Геометрическая прогрессия 9 класс как найти q

запиши периодическую дробь (0,(8)) обыкновенной дробью.

Решение.

Достаточно очевидно, что (0,(8)=0,8+0,08+0,008+…)  Слагаемые в правой части равенства образуют бесконечно убывающую геометрическую прогрессию, первый член которой равен (0,8), знаменатель равен (0,1). Найдём сумму по  формуле:

S=b11−q=0,81−0,1

.

Осталось выполнить нужные действия с десятичными дробями:

0,81−0,1=0,80,9=89

.

Таким образом, бесконечная периодическая десятичная дробь (0,(8)) обращается в обыкновенную дробь (8/9).

Ответ: (0,(8)=8/9).

Геометрическая прогрессия

  1. Понятие геометрической прогрессии
  2. Формула n-го члена геометрической прогрессии
  3. Свойства геометрической прогрессии
  4. Сумма первых n членов геометрической прогрессии
  5. Примеры

п.1. Понятие геометрической прогрессии

Геометрической прогрессией называют числовую последовательность, каждый член которой bn, начиная со второго, равен произведению предыдущего члена bn-1 и некоторого постоянного числа q: $$ mathrm{ b_n=b_{n-1}q, ninmathbb{N}, n ge 2, qne 0, qne 1, b_1ne 0 } $$ Число q называют знаменателем геометрической прогрессии.

Например:
1. Последовательность 1, 3, 9, 27, … является геометрической прогрессией с b1 = 1, q = 3.

2. Последовательность (mathrm{9, -3, 1, -frac13, frac19,…}) является геометрической прогрессией с b1 = 9, (mathrm{q=-frac13}).

п.2. Формула n-го члена геометрической прогрессии

По определению геометрической прогрессии мы получаем рекуррентную формулу для n-го члена: bn = bn-1q. Из неё можно вывести аналитическую формулу:

b2 = b1q,   b3 = b2q = (b1q)q = b1q2,   b4 = b3q = (b1q2)q = b1q3,…

Получаем:

bn = b1qn-1

Например:
Найдём b5, если известно, что (mathrm{b_1=frac12, q=2}).
По формуле n-го члена получаем: (mathrm{b_5=b_1q^4=frac12cdot 2^4=2^3=8})

п.3. Свойства геометрической прогрессии

Свойство 1. Экспоненциальный рост/падение

Геометрическая прогрессия с положительными первым членом и знаменателем b1 > 0, q > 0 является показательной функцией вида f(n) = kqn: $$ mathrm{ b_n=frac{b_1}{q}q^n } $$

Свойство 1

Свойство 1

При b1 > 0, q > 1 прогрессия экпоненциально растёт

При b1 > 0, 0 < q < 1 прогрессия экпоненциально падает

Свойство 2. Признак геометрической прогрессии

Для того чтобы числовая последовательность была геометрической прогрессией необходимо и достаточно, чтобы каждый её член, начиная со второго, был средним геометрическим предыдущего и последующего членов: $$ mathrm{ left{b_nright} – text{геометрическая прогрессия} Leftrightarrow b_n=sqrt{b_{n-1}b_{n+1}}, ninmathbb{N}, n geq 2 } $$ Следствие: аждый член прогрессии является средним геометрическим двух равноудалённых от него членов: $$ mathrm{ b_n=sqrt{b_{n-k}b_{n+k}}, ninmathbb{N}, kinmathbb{N}, n geq k+1 } $$

Например:
Найдём b9, если известно, что (mathrm{b_7=frac{1}{16}, b_{11}=4})
По следствию из признака геометрической прогрессии: (mathrm{b_9=sqrt{b_7b_{11}}=sqrt{frac{1}{16}cdot 4}=frac12})

Свойство 3. Равенство сумм индексов

Если {bn} – геометрическая прогрессия, то из равенства сумм индексов следует равенство произведений членов: $$ mathrm{ m+k=p+q Rightarrow b_mb_k=b_pb_q } $$ Следствие: произведение членов, равноудалённых от концов прогрессии, является постоянной величиной: $$ mathrm{ b_1b_n = b_2b_{n-1}=b_3b_{n-2}=… } $$

Например:
Найдём b6, если известно, что b2 = 5, b4 = 10, b8 = 40
По равенству сумм индексов b2b8 = b4b6
Откуда (mathrm{b_6=frac{b_2b_8}{b_4}=frac{5cdot 40}{10}=20})

п.4. Сумма первых n членов геометрической прогрессии

Сумма первых n членов геометрической прогрессии равна $$mathrm{ S_n=frac{b_nq-b_1}{q-1}, qne 1} $$

Если учесть, что bn = b1qn-1, получаем ещё одну формулу для суммы: $$mathrm{ S_n=b_1frac{q^n-1}{q-1}, qne 1} $$

Например:
Найдём сумму первых 10 степеней двойки: 2 + 22 + 23 + … + 210
В этом случае b1 = 2, q = 2, n = 10
Получаем: (mathrm{ S_{10}=2cdot frac{2^{10}-1}{2-1}=2cdot (1024-1)=2046})

п.5. Примеры

Пример 1. Найдите знаменатель геометрической прогрессии и сумму первых 10 членов, если:
а) b5 = 9, b8 = 243
Найдём отношение $$ mathrm{ frac{b_8}{b_5}=frac{b_1cdot q^7}{b_1cdot q^4}=q^3, frac{b_8}{b_5}=frac{243}{9}=27=3^3, q^3=3^3Rightarrow q = 3 } $$ Найдём 1-й член: $$ mathrm{ b_1=frac{b_5}{q^4}=frac{9}{3^4}=frac{3^2}{3^4}=frac{1}{3^2}=frac19 } $$ Сумма: $$ mathrm{ S_{10}=b_1frac{q^{10}-1}{q-1}=frac{3^{10}-1}{9cdot 2}=frac{29524}{9}=3280frac49 } $$ Ответ: q = 3, S10 = (mathrm{3280frac49})

б) b1 = 3, bn = 96, Sn = 189
По формуле суммы: $$ mathrm{ S_{n}=frac{b_nq-b_1}{q-1}Rightarrow 189 =frac{96q-3}{q-1}Rightarrow 189(q-1)=96q-3Rightarrow 93q=186Rightarrow q = 2 } $$ Сумма: $$ mathrm{ S_{10}=b_1frac{q^{10}-1}{q-1}=3cdot frac{2^{10}-1}{2-1}=3cdot 1023=3069 } $$ Ответ: q = 2, S10 = 3069

Пример 2. Между числами (mathrm{40frac12 text{и} 5frac13}) вставьте такие четыре числа, чтобы они вместе с данными числами образовали геометрическую прогрессию.
По условию (mathrm{b_1=40frac12, b_6=5frac13}) $$ mathrm{ frac{b_6}{b_1}=q^5, frac{b_6}{b_1}=5frac13 : 40frac12=frac{16}{3} : frac{81}{2}=frac{16}{3} cdot frac{2}{81}=frac{32}{243}=frac{2^5}{3^5}=left(frac23right)^5 } $$ Знаменатель (mathrm{q=frac23})
Находим промежуточные члены прогрессии: begin{gather*} mathrm{ b_2=b_1q=40frac12cdotfrac23=frac{81}{2}cdot frac23=27, b_3=b_2q=27cdotfrac23=18, }\ mathrm{ b_4=b_3q=18cdotfrac23=12, b_5=b_4q=12cdotfrac23=8 } end{gather*} Ответ: 27, 18, 12 и 8

Пример 3. Найдите первый и последний члены геометрической прогрессии, если: $$ left{ begin{array}{ l } mathrm{b_4-b_2=0,6} & \ mathrm{b_5-b_3=1,2} & \ mathrm{S_n=12,7} & end{array}right. $$ Заметим, что b4=b2q2,   b5=b3q2. Для первых двух уравнений получаем: $$ left{ begin{array}{ l } mathrm{b_2q^2-b_2=0,6} & \ mathrm{b_3q^2-b-3=1,2} & end{array}right. Rightarrow left{ begin{array}{ l } mathrm{b_2(q^2-1)=0,6} & \ mathrm{b_3(q^2-1)=1,2} & end{array}right. $$ Делим второе уравнение на первое: $$ mathrm{ frac{b_3(q^2-1)}{b_2(q^2-1)}=frac{1,2}{0,6}Rightarrowfrac{b_3}{b_2}=q=2 } $$ Подставляем найденное значение знаменателя прогрессии в первое уравнение: $$ mathrm{ b_2(2^2-1)=0,6 Rightarrow b_2=frac{0,6}{3}=0,2 Rightarrow b_1=frac{b_2}{q}=frac{0,2}{2}=0,1 } $$ Для третьего уравнения можем записать: begin{gather*} mathrm{ S_n=b_1frac{q^n-1}{q-1}=0,1cdotfrac{2^n-1}{2-1}=frac{2^n-1}{10}=12,7 Rightarrow 2^n-1=127 Rightarrow }\ mathrm{ Rightarrow 2^n=128=2^7 Rightarrow n=7 } end{gather*} 7-й член b7 = b1q6 = 0,1 · 26 = 6,4
Ответ: b1 = 0,1;   b7 = 6,4

Пример 4. В геометрической прогрессии, все члены которой положительны, сумма первого и второго членов равна 48, а сумма третьего и четвёртого членов равна 12. Найдите значение n, при котором Sn = 63. $$ text{По условию} left{ begin{array}{ l } mathrm{b_1+b_2=48} & \ mathrm{b_3+b_4=12} & \ mathrm{S_n=63} & end{array}right. $$ Заметим, что b3 = b1q2,   b_4=b_2q2. Второе уравнение можно переписать в виде: $$ mathrm{ b_3+b_4=b_1q^2+b2q^2=underbrace{(b_1+b_2)}_{=48} q^2=12 Rightarrow q^2=frac{12}{48}=frac14 Rightarrow q=frac12 } $$ Берём положительное значение q, т.к. по условию все члены положительны.
Из первого уравнения $$ mathrm{ b_1+b_2=b_1(1+q)=48 Rightarrow b_1=frac{48}{1+frac12}=48cdotfrac23=32 } $$ Для третьего уравнения можем записать: begin{gather*} mathrm{ S_n=b_1frac{q^n-1}{q-1}=b_1frac{1-q^n}{1-q}=32cdotfrac{1-frac{1}{2^n}}{1-frac12}=64left(1-frac{1}{2^n}right)=63 }\ mathrm{ 64-frac{64}{2^n}=63 Rightarrow 1=frac{2^6}{2^n} Rightarrow n=6 } end{gather*} Ответ: 6

Пример 5. Бактерия, попав в организм, делится надвое каждые 20 мин. Сколько бактерий будет в организме через сутки?
Сутки – это 24 · 60 = 1440 мин, или n = 1440 : 20 = 72 цикла деления.
По условию необходимо найти

N = N0 · 2n,   где N0 = 1
N = 272 = 4 722 366 482 869 645 213 696 ≈ 4,7 · 1021

Ответ: 4,7 · 1021 бактерий

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 16 декабря 2022 года; проверки требуют 37 правок.

У этого термина существуют и другие значения, см. Прогрессия.

Геометри́ческая прогре́ссия — последовательность чисел b_{1}, b_{2}, b_{3}, ldots (члены прогрессии), в которой каждое последующее число, начиная со второго, получается из предыдущего члена умножением его на фиксированное число q (знаменатель прогрессии). При этом {displaystyle b_{1}neq 0,qneq 0;b_{n}=b_{n-1}q,nin mathbb {N} ,ngeqslant 2}[1].

Геометрическая прогрессия называется бесконечно убывающей[2], если знаменатель прогрессии по абсолютной величине меньше единицы.

Произведением первых n членов геометрической прогрессии {displaystyle left{b_{n}right}} называется произведение от b_{1} до b_n, то есть выражение вида {displaystyle prod limits _{i=1}^{n}b_{i}=b_{1}cdot b_{2}cdot b_{3}cdot ldots cdot b_{n-2}cdot b_{n-1}cdot b_{n}.}
Обозначение: P_{n}.

Описание[править | править код]

Любой член геометрической прогрессии может быть вычислен по формуле

{displaystyle b_{n}=b_{1}q^{n-1}.}

Если {displaystyle b_{1}>0} и {displaystyle q>1}, прогрессия является возрастающей последовательностью, если {displaystyle 0<q<1}, — убывающей последовательностью, а при q<0 — знакочередующейся[3], при q=1 — стационарной (постоянной).

Своё название прогрессия получила по своему характеристическому свойству:

{displaystyle |b_{n}|={sqrt {b_{n-1}b_{n+1}}},}

то есть модуль любого члена геометрической прогрессии, кроме первого, равен среднему геометрическому (среднему пропорциональному) двух рядом с ним стоящих членов[4].

Примеры[править | править код]

Получение новых квадратов путём соединения середин сторон предыдущих квадратов

  • Последовательность площадей квадратов, где каждый следующий квадрат получается соединением середин сторон предыдущего — бесконечная геометрическая прогрессия со знаменателем 1/2. Площади получающихся на каждом шаге треугольников также образуют бесконечную геометрическую прогрессию со знаменателем 1/2, сумма которой равна площади начального квадрата[5]:8—9.
  • Геометрической является последовательность количества зёрен на клетках в задаче о зёрнах на шахматной доске.
  • 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192 — геометрическая прогрессия со знаменателем 2 из тринадцати членов.
  • 50; 25; 12,5; 6,25; 3,125; … — бесконечно убывающая геометрическая прогрессия со знаменателем 1/2.
  • 4; 6; 9 — геометрическая прогрессия из трёх элементов со знаменателем 3/2.
  • pi , pi , pi , pi  — стационарная геометрическая прогрессия со знаменателем 1 (и стационарная арифметическая прогрессия с разностью 0).
  • 3; −6; 12; −24; 48; … — знакочередующаяся геометрическая прогрессия со знаменателем −2.
  • 1; −1; 1; −1; 1; … — знакочередующаяся геометрическая прогрессия со знаменателем −1.

Свойства[править | править код]

Свойства знаменателя геометрической прогрессии[править | править код]

Знаменатель геометрической прогрессии можно найти по формулам:

  • {displaystyle q={dfrac {b_{n+1}}{b_{n}}}}

Доказательство

По определению геометрической прогрессии.

  • {displaystyle q={sqrt[{n-k}]{dfrac {b_{n}}{b_{k}}}},{text{где }}k<n;;forall n,forall kin mathbb {N} .}

Свойства членов геометрической прогрессии[править | править код]

  • Рекуррентное соотношение для геометрической прогрессии:
{displaystyle b_{n}=b_{n-1}cdot q}

Доказательство

По определению геометрической прогрессии.

  • Формула общего (n-го) члена:
{displaystyle b_{n}=b_{1}cdot q^{n-1}.}
  • Обобщённая формула общего члена:
{displaystyle b_{n}=b_{k}cdot q^{n-k},{text{где }}k<n;;forall n,forall kin mathbb {N} .}

Доказательство

{displaystyle b_{n}^{2}=b_{n}b_{n}=b_{1}q^{n-1}b_{1}q^{n-1}=b_{1}q^{n-1-i}b_{1}q^{n-1+i}=b_{n-i}b_{n+i}.}

  • Логарифмы членов геометрической прогрессии (если определены) образуют арифметическую прогрессию.

Доказательство

{displaystyle log(b_{n})=log(b_{1}q^{n-1})=log(b_{1})+(n-1)cdot log(q)}
Формула общего члена арифметической прогрессии:
{displaystyle a_{n}=a_{1}+(n-1)cdot d}.
В нашем случае
a_{1}=log(b_{1}),
d=log(q).

Доказательство

{displaystyle b_{n}^{2}=b_{n}b_{n}=b_{1}q^{n-1}b_{1}q^{n-1}=b_{1}q^{n-1-i}b_{1}q^{n-1+i}=b_{n-i}b_{n+i}.}

Пусть {displaystyle a_{k},a_{l},a_{m}} — соответственно k-й, l-й, m-й члены геометрической прогрессии, где {displaystyle k,,l,,min mathbb {N} }. Тогда для всякой такой тройки выполняется комплементарное свойство геометрической прогрессии, называемое тождеством геометрической прогрессии:

{displaystyle b_{k}^{l-m}cdot b_{l}^{m-k}cdot b_{m}^{k-l}=1.}

  • Произведение членов геометрической прогрессии начиная с k-го члена, и заканчивая n-м членом, можно рассчитать по формуле
    {displaystyle P_{k,n}={dfrac {P_{n}}{P_{k-1}}}.}

Доказательство

{displaystyle P_{k,n}=prod _{i=k}^{n}b_{i}={frac {prod _{i=1}^{n}b_{i}}{prod _{j=1}^{k-1}b_{j}}}={frac {P_{n}}{P_{k-1}}}.}

  • Сумма всех членов убывающей прогрессии:
{displaystyle left|qright|<1}, то {displaystyle b_{n}to 0} при nto +infty , и
{displaystyle S_{n}to {frac {b_{1}}{1-q}}} при nto +infty .

Свойства суммы геометрической прогрессии[править | править код]

  • {displaystyle b_{n+1}=S_{n+1}-S_{n}}
  • {displaystyle S_{n}=sigma _{n}cdot b_{1}b_{n}}

где {displaystyle sigma _{n}} — сумма обратных величин, т. е. {displaystyle sigma _{n}={dfrac {1}{b_{1}}}+{dfrac {1}{b_{2}}}+cdots +{dfrac {1}{b_{n-1}}}+{dfrac {1}{b_{n}}}}.

Свойства произведения геометрической прогрессии[править | править код]

См. также[править | править код]

  • Арифметическая прогрессия
  • Арифметико-геометрическая прогрессия
  • Числа Фибоначчи
  • Показательная функция
  • Сумма ряда

Примечания[править | править код]

  1. Геометрическая прогрессия Архивная копия от 12 октября 2011 на Wayback Machine на mathematics.ru
  2. Это название, хотя и является общепринятым, неудачно, так как бесконечно убывающая геометрическая прогрессия является убывающей, только если и первый член, и знаменатель прогрессии положительны.
  3. Геометрическая прогрессия // Большая советская энциклопедия : [в 30 т.] / гл. ред. А. М. Прохоров. — 3-е изд. — М. : Советская энциклопедия, 1969—1978.
  4. Если геометрическая прогрессия является конечной последовательностью, то её последний член таким свойством не обладает.
  5. Роу С. Геометрические упражнения с куском бумаги. — 2-е изд. — Одесса: Mathesis, 1923. Архивная копия от 19 мая 2017 на Wayback Machine

16
Июл 2013

Категория: Справочные материалы

Геометрическая прогрессия

2013-07-16
2021-06-28

А вы знаете удивительную легенду о зернах на шахматной доске? + показать


Определение

Геометрическая прогрессия — последовательность чисел (членов прогрессии) b_1,;b_2,;b_3,;...,   в которой каждое последующее число, начиная со второго, получается из предыдущего умножением его на определённое число q (знаменатель прогрессии):

b_1,;b_1q,;b_1q^2,;b_1q^3,;...,  где b_1neq 0,;qneq 0

Например, последовательность 1, 2, 4, 8, 16, … – геометрическая (q=2)

геометрическая прогрессия, знаменатель геометрической погрессии

Геометрическая прогрессия

Знаменатель геометрической прогрессии

q=frac{b_{k+1}}{b_k}, kin N

Характеристическое свойство геометрической прогрессии

b_n^2=b_{n-1}cdot b_{n+1} для n>1

Последовательность b_n является геометрической тогда и только тогда, когда для любого n > 1 выполняется указанное выше соотношение.

В частности,  для геометрической прогрессии с положительными членами, верно: b_n=sqrt{b_{n-1}cdot b_{n+1}}

Формула  n-го члена геометрической прогрессии

b_n=b_1cdot q^{n-1}

Сумма n первых членов геометрической прогрессии

S_n=frac{b_1(q^n-1)}{q-1}, где qneq 1

(если же q=1, то S_n=b_1)

Бесконечно убывающая геометрическая прогрессия 

При |q|<1,  геометрическая прогрессия называется бесконечно убывающей. Суммой бесконечно убывающей геометрической прогрессии называется число S=lim_{nto infty}S_n и S=frac{b_1}{1-q}


Посмотри это видео 


Примеры

Пример 1. Последовательность {b_n} –геометрическая прогрессия.

Найдите b_1, если b_6=-frac{1}{81}, q=-frac{1}{9}.

Решение: + показать


Приметр 2. Найдите знаменатель геометрической прогрессии {b_n}, в которой b_8=172,;b_{11}=2frac{11}{16}.

Решение:  + показать


Пример 3. Найдите девятый член геометрической прогрессии, если ее десятый член равен 12, а одиннадцатый член равен 4.

Решение:  + показать


Пример 4. Найдите сумму первых шести членов геометрической прогрессии

sqrt3,;3,;3sqrt3,;...

Решение:  + показать


Пример 5. Найдите сумму первых пяти членов геометрической прогрессии {b_n}, в которой  b_3=frac{1}{2},;b_5=2,;q>0.

Решение:  + показать


Пример 6. Представьте в виде обыкновенной дроби число 0,(4).

Решение:  + показать


Пример 7. Найдите x, если известно, что числа x-3,;sqrt{5x},;x+16 являются последовательными членами геометрической прогрессии (в указанном порядке).

Решение:  + показать


Пример 8. Найдите знаменатель геометрической прогрессии, отношение суммы первых четырех членов которой, к сумме первых двух членов равно frac{82}{81}.

Решение:  + показать


Пример 9. Между числами 3 и 12 вставьте три числа так, чтобы получилась геометрическая прогрессия (q>0).

Решение: + показать


тест

Вы можете пройти тест по теме «Геометрическая прогрессия»

Автор: egeMax |

комментариев 5

Печать страницы

Геометрическая прогрессия – важное понятие в алгебре и в математике вообще, объясняется впервые в 9 классе. Обычно применяется при решении текстовых задач, связанных с экономикой или теорией вероятности, но может использоваться самостоятельно для усвоения понятия геометрической прогрессии. Арифметическую прогрессию мы изучали в предыдущих темах. Сейчас рассмотрим геометрическую прогрессию – дадим ей определение, рассмотрим основные формулы геометрической прогрессии и ее характеристики, разберем несколько примеров.

Определение геометрической прогрессии

Геометрическая прогрессия – это числовая последовательность, первый член которой отличен от нуля, а каждый член, начиная со второго, равен предшествующему члену, умноженному на одно и то же не равное нулю число.

Из определения геометрической прогрессии следует, что отношение любого ее члена к предшествующему равно одному и тому же числу, то есть b_2:b_1=b_3:b_2= ... = b_{n}:b_{n-1}=b_{n+1}:b_{n}=... Это число называется знаменателем геометрической прогрессии и обозначается обычно буквой q.

displaystyle q=frac{b_{n+1}}{b_n}

Для того, чтобы задать геометрическую прогрессию b_n, достаточно знать ее первый член b_1 и знаменатель q. Например, условиями b_1=2 и q=2 можно задать геометрическую прогрессию: 2,  4,  8,  16,  32 ....

Монотонная последовательность

Если знаменатель геометрической прогрессии больше нуля (q>0), (q neq 1), то прогрессия называется монотонной последовательностью. Например, если прогрессия задана b_1=-2, q=3 тогда геометрическая прогрессия -2, -6, -18, … есть монотонно убывающая последовательность.

Если прогрессия с параметрами b_1=4, q=-3 при q<0 образует последовательность 4, -12, 36, -108 … . Такая прогрессия не является ни возрастающей, ни убывающей последовательностью.

Если q=1, то все члены прогрессии равны между собой. В этом случае прогрессия является постоянной последовательностью.

Свойство геометрической прогрессии

Характеристической свойство геометрической прогрессии – последовательность b_n является геометрической прогрессией тогда и только тогда, когда каждый ее член, начиная со второго, есть среднее геометрическое соседних с ним членов, то есть {b_{n+1}}^2=b_n cdot b_{n+2}, где n in N.

Формулы геометрической прогрессии

Формула n-го члена геометрической прогрессии

Формула для определения n-го члена геометрической прогрессии имеет вид: b_n=b_1 q^{n-1}, где n in N.

Формула суммы n первых членов геометрической прогрессии

Для определения суммы n первых членов геометрической прогрессии используется формула:

    [S_n=frac{b_n q-b_1}{q-1},   (q neq 1)]

Если в эту формулу вместо b_n подставить выражение по формуле для определения n-го члена геометрической прогрессии, то мы получим вот такой вариант формулы:

    [S_n=frac{b_1(q^n-1)}{q-1}  (q neq 1)]

Произведение равноотстоящих членов геометрической прогрессии

Из определения знаменателя геометрической прогрессии следует, что b_1b_n=b_2b_{n-1}=const, то есть произведение членов, равноотстоящих от концов прогрессии, есть величина постоянная.

Примеры на геометрическую прогрессию с решениями

Пример 1

В геометрической прогрессии b_1=6, q=3, n=8 найти b_n и S_n.

Решение: чтобы найти b_n определяется по формуле: b_n=b_1 q^{n-1}, подставляя в нее данные примера, получим:

b_8=6 cdot 3^7=13122.

Сумму восьми первых членов геометрической прогрессии находим по формуле S_n=frac{b_1(q^n-1)}{q-1} :

S_8=frac{6 (3^8-1)}{3-1}=19680

Ответ: 13122 и 19680.

Пример 2

Сумма первого и третьего членов геометрической прогрессии равна 15, а сумма второго и четвертого 30. Найти сумму первых десяти членов.

Решение: чтобы найти сумму первых десяти членов прогрессии нам нужно знать ее первый член и знаменатель. Для нахождения их составим систему уравнений.

    [left{ begin{aligned} b_1+b_2=15\ b_2+b_4=30\ end{aligned} right.]

    [left{ begin{aligned} b_1(1+q^2)=15\ b_1 q (1+q^2)=30\ end{aligned} right.]

Разделив почленно второе уравнение системы на первое уравнение системы, получим q=2. Подставляя найденное значение q=2. Подставляя найденное значение q в первое уравнение, находим b_1=3.

По формуле displaystyle S_n=frac{b_1(q^n-1)}{q-1}  находим:

displaystyle S_{10}=frac{3(2^{10}-1)}{2-1}=3069

Ответ: 3069

Пример 3

Найдите четыре числа, составляющие геометрическую прогрессию, зная, что первое больше второго на 36, а третье больше четвертого на 4.

Решение:

По условию задачи имеем b_1=b_2+36 и b_3=b_4+4.

Составим систему:

    [left{ begin{aligned} b_1=b_1 q+36\ b_1 q^2=b_1 q^3+4\ end{aligned} right.]

    [left{ begin{aligned} b_1(1-q)=36\ b_1 q^2 (1-q)=4\ end{aligned} right.]

Разделим почленно второе уравнение системы на первое уравнение, получим q^2=frac{1}{9}, откуда q_1=- frac{1}{3}, q_2=frac{1}{3}.

Если displaystyle q=- frac{1}{3}, то b_1=27, b_2=-9, b_3=3, b_4=-1.

Если displaystyle q=frac{1}{3}, то  b_1=54, b_2=18, b_3=6, b_4=2.

Ответ: 54, 18, 6 и 2 или 27, -9, 3, -1.

Добавить комментарий