Формула площади как найти площадь 3 класс

Объем, площадь, периметр. Задачи для начальной школы

Чтобы найти площадь прямоугольника, надо его ширину умножить на длину.

Формула площади

S = a * b

Чтобы найти периметр прямоугольника, надо сложить все его стороны.

Формула периметра

Р = а * 2 + b * 2 или Р = (а + b ) * 2

Формулы площади и периметра для квадрата выглядят так:

S = a * a

Р = а * 4

Чтобы найти объем прямоугольного параллелепипеда, надо умножить его длину на ширину и высоту.

Формула объема

V = a * b * c

Формула объема для куба

V = a * a * a

Задачи

  • Длина прямоугольника равна 5 см, а ширина – 4 см. Найдите площадь и периметр прямоугольника.
  • Сторона квадрата равна 20 см. Найдите площадь и периметр квадрата.
  • Вычислите периметр квадрата со стороной 6 дм.
  • Вычислите площадь прямоугольника, длины сторон которого равны 12 мм и 8 мм.
  • Длина прямоугольника равна 30 см, ширина – на 10 см меньше. Найдите Р и S этого прямоугольника.
  • Длина одной стороны прямоугольника 4 см, а ширина в 2 раза больше. Найдите периметр и площадь прямоугольника.
  • Сторона квадрата равна 10 дм. Чему равен периметр?
  • Ширина прямоугольника 9 дм, а длина в 2 раз больше ширины. Найдите Р и S этого прямоугольника.
  • Площадь прямоугольника 54 см², его длина 9 см. Чему равна ширина прямоугольника?
  • Периметр квадрата равен 20 см. Найдите его площадь.
  • Площадь прямоугольника равна 360 см², его длина 6 см. Найдите периметр этого прямоугольника.
  • Периметр прямоугольника равен 40 дм. Ширина – 5 дм. Найдите его площадь?
  • Сад около дома имеет ширину 20 м, а длину – 30 м. Какой длины надо поставить вокруг сада. Какова площадь сада?
  • Прямоугольный параллелепипед имеет следующие грани – 6 см, 8 см, 10см. Найдите объем параллелепипеда.
  • Высота комнаты 3 м, ширина 6 м, а длина 10 м. Сколько кубических метров воздуха находится в комнате? Найдите площадь пола, потолка, стен?
  • Найдите объем бассейна, если его глубина 3 м, ширина 12м, длина 20 м.
  • Длина аквариума 50 см, ширина – 30 см, высота 40 см. Сколько литров воды можно в него налить (до краев)?
  • Найдите объем книги. Толщина – 2 см, ширина – 15 см, а длина – 20 см.

Также посмотрите дополнительные задания по темам:

Задания на таблицу умножения и деления.

Уравнения простые и составные, 3 класс.

Карточки для развития внимания на каждый день (примеры с несколькими действиями плюс упражнение на внимание).

Единицы времени.

Примеры на порядок действий (примеры с несколькими действиями).

Единицы длины и Единицы веса.

Математика, 3 класс

Урок №22. Площадь прямоугольника

Перечень вопросов, рассматриваемых в теме:

  1. Как вычислить площадь прямоугольника?
  2. В каких единицах измеряется площадь?
  3. Какими способами можно сравнить геометрические фигуры?

Глоссарий по теме:

Площадь – внутренняя часть любой плоской геометрической фигуры.

Квадрат – это прямоугольник, у которого все стороны равны.

Прямоугольник – это четырёхугольник, у которого все углы прямые.

Квадратный сантиметр – квадрат со стороной 1 сантиметр.

Основная и дополнительная литература по теме урока:

1. Моро М. И., Бантова М. А. и др. Математика 3 класс. Учебник для общеобразовательных организаций М.; Просвещение, 2017. – с. 60-61.

2. Рудницкая В. Н. Тесты по математике:3 класс. М.: Издательство «Экзамен», 2016 с. 38-43.

3. Волкова Е. В. ВПР. Математика 3 класс Практикум по выполнению типовых заданий. ФГОС .М.: Издательство «Экзамен», 2018, с. 36-53.

Теоретический материал для самостоятельного изучения

Упоминание о первых геометрических фигурах встречается еще у древних египтян и древних шумеров. Учёными-археологами (они ищут разные исторические древности) был найден папирусный свиток (бумага древних египтян, изготавливаемая из растения папирус) с геометрическими задачами, в которых упоминались геометрические фигуры. И каждая из них называлась каким-то определенным словом. Одним определенным словом называлась фигура прямоугольник независимо от того какие стороны были у этого прямоугольника. А если у прямоугольника все стороны были одинаковые, то такой прямоугольник имел специальное название – квадрат.  Таким образом, значит, что уже в те далекие времена люди имели представление о геометрии и знали изучаемые этой наукой фигуры. Название «геометрическая фигура» придумали древние греки. И названия всем геометрическим фигурам дали тоже древнегреческие учёные.

Найдём площадь геометрической фигуры.

Чтобы найти площадь фигуры, надо узнать сколько раз в фигуре поместится квадрат со стороной 1 см. Площадь этой геометрической фигуры составляет 18 квадратов. Для удобства подсчёта количество квадратов можно воспользоваться знаниями таблицы умножения. По 6 взять 3 раза получится 18 квадратов.

Найдём площадь прямоугольника со сторонами 6 см и 3 см.

Для этого достаточно умножить длину на ширину. 6 ∙ 3 = 18 см2

Таким образом, формулируем вывод: чтобы найти площадь прямоугольника, надо длину умножить на ширину.

S = a ∙ b

S – площадь

a – длина

b – ширина

Задания тренировочного модуля:

1. Заполните пропуски в таблице.

а

5

6

3

b

8

9

S

15

56

24

Правильный ответ:

а

5

7

6

3

b

3

8

9

8

S

15

56

54

24

2. Длина прямоугольника 8см, ширина 4 см. Чему равна площадь прямоугольника? Выделите правильный ответ.

12 см; 32 см; 24 см2; 32 см2; 24; 12 см2.

Правильный ответ: 32см2.

Как найти площадь четырехугольника 3 класс?

Что такое площадь для 3 класса?

Площадь – внутренняя часть любой плоской геометрической фигуры. Квадрат – это прямоугольник, у которого все стороны равны. . Квадратный сантиметр – квадрат со стороной 1 сантиметр.

Какая формула у площади квадрата?

S = a × a = a 2 , где S — площадь, a — сторона. Эту формулу проходят в 3 классе.

Что такое площадь как ее найти?

Когда известно значение длины и ширины фигуры

Для вычисления необходимо умножить их друг на друга. S = a × b, где S — площадь; a, b — длина и ширина. Проверить полученный результат поможет онлайн-калькулятор площади прямоугольника.

Как найти площадь прямоугольного треугольника в 3 классе?

Вывод: чтобы найти площадь прямоугольного треугольника, нужно катеты перемножить и произведение разделить на 2.
.
закреплять материал, изученный на предыдущих уроках:

  1. нахождение части от числа и числа от части,
  2. нахождение площади прямоугольника,
  3. нахождение процентов.

Площадь четырехугольника

Площадь произвольного четырехугольника, формулы и калькулятор для вычисления в режиме онлайн. Для вычисления площади произвольного четырехугольника применяются различные формулы, в зависимости от известных исходных данных. Ниже приведены формулы и калькулятор, который поможет вычислить площадь произвольного четырехугольника или проверить уже выполненные вычисления.

В окончании статьи приведены ссылки для вычисления частных случаев четырехугольников: квадрата, трапеции, параллелограмма, прямоугольника, ромба.

Площадь четырехугольника по диагоналям и углу между ними

Площадь четырехугольника через стороны и углы между этими сторонами

При вычислении площади четырехугольника с использованием данной формулы, необходимо предварительно вычислить полупериметр четырехугольника по формуле:

Площадь четырехугольника вписанного в окружность, вычисляемая по Формуле Брахмагупты

Данная формула справедлива только для четырехугольников, вокруг которых можно описать окружность.

При вычислении площади четырехугольника с использованием данной формулы, необходимо предварительно вычислить полупериметр четырехугольника по формуле:

Площадь четырехугольника в который можно вписать окружность

Данная формула справедлива только для четырехугольников, в которые можно вписать окружность. Вписанная окружность должна иметь точки соприкосновения со всеми четырьмя сторонами четырехугольника.

При вычислении площади четырехугольника с использованием данной формулы, необходимо предварительно вычислить полупериметр четырехугольника по формуле:

Площадь четырехугольника в который можно вписать окружность, определяемая через стороны и углы между ними

Данная формула справедлива только для четырехугольников, в которые можно вписать окружность. Вписанная окружность должна иметь точки соприкосновения со всеми четырьмя сторонами четырехугольника.

Если в исходных данных угол задан в радианах, то для перевода в градусы вы можете воспользоваться «Конвертером величин». Или вычислить самостоятельно по формуле: 1 рад × (180/π) ° = 57,296°

Таблица с формулами площади четырехугольника

исходные данные
(активная ссылка для перехода к калькулятору)
эскиз формула
1 диагональ и угол между ними
2 стороны и углы между этими сторонами
3 стороны
(по Формуле Брахмагупты)
4 стороны и радиус вписанной окружности
5 стороны и углы между ними

Площадь частных случаев четырехугольников

Для вычисления частных случаев четырехугольников можно воспользоваться формулами и калькуляторами, приведенными в других статьях сайта:

Определения

Четырехугольник – это геометрическая плоская фигура, образованная четырьмя последовательно соединенными отрезками.

Площадь – это численная характеристика, характеризующая размер плоскости, ограниченной замкнутой геометрической фигурой.

Площадь четырехугольника – это численная характеристика, характеризующая размер плоскости, ограниченной геометрической фигурой, образованной четырьмя последовательно соединенными отрезками.

Площадь измеряется в единицах измерения в квадрате: км 2 , м 2 , см 2 , мм 2 и т.д.

Формулы вычисления площади произвольного четырёхугольника

В школьных математических заданиях часто требуется определить площадь четырёхугольника. Все довольно просто, если задан частный случай фигуры — квадрат, ромб, прямоугольник, трапеция, параллелограмм, ромбоид. В случае же произвольного четырёхугольника все несколько сложнее, но также вполне доступно для среднего школьника. Ниже мы изучим различные методы расчётов площади произвольных четырёхугольников, запишем формулы и рассмотрим различные вспомогательные примеры.

Определения и соглашения

В приведённой ниже таблице будут указаны определения и договорённости, которые будут использоваться в дальнейшем во время наших рассуждений.

  1. Четырёхугольник – это фигура из четырёх точек (вершин), из которых любые три не лежат на одной прямой, и четырёх отрезков (сторон) последовательно их соединяющих.
  2. Диагональ — отрезок, соединяющий вершины многоугольника не лежащие на одной стороне (её обозначение – латинская буква d).
  3. Площадь фигуры — это численное значение территории, заключённой внутри многоугольника (её обозначение – латинская буква S).
  4. Синус угла — это число равное отношению противоположного катета к гипотенузе в прямоугольном треугольнике. (её обозначение – запись sin).
  5. Косинус угла — это число равное отношению прилежащего катета к гипотенузе в прямоугольном треугольнике. В дальнейшем в статье для его обозначения будем использовать латинскую запись cos.
  6. Описанная окружность — это окружность, которой принадлежат все вершины многоугольника ( её радиуса обозается буквой R).
  7. Вписанная окружность — это окружность, которая касается всех сторон многоугольника. В дальнейшем в статье для обозначения её радиуса будем использовать латинскую букву r.
  8. Угол между сторонами a и b будем обозначать следующей записью (a,b).

Нахождение площади четырёхугольника различными способами и методами

Узнаем как найти площадь четырёхугольника когда даны его диагонали и образуемый при их пересечении острый угол. Тогда площадь четырёхугольника будет вычисляться по формуле: S = 1/2*d1*d2*sin(d1,d2).

Рассмотрим пример. Пусть d1 = 15 сантиметров, d2 = 12 сантиметров, и угол между ними 30 градусов. Определим S. S = 1/2*15*12*sin30 = 1/2*15*12*1/2 = 45 сантиметров квадратных.

Теперь пусть даны стороны и противолежащие углы четырёхугольника.

Пусть a, b, c, d известные стороны многоугольника; p – его полупериметр. Корень квадратный выражения условимся обозначать как rad (от латинского radical). Формула площади четырёхугольника будет находиться по формуле: S = rad(( p − a ) ( p − b ) ( p − c ) ( p − d ) − a b c d ⋅ c o s^2( (a,b) + (c,d))/2), где p = 1/2*(a + b + c + d).

На первый взгляд, формула кажется очень сложной и вычурной. Однако ничего сложного здесь нет, что мы и докажем, рассмотрев пример. Пусть данные нашего условия следующие: a = 18 миллиметров, b = 23 миллиметра, c = 22 миллиметра, d = 17 миллиметров. Противолежащие углы будут равны (a,b) = 0,5 градуса и (c,d) = 1,5 градуса. Для начала находим полупериметр: p = 1/2*(18 + 23 + 22 + 17) = 1/2*80 = 40 миллиметров.

Теперь найдём квадрат косинуса полусуммы противолежащих углов: c o s^2( (a,b) + (c,d))/2) = c o s^2(0,5 + 1,5)/2 = c o s1*c o s1 = (1/2)*(1/2) = 0,9996.

Подставим полученные данные в нашу формулу, получим: S = rad((40 – 18)*(40 – 23)*(40 – 22)*(40 – 17) – 18*23*22*17*0,97) = rad(22*17*18*23 – 18*23*22*17*1/4) = rad((22*17*18*23*(1 – 0,9996)) = rad(154836*0,0004) = rad62 = 7,875 миллиметра квадратного.

Разберёмся как находить площадь с помощью вписанной и описанной окружностей. При решении задач данной темы имеет смысл сопровождать свои действия вспомогательным рисунком, хотя это требование и не является обязательным.

Если есть вписанная окружность и нужно найти площадь четырёхугольника формула имеет вид:

Снова возьмём на рассмотрение пример: a = 16 метров, b = 30 метров, c = 28 метров, d = 14 метров, r = 6 метров. Подставим аши значения в формулу, получим:

S = ((16 +30 + 28 + 14)/2)*6 = 44*6 = 264 метров квадратных.

Теперь займёмся вариантом когда окружность описана вокруг четырёхугольника. Здесь мы сможем воспользоваться следующей формулой:

S = rad((p − a )*( p − b )*( p − c )*( p − d ), где p равно половине длины периметра. Пускай в нашем случае стороны имеют следующие значения a = 26 дециметров, b = 35 дециметров, c = 39 дециметров, d = 30 дециметров.

Первым делом определим полупериметр, p = (26 + 35 + 39 + 30)/2 = 65 дециметров. Подставим найденное значение в нашу формулу. Получим:

S = rad((65 – 26)*(65 – 35)*(65 – 39)*(65 – 30)) = rad(39*30*26*35) = 1032 (округлённо) дециметров квадратных.

Заключение

Внимательно изучив все вышеизложенное, можно сделать вывод — определение площади произвольного четырёхугольника с разными сторонами сложнее, чем у них же специальных видов – квадрата, прямоугольника, ромба, трапеции, параллелограмма. Однако внимательно изучив все приведённые методы, можно с лёгкостью решать задачи необходимые для школьников. Сведём все наши формулы в одну таблицу:

  1. S = 1/2*d1*d2*sin(d1,d2);
  2. S = rad(( p − a )*( p − b )*( p − c )*( p − d ) − a*b*c*d*c o s^2( (a,b) + (c,d))/2), где p = 1/2*(a + b + c + d);
  3. S = ((a + b+ c + d)/2)*r

S = rad((p − a )*( p − b )*( p − c )*( p − d ), где p равно половине периметра​.

Таким образом, реально сложной является только формула номер 2, но и она вполне доступна, при условии хорошего понимания данных в статье определений и соглашений.

Видео

Разобраться в этой теме вам поможет видео.

[spoiler title=”источники:”]

http://doza.pro/art/math/geometry/area-tetragon

http://liveposts.ru/articles/education-articles/matematika/formuly-vychisleniya-ploshhadi-proizvolnogo-chetyryohugolnika

[/spoiler]

Периметр – сумма длин всех сторон фигуры.

Нахождение периметра

Р ф. = а + b + c + …

Р пр. = (а + b) · 2

Р кв. = а  · 4

Чтобы найти площадь фигуры, надо длину умножить на ширину.

Нахождение площади

S пр. = а  ·  b

S кв. = а · а

Периметр – сумма длин всех сторон фигуры.

Нахождение периметра

Р ф. = а + b + c + …

Р пр. = (а + b) · 2

Р кв. = а  · 4

Чтобы найти площадь фигуры, надо длину умножить на ширину.

Нахождение площади

S пр. = а  ·  b

S кв. = а · а

Периметр – сумма длин всех сторон фигуры.

Нахождение периметра

Р ф. = а + b + c + …

Р пр. = (а + b) · 2

Р кв. = а  · 4

Чтобы найти площадь фигуры, надо длину умножить на ширину.

Нахождение площади

S пр. = а  ·  b

S кв. = а · а

Периметр – сумма длин всех сторон фигуры.

Нахождение периметра

Р ф. = а + b + c + …

Р пр. = (а + b) · 2

Р кв. = а  · 4

Чтобы найти площадь фигуры, надо длину умножить на ширину.

Нахождение площади

S пр. = а  ·  b

S кв. = а · а

Периметр – сумма длин всех сторон фигуры.

Нахождение периметра

Р ф. = а + b + c + …

Р пр. = (а + b) · 2

Р кв. = а  · 4

Чтобы найти площадь фигуры, надо длину умножить на ширину.

Нахождение площади

S пр. = а  ·  b

S кв. = а · а

Периметр – сумма длин всех сторон фигуры.

Нахождение периметра

Р ф. = а + b + c + …

Р пр. = (а + b) · 2

Р кв. = а  · 4

Чтобы найти площадь фигуры, надо длину умножить на ширину.

Нахождение площади

S пр. = а  ·  b

S кв. = а · а

Периметр – сумма длин всех сторон фигуры.

Нахождение периметра

Р ф. = а + b + c + …

Р пр. = (а + b) · 2

Р кв. = а  · 4

Чтобы найти площадь фигуры, надо длину умножить на ширину.

Нахождение площади

S пр. = а  ·  b

S кв. = а · а

Периметр – сумма длин всех сторон фигуры.

Нахождение периметра

Р ф. = а + b + c + …

Р пр. = (а + b) · 2

Р кв. = а  · 4

Чтобы найти площадь фигуры, надо длину умножить на ширину.

Нахождение площади

S пр. = а  ·  b

S кв. = а · а

Периметр – сумма длин всех сторон фигуры.

Нахождение периметра

Р ф. = а + b + c + …

Р пр. = (а + b) · 2

Р кв. = а  · 4

Чтобы найти площадь фигуры, надо длину умножить на ширину.

Нахождение площади

S пр. = а  ·  b

S кв. = а · а

Периметр – сумма длин всех сторон фигуры.

Нахождение периметра

Р ф. = а + b + c + …

Р пр. = (а + b) · 2

Р кв. = а  · 4

Чтобы найти площадь фигуры, надо длину умножить на ширину.

Нахождение площади

S пр. = а  ·  b

S кв. = а · а

Периметр – сумма длин всех сторон фигуры.

Нахождение периметра

Р ф. = а + b + c + …

Р пр. = (а + b) · 2

Р кв. = а  · 4

Чтобы найти площадь фигуры, надо длину умножить на ширину.

Нахождение площади

S пр. = а  ·  b

S кв. = а · а

Периметр – сумма длин всех сторон фигуры.

Нахождение периметра

Р ф. = а + b + c + …

Р пр. = (а + b) · 2

Р кв. = а  · 4

Чтобы найти площадь фигуры, надо длину умножить на ширину.

Нахождение площади

S пр. = а  ·  b

S кв. = а · а

  1. Главная
  2. Справочники
  3. Справочник по математике для начальной школы
  4. Основы геометрии
  5. Площадь фигуры

В этом разделе мы познакомимся с новым математическим понятием: с площадью фигуры.

Площадь – это часть плоскости, ограниченная замкнутой ломаной или кривой линией

Ты знаешь другие понятия, которые тоже называют словом ПЛОЩАДЬ.

Например, площадь в городе  – это чаще всего красивое место с клумбами, фонтаном и памятниками.

Посевная площадь – это участок земли, предназначенный для сельскохозяйственных целей.


Сравнение площадей фигур

При сравнении площади фигур, мы узнаём, больше или меньше места занимает данная фигура на плоскости.

Например, сравним площади двух фигур: треугольника и круга.

Мы видим, что площадь треугольника больше площади круга. Это видно на глаз, то есть первый способ сравнения площадей фигур: на глазок.


Сравнение площадей способом наложения

Иногда на глаз трудно определить, площадь какой фигуры больше. Давай сравним площади двух треугольников:

Совместим фигуры так, чтобы одна фигура полностью поместилась в другой.

Мы видим, что синий треугольник поместился в красном треугольнике, значит, площадь красного треугольника больше, чем площадь синего треугольника.


Сравнение площадей заданной меркой

Иногда нельзя определить, площадь какой фигуры больше способом наложения. Давай сравним площади двух фигур:

В таком случае измерять площади фигур будем заданной меркой, а потом сравним их.

Например, меркой может быть вот такой прямоугольник : 

В первой фигуре поместилось 5 мерок, во второй фигуре поместилось 5 таких же мерок. Значит, площади фигур равны.


Единицы площади

В математике измерять площади фигур математики всего мира договорились одинаковыми мерками. 

Квадратный сантиметр

Квадрат, сторона которого 1 см – это единица площади – квадратный сантиметр: см²

Определим площадь данных фигур:

В синей фигуре 8 см², а в красной фигуре – 7 см².

8 > 7, значит, 8 см² > 7 см² а это значит, что площадь синей фигуры больше, чем площадь красной фигуры.


Квадратный дециметр

Квадрат, сторона которого 1 дм – это единица площади – квадратный дециметр: дм²

Вычислим, сколько квадратных сантиметров содержится в 1 квадратном дециметре:

1 дм² = ? см²

Сторона такого квадрата равна 10 см, а площадь квадрата равна произведению его сторон, то есть

10  • 10 = 100 см²

Значит, 1 дм² = 100 см²


Квадратный метр

Квадрат, сторона которого 1 м – это единица площади – квадратный метр: м²

Этой единицей мы пользуемся, когда хотим узнать площадь комнаты, класса, школьного двора или бабушкиного сада.

1 м² = 100 дм²



Квадратный километр

Квадрат, сторона которого 1 км – это единица площади – квадратный километр: км²

Этой единицей мы пользуемся, когда хотим узнать площадь города или страны. Например, площадь России составляет более семнадцати миллионов квадратных километров.

1 км² = 1000000 м²


Квадратный миллиметр

Квадрат, сторона которого 1 мм – это единица площади – квадратный миллиметр: мм²

Этой единицей мы пользуемся для измерения очень маленьких площадей.

1 см² = 100 мм²

Длина и ширина клеточки школьной тетради по математике – пять миллиметров, значит там пять рядов по пять квадратных миллиметров. 5 • 5 = 25, поэтому в одной клеточке двадцать пять квадратных миллиметров.

Для черчения и измерения фигур маленькой площади удобно использовать миллиметровую бумагу.


Ар

Ар – это площадь квадрата со стороной 10 м.

Слово “ар” при числах сокращённо записывают так:

1 а, 20 а, 97 а.

1 а2 = 100 м2, поэтому ар часто называют соткой.


Гектар

Гектар – это площадь квадрата со стороной 100 м.

Слово “гектар” при числах сокращённо записывают так:

1 га, 20 га, 530 га.

Чтобы перевести площадь из квадратных метров в гектары, необходимо число квадратных метров разделить на 10000.


Ар и гектар используются при измерении земельных участков.

Советуем посмотреть:

Площадь прямоугольника

Круг. Шар. Овал

Треугольники

Многоугольники

Угол. Виды углов

Обозначение геометрических фигур буквами

Периметр многоугольника

Окружность

Основы геометрии


Правило встречается в следующих упражнениях:

2 класс

Страница 43. Урок 17,
Петерсон, Учебник, часть 2

Страница 47. Урок 18,
Петерсон, Учебник, часть 2

Страница 81. Урок 33,
Петерсон, Учебник, часть 2

Страница 82. Урок 34,
Петерсон, Учебник, часть 2

Страница 88. Урок 37,
Петерсон, Учебник, часть 2

Страница 27. Урок 9,
Петерсон, Учебник, часть 3

Страница 33. Урок 11,
Петерсон, Учебник, часть 3

Страница 40. Урок 14,
Петерсон, Учебник, часть 3

Страница 52. Урок 18,
Петерсон, Учебник, часть 3

Страница 56. Урок 20,
Петерсон, Учебник, часть 3

3 класс

Страница 72,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 1

Страница 84,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 1

Страница 40,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 2

Страница 83,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 2

Страница 95,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 2

Страница 27. Урок 9,
Петерсон, Учебник, часть 1

Страница 85. Урок 31,
Петерсон, Учебник, часть 1

Страница 18. Урок 7,
Петерсон, Учебник, часть 2

Страница 88. Урок 38,
Петерсон, Учебник, часть 2

Страница 42. Урок 19,
Петерсон, Учебник, часть 3

4 класс

Страница 44,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 1

Страница 47,
Моро, Волкова, Рабочая тетрадь, часть 1

Страница 28. ПР 3. Вариант 1,
Моро, Волкова, Проверочные работы

Страница 53,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 2

Страница 66,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 2

Страница 107,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 2

Страница 38,
Моро, Волкова, Рабочая тетрадь, часть 2

Страница 66,
Моро, Волкова, Рабочая тетрадь, часть 2

Страница 70,
Моро, Волкова, Рабочая тетрадь, часть 2

Страница 72,
Моро, Волкова, Рабочая тетрадь, часть 2


Добавить комментарий