность зная ток и сопротивление

Сила тока: I =A
Сопротивление: R =Ом

Мощность тока: P =

0

Вт

Формула

P = I² ⋅ R

Пример

Если сила тока I = 5 А, а электрическое сопротивление R = 2 Ом, то:

Электрическая мощность P = 5² ⋅ 2 = 50 Вт

Найти мощность зная сопротивление и напряжение

Напряжение: U =В
Сопротивление: R =Ом

Мощность тока: P =

0

Вт

Формула

P = /R

Пример

Если электрическое напряжение U = 12 В, а электрическое сопротивление R = 2 Ом, то:

Электрическая мощность P = 12² : 2 = 72 Вт

См. также

Большинство бытовых приборов, подключаемых к сети, характеризуются таким параметром, как электрическая мощность устройства. С физической точки зрения мощность представляет собой количественное выражение совершаемой работы. Поэтому для оценки эффективности того или иного устройства вам необходимо знать нагрузку, которую он будет создавать в цепи. Далее мы рассмотрим особенности самого понятия и как найти мощность тока, обладая различными характеристиками самого устройства и электрической сети.

Понятие электрической мощности и способы ее расчета

С электротехнической точки зрения она представляет собой количественное выражение взаимодействия энергии с материалом проводников и элементами при протекании тока в электрической цепи. Из-за наличия электрического сопротивления во всех деталях, задействованных в проведения электротока, направленное движение заряженных частиц встречает препятствие на пути следования. Это и обуславливает столкновение носителей заряда, электроэнергия переходит в другие виды и выделяется в виде излучения, тепла или механической энергии в окружающее пространство. Преобразование одного вида в другой и есть потребляемая мощность прибора или участка электрической цепи.

В зависимости от параметров источника тока и напряжения мощность также имеет отличительные характеристики. В электротехнике обозначается S, P и Q, единица измерения согласно международной системы СИ – ватты. Вычислить мощность можно через различные параметры приборов и электрических приборов. Рассмотрим каждый из них более детально.

Через напряжение и ток

Наиболее актуальный способ, чтобы рассчитать мощность в цепях постоянного тока – это использование данных о силе тока и приложенного напряжения. Для этого вам необходимо использовать формулу расчета: P = U*I

Где:

  • P – активная мощность;
  • U – напряжение приложенное к участку цепи;
  • I  — сила тока, протекающего через соответствующий участок.

Этот вариант подходит только для активной нагрузки, где постоянный ток не обеспечивает взаимодействия с реактивной составляющей цепи. Чтобы найти мощность вам нужно выполнить произведение силы тока на напряжение. Обе величины должны находиться в одних единицах измерения – Вольты и Амперы, тогда результат также получится в Ваттах. Можно использовать и другие способы кВ, кА, мВ, мА, мкВ, мкА и т.д., но и параметр мощности пропорционально изменит свой десятичный показатель.

Через напряжение и сопротивление

Для большинства электрических устройств известен такой параметр, как внутреннее сопротивление, которое принимается за константу на весь период их эксплуатации. Так как бытовые или промышленные единицы подключаются к источнику с известным номиналом напряжения, определять мощность достаточно просто. Активная мощность находится из предыдущего соотношения и закона Ома для участка цепи, согласно которого ток на участке прямо пропорционален величине приложенного напряжения и имеет обратную пропорциональность к сопротивлению:

I = U/R

Если выражение для вычисления токовой нагрузки подставить в предыдущую формулу, то получится такое выражение для определения мощности:

P = U*(U/R)=U2/R

Где,

  • P – величина нагрузки;
  • U – приложенная разность потенциалов;
  • R – сопротивление нагрузки.

Через ток и сопротивление

Бывает ситуация, когда разность потенциалов, приложенная к электрическому прибору, неизвестна или требует трудоемких вычислений, что не всегда удобно. Особенно актуален данный вопрос, если несколько устройств подключены последовательно и вам неизвестно, каким образом потребляемая электроэнергия распределяется между ними. Подход в определении здесь ничем не отличается от предыдущего способа, за основу берется базовое утверждение, что электрическая нагрузка рассчитывается как P = U×I, с той разницей, что напряжение нам не известно.

Поэтому ее мы также выведем из закона Ома, согласно которого нам известно, что падение напряжения на каком-либо отрезке линии или электроустановки прямо пропорционально току, протекающему по этому участку и сопротивлению отрезка цепи:

U=I*R

после того как выражение подставить в формулу мощности, получим:

P = (I*R)*I =I2*R

Как видите, мощность будет равна квадрату силы тока умноженной на сопротивление.

Полная мощность в цепи переменного тока

Сети переменного тока кардинально отличаются от постоянного тем, что изменение электрических величин, приводит к появлению не только активной, но и реактивной составляющей. В итоге суммарная мощность будет также состоять активной и реактивной энергии:

Суммарная мощность

Где,

  • S – полная мощность
  • P – активная составляющая – возникает при взаимодействии электротока с активным сопротивлением;
  • Q – реактивная составляющая – возникает при взаимодействии электротока с реактивным сопротивлением.

Также составляющие вычисляются через тригонометрические функции, так:

P = U*I*cosφ

Q = U*I*sinφ

что активно используется в расчете электрических машин.

Треугольник мощностей

Рис. 1. Треугольник мощностей

Пример расчета полной мощности для электродвигателя

Отдельный интерес представляет собой нагрузка, подключенная к трехфазной сети, так как электрические величины, протекающие в ней, напрямую зависят от номинальной нагрузки каждой из фаз. Но для наглядности примера мы не будем рассматривать, как найти мощность несимметричного прибора, так как это довольно сложная задача, а приведем пример расчета трехфазного двигателя.

Особенность питания и асинхронной и синхронной электрической машины заключается в том, что на обмотки может подаваться и фазное и линейное напряжение. Тот или иной вариант, как правило, обуславливается способом соединения обмоток электродвигателя. Тогда мощность будет вычисляться по формуле:

S = 3*Uф*Iф

В случае выполнения расчетов с линейным напряжением, чтобы найти мощность формула примет вид:

Мощность и линейное напряжение

Активная и реактивная мощности будут вычисляться по аналогии с сетями переменного тока, как было рассмотрено ранее.

Теперь рассмотрим вычисления на примере конкретной электрической машины асинхронного типа. Следует отметить, что официальная производительность, указываемая в паспортных данных электродвигателя – это полезная мощность, которую двигатель может выдать при совершении оборотов вала. Однако полезная кардинально отличается от полной, которую можно вычислить за счет коэффициента мощности.

Шильд электродвигателя

Рис. 2. Шильд электродвигателя

Как видите, для вычислений с шильда мы возьмем следующую информацию об электродвигателе:

  • полезная производительность – 3 кВт, а в переводе на систему измерения – 3000 Вт;
  • коэффициент полезного действия – 80%, а в пересчете для вычислений будем пользоваться показателем 0,8;
  • тригонометрическая функция соотношения активных и реактивных составляющих – 0,74%;
  • напряжение, при соединении обмоток треугольником составит 220 В;
  • сила тока при том же способе соединения – 13,3 А.

С таким перечнем характеристик можно воспользоваться несколькими способами:

S = 1,732*220*13,3 = 5067 Вт

Чтобы найти искомую величину, сначала определяем активную составляющую:

P = Pполезная / КПД = 3000/0.8 = 3750 Вт

Далее полную по способу деления активной  на коэффициент cos φ:

S = P/cos φ = 3750/0.74 = 5067 Вт

Как видите, и в первом, и во втором случае искомая величина получилась одинакового значения.

Примеры задач

Для примера рассмотрим вычисление на участках электрической цепи с последовательным и параллельным соединением элементов. Первый вариант предусматривает ситуацию, когда все детали соединяются друг за другом от одного полюса источника питания до другого.

Последовательная расчетная цепь

Рис. 3. Последовательная расчетная цепь

Как видите на рисунке, в качестве источника мы используем батарейку с номинальным напряжением 9 В и три резистора по 10, 20 и 30 Ом соответственно. Так как номинальный ток нам не известен, расчет произведем через напряжение и сопротивление:

P = U2/R = 81 / (10+20+30) = 1.35 Вт

Для параллельной схемы подключения возьмем в качестве примера участок цепи с двумя резисторами и одним источником тока:

Параллельная схема подключения

Рис. 4. Параллельная схема подключения

Как видите, для удобства расчетов нам нужно привести параллельно подключенные резисторы к схеме замещения, из чего получится:

Rобщ = (R1*R2) / (R1+R2) = (10*15) / (10+15) = 6 Ом

Тогда искомый номинал нагрузки мы можем узнать через значение тока и сопротивления:

P = I2*R = 25*6 = 150 Вт

Видео по теме

Содержание

  1. Общие понятия электрической мощности
  2. Определение
  3. Единицы измерения
  4. Формула расчета
  5. Свойства
  6. Связь электрической мощности с напряжением и силой тока
  7. Понятие эффективной мощности и ее значение в электротехнике
  8. Влияние электрической мощности на нагрузку
  9. Методы измерения электрической мощности
  10. Примеры определения мощности тока в электрических системах

Понятие электрической мощности (отдаваемой источником и потребляемой нагрузкой) является одним из самых важных в электротехнике, наряду с напряжением и током. Более того, эта величина объединяет и связывает эти два самых распространенных термина.

Общие понятия электрической мощности

Чтоб понять методы измерения и практического применения этой электрической величины, надо разобраться с теоретическими аспектами.

Определение

При протекании электрического тока по проводнику происходит перенос заряда. В процессе этого переноса электрический ток совершает работу по преодолению взаимодействия носителей заряда с другими частицами вещества. Это взаимодействие проявляется в нагреве проводника, световом излучении, химическом действии тока и т.д.

Чем большую работу производит электрический ток за один и тот же промежуток времени, тем большая электрическая мощность потребовалась для производства этой работы. Отсюда определение мощности – она равна работе электрического тока за промежуток времени, отнесенной к длительности этого промежутка.

Единицы измерения

Единица электрической мощности, принятая в СИ – 1 Ватт. При этой мощности за 1 секунду совершается работа в 1 Джоуль. В различных случаях удобнее применять дольные и кратные единицы:

  • киловатт – 1000 ватт;
  • мегаватт — 1 миллион ватт;
  • милливатт – 0,001 ватт;
  • другие единицы с соответствующими приставками.

Для обозначения мощности (как электрической, так и механической, и любой другой) используется латинская буква P.

Раньше для измерения электрической мощности применялись и внесистемные единицы (включая лошадиную силу). На сегодняшний день они практически вышли из употребления.

В цепях переменного тока, помимо активной мощности, измеряемой в ваттах, измеряют и другие виды электрической мощности – полную (в ВА – вольтамперах) и реактивную (в ВАр – вольтамперах реактивных). Их соотношение с активной мощностью зависит от величиныя и знака реактивности у нагрузки.

Как вычислить мощность в цепях постоянного тока

Сдвиг фаз при индуктивной нагрузке надо учитывать при замерах мощности

Формула расчета

Формула расчета следует из определения электрической мощности – надо совершенную током работу (в джоулях) разделить на время (в секундах), в течение которого совершена эта работа: P=A/t.

Если исходить из того, что мощность – это скорость преобразования энергии, можно вычислить искомую величину, как Р=E/t, где:

  • E – потребленная (преобразованная) энергия;
  • t – промежуток времени, в течение которого происходил расход электрической энергии.

Эта формула на практике применяется нечасто.

Свойства

В практической электротехнике используются некоторые свойства электрической мощности, позволяющие облегчить измерения и упростить измерительные приборы.

Связь электрической мощности с напряжением и силой тока

В реальности формула, использующая отношение работы ко времени ее совершения не используется. Это связано со сложностью непосредственного измерения работы и с неудобством контроля времени. Но если учесть, что работу электрического тока можно вычислить по формуле A=U*I*t, то легко представить формулу для вычисления мощности, как P=U*I*t/t=U*I.

Если известна лишь одна из величин (ток или напряжение), но при этом известно сопротивление нагрузки, формулу легко видоизменить, подставляя в нее низвестную величину, преобразованную по закону Ома (I=U/R). Например, если неизвестен ток, мощность вычисляется, как Р= U*I=U*U/R=U2/R.

Понятие эффективной мощности и ее значение в электротехнике

В электротехнике, как и в механике, существует понятие эффективной мощности. Дело в том, что электрическая мощность подается потребителю не напрямую от сети, а после преобразования (через трансформаторный блок питания, импульсный БП или другое устройство). При преобразовании происходят неизбежные потери мощности, которые зависят от КПД преобразующего устройства.

Естественно, от сети преобразователь потребляет больше, чем отдает в нагрузку, поэтому потребляемая мощность не всегда дает представление о том, возможно ли питание нагрузки от данного преобразователя. Полную информацию дает значение эффективной мощности. Если производитель БП ее не дает, эту величину можно вычислить (или хотя бы оценить) по формуле Рэфф=Pпотр/η, где:

  • Рэфф – эффективная мощность, вт;
  • Рпотр – мощность, потребляемая из сети, вт;
  • η – КПД.

КПД различных преобразующих устройств можно найти в технической литературе.

Влияние электрической мощности на нагрузку

Понятие потребления электрической мощности подразумевает наличие источника этой мощности и ее потребителя. Источник мощности должен как минимум обеспечивать потребление нагрузки плюс потери при транспортировке (нагрев проводов, падение напряжения и т.п.). В противном случае потребитель недополучит электрическую энергию и не сможет произвести работу, которую от него требуется.

Мнение эксперта

Становой Алексей

Инженер-электроник. Работаю в мастерской по ремонту бытовых приборов. Увлекаюсь схемотехникой.

Задать вопрос

В интернете можно найти утверждения, что мощность источника не должна превышать мощность нагрузки, иначе произойдет авария. Конечно же, это не так. Нагрузка, рассчитанная на штатное напряжение источника, будет потреблять ровно ту мощность, на которую рассчитана. Лампочка на 40 ватт спокойно работает при питании от трансформатора, мощностью 400 кВт, который питается от другого трансформатора мощностью 5000 кВт, а в главе цепочки стоит генератор атомной электростанции мощностью 1000 МВт. Другое дело, что на лампочку нельзя подавать напряжение, выше 220 В, иначе ток превысит допустимое значение и действительно произойдет авария. Но этот вопрос лежит несколько в другой плоскости.

Методы измерения электрической мощности

Как показано выше, для вычисления электрической мощности достаточно знать ток и напряжение. Для замеров можно использовать амперметр и вольтметр, перемножив их показания.

Как вычислить мощность в цепях постоянного тока

Принцип измерения электрической мощности

А можно использовать специальный прибор – ваттметр, который замеряет обе величины одновременно и перемножает их. Классический ваттметр электродинамической системы состоит из двух катушек, подвижной и неподвижной. Эти катушки включаются на измерение напряжения и тока, соответственно, параллельно и последовательно с нагрузкой.

Как вычислить мощность в цепях постоянного тока

Два варианта включения ваттметра

При прохождении тока и подаче напряжения обе катушки создают магнитные поля, которые взаимодействуют между собой в определенном направлении. Результирующий вращающий момент пропорционален мощности электрического тока (происходит перемножение величин механическим способом), и он ведет к отклонению стрелки, прикреплённой к подвижной катушке, на определенный угол. Этот угол можно считать по шкале, которая обычно градуируется сразу в единицах мощности.

В современных цифровых измерителях мощности используется тот же принцип, только ток измеряется другим способом. Последовательно с нагрузкой включается шунтовой резистор. Он имеет небольшое сопротивление, и на нагрузку практически не влияет. Когда через шунт идет ток, на нем падает небольшое напряжение, которое, как следует из закона Ома, прямо пропорционально протекающему току. Это напряжение измеряется и пересчитывается в ток.

Замеренные ток и напряжение перемножаются, пересчитываются в мощность (при этом учитывается угол сдвига между током и напряжением), масштабируются и выводятся на дисплей в удобной для восприятия форме.

Измерить среднюю потребляемую мощность за определенный промежуток времени можно с помощью счетчика электрической энергии. Для этого надо воспользоваться формулой P=∆E/t. Здесь ∆E – разница в показаниях счетчика за период времени, а t – длительность этого периода.

Как вычислить мощность в цепях постоянного тока

Измерение тока в цифровом ваттметре

Таким способом можно измерить электрическую мощность в цепях постоянного тока. В цепях переменного тока подобным методом измеряется так называемая полная мощность (без учета сдвига фаз между током и напряжением), что не всегда информативно.

Рекомендуем прочесть:

  • Как замерить ампераж тока мультиметром
  • Как найти силу тока по формулам и приборам

Примеры определения мощности тока в электрических системах

Самый тривиальный случай измерения мощности – если у источника электрической энергии (блока питания и т.п.) имеется амперметр и вольтметр. Тогда достаточно перемножить измеренные значения. Например, на фото показан измерительный прибор блока питания. По формуле P=U*I легко определить, что мощность постоянного тока, отдаваемая источником (и потребляемая нагрузкой) равна P=12,4 В х 0,1 А=1,24 ватта.

Как вычислить мощность в цепях постоянного тока

По индицируемым значениям тока и напряжения можно вычислить мощность

Если надо постоянно контролировать мощность, лучше установить стационарный ваттметр. С него можно в любое время считать показания и использовать их для анализа и расчетов.

Как вычислить мощность в цепях постоянного тока

Щитовой стационарный трехфазный ваттметр

Существуют и бытовые измерители мощности. Они включаются в обычную бытовую розетку 220 вольт, а уже в розетку прибора включается нагрузка. Это может быть компьютер, настольная или напольная лампа – любой бытовой электроприбор.

Как вычислить мощность в цепях постоянного тока

Внутренняя схема бытового ваттметра

Ваттметр может собирать статистику замеров за определенный временной период, обрабатывать показания, при необходимости выдавать на дисплей значения других электрических величин (тока, напряжения). С его помощью можно измерить фактическую мощность бытовых электроприборов и оценить их энергопотребление. Проанализировав режимы работы, можно оптимизировать затраты на оплату электрической энергии.

Как вычислить мощность в цепях постоянного тока

Измерение мощности ноутбука в режиме реального времени

Разобравшись с понятием и сущностью электрической мощности, можно использовать его не только в теории, но и на практике. Например, знание фактической потребляемой мощности потребителей поможет минимизировать платежи за электроэнергию.

Цепь постоянного тока (или, строго говоря, цепь без комплексного сопротивления)

Применимость формул: пренебрегаем зависимостью сопротивлений от силы тока.

  • P = мощность (Ватт)
  • U = напряжение (Вольт)
  • I = ток (Ампер)
  • R = сопротивление (Ом)
  • r = внутреннее сопротивление источнка ЭДС
  • ε = ЭДС источника
  • Тогда для всей цепи:
    • I=ε/(R +r) закон Ома для всей цепи.

И еще ниже куча формулировок закона Ома для участка цепи :

Основные электротехнические формулы. Мощность. Сопротивление. Ток. Напряжение. Закон Ома

Электрическое напряжение:

  • U = R* I – Закон Ома для участка цепи
  • U = P / I
  • U = (P*R)1/2

Электрическая мощность:

  • P= U* I
  • P= R* I2
  • P = U 2/ R

Электрический ток:

  • I = U / R
  • I = P/ E
  • I = (P / R)1/2

Электрическое сопротивление:

  • R = U / I
  • R = U 2/ P
  • R = P / I2

НЕ ЗАБЫВАЕМ: Законы Кирхгофа они же Правила Кирхгофа для тока и напряжения.

Цепь переменного синусоидального тока c частотой ω.

Применимость формул: пренебрегаем зависимостью сопротивлений от силы тока и частоты.

Напомним, что любой сигнал, может быть с любой точностью разложен в ряд Фурье, т.е. в предположении, что параметры сети
частотнонезависимы – данная формулировка применима ко всем гармоникам любого сигнала.

Закон Ома для цепей переменного тока:

  • U=I*Z

    • где:
      • Естественно, применительно к цепям переменного тока можно говорить и об активной/реактивной мощности.
  • U = U0eiωt  напряжение или разность потенциалов,
  • I  сила тока,
  • Z = Reiφ  комплексное сопротивление (импеданс)
  • R = (Ra2+Rr2)1/2  полное сопротивление,
  • Rr = ωL — 1/ωC  реактивное сопротивление (разность индуктивного и емкостного),
  • Rа  активное (омическое) сопротивление, не зависящее от частоты,
  • φ = arctg Rr/Ra — сдвиг фаз между напряжением и током.

Разомкнутые и замкнутые цепи

Начнем с самой простой схемы фонарика и от нее уже будет отталкиваться

Мощность электрического тока

Здесь мы видим три радиоэлемента: источник питания Bat, выключатель S и кругляшок с крестиком внутри, то есть лампочку. Все это вместе называется электрической цепью. Так как по цепи не бежит электрический ток, то такую цепь называют разомкнутой.

Но стоит нам щелкнуть выключатель, и у нас тут же загорится лампочка. Такая цепь уже будет называться замкнутой.

Мощность электрического тока

Электроэнергия и источник питания

Теперь давайте подробнее разберем нашу схему.  Немного развернем ее в пространстве для удобства, игнорируя ГОСТ по обозначению источника питания:

Мощность электрического тока

Как мы помним с прошлой статьи, электрический ток бежит от точки с бОльшим потенциалом, то есть от плюса, к точке с мЕньшим потенциалом, то есть к минусу. Или говоря простым языком: от плюса к минусу. В настоящий момент у нас выключатель разомкнут. Можно сказать, что мы «оборвали» нашу цепь выключателем. В среде электриков и электронщиков говорят, что цепь » в обрыве». Ток не бежит, лампочка не горит.

Но вот мы ловким движением руки щелкаем выключатель и у нас цепь замыкается:

Мощность электрического тока

Дорога для электрического тока открыта, и он течет от плюса к минусу через лампочку накаливания, которая начинает ярко светиться.

Вроде бы все понятно, но не совсем. Кто или что заставляет светиться лампочку? Мало того, что она светит, она еще и греет!

Мощность электрического тока

Что самое первое появилось во Вселенной? Говорят, что время, хотя я думаю, что энергия). Энергия ниоткуда просто так не берется и никуда просто так не исчезает. Это и есть закон сохранения энергии, так что «побрейтесь» фанаты вечных двигателей).

В данном опыте у нас лампочка светит и греет. Получается, что лампочка излучает и тепловую и световую энергию. Вы ведь не забыли, что световые лучи передают энергию? В быту, например, мы используем солнечные панели, чтобы из лучиков получить электрический ток.

Странно наверное что я пишу в середине статьи не по теме, НООО прочитай про протоны.

Но теперь вопрос такой. Если лампочка излучает световую и тепловую энергию, то откуда она ее получает? Разумеется, от источника питания. Фраза «источник питания» уже говорит сама за себя. Берет энергию наша лампочка прямо от источника питания через проводкИ. Энергия, которая течет через проводочки, называется электроэнергией.

А откуда берет электроэнергию источник питания? Здесь уже есть разные способы добычи электроэнергии. Это может быть падающий поток воды, который крутит мощные лопасти вертушки, которая работает как генератор. Это могут быть химические реакции в батарейках и акумах. Это может быть даже солнечная панелька или вообще какой-нибудь элемент, типа Пельтье (элемент Пельтье), который может вырабатывать электрический ток под действием разности температур. Способов много, а эффект один. Сделать так, чтобы появилась ЭДС (Что такое).

Электрический ток и нагрузка

В дело идет Закон Ома. Как я уже писал, это самый значимый закон во всей электронике. Что такое по сути лампочка? Это вольфрамовый проводок в стеклянной колбе с вакуумом. Вольфрам — это металл, следовательно, он может через себя проводить электрический ток. Но весь прикол в том, что при определенном напряжении он  раскаляется и начинает светиться. То есть отдавать энергию в пространство в виде тепла и излучения.

В холодном состоянии вольфрамовая нить обладает меньшим сопротивлением, чем в раскаленном, более чем в десять раз. Следовательно, лампочка — это просто как сопротивление для электрической цепи. В этой статье я взял лампочку, чтобы визуально показать нагрузку. Нагрузка — от слова «нагружать». Источнику питания не нравится, когда ему приходится отдавать электроэнергию. Он любит работать без нагрузки 😉

Теперь давайте представим все это с точки зрения гидравлики и механики.

Имеем трубу, по которой бурным поток течет вода. К трубе приделана вертушка, типа водяного колеса. Лопасти вертушки крутят вал.

Мощность электрического тока

Рисунок я чертил по всем догмам черчения: главный вид, и справа его разрез.

Если к валу ничего не цепляется, то поток воды бурно бежит по трубе и крутит колесо, а оно в свою очередь крутит вал. Такой режим можно назвать холостым режимом работы водяного колеса, то есть режимом без нагрузки.

Но что будет, если мы начнем использовать вращение вала себе во благо? Например, соединим с помощью муфты вал водяного колеса с валом мини-мельницы?

Мощность электрического тока

Думаю, многие из моих читателей сразу догадаются, что водяное колесо начнет притормаживать, так как мы его заставили работать. Крутиться со скоростью холостого хода у нашего вала уже не получится. Скорость будет меньше. То есть в нашем случае у нас на валу есть нагрузка. Что же будет происходить с потоком воды в трубе? Он будет тормозиться, так как лопасти вала не дадут водичке спокойно бежать по трубе. Поэтому, общий поток воды в трубе будет меньше, чем ДО холостого хода вала.

А если нагрузить вал, чтобы тот поднимал  грузовой лифт?

Мощность электрического тока

Думаю, вся конструкция тут же встанет колом. То есть большая нагрузка станет непосильна для вала. А если бы мы сделали лопасти вертушки такие, чтобы они полностью перекрывали диаметр трубы, то поток жидкости вообще бы остановился.

Давайте разберем еще один пример для понимания. Все тот же самый рисунок:

Мощность электрического тока

Предположим, что мы прицепили к валу наждак, а электродвигатель убрали с этой конструкции. И вот мы решили что-нибудь шлифануть.

Мощность электрического тока

Итак, что у нас в результате получается? Если мы будем слабо давить на шлифовальный круг, то у нас круг начнет притормаживаться и уже  будет крутиться с другой скоростью. Если мы сильнее будем давить на круг, то скорость вала еще больше упадет. Если же мощность нашего вала слабовата, мы можем добиться того, что при сильном давлении на круг вообще остановить вал. Тогда и точиться ничего не будет…

Давайте снова вернемся к мини-мельнице

Мощность электрического тока

Что будет если поток воды в трубе увеличить в несколько  раз? Мельница будет крутиться так, что ее порвет нахрен! А  если поток воды в трубе будет очень слабый? Разумеется, мельница будет молоть одно-два зернышка в час. Хотя, опять же, с большим потоком воды мы вполне можем поднять лифт.

Понимаете к чему я веду? Все завязано друг с другом! Давление в трубе, скорость потока жидкости и нагрузка… Все они связаны воедино.

Мощность электрического тока

Для того, чтобы это показать что к чему, мы возьмем две лампы на 12 Вольт, но разной мощности. На блоке питания выставляю также 12 Вольт и собираю все это дело по схеме, которая мелькала в начале статьи

Мощность электрического тока

Мой блок питания может выдать в нагрузку 150 Ватт, не парясь. Беру лампочку от мопеда и цепляю ее к блоку питания

Мощность электрического тока

Смотрим потребление тока. 0,71 Ампер

Мощность электрического тока

Высчитываем сопротивление раскаленной нити лампочки из закона Ома I=U/R, отсюда R=U/I=12/0,71=16,9 Ом.

Беру галогенную лампу от фары авто и также цепляю ее к блоку питания

Мощность электрического тока

Смотрим потребление. 4,42 Ампера

Мощность электрического тока

Аналогично высчитываем сопротивление нити лампы. R=U/I=12/4,42=2,7 Ом.

А теперь давайте посчитаем, какая лампочка больше всех Ватт «отбирает»  у источника питания. Вспоминаем школьную формулу P=UI. Итак, для маленькой лампочки мощность составит P=12×0,71=8,52 Ватта. А для большой лампочки мощность  будет Р=12х4,42=53 Ватта. Ого! У нас получилось, что лампочка, которая обладала меньшим сопротивлением, на самом деле очень даже прожорливая.

Итак, если кто не помнит, что такое мощность, могу напомнить. Мощность — это отношение какой-то полезной работы к времени, в течение которого эта работа совершалась. Например, надо вскопать яму определенных размеров. Вы с лопатой, а ваш друг — на экскаваторе:

Мощность электрического токаМощность электрического тока

Кто быстрее справится  с задачей за  одинаковый промежуток времени? Разумеется экскаватор. В этом случае, можно сказать, что его мощность намного больше, чем мощность человека с лопатой.

А теперь представьте, что нам надо полностью под ноль сточить эту железяку:

Мощность электрического тока

Подумайте вот над таким вопросом… У нас есть в запасе 5 мин и нам надо сточить железяку по-максимому. В каком случае железяка сточится быстрее всего: если прижимать ее к абразивному кругу со всей дури, прижимать слегка, либо прижимать в полсилы? Не забывайте, что у нас абразивный круг подцеплен к валу, который крутит поток воды в трубе. И да, труба у нас небольшого диаметра.

Кто ответил, что если прижимать в полсилы, то оказался прав. Железяка в этом случае сточится быстрее.  Если прижимать ее со всей дури, то можно вообще остановить круг. Еще раз, что у нас такое мощность? Полезная работа, совершаемая за какой-то промежуток времени. А в нашем опыте полезная работа это и есть стачивание железяки по максималке. Также не забывайте и  тот момент, что если мы будем слегка прижимать железяку, то мы будем ее стачивать пол дня. Поэтому, золотая середина  — это давить железяку в полсилы.

Ну вот мы и снова переходим к электронике 😉

Поток воды — сила тока, давление в трубе — напряжение, давление железяки на круг — сопротивление.  И что в результате мы получили? А то, что лампочка с меньшим сопротивлением обладает большей мощностью, чем лампочка с большим сопротивлением. Не трудно догадаться, если просто посмотреть на фото, но вживую эффект лучше

Мощность электрического тока

Мощность электрического тока

Но обязательно ли то, что чем меньше сопротивление, тем больше мощности выделяется на нагрузке? Конечно же нет. Во всем нужен расчет, как  и в прошлом опыте, где мы стачивали железяку за определенное время.

И еще один фактор, конечно, тоже надо учитывать. Это давление в трубе. Прикиньте, точим-точим мы железяку, и вдруг давление в трубе стало повышаться. Может быть переполнилась башня, или кто-то открыл краник на полную катушку. Что станет с наждаком? Его обороты ускорятся,  так как сила потока воды в трубе увеличится,  а следовательно, мы еще быстрее сточим нашу железку.

Формула мощности для постоянного электрического тока

Поэтому формулы мощности в электронике имеют вот такой вид:

Мощность электрического тока

Отсюда  A=IUt

где,

А — это полезная работа, Джоули

t  — время,  секунды

U — напряжение, Вольты

I — сила тока, Амперы

P — собственно сама мощность, Ватты

R — сопротивление, Омы

Как вы можете заметить, формула P=I2 R говорит нам о том, что не всегда на маленьком сопротивлении вырабатывается большая мощность и то, что мощность очень сильно зависит от силы тока. А как поднять силу тока? Добавить напряжения ;-). Закон Ома работает всегда и везде.

А из формулы P=U2/R, можно увидеть, что чем меньше сопротивление и больше напряжение в цепи, тем больше мощность будет выделяться на нагрузке. А что такое выделение мощности на нагрузке? Это может быть тепло, свет, какая-либо механическая работа и тд. Короче говоря, выработка какой-либо полезной энергии для наших нужд.

Добавить комментарий